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Abstract

We consider option pricing when dynamic portfolios are discretely rebalanced. The portfolio

adjustments only occur after fixed relative changes in the stock price. The stock price follows a

marked point process (MPP) and the market is incomplete. We first characterise the equivalent

martingale measures. An explicit pricing formula based on the minimal martingale measure (MMM)

is then provided together with the hedging strategy underlying portfolio adjustments. Two examples

illustrate our pricing framework: a jump process driven by a latent geometric Brownian motion and a

marked Poisson process. We establish the convergence to the Black–Scholes model when the

triggering price increment shrinks to zero. For the empirical application, we use IBM, France

Telecom (FT) and CAC 40 intraday transaction data, and compare option prices given by the marked

Poisson model, the Black–Scholes model and observed option prices.

D 2003 Elsevier B.V. All rights reserved.

JEL classification: D52; G13

Keywords: Incomplete market; Option pricing; Minimal martingale measure; Discrete rebalancing; Marked point
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1. Introduction

Due to practical constraints, portfolios are not continuously rebalanced. Traders usually

readjust their positions after significant moves in the underlying asset price. It means that

hedging portfolios are discretely rebalanced according to relative price movements, i.e.

after an increase (or decrease) by a given percentage a. Price movements leading to these
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portfolio modifications are best described by a process whose logarithmic variations have

fixed sizes (a or � a) and occur at random times. Such a process is a marked point process

on the real line with one-dimensional mark space E={a,� a}. The real line depicts time

while the marks describe the random jumps taking place at random times of occurrence of

events. In this paper, we analyze the pricing of an option when stock prices follow this

kind of processes also called space–time point processes. The dynamics of such processes

can be estimated on high frequency transaction data. As will become apparent in the

empirical section of the paper, while being in phase with market practice, our pricing

methodology also allows an adequate fit of the empirical features of IBM, France Telecom

and CAC 40 price data.

The paper is organized as follows. In Section 2, we outline our framework and briefly

portray the basic structure of a marked point process using the martingale approach. In

Section 3, we characterise the set of equivalent martingale measures (the market is

incomplete due to the presence of jumps and option prices are no more uniquely

determined). In Section 4, we give a pricing formula when a particular choice is made

within this set, namely the minimal martingale measure introduced by Föllmer and

Schweizer (1991). An explicit form for the trading strategy is derived when this choice

is adopted to build hedging portfolios. This is an obvious practical advantage of our

pricing approach. Both sections are closely related to the work of Buhlman et al. (1996)

and Colwell and Elliott (1993). Two examples are further analyzed. The first example

consists of a jump process built from the random crossings of a latent (hidden or

unobservable) geometric Brownian motion. This model corresponds to the intuitive case

where the true stock price follows the same process as in Black–Scholes but traders only

rebalance when the underlying has changed significantly. Although intuitive from a

financial theory point of view, this specification is not appropriate for empirical purposes

because of its complexity. We thus propose a simpler, readily implementable specification

as our second example: a marked Poisson process with independent binomial increments.

This second parametric model is easy to estimate and able to capture some empirical

features of stock prices. In Section 5, we examine the convergence of the minimal pricing

model to the standard Black and Scholes (1973) model when the jump size shrinks to zero.

In Section 6, three empirical applications are provided. We first study IBM intraday

transaction data from the New York Stock Exchange. Parameters of the marked Poisson

case are estimated and used as input to compute European call option prices. These prices

are compared with a Black–Scholes pricing based on an historical volatility estimate from

daily closing prices. In our second and third examples, we compare the ability of the

Black–Scholes and of the marked Poisson model to replicate observed prices of options

on the France Telecom stock and the CAC 40 index listed of the Paris bourse. Section 7

concludes. All proofs and technical details are gathered in: Appendices A and B.

2. Framework

Before reviewing the concepts needed to proceed further, we would like to refer the

reader to Brémaud (1981), Karr (1986) and Last and Brandt (LB) (1995) for more

extensive treatments of (marked) point processes. Besides, the exposition of Jacod and
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Shiryaev (JS) (1987) is of paramount interest for the background of this paper in terms of

notations and concepts.

Let us consider a sequence of positive random variables Tj satisfying Tj < Tj + 1, j = 1,. . .
Random elements Zj, called the marks, take values in the mark space E, and are associated

with the random times Tj. The random elements are defined on the same probability space:

(V ,F,P). Each (Tj,Zj) is said to be a marked point and the sequence ((Tj,Zj))j of marked

points is referred to as a marked point process (MPP).

The mark space E is here equal to {a,� a} and the MPP describes the dynamics of a

stock price:

St ¼ S0e
Xt ; ð1Þ

through the random variable:

Xt ¼
X
j:TjVt

Zj; ð2Þ

built with the marked points (Tj,Zj). The process X is a purely discontinuous process with

jumps Zj=DXTj at random times Tj. The jumps take the values a or � a, and so do the

logarithmic variations of the stock price: Dlog STj =DXTj. A possible realisation of the

process Xt is shown in Fig. 1.

The process X takes the form of an integral process defined as the sum of jumps:

Xt ¼
X
j:TjVt

DXTj ¼
Z t

0

Z
E

xdl:

Fig. 1. The process Xt such that St= S0e
Xt.
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The integer-valued random measure l(dt,dx) on R+�E is the counting measure

associated to the marked point process. It is given by (Jacod and Shiryaev, 1987, p. 69):

lðdt; dxÞ ¼
X
sz0

IfDXsp0geðs;DXsÞðdt; dxÞ;

where ev denotes the Dirac measure at point v.

If E ½
P

j:TjVt AZjA	 is finite for all t (Jacod and Shiryaev, 1987, p. 72), such a process

can be decomposed as:

X ¼
Z t

0

Z
E

xdm þ
Z t

0

Z
E

xdðl � mÞ:

The measure m is a predictable measure, called the compensator, with the property that l–m
is a local martingale measure. This measure can be disintegrated as (Jacod and Shiryaev,

1987, p. 67):

mðdt; dxÞ ¼ dKtKðt; dxÞ;

where K is a predictable integrable increasing process and K is a transition kernel. In the

sequel, we work with position-dependent marking (Last and Brandt, 1995, pp. 18 and

186). This corresponds to the following assumption for the specification of our model.

Assumption 1 (Compensator specification). The compensator m(dt,dx) on R+�E

satisfies:

mðdt; dxÞ ¼ dKtKðt; dxÞ;

where K is a predictable integrable increasing process absolutely continuous w.r.t. time, K

is a probability kernel on E such that mE (x
2^1)K(t,dx) < +l, and Z1,Z2,. . . are

conditionally independent given (Tj)j such that P (Zjadx|(Tj)j) =K(Tj,dx).

The marked point process (Tj,Zj)j is called a position-dependent K-marking of the point

process (Tj)j. The marks have a probability kernel K and the arrivals of the increments are

governed by the process K. The process K represents the intensity of the arrival times of

jumps and is the compensator associated to the counting measure of the point process (Tj)j.

The absolute continuity hypothesis ensures that the set of fixed times of discontinuity of X

is empty and that the Radon–Nikodym derivative kt= dKt /dt is well defined. The process

k is called the directing intensity.

Now that the setting is given, we may turn to the next step: the characterisation of the

equivalent martingale measures.

3. Equivalent martingale measures

From Harrison and Kreps (1979), Harrison and Pliska (1981), Delbaen and Schacher-

mayer (1994), we know that in order to price derivative assets, we need to exhibit an

equivalent measure under which discounted prices are martingales. We take here as
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discount factor or numéraire a savings account whose growth rate rTj on the random time

interval: ]]Tj� 1,Tj]] satisfies:

rTj ¼ eqðTj�Tj�1Þ � 1; ð3Þ

with q>0.1

The discounted stock price is then equal to:

S̃t ¼
StY

j:TjVt

ð1þ rTjÞ
:

Let us introduce the discounted excess return process d(t,x) such that for ta]]Tj,Tj + 1]]:

dðt; xÞ ¼ dðTj; ZjÞ ¼
eZj � ð1þ rTjÞ

1þ rTj
: ð4Þ

The equivalent martingale measures are then characterised by the following proposition

(see also Buhlman et al., 1996).

Proposition 1 (Equivalent martingale measures). Under Assumption 1, an equivalent

martingale measure Q is characterised by its density process g relative to P:

gt ¼ e
Z t

0

Z
E

Hðs; xÞdðl � mÞ
� �

; ð5Þ

where E(.) denotes the Doléans–Dade exponential 2, H is a predictable process satisfying

H+ 1>0 a.s. and

0 ¼
Z t

0

Z
E

ðHðs; xÞ þ 1Þdðs; xÞdm: ð6Þ

The process g is a P-martingale such that gt is the Radon–Nikodym derivative dQt /dPt.

The process H has the interpretation of a jump risk premium process. Eq. (6) introduces

restrictions on this process but does not lead to a unique equivalent martingale measure

(market incompleteness). In fact, for ta]]Tj,Tj + 1]], the process should satisfy H(t,x) = hj(x)

with hj(x) + 1>0 a.s. and

0 ¼
Z
E

ðhjðxÞ þ 1ÞdðTj; xÞKðTjþ1; dxÞ:

Then the discounted price S̃ will be a martingale under the corresponding measure Q.

2 The Doléans–Dade exponential is the unique solution of the SDE det(U ) = et �(U )dUt, namely

et(U ) = exp(Ut� 1/2[U ] t
c)PuV t (1 +DuU )exp(�DuU ), where [U]c is the continuous part of [U] and DuU are

the increments of its discontinuous part (see, e.g. Musiela and Rutkowski, 1997).

1 For a marked point process where the directing intensity kt and the kernel K(t,dx) depend on time, we

cannot use the usual deterministic savings account bt= exp(qt). Arbitrage is not precluded in such a case.
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4. Option pricing with the minimal martingale measure

Market incompleteness yields the non-uniqueness of prices and therefore requires

delicate choices to be made in order to obtain a reasonable solution. An appealing

approach is to consider super-replication. This consists of finding the trading strategy

which enables the trader to be hedged irrespective of what the true martingale measure is

and to derive bounds on the option price. Unfortunately, the choice of measures is often so

wide that these bounds are typically close to the Merton (1973) bounds, which makes this

approach unpractical (see El Karoui and Quenez, 1995).

A second approach, which we have retained in this paper, is to choose one measure and

to motivate our choice. Both theoretical and practical considerations enter this choice as

will be shown below.

A third approach has been recently introduced in the literature (see Chernov and

Ghysels, 2000, for example). The idea is to use time series of both the underlying asset

price and of traded options and to use them as a guide to the appropriate martingale

measure. Unfortunately, all explicit solutions are then lost and there is no possibility to

recover what the hedging strategy should be under this measure. This questions the

relevance of such methods in practical option trading.

In this paper, we have chosen to work under the minimal martingale measure

(MMM), a very popular choice among equivalent martingale measures, which was

introduced by Föllmer and Schweizer (1991). This measure is minimal among all

martingale measures in the sense that, apart from turning discounted prices into

martingales, it leaves unchanged the remaining structure of the model. In particular

orthogonality relations are kept in a continuous framework (see Schweizer, 1991, 1992a)

for a full discussion, and Hofmann et al., 1992 for an illuminating use in stochastic

volatility models). This measure is computationally convenient and induces nice

convergence properties (Runggaldier and Schweizer, 1995; Prigent, 1999; Mercurio

and Vorst, 1996; Lesne et al., 2000). Schweizer (1993) shows that in some cases, the

expectation of the final payoff under the minimal measure is equal to the value of the

variance optimal hedging strategy (for the variance optimal measure, see, e.g. Föllmer

and Sondermann, 1986; Bouleau and Lamberton, 1989; Duffie and Richardson, 1991;

Schweizer, 1992b, 1994; Gouriéroux et al., 1998; Laurent and Scaillet, 1998). This value

or approximation price gives the initial amount required to implement a risk-minimizing

strategy. Such a strategy is in general not self-financing and involves a non-vanishing

hedging cost. However, as soon as the minimal measure is a probability measure, this

value is an actual no-arbitrage price (it is the case below since the jump size is

bounded).

Although the choice of a measure (which is similar to the choice of a utility function)

will remain debatable, the MMM has a great practical advantage over other choices. It

enables to write an explicit form for the change of measure and above all to find an explicit

trading strategy (delta) which is crucial for trading implementation. This is a very rare

property among equivalent martingale measures.

Concerning existence and uniqueness of the minimal measure, we refer to Ansel and

Stricker (1992, 1993). We can now proceed to answer what form this measure takes in our

framework (see also Colwell and Elliott, 1993).
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Proposition 2 (Minimal probability measure). Under Assumption 1, the minimal

martingale measure P̂ is a probability measure characterised by its density process ĝ
relative to P:

ĝt ¼ e
Z t

0

Z
E

�aS̃ddðl � mÞ
� �

; ð7Þ

where for ta]]Tj,Tj + 1]]:

at ¼

Z
E

dðTj; xÞKðTjþ1; dxÞ

S̃Tj

Z
E

d2ðTj; xÞKðTjþ1; dxÞ
: ð8Þ

If we relate this proposition to Proposition 1, we have for ta]]Tj, Tj + 1]], Ĥ(t,x) = ĥj(x)

with:

ĥjðxÞ ¼ �

Z
E

dðTj; vÞKðTjþ1; dvÞZ
E

d2ðTj; vÞKðTjþ1; dvÞ
dðTj; xÞ:

Once the Radon–Nikodym derivative ĝt is computed, it is straightforward to derive the

price Ct =C(t,St) of a contingent claim with final payoff C(T,ST). For a European call

option with maturity T and strike price K, the final payoff is (ST�K)+ =max (0,ST�K).

Taking its expectation under P̂ after an adequate discounting gives the option price:

Proposition 3 (Minimal option price). Under Assumption 1, the call price given by the

minimal martingale measure is:

Cðt; StÞ ¼ EP̂ ðST � KÞþ
Y

j:Tj<TjVT

ð1þ rTjÞ
�1jFt

2
4

3
5: ð9Þ

Hence, option pricing in our setup requires the following three steps:

1. specifying the marked point process followed by the stock price (i.e. the intensity and

the kernel in the compensator): Assumption 1;

2. calculating the Radon–Nikodym derivative ĝt: Proposition 2;

3. pricing the options as expectations (under the minimal measure) of their discounted

payoffs: Proposition 3.

Note that the dynamics of the stock price process under P̂ can be obtained by applying

Girsanov theorems for jumps (see JS, p. 157 and details in Appendix B). Let us now

specialize the above option pricing formula on two examples.
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4.1. Example 1: Latent geometric Brownian motion

As mentioned above, our motivation is to price options when traders rebalance their

portfolios at random times triggered by significant changes in the stock price. It is

natural from a financial theory point of view to start with the classic Black–Scholes

setup of an underlying asset whose price follows a geometric Brownian motion. We

assume that this process is unobservable but that the trader knows (he may be warned

by his broker or by an automatic trading device) when the price has crossed some

barriers at which times he rebalances his position. Let us constitute the set of barriers

B={S0exp ja,jaZ}. The random crossings of such barriers by the continuous process S̄

satisfying dS̄t/S̄t=mdt+ sdWt define a price process S of the forms Eqs. (1) and (2). It is

enough to take: exp Xt= S̄t\B. The entire path of the geometric Brownian motion is

assumed to be not observable and the continuous time process driving the jumps is thus

latent (hidden). The distributional features of the (geometric) Brownian motion can

nevertheless be used to identify the distribution of the jump process X. Fig. 2 describes

the latent Brownian motion with drift (logarithm of the stock price) and its associated

MPP.

The conditional distribution of arrival times is characterised by the probability that a

Brownian motion with drift escapes the corridor {a,� a}. This probability can be deduced

from the trivariate distribution of the running minimum, running maximum and end value

of a Brownian motion (Revuz and Yor, 1994, p. 104) after a suitable change of measure to

incorporate the presence of a drift (see also Kunitomo and Ikeda, 1992; Géman and Yor,

1994; He et al., 1998). The conditional distribution of marks is given by the probability

that a Brownian motion with drift hits one barrier before the other (Karlin and Taylor,

1975, p. 361).

Fig. 2. Stock price logarithm and associated MPP.
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Consequently, we replace in this example Assumption 1 by the more precise assumption:

Assumption 2 (Latent geometric Brownian motion). The compensator m(dt,dx) on

R+� {a,� a} satisfies:

mðdt; dxÞ ¼ ktdt KðdxÞ;

where for ta]]Tj,Tj + 1]]:

kt ¼ � d

dt
Sðt � TjÞ

� �
=Sðt � TjÞ;

and

KðdxÞ ¼ emVa=s2

e�mVa=s2 þ emVa=s2
if dx ¼ a;

¼ e�mVa=s2

e�mVa=s2 þ emVa=s2
if dx ¼ �a;

with mV=m� s2/2 and

SðuÞ ¼
Xþl

k¼�l

e4kmVa=s2

("
U

a� mVu� 4ka

s
ffiffiffi
u

p
� �

� U
�a� mVu� 4ka

s
ffiffiffi
u

p
� �#

� e�2amV=s2 U
3a� mVu� 4ka

s
ffiffiffi
u

p
� �

� U
a� mVu� 4ka

s
ffiffiffi
u

p
� �� �)

:

In this setting, the survival function S(u) is equal to the probability that a Brownian

motion lives during a time period u between � a and a, or equivalently to the probability

that the running minimum and maximum stay above � a and below a, respectively (see

Duffie and Lando, 2001 for similar computations of hazard rate processes in default event

modelling). We are now able to give the option pricing formula.

Corollary 1 (Option price: latent geometric Brownian motion). Under Assumption 2,

the minimal call price is given by Eq. (9) with P̂ characterised by:

ĝT
ĝt

¼
Y

j:t<TjVT

1� dðTj; aÞKðaÞ þ dðTj;�aÞKð�aÞ
dðTj; aÞ2KðaÞ þ dðTj;�aÞ2Kð�aÞ

dðTj; ZjÞ
 !

� exp � ðdðTj; aÞKðaÞ þ dðTj;�aÞKð�aÞÞ2

dðTj; aÞ2KðaÞ þ dðTj;�aÞ2Kð�aÞ
logSððTjþ1 ^ TÞ � TjÞ

 !
:

We will establish the convergence of this model to the Black–Scholes model as a! 0

in Section 5. This example is intuitive but of little practical interest as the directing
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intensity is too complex to be computed easily on real data. Estimating the parameters of

the underlying geometric Brownian motion would require using estimation methods

designed for latent variable models such as simulation based methods. These methods

work well in large samples only. This would impose choosing small values for a so that a

sufficiently large number of barrier crossing times could be observed.

To overcome these practical difficulties, we now abstract from the true stock price

dynamics and model directly the marked point process corresponding to a choice of a. Our

second example thus enables us to derive an easily implementable model.

4.2. Example 2: Marked Poisson process

Our second example consists of a marked Poisson process with independent binomial

marks. The corresponding compensator specification is:

Assumption 3 (Marked Poisson process). The compensator m(dt,dx) on R+� {a,� a}

satisfies:

mðdt; dxÞ ¼ kdtKðdxÞ;

with

KðdxÞ ¼ p if dx ¼ a;

KðdxÞ ¼ 1� p if dx ¼ �a:

This example is particularly suited for empirical purposes since the constant parameters

k and p can easily be estimated from intraday price data (see the empirical illustration

below). We get immediately from Proposition 3:

Corollary 2 (Option price: marked Poisson process). Under Assumption 3, the minimal

call price is given by Eq. (9) with P̂ characterised by:

ĝT
ĝt

¼
Y

j:t<TjVT

1� dðTj; aÞpþ dðTj;�aÞð1� pÞ
dðTj; aÞ2pþ dðTj;�aÞ2ð1� pÞ

dðTj; ZjÞ
 !

� exp kððTjþ1 ^ TÞ � TjÞ
ðdðTj; aÞpþ dðTj;�aÞð1� pÞÞ2

dðTj; aÞ2pþ dðTj;�aÞ2ð1� pÞ

 !
: ð10Þ

We will now investigate further the specific case when the interest rate is equal to zero

before considering the more general case which will be used in the empirical applications.

When the interest rate is set equal to zero (q = 0), we have an analytic formula for the call

price. It is obtained by taking a weighted sum of recombining trees:

Cðt; ST Þ ¼
Xl
n¼0

ðk̂TÞn

n!
e�k̂T

Xn
i¼0

n!

i!ðn� iÞ! p̂
ið1� p̂Þn�iðS0eðð2i�nÞaÞ � X Þþ

 !
; ð11Þ
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with:

p̂ ¼ 1

ea þ 1
; ð12Þ

k̂ ¼ ð1� cÞk; ð13Þ

c ¼ ðpðexpðaÞ � 1Þ þ ð1� pÞðexpð�aÞ � 1ÞÞ2

pðexpðaÞ � 1Þ2 þ ð1� pÞðexpð�aÞ � 1Þ2
: ð14Þ

We recover the property of the standard binomial model (Cox et al., 1979) that the risk-

neutral upmove (p̂) and downmove (1� p̂) probabilities do not depend on historical

probabilities. Formula (11) is a sum of standard binomial pricing formulae weighted by the

probabilities of the exponential distribution. The pricing formula can thus be derived

analytically by integrating w.r.t. to the exponential distribution and by weighting the

different possible option payoffs by their binomial probabilities (see Fig. 3).

When q p 0, one cannot build recombining trees. However, the price of our option can

be computed via Monte-Carlo integration by simulating the stock price process directly

Fig. 3. Calculating the marked Poisson option price.
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under P̂ (cf. Eq. (9)). The intensity and transition kernel under P̂ are characterised by (see

proof in Appendix B):

dK̂t ¼ k̂dt ¼ ð1� cÞkdt;

K̂ðt; aÞ ¼ p̂ ¼ pðĥðTj; aÞ þ 1Þ
IðTj; aÞ

;

with:

ĥðTj; xÞ ¼ �dðTjþ1; xÞ
pdðTjþ1; aÞ þ ð1� pÞdðTjþ1;�aÞ
pd2ðTjþ1; aÞ þ ð1� pÞd2ðTjþ1;�aÞ

;

IðTj; aÞ ¼ 1� ðpdðTjþ1; aÞ þ ð1� pÞdðTjþ1;�aÞÞ2

pd2ðTjþ1; aÞ þ ð1� pÞd2ðTjþ1;�aÞ
:

To close this section, it remains to exhibit the composition (/t,wt) of the hedging

strategy which generates C(T,ST). The processes / and w represent the quantities held in

the risky and riskless asset, respectively. The discounted price of the contingent claim is

denoted: C̃ðt; StÞ ¼ Cðt; StÞ
Q

j:TjVtð1þ rTjÞ
�1
.

Proposition 4 (Minimal trading strategy). Under Assumption 2, the minimal trading

strategy (/t,wt ) is given by:

/t ¼

Z
E

/̃Tj
ðxÞdðTj; xÞKðTjþ1; dxÞ

S̃Tj

Z
E

d2ðTj; xÞKðTjþ1; dxÞ
; ð15Þ

and:

wt ¼ C̃ðt; StÞ � /t S̃t; ð16Þ

for ta]]Tj,Tj + 1]] with: /̃Tj
(x) = C̃(Tj,STj

ex)� C̃(Tj ,STj
).

Using the minimal martingale measure thus enables us to obtain an explicit form for the

quantities to be held in the stock and in the riskless asset. This is one of the main

advantages of the use of this measure over many other possible choices of EMM, such as

the variance optimal measure or that extracted from time series of the underlying asset

price and traded options (see Chernov and Ghysels, 2000, for example). Without these

quantities, it is impossible to implement a hedging strategy.

As mentioned above, the cumbersome formula for the intensity of the MPP driven by

the geometric Brownian motion makes the empirical estimation of the GBM-driven

process difficult, while the marked Poisson process is particularly simple to implement.

The two models are nonnested and we therefore cannot compare their performance

without relying on complicated tests for nonnested hypotheses which are beyond the scope

of this paper.

J.-L. Prigent et al. / Journal of Empirical Finance 11 (2004) 133–161144



5. Convergence to the Black–Scholes model

We now study the convergence to the Black–Scholes model when the increment a

shrinks to zero. In the Black–Scholes model, the stock price evolves according to a

geometric Brownian motion S̄t= S0 exp ((m� (s2/2)t + sWt),and the savings account value

according to: exp(qt). We use !P for convergence in probability, and !LðDÞ
for weak

convergence on D the space of cadlag functions endowed with the customary Skorokhod

topology. We index all relevant quantities by a, and convergence should be understood

when letting a go to zero.

Proposition 5 (Convergence). Under Assumption 1, if:

Z t

0

Z
E

dmaðdt; dxÞ!P ðm� qÞt;
Z t

0

Z
E

d2maðdt; dxÞ!P s2t; ð17Þ

then:

ðS̃at ; ĝat Þ !LðD
2Þ

S̄te
�qt; e

m� q
s

Wt

� �� �
: ð18Þ

Proposition 5 embodies the convergence of the incomplete model based on the marked

point process to the Black–Scholes model. Indeed the proposition states the joint

convergence of the sequence of discounted stock prices and Radon–Nikodym derivatives

of the minimal measure. We recognize in Eq. (18) the well-known change of measure from

the historical probability to the risk-neutral measure of the limiting complete model. As

usual, convergence of contingent claim prices will be ensured under appropriate continuity

and equiintegrability conditions on the payoffs.

Now we analyze in some details the simple example of the marked Poisson model. For

computational convenience, we set the interest rate equal to zero.

Proposition 6 (Convergence: marked Poisson process). Under Assumption 3 and q=0,

if pa� 1/2fma/(2s2) and kaf s2/a2, then:

ðSat ; ĝat Þ !LðD
2Þ

S0eðmt þ sWtÞ; e
m

s
Wt

� �� �
:

Proposition 6 gives the condition on the probability pa and the directing intensity

ka so that the marked Poisson model coincides with the Black–Scholes model in the

limit.

Fig. 4 shows the smooth form of the convergence obtained for European call option

prices when using the closed form expression (Eq. (11)). The numerical example is

designed with: S0 = 100, m = 5%, s = 25%, K = 100%, and T= 0.25. The straight line is the

Black–Scholes price equal to 4.9835, while the dashed line gives the price computed by

the marked Poisson model with pa = (ma2/s2+(1� e� a))/(ea� e� a) and ka = s2/a2.
Finally, we are able to deliver the analogous result to Proposition 6 for the more

complex latent geometric Brownian motion case. Some numerical results (not reported
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here) show that the convergence is very similar but less smooth than the previous case

because of the use of simulations.

Proposition 7 (Convergence: latent geometric Brownian motion). Under Assumption 3

and q= 0:

ðS̃at ; ĝat Þ !LðD
2Þ

S0eðmt þ sWtÞ; e
m

s
Wt

� �� �
:

6. Empirical illustrations

This section illustrates the empirical application of the marked Poisson model (Example

2) to the pricing of European call options.3 The model parameters k and p are estimated

from intraday transaction data first on the IBM stock price listed on the New York Stock

Exchange (NYSE) and then on France Telecom stock price listed on the Paris Bourse.

We also consider the CAC 40 index as a final example.

6.1. IBM transaction data

We start by focussing on IBM transaction data. The data were extracted from the Trades

and Quotes Database (TAQ Database) released by the NYSE. The observations are the

trades of IBM stock recorded every second from market opening (9:30:00) to market

closure (16:00:00). They consist of 486,513 transactions beginning on Thursday January

2nd, 1997 and ending on Wednesday September 30th, 1997 (9 months).

The estimators are obtained by maximum likelihood. The estimator of k is the inverse

of the empirical average of durations between two successive relative price changes (recall

Fig. 4. Convergence of option prices: marked Poisson process.

3 Gauss programs developed for this section are available on request.
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that if events follow a Poisson distribution, time intervals are exponentially distributed).

The estimator of p is the observed proportion of positive variations. To test the null

hypothesis that the durations are exponentially distributed, we use a test statistic based on

the equality between the mean and the standard deviation (see, e.g. Chesher and Spady,

1991; Chesher et al., 1999), and a Bootstrap procedure to account for finite sample level

distortions. We consider models with absolute variation sizes a ranging from 0.25% to 5%.

Common practice on the market is to rebalance after relative variations by 3% or 4%. The

observed path of log St for the IBM stock is plotted in Fig. 5. It corresponds to the period

from January to September 97 with the jump size a = 3%.

Table 1 reports the estimators of k and p, with their respective standard deviations

within brackets, and the number (Nb.) of observed relative price changes for each absolute

variation size. The intensity estimate is in 1/s and should be multiplied by 60 (s)� 60

(min)� 6.5 (h)� 250 (days) = 5,850,000 in order to get an annualized intensity. The

hypothetized exponential behavior of the durations is rejected at the 5% significance level

for models with too narrow rebalancing bounds (aV 2%). Values of the test statistic are

also reported in Table 1. For the significant models, a jump is expected every 2, 4 and 6

days for a= 3%, 4%, and 5%, respectively. The upmove probabilities are not far from one

half.

With these estimates, we may compare option prices given by the marked Poisson

model and the Black–Scholes model. We use a historical approach to estimate the

volatility in the Black–Scholes model (unfortunately, we do not have option data to

compute implied volatilities in this first empirical illustration). The volatility estimator is

the standard deviation of daily closing prices from Thursday January 2nd, 1997 to

Thursday March 27th, 1997 (3 months). This choice corresponds to market standards.

We get a volatility estimate of 2.19%, which gives an annualized volatility ð�
ffiffiffiffiffiffiffiffi
250

p
Þ of

34.67%. This is also close to the annualized volatility computed on the whole dataset:

31.98%. The interest rate is taken equal to 5%. The maturity of the European call option is

3 months. The initial stock price S0 is normalized to 100 and strike prices K expressed in

Fig. 5. MPP based on IBM stock price with a= 3%.
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percentage of spot price (spot moneyness degree) are between 90% and 110%. Table 2

only gives the results for the statistically significant models of Table 1. Monte-Carlo

integration with 200,000 replications is used to calculate expectation (under MMM) in a

few seconds. To reduce the variance of the simulations, we use S̃T as control variate device.

Note that the empirical martingality of S̃T is satisfied up to a precision of at least 10� 3. All

call prices are below their Black–Scholes equivalents. From put-call parity, it also implies

that all put prices will be below their Black–Scholes counterparts. The prices for a = 5%

are higher than for a = 4%. This is due to the compensation of the lower intensity by the

higher upmove probability.

Tick-by-tick transaction data have been reported to exhibit daily seasonality (see, e.g.

Engle and Russell, 1997). On the US stock market, the activity is higher at the beginning

and at the end of the trading sessions but lower around lunch time. Our pricing approach is

robust to this feature (although seasonality has no impact when we consider az 2% as the

average duration between two jumps is larger than 1 day). In order to take seasonality in

our setup, we would just have to include a deterministic time component in the intensity.

Table 1

Parameter estimates for IBM stock (in percent)

a k p Test statistic Nb.

0.25 0.2849 (0.0054) 50.52 (0.45) 39891.99* 12501

0.5 0.0846 (0.0027) 50.87 (0.82) 8455.86* 3715

0.75 0.0407 (0.0017) 51.20 (1.18) 2083.03* 1789

1 0.0242 (0.0013) 51.55 (1.53) 1241.35* 1065

2 0.0050 (0.0004) 53.60 (3.35) 14.04* 222

3 0.0021 (0.0002) 55.91 (5.15) 0.03 93

4 0.0010 (0.0001) 59.09 (7.41) 0.95 44

5 0.0007 (0.0001) 60.00 (8.94) 0.59 30

*Exponential assumption rejected at 5%.

Table 2

Option prices (in percent)

a K/S0 Poisson BS

3 90 0.13314 0.13529

95 0.09976 0.10231

100 0.07215 0.07503

105 0.05097 0.05340

110 0.03482 0.03693

4 90 0.12858 0.13529

95 0.09415 0.10231

100 0.06583 0.07503

105 0.04491 0.05340

110 0.02973 0.03693

5 90 0.13052 0.13529

95 0.09660 0.10231

100 0.06907 0.07503

105 0.04805 0.05340

110 0.03284 0.03693
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6.2. France Telecom stock options

We now want to confront our model to observed option prices. We have collected

intraday France Telecom (FT) stock data for the period from February 22nd, 1999 to end

July 1999. After removing all transactions outside trading hours, we obtain a set of

487,981 observations.

The FT stock is used as underlying asset for various options listed on the MONEP in

Paris. Those we consider in this paper are long-term European type calls and puts. We

have collected the prices of 24 transactions which have occurred over the period August

2nd, 1999 to September 23rd, 1999. These trades are based on 12 calls and 12 puts

with various strike prices ranging from 55 to 100 and times-to-maturity from 6 to 20

months.

Parameters of the marked Poisson process are estimated over the entire sample with

a = 3%. The historical volatility to be used in the Black–Scholes model is calculated over

the 3 months preceeding our option sample. The 3-month PIBOR was used as risk-free

interest rate. The estimates for k and p are respectively found to be 112.5% and 49.3%,

while the historical volatility is 33.52%.

We calculate option prices using 50,000 Monte-Carlo simulations directly under the

MMM with control variate.

Table 3 summarises our main findings. Both absolute (based on the absolute difference

in prices between the model and the market) and relative (based on percentage difference)

mean squared errors (MSE) are reported for the marked Poisson model, the Black–

Scholes model with historical volatility and the Black–Scholes model with ‘‘best’’

volatility. By ‘‘best’’, we mean the volatility which minimises the MSE in the Black–

Scholes model.

We see that in our sample, the marked Poisson model outperforms not only the Black–

Scholes model with historical volatility but also the Black–Scholes model with any choice

of volatility parameter. This is probably due to the fact that our pure jump model generates

smiles (as most jump models do) and is therefore able to price more accurately deep in-

and out-of-the-money options. Fig. 6 is a plot of the smile generated by our model for a 1-

year horizon at the end of August 1999 (r = 2.68%), with a = 3% and S0 = 100. It has the

‘‘smirk’’ shape frequently reported in equity derivatives markets (see, e.g. Dumas et al.,

1998).

Finally, we can turn to Fig. 7 which compares frequency plots for terminal stock returns

(ln (ST/S0)) for the marked Poisson model under P̂ and for the Black–Scholes model

taking a 1-year horizon. The risk-neutral marked Poisson distribution is fat tailed, as

expected from stock prices dynamics exhibiting jumps.

Table 3

Mean squared errors: Black–Scholes and marked Poisson

Model Absolute Relative

Marked Poisson 0.090 0.0024

BS (historical volatility) 0.303 0.0077

BS (best volatility) 0.100 0.0028
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Fig. 7. Marked Poisson versus Black–Scholes risk-neutral frequency plots.

Fig. 6. Implied volatility smile from marked Poisson model on France Telecom calls.
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6.3. CAC 40 index options

The above two examples have demonstrated the ability of MPP-based models to price

options on individual stocks. As a last example, we now consider index options. This will

enable us to compare the pricing performance of the Black–Scholes model and the MPP

model when many strike prices are available. Options on individual stocks are typically

only traded with a limited number of exercise prices while index options offer a wider

choice.

The options data consist of prices of European calls and puts maturing at the end of

November and December 1999. These options are again traded on the MONEP and the

transactions were recorded during the month of October 1999. The options have therefore

between 1 and 3 months before expiration. Overall, we have 4000 observations: 3456 with

maturity November and 544 for December. Fig. 8 is a plot of the implied volatilities of the

December options as a function of (call) moneyness. We can see each ‘‘layer’’ as one

volatility smile observed on a given day.

In the following, we define an option to be at-the-money (ATM) if the current stock

price is within F 2% of its strike price. Call (resp. put) options will be considered in-the-

money (ITM) if the stock price is above 102% (resp. below 98%) of the strike price and

out-of-the-money otherwise.

We replicate the calculations described in the previous section. Again, we choose

a = 3%, and simulate 50,000 paths directly under the MMM. The parameters of the MPP

are kˆ= 45.97 and p̂ = 61.11%. The results are summarised in Table 4.

The ‘‘overall’’ column corresponds to all strike prices, while ITM, ATM and OTM

columns are the subsamples defined above. The superiority of the MPP model over the

historical Black–Scholes model is again obvious as far as mean squared errors are

concerned. This is not surprising as historical volatility tended to be much lower than

Fig. 8. Volatility smile on CAC 40 options (October 1999).
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implied volatility over this period. This led to an underpricing of options using the

historical Black–Scholes model.

More interestingly, we again find that no choice of volatility (constant across options in

a given subsample) leads to the Black–Scholes model outperforming the MPP model on

our sample. There does not seem to be any significant difference between shorter and

longer pricing performance.

7. Concluding remarks

This paper proposes explicit formulae for pricing contingent claims when the

underlying price follows a marked point process. The formulae rely on a minimal

martingale approach. It is particularly suited for discrete hedging in which portfolios

are only rebalanced after fixed relative price variations. The practical use of the pricing

model is illustrated with a marked Poisson model estimated on high frequency

transaction data. The marked Poisson model is shown to be able to provide a good

fit for large variation sizes but not for small sizes. However, our theoretical framework

encompasses very general dynamics for the stock price. A wide range of empirical

applications based on more sophisticated econometric models, e.g. developed for

microstructure theory, can thus be proposed. For example, Prigent et al. (1999,

2001) use a specification where durations between jumps follow an Autoregressive

Conditional Duration (ACD) model as introduced by Engle and Russell (1997, 1998)

and compare the prices of vanilla and exotic options to their Black–Scholes counter-

parts. These refinements are useful to incorporate clustering in durations as well as

time varying upmove probabilities which are usually observed for small values of a.

These extensions however come at the cost of greater complexity for practical

implementation.
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Appendix A. Proofs of propositions

In order to obtain concise expressions in the proofs, we will often use (as in JS) the

notation x*lt for m0
t mExdl. Recall that e(.) denotes the Doléans–Dade exponential.

Proof of Proposition 1. The proof consists in finding the adequate restriction on the

change of measure dQ/dP so that the discounted stock price S̃ is a local martingale under

the new measure Q. It parallels the developments in the work of Buhlman et al. (1996).

We denote by Mloc (Q) the set of all local martingales under Q. The density process g
of Q relative to P can be rewritten thanks to the theorem of representation of martingales:

gt ¼ e
Z t

0

Z
E

Hðs; xÞdðl � mÞ
� �

;

where the predictable process H satisfies some integrability conditions (JS, p. 172) and

H + 1>0 a.s. since g is strictly positive.

Furthermore, S̃taMloc(Q) if and only if S̃tgtaMloc(P). From Ito’s and Yor’s formulas

(Protter, 1990 p. 7; Revuz and Yor, 1994 p. 354), we have:

S̃tgt ¼ e
Z t

0

Z
E

dðs; xÞdl þ Hðs; xÞdðl � mÞ þ Hðs; xÞdðs; xÞdm
� �

:

This implies that m0
t mE(H(s,x) + 1)d(s,x)dm should be equal to zero in order to get

S̃tgtaMloc(P), which ends the proof. 5

Proof of Proposition 2. We know from Ansel and Stricker (1992, 1993) that if

1� aDM̃>0 a.s. and EP [sup0V sV TS̃s
2] < +l, the minimal martingale measure is a

probability measure characterised by its density process g relative to P:

ĝ ¼ eð�a � M̃Þ;

with M̃ a locally bounded integrable martingale and a a predictable process satisfying:

S̃ ¼ M̃ þ a � hM̃ ; M̃i;
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and where the dot denotes the stochastic integration of a predictable process w.r.t. a

semimartingale. The predictable process a is given by the relation:

atdhM̃ ; M̃it ¼ dÃt; ð19Þ

where Ã is the predictable bounded part of S̃.

In our case, the martingale part of S̃ is equal to: M̃=(S̃d)*(l� m) and its predictable

quadratic variation (angle bracket) equal to: hM̃,M̃i=(S̃d)2*m (JS, 1.33, p. 73). Further-

more, Ã=(S̃d)*m which gives Eq. (8) using relation (??). Besides, since the jump size is

bounded, ĝ is a strictly positive local martingale and the minimal martingale measure is a

probability measure. 5

Proof of Proposition 4.We follow Colwell and Elliott (1993). On the one hand, since C̃ is

a P̃-martingale, it comes from the martingale representation theorem and Ito’s lemma

that:

C̃ðt; StÞ ¼ C̃ð0; S0Þ þ /̃*ðl � m̂Þt; ð20Þ

with /̃t (x) = C̃(Tj, STj
ex )� C̃(Tj,STj) for ta]]Tj,Tj + 1]]. On the other hand, we have (see,

Schweizer, 1991):

C̃ðt; StÞ ¼ C̃ð0; S0Þ þ ð/S̃dÞ*lt þ Ct; ð21Þ

where Ct is a martingale under P.

This process represents the cost associated with the trading strategy, and can be

rewritten from Eqs. (20) and (21):

C ¼ /̃*ðl � m̂Þ � ð/S̃dÞ*l:

Since it is a martingale under P, we deduce from:

/̃*ðl � m̂Þ ¼ /̃*ðl � mÞ þ /̃*ðm � m̂Þ;

and:

ð/S̃dÞ*l ¼ ð/S̃dÞ*ðl � mÞ þ ð/S̃dÞ*m;

that the following equality should hold:

/̃*ðm � m̂Þ ¼ ð/S̃dÞ*m:

Using m̂ =(Ĥ + 1)m and the expression of Ĥ, the result follows. 5

Proof of Proposition 5. Condition (17) and the jump boundedness ensure the convergence

of the first Doléans–Dade exponential e(d*lt
a) to e((m� q)t+ sWt) (JS, 3.11, p. 432).

Since the martingale part of the discounted price is uniformly tight (the jumps are bounded

and the predictable part is increasing), we conclude the convergence of the second

Doléans–Dade exponential ĝt
a = e((� aS̃d)*(l

a� ma)t) as in Prigent (1999, Proposition

3.3) or Lesne et al. (2000, Proposition 1). 5
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Proof of Proposition 6. Condition (17) of Proposition 5 can be rewritten as:

ka½ðea � 1Þpa þ ðe�a � 1Þð1� paÞ	 ! m;

ka½ðea � 1Þ2pa þ ðe�a � 1Þ2ð1� paÞ	 ! s2:

From Taylor expansions, it can be verified that both conditions are satisfied if: pa� 1/2

fma/(2s2) and kaf s2/a2. The stated result is then a direct consequence of Proposition

5. 5

Proof of Proposition 7.

(i) The weak convergence of the stock price is immediately deduced from the

construction of X a since:

sup
ta½0;T 	

Xa
t � m� s2

2

� �
t þ sWt

� �����
����Va

(see JS, 3.30 and 3.31, p. 316 with t a=Xt
a� (m� (s2/2) t + sWt and Yt

a=(m� (s2/

2))t+ sWt).

(ii) To deduce the weak convergence of the density process, we need first to establish that

X a has the property UT (uniform tightness, see Mémin and Slominsky, 1991 for a

definition). In order to do so, we will need the following key lemma which gives the

behavior of the Laplace transform of the expectation of the number of jumps for

small a. Its proof is given below.

Lemma. If Nt
a denotes the number of jumps on the time interval [0,t], we have for small a:Z l

0

e�ntE½Na
t 	dtf

1

n2
s2

a2
:

Now, recall that Xt
a=(x*m

a)t + x*(l
a� ma)t. From Condition (ii) 2) of Theorems 1–4 of

Mémin and Slominsky (1991), we have to check that Var(Ba ) is Pa-stochastically bounded

where Ba is the bounded variation part of X a (i.e. x*m
a ). Here, since x*m

a is an increasing

process, we have:

sup
½0;T 	

Varðx*maÞ ¼
Z
E

xKaðdxÞ
� �

�
Z T

0

kat dt:

Moreover, for all L>0, we get:

P

Z
E

xKaðdxÞ
� �

�
Z T

0

kat dt > L

� �
V

1

L

Z
E

xKaðdxÞ
� �

� E

Z T

0

kat dt

� �
:

Recall that E[m0
t ks

ads] = E[Nt
a ]. Hence, from the above lemma, we can deduce by

continuity of the inverse Laplace transform that, for small a and fixed t, E[m0
t ks

ads]f (s2/
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a2)t. Note also that mExK
a(dx)f (mV/s2)a2 since K(a)f (1/2)+(1/2) (mVa/s2). Therefore,

we get:

be > 0;aL;P½sup
½0;T 	

Varðx*maÞ > L	 < e:

So Var(Ba) is Pa-stochastically bounded, and we conclude to the uniform tightness of Xa.

Second, since (Xt)t=(mVt + sWt)t is continuous, and since Xa converges to X and satisfies

the property UT, we deduce from Proposition 2.2 of Mémin and Slominsky (1991) that the

martingale part x*(l
a� ma) of Xa converges to the martingale (sWt)t and that the bounded

variation part x*m
a converges to the bounded variation part mVt. Therefore, we get from

direct Taylor expansions:

d*mat !
P
mVt;

d2*mat !
P
s2t:

The last condition guarantees the convergence of the predictable compensator of the

martingales d*(l
a� ma). Moreover, since the jumps of these martingales are uniformly

bounded, the sequence (d*(l
a� ma))a satisfies the UT (uniform tightness) condition. From

Eq. (8), a standard Taylor expansion of at
a proves that aa weakly converges to a with at=(1/

S̃t)(m/s
2).

From all these results, the convergence of the second Doléans–Dade exponential ĝt
a = e

((� aS̃y)*(l
a� ma)t) follows immediately as in Prigent (1999, Proposition 3.3) or Lesne et

al. (2000, Proposition 1).

Proof of Lemma. Let us first compute the Laplace transform of E[Nt
a]. We denote by

T�a, + a the first time the Brownian motion with drift escapes from the interval [� a, + a]:

T�a;þa ¼ inffu > 0;Wu þ mVug½�a;þa	g:

Consider the sequence (ek)k of i.i.d. random variables where all ek have the same

distribution as T�a, + a. Then for all kaN*, the following equality is verified:

P½Na
t zk	 ¼ P½e1 þ . . .þ ekVt	:

Moreover, recall that if P is a probability on R+

* with a density p then:Z l

0

e�ntpðtÞdt ¼
Z l

0

e�ntdPðtÞ ¼ ½e�ntPðtÞ	l0 þ n
Z l

0

e�ntPðtÞdt

¼ n
Z l

0

e�ntPðtÞdt:

Let us denote:

LkðnÞ ¼ n
Z l

0

e�ntP½e1 þ . . .þ ekVt	dt;
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which is equal to nm0
le� ntP[Na

tz k]dt, and also equal to (L1(n))
k by independence of the

ek. Since:

P½Na
t ¼ k	 ¼ P½Na

t zk	 � P½Na
t zk þ 1	;

we get:

n
Z l

0

e�ntE½Na
t 	dt ¼ n

Z l

0

e�nt
Xl
k¼1

kP½Na
t ¼ k	

 !
dt

¼
Xl
k¼1

k n
Z l

0

e�ntP½Na
t zk	dt � n

Z l

0

e�ntP½Na
t zk þ 1	dt

� �

¼
Xl
k¼1

kðLkðnÞ � Lkþ1ðnÞÞ ¼
Xl
k¼1

kLkðnÞ �
Xl
k¼1

ðk þ 1ÞLkþ1ðnÞ þ
Xl
k¼1

Lkþ1ðnÞ;

which finally gives:

n
Z l

0

e�ntE½Na
t 	dt ¼

Xl
k¼1

L1ðnÞk ¼
L1ðnÞ

1� L1ðnÞ
:

For mV= 0, we have (exponential martingale):

E exp nWT�a;þa
� n2

2
T�a;þa

� �� �
¼ 1;

from which we deduce:

E E½expðnWT�a;þa
ÞAFT�a;þa

	exp � n2

2
T�a;þa

� �� �
¼ 1;

and:

ChðnaÞE exp � n2

2
T�a;þa

� �� �
¼ 1:

Therefore:

L1ðnÞ ¼
1

Chða
ffiffiffiffiffi
2n

p
Þ
:

For mVp 0 and for all t>0,

E½expð�nT�a;þaÞIT�a;þa<t	 ¼ E
dP

dP̃
AFt

expð�nT�a;þaÞIT�a;þa<t

� �
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where W̃u =mVu +Wu is a Brownian motion under P̃ by applying Girsanov theorem. Now,

since dP/dP̃AFt
= exp(mVW̃t� (mV2/2)t), we get:

E
dP

dP̃

� ����
Ft

expð�nT�a;þaÞIT�a;þa<t	

¼ E E exp mVW̃t �
mV2

2
t

� �����FT�a;þa

� �
expð�nT�a;þaÞIT�a;þa<t

� �

¼ E expðmVW̃T�a;þa
� n þ mV2

2

� �
T�a;þaÞIT�a;þa<t

� �

¼ E E½expðmVW̃T�a;þa
ÞAFT�a;þa

	exp � n þ mV2

2

� �
T�a;þa

� �
IT�a;þa<t

� �

¼ ChðmVaÞE exp � n þ mV2

2

� �
T�a;þaÞ

� �
IT�a;þa<t

� �
:

Then, by convergence with respect to t, we get:

E½expð�nT�a;þaÞ	 ¼ ChðmVaÞE exp �n � mV2

2

� �
T�a;þa

� �� �

¼ ChðmVaÞ
Chða

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n þ mV2

p
Þ
:

Finally:

Z l

0

e�ntE½Na
t 	dt ¼

1

n
ChðmVaÞ

Chða
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n þ mV2

p
Þ � ChðmVaÞ

;

and, for the process (mVt+ sWt)t with the volatility s:

Z l

0

e�ntE½Na
t 	dt ¼

1

n
ChðmVa=s2Þ

Chða=s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n þ ðmV2=s2Þ

p
Þ � ChðmVa=s2Þ

:

Then a Taylor expansion leads to the stated result:

Z l

0

e�ntE½Na
t 	dtf

1

n2
s2

a2
:

5
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Appendix B. P̂-dynamics of the price process

In this appendix, we derive the dynamics of the price process under P̂. This allows us to

use expression (9) when computing option prices. We know that the compensator under

the MMM is linked to the compensator under the historical measure (see Girsanov

theorem for jumps in JS, p. 157) by the following relation:

m̂ðdt; dxÞ ¼ mðdt; dxÞðĥðt; xÞ þ 1Þ;

where m(dt,dx) = dKtK(t,dx). Besides, the compensator m̂(dt,dx) under P̂ can also be

disintegrated into a kernel part K̂(t,dx) and an intensity component dK̂t. Hence, after

identification, we deduce:

dK̂t ¼
Z
E

ðĥðt; xÞ þ 1ÞKðt; dxÞ
� �

dKt; ð22Þ

K̂ðt; dxÞ ¼ Kðt; dxÞðĥðt; xÞ þ 1ÞZ
E

ðĥðt; xÞ þ 1ÞKðt; dxÞ
; ð23Þ

which characterises the dynamics of the stock price under P̂.

The normalisation factor mE(ĥ(t,x) + 1) K(t,dx) in Eq. (23) comes from the condition on

the transition kernel to integrate to 1. In the marked Poisson case, substituting for ĥ,

K(t,dx), I(t,dx), c and Kt, yields:

dK̂t ¼ k̂dt ¼ ð1� cÞkdt;

K̂ðt; aÞ ¼ p̂ ¼ pðĥðTj; aÞ þ 1Þ
IðTj; aÞ

:
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