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Background & Aims: Liver transplantation from marginal donors
is associated with ischemia/reperfusion (I/R) lesions, which may
increase the risk of post-transplant hepatocellular carcinoma
(HCC) recurrence. Graft reperfusion prior to retrieval (as for
extracorporeal membrane oxygenation – ECMO) can prevent I/R
lesions. The impact of I/R on the risk of cancer recurrence was
assessed on a syngeneic Fischer-rat liver transplantation model.
Methods: HCC cells were injected into the vena porta of all
recipients at the end of an orthotopic liver transplantation
(OLT). Control donors were standard heart-beating, ischemic ones
(ISC), underwent 10 min or 30 min inflow liver clamping prior to
retrieval, and ischemic/reperfused (ISC/R) donors underwent 2 h
liver reperfusion after the clamping.
Results: I/R lesions were confirmed in the ISC group, with the
presence of endothelial and hepatocyte injury, and increased liver
function tests. These lesions were in part reversed by the 2 h
reperfusion in the ISC/R group. HCC growth was higher in the
10 min and 30 min ISC recipients (p = 0.018 and 0.004 vs. control,
as assessed by MRI difference between weeks one and two), and
was prevented in the ISC/Rs (p = 0.04 and 0.01 vs. ISC). These
observations were associated with a stronger pro-inflammatory
cytokine profile in the ISC recipients only, and the expression of
hypoxia and HCC growth-enhancer genes, including Hmox1, Hif1a
and Serpine1.

Conclusions: This experiment suggests that ischemia/
reperfusion lesions lead to an increased risk of post-transplant
HCC recurrence and growth. This observation can be reversed
by graft reperfusion prior to retrieval.
� 2014 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.

Introduction

Liver transplantation is the best treatment for patients with end-
stage liver failure and/or unresectable hepatocellular carcinoma
(HCC). Its main limitation is the lack of donors, which faces an
ever growing demand. While split- and living-liver donors only
account for a small proportion of organ donation in most Western
countries, the use of extended criteria grafts has become more
liberal. Among them, donation-after-cardiac-death (DCD) donors
(for whom death is declared by cardiac arrest rather than brain
function cessation) have been considered as a promising source
of organs, and DCD liver transplantations now represent
some 10–15% of all liver transplantations in a number of centers
[1–5].

DCD liver transplantations have shown acceptable post-
transplant survival (65–80% at five years), similar to those
achieved with transplantations from brain-dead donors [2–4].
However, these liver grafts are by nature subject to warm ische-
mia and ischemia/reperfusion (I/R) injury, leading to increased
risks of primary non-function and late ischemic biliary lesions.
In order to avoid combining marginal donors and marginal
recipients, DCD transplantations tend to be more frequently
offered to patients with a lower model for end-stage liver dis-
ease (MELD) scores, and especially to those with HCC [5]. This
observation may represent a point of concern as I/R lesions have
been shown to increase the risk of liver metastasis in various
rodent models, due to the presence of endothelial lesions and
increased growth signals [6,7]. Along the same line, post-
transplant HCC recurrence is due to the presence of circulating
HCC cells, released prior to or at the time of transplantation
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and subsequently implanting in the liver graft [8]. One can
therefore hypothesize that the ischemia/reperfusion injury
occurring after transplantation of a marginal liver also alters
the risk of post-transplant HCC recurrence.

The present study is assessing the impact of ischemic liver
graft on the risk of cancer recurrence utilizing a rat liver trans-
plantation model. The involved mechanisms are explored, as well
as the potential to reverse the observed effect with the use of
in vivo normothermic graft preconditioning.

Materials and methods

Animals

Experiments were performed on male Fischer (F344) rats (Charles River,
France), both donors and recipients weighing 180–220 g. Animals were housed
under 12/12-h light/dark cycles, with free access to food (standard diet) and
water. The study was conducted under experimental protocols approved by
the ethical committee of the University of Geneva and by the Geneva veterinary
authorities.

Study design

Syngeneic Fisher-to-Fisher orthotopic liver transplantations were performed
[9,10], with the injection of Fisher-derived JM-1 HCC cells into the portal vein
at the end of the procedure. Donors were grouped as follow: non-ischemic (con-
trols), ischemic (ISC), and ischemic/reperfused (ISC/R). Livers from ISC donors
underwent a 10- or 30-min normothermic ischemia, by clamping the liver pedicle
and the infra-hepatic vena cava prior to retrieval. The ischemic/reperfused donors
had a two-hour in vivo reperfusion after the clamping, which approximates the
extracorporeal machine oxygenation (ECMO) used for graft salvage after uncon-
trolled donation [4].

Surgical procedure

Rat liver retrieval and transplantation were performed under 2% isoflurane
anesthesia, following a technique described previously [9]. Donor surgery: after
ligating and transecting the collateral liver veins and the hepatic artery, the liver
was flushed at low pressure with 150 U heparin diluted in 15 ml Ringer’s solu-
tion through the vena porta, and retrieved. Ten units of heparin (in 1 ml NaCl
0.9%) were administered through the dorsal penile vein before flush and retrie-
val in all groups. Intermediate steps were introduced in the ISC and ISC/R
groups. In the ISC group, the vena porta and infra-hepatic vena cava (IVC) were
clamped during 10 or 30 min prior to flushing and retrieving the liver. In the
ISC/R group, all clamps were removed at the end of the clamping, and the liver
was reperfused in vivo (animal alive) for two hours prior to flushing and retriev-
ing (hepatic artery being ligated and divided just before flushing). Immersed in
4 �C Ringer’s solution, the liver graft was prepared for implantation by attaching
cuffs to the IVC and the vena porta. The caudate lobe was removed by ligating
its pedicle for subsequent analysis (liver graft biopsy). The recipient was pre-
pared in parallel by another operator, assuring a constant graft cold ischemia
time of 50 ± 10 min.

Recipient surgery: the abdomen was opened through a midline incision,
the liver was freed from its ligamentous attachments and all liver vessels
were isolated. Handling rings were attached to the infra-hepatic vena cava
and the portal vein with four 9–0 Prolene (Ethicon Inc., New Brunswick,
NJ) sutures. After intra-venous (iv) administration of 10 U of heparin (in
100 ll NaCl 0.9%) through the dorsal penile vein, clamps were applied to
the IVC, the vena porta and the supra-hepatic vena cava (SHVC). The liver
was explanted. The SHVC anastomosis was performed by hand with 8–0
Prolene running suture. The remaining anastomoses were performed using
the quick-linker technique, allowing short implantation times [10]. After
unclamping, the papillary process lobe was removed (reperfusion biopsy)
and the bile duct continuity was established over a 4 mm polyethylene 26
gauge stent. The abdomen was closed in two layers with 5–0 Prolene running
sutures. In a second set of experiments looking at the involved mechanisms,
recipients were sacrificed on day one.

HCC cell injection

JM-1 cells have been kindly provided by Dr G. Michalopoulos (Duke University
Medical Center, Durham, NC) [11]. Cells were grown and maintained in Dul-
becco’s modified Eagle medium (Gibco, Paisley, UK) in a 5% CO2 atmosphere. At
the end of the transplantation, 2 ⁄ 106 (in the 10 min-ischemia rats) or 5 ⁄ 105

(in the 30 min-ischemia rats) JM-1 cells suspended in 600 ll NaCl 0.9% were
injected into the portal vein using a 25 G needle. Post-injection hemostasis was
achieved with 9–0 Prolene suture around the hole.

Magnetic resonance imaging-based HCC volume assessment

Magnetic Resonance Imaging (MRI) was performed at weeks one and two on a
Siemens Magnetom Trio 3 Tesla clinical scanner (a TIM system, Siemens AG,
Erlangen, Germany) using the system wrist coil. With the animal placed prone
in this volume coil, homogenous signal-to-noise ratio is obtained over the whole
liver and abdomen. During imaging, animals were anesthetized by inhaled 2–3%
isoflurane. Respiratory monitoring and triggering used a pressure pad system (SA
Instruments Inc., USA).

After a standard fast localisation scan, two image sets were acquired, to give a
combination of high resolution in 3-dimensions (3D) and two different contrast
regimes to positively identify liver tumours from other structures such as normal
liver and fluid collections. MRI acquisitions included a classical 2D T2-weighted
turbo spin echo (TSE) and an ultrashort echo time (UTE) 3D isotropic acquisition
that allow accurate quantification of 3D volumes of irregular shaped masses from
multiple seed points.

The high contrast, T2-weighted 2D-TSE (turbo spin echo) sequence (TE/TR/
FA = 57 ms/3500 ms/180�, 3 signal averages, 6 min acquisition time) was
acquired with 0.3 mm pixel resolution, but with a minimum 1 mm slice thick-
ness. This conventional sequence was more susceptible to motion artefacts and
it was also non-triggered (due to the long TR), but gave high contrast for confirm-
ing the structures observed and subsequently segmented in the 3D UTE images.
The long TR also means that 3D acquisition using T2 weighted TSE is not possible
due to restrictively long acquisition times. The UTE sequence comprises a non-
selective RF pulse and 3D radial acquisition to provide true 3D images, allowing
post-processing reconstruction of any plane, with very low sensitivity to motion
artefacts. The parameters were a 3D isotropic resolution 0.35 mm (in-plane and
slice thickness), 11 cm FOV, 50000 radial projections, echo time TE 0.07 ms, rep-
etition time TR 9.6 ms with up to 100 lines of data acquired per respiratory cycle,
a 12� flip angle (FA) and an acquisition time of 8 min.

The high resolution (0.35 mm) allows volumes to be calculated in 3D. Soft-
ware, Osirix (University of Geneva, available under open source licensing
http://www.osirix-viewer.com/) was used for visualisation and comparison of
image contrast, and a tool built by Paracelsus Medical University (Salzburg, Aus-
tria; F Eckstein, W Wirth) was used for semi-automatic segmentation and volume
quantification of regions of interest seen on the MR images. Each tumor region is
segmented based on pixel intensity as a single click in each 2D image slice fills the
neighboring pixels within an intensity threshold. The total volume can then be
calculated automatically in 3D by multiplying the number of pixels in all image
slices by the pixel volume, finally expressed in mm3. The change in volume
between the two imaging sessions was assessed.

Serum cytokine and liver function test quantification

Tail vein serum cytokine levels were assessed using a Rat Fluorokine MAP Base
Kit Luminex Performance Assay cytokine kit with interleukin (IL)-1b, IL-6, IL-
10, tumor necrosis factor (TNF)a and vascular growth factor (VEGF) individual
bead sets, according to the manufacturer’s protocol (R&D Systems, MN, USA).
Briefly, antibody-coated cytokine-specific beads were prepared in 96-well plates.
Sera (diluted 1/4) were added to the wells for a 3-h incubation at room temper-
ature in the dark with a 500 Hz shaking, allowing cytokines to bind to the cyto-
kine-specific beads. Plates were subsequently washed and incubated with
biotinylated anti-cytokine detection antibody for 60 min. After washing, strepta-
vidin-PE was added for 30 min to bind to the detection antibody. The level of
fluorescence of the cytokine-specific beads was analyzed by a double-laser
Bio-Plex200 reader (BioRad, CA, USA). Cytokine concentrations were determined
based on a standard curve included in each plate, using cytokine standards
provided by the manufacturer.

Serum serotonin levels were assessed utilizing an ELISA kit (LDN GmbH&
Co.KG, Nordhorn), according to the manufacturer’s protocol. Liver function tests,
including aspartate aminotransferase (AST), alanine aminotransferase (ALT), and
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bilirubin, were quantified on day one after reperfusion in collaboration with the
central clinical hospital laboratory (Synchron LX20, Beckman Coulter, Fullerton,
CA).

Electron and light microscopy

For electron microscopy, liver samples were fixed with a 2.5% glutaraldehyde
solution in 0.1 M phosphate buffer (pH 7.4), postfixed in 1% osmium tetroxide
in the same buffer, dehydrated, and embedded in Epon. Ultrathin sections were
examined and photographed with a Philips CM10 electron microscope.

For light microscopy, liver sections were stained with hematoxylin and eosin
(Sigma, Buchs, Switzerland). Histological studies were performed blindly by an
expert in liver anatomo-pathology.

Detection of proliferation by immunofluorescence

Liver section fixed in formol were treated with TEG Buffer (Tris base EGTA Buffer),
washed (phosphate buffered saline: PBS), permeabilised (PBS-0.5% Triton X-100),
rinsed (PBS), and satured (PBS-0.5% bovine serum albumin). They were then incu-
bated with mouse anti-Ki-67 (BD Pharmingen, Basel, Switzerland) for 2 h (room
temperature). Staining was detected using Alexa-fluor 488-conjugated goat
anti-mouse Ig (Invitrogen, Carlsbad, CA). Nuclei were stained with 1 lg/ml Hoe-
chst (Sigma-Aldrich, Buchs, Switzerland). The percentage of Ki67-cells in the total
cells (Hoechst nuclear staining) was assessed in one to two HCC lesions per ani-
mal using Metamorph Software (40� magnification).

Real-time polymerase chain reaction (PCR)

PCR assessments were performed on 12-h liver samples. Total RNA was prepared
and purified from frozen-crushed liver powder using the RNeasy Mini Kit (Qiagen,
Germantown, MD), and according to the manufacturer’s instructions. One lg of
cDNA was synthesized by extending a mix of random primers with the High
Capacity cDNA Reverse Transcription Kit in the presence of RNase Inhibitor
(Applied Biosystems, Carlsbad, CA). The relative quantity of each transcript was
normalized according to the expression of rplp1 (ribosomal protein large P1). Pri-
mer sequence for rplp1, htr2a, and htr2b (forward/reverse) were designed with
the Primers3 software (http://packages.debian.org/fr/sid/primer3) and are avail-
able upon request. Amplification reactions were performed in a total volume of
20 ll using a Thermocycler sequence detector (BioRad CFX96) with qPCR Core
kit for SYBR Green I (Eurogentec, Seraing, Belgium).

The ‘‘Rat Endothelial Cell Biology’’ RT2 Profiler PCR Array (SaBiosciences,
Frederick, MD) was first used according to manufacturers’ instructions. Specific
PCR assessments were subsequently performed for genes of interest selected
among those with a fold increase/decrease between ISC and ISC/R animals
P1.8 in the array, and because of their known or expected involvement in ische-
mia-reperfusion and/or in HCC growth. Of note, genes with high (>35) cycle
threshold were excluded. Selected genes included Casp3 (caspase 3), Fas (Fas cell
surface death receptor), Fn1 (fibronectin 1), Flt1 (FMS-related tyrosine kinase 1),
Hif1a (hypoxia-inducible factor 1), Hmox1 (heme oxygenase (decycling) 1), Icam1
(intercellular adhesion molecule 1), Serpine1 (plasminogen activator inhibitor
type 1), and Vwf (von Willebrand factor) (Quiagen, Hilden, Germany).

Statistical analysis

Data were expressed as median [min-max] and were analyzed using Prism 6
(GraphPad Software Inc., CA, USA). Continuous variables were compared using
the Wilcoxon test, when referring to the same animals at different time-points,
and the Mann-Whitney test when comparing different groups. The limit for sta-
tistical significance was set at p = 0.05.

Results

Validation of the ischemia/reperfusion rat liver transplantation
model

In an effort to validate the ISC rat liver transplantation model,
the presence of ischemia/reperfusion lesions was assessed.
Macroscopically, liver grafts demonstrated patchy dark surface
areas, when retrieved after 10 and 30 min of ischemia (ISC

group). These lesions were reversed after the two-hour
reperfusion (ISC/R group, Fig. 1A). Microscopically, control liver
grafts demonstrated normal architectures, with only minimal
(<5% of hepatocytes) centro-lobular micro-vacuolar steatosis.
ISC and ISC/R liver grafts (10- and 30-min ischemia) showed
more frequent lesions of hepatocyte injury with more micro-
vacuolar steatosis (up to 30%) and rare apoptotic bodies associ-
ated with inflammatory infiltrates (Fig. 1A). Of note, the 30-min
ISC and ISC/R grafts tended to demonstrate less steatosis than
the 10-min grafts, probably reflecting a more advanced stage
of ischemia.

On day one after transplantation, most micro-vacuolar steato-
sis lesions had disappeared (minimal <1% lesions remained) on
standard microscopy, and control livers only demonstrated iso-
lated apoptotic bodies. By contrast, ISC and ISC/R recipients
(10- and 30-min ischemia) showed more signs of hepatocyte
injury, with mild focal aggregates of apoptotic bodies (Fig. 1B).
In addition, 30-min ISC and ISC/R recipients also demonstrated
large areas of centro-lobular necrosis (Fig. 1C).

On electronic microscopy, the 12-h liver graft endothelial cells
demonstrated a normal appearance in the control group. By con-
trast, the ISC and ISC/R recipients showed signs of endothelial
injury with ballooning and apoptotic cells (Fig. 1B).

As a whole, day-one AST serum assessment confirmed a
greater level of cytolysis in ISC recipients compared to controls
and ISC/R (10-min ischemia experiments: 1898 [380–6741],
740 [213–2505], and 1155 [245–2405] U/L respectively; ISC vs.
control p = 0.009, ISC vs. ISC/R p = 0.117; and 30-min ischemia
experiments: 9524 [1930–29762], 2510 [1090–6324], and 6012
[1010–10660] U/L respectively; ISC vs. control p = 0.021, ISC vs.
ISC/R p = 0.085). ALTs demonstrated similar trends with higher
levels in ISCs, compared to controls and ISC/Rs (10-min ischemia
experiments: ISC 893 [80–3870], 430 [80–1500], ISC/R 463
[20–2480] U/L; ISC vs. control p = 0.10, ISC vs. ISC/R p = 0.30,
and 30-min ischemia experiments: ISC 6149 [1390–18850],
1995 [710–4893], ISC/R 3954 [630–7690] U/L; ISC vs. control
p = 0.028, ISC vs. ISC/R p = 0.69). Bilirubin levels were similar
between groups.

Increased MRI-assessed HCC growth in ischemic liver graft (ISC)
recipients

All injected animals developed MRI-detectable HCCs one week
after transplantation (Fig. 2A and B). Week-two MRI assessments
demonstrated a significant increase in the ISC HCC volumes (10-
min ischemia experiments: 838 [192–4225] mm3 vs. 4758
[1386–15,741] mm3 p = 0.0008; and 30-min ischemia experi-
ments: 1400 [469–2064] mm3 vs. 6298 [3403–9526] mm3

p = 0.004). As a result, the MRI-assessed HCC growth between
week one and week two was significantly higher in the ISC group
compared to the other two (10-min ischemia experiments: ISC vs.
controls p = 0.018 and ISC vs. ISC/R p = 0.04; and 30-min ischemia
experiments: ISC vs. controls p = 0.004 and ISC vs. ISC/R p = 0.010,
Fig. 2C and D). There was no growth difference between the con-
trol and the ISC/R groups (p = 0.74 and p = 0.81).

On standard histology, tumors had similar patterns in all ani-
mals, demonstrating signs of an aggressive poorly differentiated
malignant lesion, with numerous mitosis, high nucleo-cytoplas-
mic ratio and irregular chromatin. Focal areas of tumor necrosis
were observed. In addition, most cells were of epithelioid type,
but some lesions also showed areas with fusiform cells, another
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sign of aggressiveness. None of the animals developed spleen or
lung metastasis (only about 1 mm peritoneal nodules were
detected at the injection site in most animals).

In parallel to the MRI-assessed HCC growth, ISC recipients also
tended to have higher levels of cancer cell proliferation in the
10-min ischemia experiments. Two weeks after transplantation,
42 [34–59]% of the cancer cells were Ki67 positive in the ISCs

vs. 40 [27–55]% in the controls (p = 0.12) and 34 [18–57]% in
the ISC/Rs (p = 0.013).

Increased HCC growth/proliferation and serotonine and VEGF levels

Because serotonin has been suggested as an important mediator
of normal hepatocyte and HCC cell proliferation, serotonin and its
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receptors were assessed [12,13]. The 12-h serum serotonin levels
were similar between groups in the 10-min ischemia experiment
(controls 22 [14–46] ng/ml, ISC 19 [14–28] ng/ml, ISC/R 30
[22–36] ng/ml, ISC vs. control p = 0.62, ISC vs. ISC/R p = 0.11 and
ISC/R vs. control p = 0.37). In addition, the levels of expression
of the serotonin receptors htr2a and htr2b were also similar
between groups (data not shown).

At 12 h, VEGF serum levels, VEGF and Flt1 (tyrosine kinase
receptor for vascular endothelial growth factor) liver expressions
were also similar between groups (data not shown).

Increased serum inflammatory profile in the ischemic liver graft (ISC)
recipients

ISC recipients demonstrated a stronger pro-inflammatory serum
cytokine profile 12 h after transplantation in the 10-min experi-
ment. IL1b was higher in ISCs (372 [271–517] pg/ml) vs. controls
(155 [102–385] pg/ml) and ISC/Rs (234 [171–313] pg/ml; ISC vs.
control p = 0.020, ISC vs. ISC/R p = 0.0005, ISC/R vs. control
p = 0.14, Fig. 3A). IL6 also tended to be higher in ISC and ISC/R
recipients, but did not reach statistical significance (Fig. 3B). By
contrast, IL10 was higher in the ISC/R group, suggesting an
anti-inflammatory effect of this treatment (ISC/R 177
[77–372] pg/ml, controls 18 [11–26] pg/ml, and ISC 25
[9–138] pg/ml; ISC vs. control p = 0.51, ISC vs. ISC/R p = 0.0014,
ISC/R vs. control p = 0.0002, Fig. 3C). TNF-a was undetectable in
the serum of all groups 12 h after transplantation.

Decreased expression of liver injury genes in the ischemic/reperfused
liver graft (ISC/R) recipients

The level of expression was first tested using the ‘‘Rat Endothelial
Cell Biology’’ RT2 Profiler PCR Array (SaBiosciences, Frederick,
MD) (Supplementary Fig. 1), and subsequent specific PCR assess-
ments were performed for selected genes in the 10-min experi-
ments. Hmox1, Hif1a, and Serpine1 (plasminogen activator
inhibitor-1), have been previously shown to be up-regulated in
case of liver hypoxia and injury [14–16]. The levels of these genes
were lower in the ISC/R recipient grafts 12 h after transplantation
(Fig. 4A–C). Hmox1 level was 0.41 [0.31–0.87] in the ISC/R vs. 1.23
[0.70–3.03] in the controls and 2.51 [0.53–7.26] in the ISC (ISC/R
vs. controls p = 0.0006, ISC/R vs. ISC p <0.0001). Hif1a level was
0.65 [0.45–0.78] in the ISC/R vs. 0.89 [0.75–1.38] in the controls
and 1.03 [0.90–1.56] in the ISC (ISC/R vs. controls p = 0.0048,
ISC/R vs. ISC p <0.0001). Serpine1 level was 0.25 [0.1–2.71] in
the ISC/R vs. 0.84 [0.55–5.92] in the controls and 2.06 [0.28–
5.41] in the ISC (ISC/R vs. controls p = 0.058, ISC/R vs. ISC
p = 0.0011). The other tested genes, including Casp3, Fas, Fn1,
Flt1, Icam1, and Vwf demonstrated similar levels between groups.

Discussion

The present study demonstrates that the use of ischemic rat liver
graft increases HCC growth after transplantation, and that this
observation is reversed by a normothermic graft reperfusion
prior to retrieval.

In the used ISC model, liver ischemia was induced by a 10- or
30-min total liver clamping prior to retrieval. It induced signifi-
cant liver lesions, including hepatocyte (micro-vacuolar steatosis,
apoptotic bodies, increased liver function tests) and endothelial

(ballooning and apoptosis) injury. The ISC recipients demon-
strated increased HCC total volume two weeks after transplanta-
tion, with higher MRI-assessed HCC growth rates and more
numerous Ki67-stained proliferating HCC cells.
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Fig. 4. Gene profile analysis after transplantation. Post-transplantation (12 h)
gene expression profile, assessed by qPCR on RNA extracted from liver
parenchyma. Relative gene expression of heme oxygenase decycling 1 (Hmox1)
(A), hypoxia-inducible factor 1 (Hif1a) (B) and plasminogen activator inhibitor
type 1 (Serpine1) (C) was evaluated in the three groups in the 10-min experiments
and normalized according to the expression of the housekeeping gene rplp1.
Median: full line, mean: dashed line. (This figure appears in colour on the web.)
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DCD donors are an increasingly used source of liver grafts and
an intense field of investigation [1–5]. Most studies are aiming at
reversing the cardiac arrest-induced ischemia/reperfusion injury
and improving the overall graft quality. Among others, investiga-
tors have looked at the use of ex vivo hypothermic oxygenated
graft perfusion [19–21] and ex vivo [17,18] or in vivo (ECMO) nor-
mothermic perfusion [22]. While the debate is not fully closed
regarding the pros and cons of these techniques, we have chosen
a model which approximates an in vivo normothermic perfusion.
In the present experiment, the treatment did not reverse the
already constituted apoptotic and necrotic hepatocyte and endo-
thelial lesions (similarly observed in the ISC and ISC/R groups).
However, it decreased the overall level of injury, with lower lev-
els of liver function tests. In addition, prior-to-retrieval reperfu-
sion was associated with lower MRI-assessed HCC growth rates
and less Ki67-stained proliferating hepatocytes compared to the
ISC recipients.

The observed increased post-transplant HCC volumes in the
ISC recipients and their prevention by reperfusion prior to retrie-
val are associated with a number of studied mechanisms (the
present data do not provide a causal relationship). First, the 12-
h expression of a panel of ischemia-related genes, including
Hmox1, Hif1a, and Serpine1 was decreased in the ISC/R group.
Hmox1 is coding for heme oxygenase 1, an inducible isoform of
heme oxygenase in response to stress. Inhibition of Hmox1 by
molecules or small interfering RNA prevents the in vitro HCC cell
migration and proliferation, and the in vivo HCC growth, by shift-
ing the endogenous balance between apoptosis and proliferation
towards an anti-proliferative status [23–25]. Hif1a is coding for
the hypoxia-inducible factor 1, which is essential in the cellular
and systemic response to hypoxia. Its expression is increased in
HCC, and it is associated with worse clinical outcomes [26].
Hypoxia-inducible factor 1 inhibition decreased cancer growth
in a murine model [27]. Serpine1 is coding for the plasminogen
activator inhibitor-1, which inhibits plasmin action and impairs
matrix degradation. It has been identified as a factor contributing
to the development of HCC [28]. The presence of an increased
serum pro-inflammatory cytokine profile in the ISC recipients
may also contribute to HCC growth. IL1, TNFa and IL6 have been
shown to regulate cancer promotion, growth, and invasiveness
[29,30]. By contrast, the presence of IL10 in the ISC/R recipients
reflects a more anti-inflammatory cytokine profile in this group.
Finally, the liver endothelial cell lesions (ballooning, apoptosis)
observed on electronic microscopy may also play a role, by
enhancing cell adhesion and migration, and angiogenesis path-
ways [31,32].

Of note, the observed post-transplant HCC growth appeared
independent of serotonin and VEGF, both important factors in
the normal hepatocyte and HCC growth. These analyses were
conducted 12 h after transplantation, and an earlier or later
increase in the serum protein level or in the gene liver expression
could have been missed.

The clinical relevance of these rat observations remains to be
fully determined. The used model only approximates the clinical
features of ischemia/reperfusion and marginal liver graft pre-
conditioning. In addition, a large number of HCC cells was
injected into the portal vein, and this cell concentration is likely
higher than the one present in the blood stream during trans-
plantation for HCC. However, some investigations suggest that
DCD liver transplantation may be related to increased death after
transplantation for HCC [33]. Altogether the use of a (re)perfusion

protocol for DCD and marginal liver graft pre-conditioning
deserves further clinical exploration.

The present data demonstrates an increased risk of HCC recur-
rence and growth after transplantation of ischemic rat liver graft,
and its prevention with use of graft reperfusion prior to retrieval.
These observations were associated with alterations in the
inflammatory cytokine profile and in the expression of various
genes, including Hmox1, Hif1a, and Serpine1.
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