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Archival Report

The Candidate Schizophrenia Risk Gene DGCR2
Regulates Early Steps of Corticogenesis
Aude Molinard-Chenu and Alexandre Dayer

ABSTRACT
BACKGROUND: Alterations in early steps of cortical circuit assembly are thought to play a critical role in vulnerability
to schizophrenia (SZ), but the pathogenic impact of SZ-risk mutations on corticogenesis remains to be determined.
DiGeorge syndrome critical region 2 (DGCR2) is located in the 22q11.2 locus, whose deletion is a major risk factor for
SZ. Moreover, exome sequencing of individuals with idiopathic SZ identified a rare missense mutation in DGCR2,
further suggesting that DGCR2 is involved in SZ.
METHODS: Here we investigated the function of Dgcr2 and the pathogenic impact of the SZ-risk DGCR2 mutation in
mouse corticogenesis using in utero electroporation targeted to projection neurons.
RESULTS: Dgcr2 knockdown impaired radial locomotion and final translocation of projection neurons, leading to
persistent laminar positioning alterations. The DGCR2 missense SZ-risk mutation had a pathogenic impact on
projection neuron laminar allocation by reducing protein expression. Mechanistically, we identified Dgcr2 as a
novel member of the Reelin complex, regulating the phosphorylation of Reelin-dependent substrates and the
expression of Reelin-dependent transcriptional targets.
CONCLUSIONS: Overall, this study provides biological evidence that the SZ-risk gene DGCR2 regulates critical steps
of early corticogenesis possibly through a Reelin-dependent mechanism. Additionally, we found that the SZ-risk
mutation in DGCR2 has a pathogenic impact on cortical formation by reducing protein expression level,
suggesting a functional role for DGCR2 haploinsufficiency in the 22q11.2 deletion syndrome.
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Alterations in the formation of cortical circuits are involved in
the pathophysiology of developmental disorders, including
schizophrenia (SZ) (1,2). Numerous genes are associated with
SZ (3,4) and many of them regulate cellular events involved in
cortical circuit assembly (5,6). However, the precise biological
mechanisms through which SZ-risk genes alter early cortical
circuit formation remain unclear (7). Here, we investigate the
impact of a novel SZ-risk gene, DiGeorge syndrome critical
region 2 (Dgcr2), on cortical projection neuron (PN) develop-
ment. Dgcr2 is expressed throughout brain development (8),
encodes for an activity-dependent adhesion protein (9,10), and
is associated with SZ (3,11). DGCR2 is located in the 22q11.2
locus, in the minimal critical region for 22q11.2 microdeletion
syndrome (22q11.2DS) (12). This microdeletion is one of the
highest known risk factors for SZ (13), and it has been sug-
gested that DGCR2 haploinsufficiency may contribute to
increased risk for SZ in 22q11.2DS (11). Additionally, exome
sequencing of family trios identified a rare de novo DGCR2
mutation (P429R) in a patient with idiopathic SZ (3). Here we
used in utero electroporation in mice (14,15) to determine
whether Dgcr2 impacts early steps of PN development and
assessed the pathogenic impact of the DGCR2 SZ-risk mu-
tation in this model system.

Early cellular events involved in the development of
cortical PNs are increasingly well understood (16,17). After
being generated asymmetrically from radial glia in the ven-
tricular zone, upper-layer PNs undergo sequential migratory
stages until they reach their final laminar position within the
cerebral cortex. A key stage in neuronal migration is radial
glia–guided locomotion during which PNs migrate from the
intermediate zone toward upper cortical layers (18). The fine
positioning of PNs relies on an ultimate migratory step
defined as final translocation (19). The precisely orchestrated
migration of PNs appears to be a vulnerable cellular process
that is affected by different types of psychiatric-related
genetic insults (20–22).

Multiple cell-extrinsic regulators of PN migration have been
identified (23,24). Among these factors, Reelin is an important
signaling protein secreted by Cajal-Retzius cells (25). It con-
trols the inside-out lamination of cortical PNs (26), and alter-
ations in downstream signaling components of the Reelin
pathway, such as DAB1, disturb radial glia-guided locomotion
(27) and final translocation (20,28,29). Interestingly, the Reelin
signaling cascade is associated with several SZ-related pro-
cesses including N-methyl-D-aspartate receptor hypofunction
(30–32) and SZ-like cognitive impairments (33–35).
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In this study, we find that short hairpin RNA (shRNA)–
mediated knockdown (KD) of Dgcr2 as well as an SZ-risk
mutation in DGCR2 affects the migration of PNs. Moreover,
we identify DGCR2 as a novel member of the Reelin complex
and show that the phosphorylation of Reelin-dependent
signaling targets is reduced following Dgcr2 KD. Finally,
using RNA sequencing of Dgcr2-KD PNs, we identify Dgcr2-
dependent target genes, which are significantly enriched in
Reelin-dependent genes. Overall, this study provides evidence
that the SZ-risk gene Dgcr2 regulates PN migration and
positioning possibly through Reelin-dependent mechanisms.

METHODS AND MATERIALS

Plasmids, antibodies, and primers are discussed in
Supplemental Methods.

In Utero Electroporation

Animal experiments were conducted according to the Swiss
and international guidelines and were approved by the local
animal care committee. Embryos from time pregnant E14.5
CD1 mice or C57BL/6 (RNA sequencing experiment and
Figure 1A) were electroporated in the lateral ventricular zone of
the dorsal pallium as described previously (36). Sequential
electroporations were performed at 24-hour intervals at E14.5
and E15.5.

Tissue Processing, Immunohistochemistry, and
Proximity Ligation Assay

Dissected brains were fixed, stored in a cryoprotective solution
if required, and processed for immunohistochemistry as
described previously (22,36) and for proximity ligation assay
(PLA) as described in Trifilieff et al. (37) with Duolink reagents
(Sigma-Aldrich, St. Louis, MO).

Cell Culture and Transfection

Human embryonic kidney (HEK) 293T cells were cultured in
Dulbecco’s modified Eagle medium (Life Technologies,
Carlsbad, CA) supplemented with 10% fetal bovine serum
(Biochrom, Berlin, Germany), 10 U/mL penicillin/streptomycin
mixture (Life Technologies) at 37�C under 5% CO2. Cells were
transfected using lipofectamin-2000 (Thermo Fisher Scientific,
Waltham, MA). Primary neuronal cultures were prepared as
previously described (36).

Western Blot and Immunoprecipitation

Cells were scraped and lysed in cell lysis buffer B. The lysate
was clarified by centrifugation and 50 mg of proteins were
processed as in Riccio et al. (36). For the coimmunoprecipi-
tation experiment, Reelin-enriched medium was produced and
collected as described in D’Arcangelo et al. (38) and after
1-hour incubation with Reelin-enriched or mock medium,
transfected HEK 293T cells were resuspended in 0.4% para-
formaldehyde for 10 minutes at room temperature, centrifuged,
and lysed with cell lysis buffer B. A total of 1 mg of proteins
from the lysate was incubated overnight in phosphate-buffered
saline (PBS) 0.01% Tween-T, with 20 uL of hemagglutinin (HA)
tag (C29F4) monoclonal antibody–conjugated magnetic beads
(Cell Signaling, Danvers, CT). Beads were washed 4 times with
PBS 0.01% Tween-T before elution in Laemmli buffer. Eluates

were boiled at 100�C for 5 minutes, and Western blot was
performed as previously described (22). The disabled homolog
1 (DAB1) phosphorylation assay was performed as in Lee et al.
(39), except Reelin-enriched medium was used to stimulate
primary cortical neurons instead of purified Reelin.

Fluorescence-Activated Cell Sorting, Reverse
Transcriptase Quantitative Polymerase Chain
Reaction, and RNA Sequencing

E17.5 cortices from embryos previously electroporated at
E14.5 together with the fluorescent reporter tdTomato were
dissected and processed until dissociation as previously
described for neuronal cultures. Cells were resuspended in
PBS, filtered through a cell strainer (70 mm, BD, Franklin
Lakes, NJ), and sorted on a BD FACSAria II Cell Sorter (488–
633-nm laser, 100-mm nozzle at 20 psi; BD); 1 ng of RNA per
sample was used for complementary DNA preparation, ac-
cording to the manufacturer instructions (PrimeScript RT,
Takara Bio, Kusatsu, Japan), and a preamplification (TaqMan
PreAmp Master Mix, Applied Biosystems, Foster City, CA)
was performed. Real-time quantitative polymerase chain re-
action (SDS 7900 HT instrument, Applied Biosystems) using
the SYBR Green master mix (Applied Biosystems) was used
to assess the expression level of the relevant genes. Nine
RNA libraries were prepared using Nextera XT DNA (Illumina,
San Diego, CA) kit corresponding to the triplicates of the
three experimental conditions (Scram shRNA, Dgcr2 shRNA,
Rescue). Libraries were multiplexed and sequenced on an
Illumina HiSEQ2000 with a setup that generates pair-end
reads of 2x50 bp at an average depth of 35 million read-
pairs per library.

Phosphorylation Assay: Flow Cytometry

E17.5 electroporated cortices previously electroporated at
E14.5 with Scram shRNA 1 green fluorescent protein (GFP)
or Dgcr2 shRNA 1 tdTomato were dissected and dissociated
as described previously. tdTomato and GFP samples were
then mixed and split into two tubes where they were washed
in 10 mL of prewarmed L-15 (2% D-Glucose, Sigma-Aldrich)
and centrifuged. Cells were resuspended in 1 mL of Reelin-
enriched or control Dulbecco’s modified Eagle medium and
incubated for 30 minutes at 37�C; 500 mL of 16% prewarmed
paraformaldehyde was added to the cells for a 15-minute
incubation at 37�C. Cells were centrifuged and resus-
pended in 70% ice-cold methanol for a 30-minute incubation
on ice, before being centrifugated and resuspended in 100
mL of PBS. A total of 20 mL of RAC-alpha serine/threonine-
protein kinase (AKT) and anti–extracellular signal–related ki-
nase 1/2 (ERK1/2) antibodies were added to the cells, and
the mixture was incubated for 1 hour at room temperature on
a rotating wheel. Cells were washed in PBS and filtrated
through a cell strainer (70 mm, BD). Cells were analyzed by
flow cytometry on a CyAn ADP analyzer (Beckman Coulter,
Brea, CA).

Time-Lapse Imaging

E18.5 acute brain slices were prepared as described previ-
ously (22) from embryos electroporated at E14.5. Migrating
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Figure 1. Dgcr2 knockdown (KD) impairs the laminar positioning of cortical projection neurons (PNs). (A) Reverse transcriptase quantitative polymerase
chain reaction indicates that Dgcr2 is expressed during corticogenesis. n = 4 brains per time point from $3 separate litters. Error bar indicates 95% confidence
interval (CI). (B) In situ hybridization reveals strong labeling of Dgcr2 in the cortical plate (CP), subplate (SP), and subventricular zone (SVZ) of E17.5 brains.
Scale bar = 100 mm. (C) In utero electroporation at E14.5 of a green fluorescent protein (GFP)–tagged Dgcr2 construct in PNs. Arrowheads indicate a puncta-
shaped expression of mouse DiGeorge syndrome critical region 2 (mDGCR2) (pseudocolored) localized in the cytoplasm and apical processes. Scale bar = 10
mm. (D) Immunohistochemistry on cultured cortical neurons demonstrates endogenous protein expression of mDGCR2 in PNs (arrowheads indicate mDGCR2
puncta). Scale bar = 10 mm. (E/E0) Western blot (anti-hemagglutinin [HA]) of overexpressed mDGCR2-HA in human embryonic kidney (HEK) 293T cells reveals
a significant reduction of the mDGRC2-HA protein concentration, when cotransfected with a short hairpin RNA (shRNA) targeted against Dgcr2. n = 5; p, .05,
Mann-Whitney. (F/F0) The corrected total cell fluorescence (CTCF) ratio between mDGCR2-GFP and tdTomato (TOM) is reduced in vivo by coelectroporation of
an shRNA targeted against Dgcr2. n = 5–8 brains per condition from $3 separate litters. Error bars indicate 95% CI. *p , .05, Mann-Whitney. Scale bar =
20 mm. (G) Reverse transcriptase quantitative polymerase chain reaction on RNA extracts of TOM PNs isolated by fluorescence-activated cell sorting at E17.5
after in utero electroporation at E14.5 shows that the total amount of Dgcr2 is reduced by Dgcr2 shRNA. n = 6–7 litters per condition. Error bars indicate 95%
CI. **p , .01, Mann-Whitney. (H/H0) shRNA-mediated Dgcr2 KD by in utero electroporation at E14.5 dramatically impairs the laminar positioning of PNs in the
somatosensory cortex at P0.5. n = 6 brains per condition from $3 separate litters. Error bars indicate 95% CI. *p , .05, **p , .01, Mann-Whitney. Scale bar =
100 mm. (I/I0) Conditional expression of Dgcr2 shRNA in postmitotic PNs by coelectroporation of neurogenic differentiation–cre–internal ribosome entry site–
GFP (NeuroDcre-IRES-GFP) and a lox-flanked (flx) Dgcr2 shRNA mimics the migratory deficit observed with constitutive Dgcr2 KD at P0.5. PNs were visualized
by immunohistochemistry against GFP. n = 7–10 brains per condition from $3 separate litters. Error bars indicate 95% CI. *p , .05, Mann-Whitney. GAPDH,
glyceraldehyde 3-phosphate dehydrogenase. n.s., nonsignificant; WM, white matter.
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PNs located in the lower part of the cortical plate (CP) at the
beginning of the recording were tracked during 10 hours.

Analysis and Statistics

All described image analyses were done using Fiji (40), using
the following plugins: cell counter, MtrackJ (41). The corrected
total cell fluorescence was quantified on Fiji as described in
Burgess et al. (42). Except for the RNA sequencing data, all
statistical analyses were performed on GraphPad Prism soft-
ware, version 7 (GraphPad Software, La Jolla, CA). The sample
sizes and relevant statistical tests are specified for each result
in the Results. For the detailed methods of the RNA
sequencing analysis, see the Supplemental Methods.

RESULTS

Dgcr2 was found to be expressed during the late embryonic
phase of corticogenesis (Figure 1A). In situ hybridization
revealed that Dgcr2 is expressed in the CP, subplate, and
subventricular zone at E17.5, a period during which superficial
PNs migrate toward the CP (Figure 1B). We next used in utero
electroporation targeted to the E14.5 lateral ventricular zone to
specifically manipulate the expression of Dgcr2 in PN pro-
genitors migrating toward superficial layers of the somato-
sensory cortex. Overexpression of a GFP-tagged Dgcr2
construct (mouse DGCR2-GFP [mDGCR2-GFP]) in PNs
showed a puncta-shaped expression in the apical processes
of PNs (Figure 1C). The endogenous protein expression of
Dgcr2 was confirmed by immunohistochemistry on neuronal
cultures of E14.5 electroporated PNs (Figure 1D). An shRNA
targeted against Dgcr2 significantly reduced the protein
expression level of a HA-tagged Dgcr2 (mDGCR2-HA) over-
expressed in vitro in HEK 293T cells (Figure 1E). Furthermore,
shRNA efficiency targeting Dgcr2 was confirmed in vivo by
measuring the fluorescence intensity of mDGCR2-GFP over-
expressed in PNs (Figure 1F) and by performing reverse tran-
scriptase quantitative polymerase chain reaction on in utero
electroporated PNs isolated by fluorescence-activated cell
sorting at E17.5 (Figure 1G). Overall, the shRNA-mediated KD
of Dgcr2 reduced by around 40% its messenger RNA
expression.

Dgcr2 KD induced a significant alteration in the laminar
positioning of PNs at P0.5, compared with a control shRNA
(Scram shRNA). Dgcr2-KD PNs were significantly misplaced in
the layers 5 and 6, and in the white matter (Figure 1H). This
mispositioning phenotype was replicated using a second
shRNA against Dgcr2 (Supplemental Figure S1C). Further-
more, conditional expression of Dgcr2 shRNA in postmitotic
PNs induced a similar type of mispositioning phenotype
(Figure 1I). Dgcr2 KD did not alter the laminar positioning of
PNs at the earlier embryonic ages of E17.5 and E18.5
(Supplemental Figure S1A, B). In addition, Dgcr2 KD did not
appear to alter the proliferation rate of PN progenitors
(Supplemental Figure S2A) or their early differentiation process
(Supplemental Figure S2B–E). At E15.5, the percentage of PNs
that expressed the intermediate progenitor marker T-box brain
protein 2 (43) in the subventricular zone was similar in the
Scram and Dgcr2 shRNA conditions (Supplemental
Figure S2B). At E17.5, Dgcr2-KD PNs expressed the upper-
layer markers special AT-rich sequence binding protein 2 and

BRN2 (44,45), in the same proportion as control PNs
(Supplemental Figure S2C, D). In addition, the percentage of
electroporated PNs that expressed the deep-layer marker
T-box brain protein 1 (46) remained similarly low between
Dgcr2 shRNA– and Scram shRNA–electroporated PNs
(Supplemental Figure S2E). Overall, Dgcr2 KD had a major
impact on late PN migration but did not affect the proliferation
or the early differentiation process of PN progenitors.

Dgcr2 KD induced a persistent laminar positioning deficit
(Figure 2). At P7, misplaced Dgcr2-KD PNs were observed in
deep cortical layers (Figure 2A, B) and preserved their upper-
layer cut like homeobox protein cut-like 1 (CUX1) molecular
identity, whereas they did not express the deep-layer marker
COUP-TF-interacting protein 2 (47) (Figure 2B–D). In addition,
no difference was observed in the percentage of electro-
porated PNs that express CUX1 in the upper layers between
the Dgcr2-KD and control conditions (Figure 2C). Finally, at
P42, misplaced Dgcr2-KD PNs were still observed in deep
cortical layers, as opposed to control PNs (Figure 2E), and
maintained expression of the upper-layer marker CUX1
(Figure 2F).

Given that the mispositioning phenotype appeared between
E18.5 and P0.5, we next assessed dynamically the impact of
Dgcr2 KD on neuronal migration using confocal time-lapse
imaging of PNs in E18.5 cortical slices. At this developmental
time point, E14.5-born PNs are undergoing radial-guided
locomotion from the upper part of the intermediate zone
toward the CP (22). Quantification revealed that Dgcr2 KD
dramatically decreased the migratory speed of PNs
(Figure 3A–D, Supplemental Movies S1, 2). At P0.5, Dgcr2 KD
significantly shifted the distribution of PNs to the lower CP,
suggesting that Dgcr2 KD affects the process of terminal
translocation (16,20), thefinal stepofPNmigration (Figure 4A,B).
To further assess the impact of Dgcr2 KD on terminal
translocation, we performed sequential in utero electro-
porations at E14.5 to label a reference population of control
PNs and at E15.5 to assess the effects of Dgcr2 KD on later-
born PNs, which translocate in more superficial layers
compared with E14.5-born PNs (20). Strikingly, E15.5-born
Dgcr2-KD PNs were intermingled with the E14.5-born con-
trol PNs, whereas E15.5-born Scram-shRNA PNs were
distinctly laminated in superficial layers of the CP (Figure 4C).
Overall, these results indicate that radial-guided locomotion
and terminal translocation of PNs are regulated by Dgcr2.

We next aimed to determine the molecular mechanisms
through which Dgcr2 regulates PN migration. To do this we
used an in vivo electroporation rescue strategy with mouse
shRNA–resistant human DGCR2 constructs. First, we found
that the Dgcr2-KD mispositioning phenotype was rescued by
the wild-type (WT) human (h) DGCR2 construct (Rescue WT)
(Figure 5A), thus providing molecular specificity for the Dgcr2-
KD PN migratory phenotype. Additionally, overexpression of
DGCR2 per se did not affect the laminar positioning of elec-
troporated PNs (Supplemental Figure S1D). We then took
advantage of this rescue strategy to investigate the migratory
function of different subdomains of DGCR2 (Figure 5A).
Mutated constructs with deletions of the cytoplasmic
C-terminal domain of DGCR2 (C’-Del) or the extracellular low-
density lipoprotein receptor class A (LDL-A) domain (LDL-Del)
(Supplemental Figure S3A) did not rescue the Dgcr2-KD PN
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migratory phenotype (Figure 5A), thus indicating that these
molecular subdomains are required for human DGCR2
(hDGCR2) function in PN migration. In a more translational
perspective, we also assessed the functional consequence of
the SZ-risk mutation P429R (3). Strikingly hDGCR2-P429R
failed to rescue the Dgcr2-KD migratory phenotype, providing
evidence that this SZ-risk mutation is pathogenic for PN
migration. Interestingly, western blots of transfected HEK 293T
cells with hDGCR2-WT-HA or hDGCR2-P429R-HA revealed a
significantly lower protein expression of hDGCR2-P429R-HA
in contrast to WT (Figure 5B). Furthermore, overexpression of
hDGCR2-P429R-HA in mouse primary cortical neurons indi-
cated that the protein expression of hDGCR2-P429R-HA was
reduced (Supplemental Figure S3B), whereas messenger RNA
expression of Dgcr2 was not modified compared with the
control condition (Supplemental Figure S3C). Proteasome in-
hibition using MG 132, an inhibitor of the proteasome activity
(48), led to a significant increase (about 60%) of hDGCR2-

P429R-HA (Supplemental Figure S3D), suggesting that the
SZ-risk mutation affects protein expression of DGCR2 through
increased proteasome degradation.

We next investigated the molecular mechanisms mediating
the effects of DGCR2 on PN migration. Interestingly the
extracellular LDL-A domain of DGCR2 carries structural simi-
larities with LDL-A domains found in the two canonical Reelin
receptors very low-density lipoprotein receptor and apolipo-
protein E receptor 2 (49). As reported (50), the canonical very
low-density lipoprotein receptor coimmunoprecipitated with
both full-length Reelin and the Reelin central fragment and was
used here as a positive control condition (Figure 6A). Coim-
munoprecipitation of Reelin with DGCR2 revealed that full
length Reelin and the monomeric form of the central fragment
of Reelin coimmunoprecipitated with mDGCR2 and hDGCR2,
whereas no Reelin was detected in the negative control con-
dition (GFP) (Figure 6A). Molecular proximity between DGCR2
and Reelin was further assessed in vivo using a PLA on E18.5

=

Figure 2. Dgcr2 knockdown persistently affects the positioning of projection neurons (PNs) until P42 but not their laminar molecular identity. (A/A0) Dgcr2
knockdown impairs the laminar positioning of E14.5-born PNs at P7. n = 6–7 brains per condition from $3 separate litters. Error bars indicate 95% confidence
interval (CI). **p , .01, Mann-Whitney. Scale bars = 100 mm. (B) Immunohistochemistry of the upper-layer neuronal marker cut like homeobox 1 (CUX1) at P7,
after in utero electroporation of Dgcr2 short hairpin RNA (shRNA) at E14.5, compared with Scram shRNA. Scale bars = 100 mm. (C/C0) High magnification
captures of mispositioned PNs in layer 5 in the Dgcr2 shRNA condition shows that at P7 the vast majority of misplaced PNs express the upper-layer marker
CUX1. Arrowheads show colocalized PNs. n = 5 brains per condition from $3 separate litters. Error bars indicate 95% CI. Scale bars = 20 mm. (D) Mis-
positioned PNs do not express the deep-layer marker COUP-TF-interacting protein 2 (CTIP2). Arrowheads indicate electroporated PNs. Scale bars = 20 mm.
(E/E0) Dgcr2 knockdown impairs the laminar positioning of E14.5-born PNs at P42. n = 6–7 brains per condition from $2 separate litters. Error bars indicate
95% CI. **p, .01, Mann-Whitney. Scale bars = 100 mm. (F) High-magnification image of mispositioned PNs in layer 5 in the Dgcr2 shRNA condition shows that
at P42, misplaced PNs maintain expression of the upper-layer marker CUX1. Arrowheads show colocalized PNs. Scale bars = 50 mm. TOM, tdTomato; WM,
white matter.
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cortical slices. We observed that the overall density of PLA
puncta was highest in the marginal zone (MZ) as compared
with other cortical compartments (Figure 6C), in line with ob-
servations that Reelin is mainly secreted by Cajal-Retzius cells
in the MZ (51). Strikingly, we found that Dgcr2 KD decreased
PLA puncta density as compared with Scram shRNA condition
in the MZ (Figure 6C), whereas the total protein expression of
Reelin was unaffected by Dgcr2 KD (Supplemental
Figure S3E). These results provide novel evidence that
DGCR2 and Reelin form a protein complex in vitro and in vivo.

To determine whether Dgcr2 regulates Reelin signaling, we
investigated the impact of Dgcr2 KD on DAB1, a Reelin-
dependent phosphorylation target controlling PN migration
(52). DAB1 phosphorylation was assessed in primary neuronal

cultures after stimulation with Reelin-enriched medium or
mock medium using DAB1 immunoprecipitation followed by
p-Y Western blot. For this experiment, Dgcr2 KD was obtained
by lentiviral infection of Dgcr2 shRNA (Supplemental
Figure S3F) in cultured neurons. In each of the five replicates
of this experiment, Reelin-dependent phosphorylated DAB1
levels were decreased by Dgcr2 KD (Figure 7A). We next
performed a flow cytometry–based phosphorylation assay to
assess AKT and ERK1/2, two additional Reelin-dependent
phosphorylation targets (39,53). Following in utero electropo-
ration at E14.5, control or Dgcr2-KD PNs were exposed at
E17.5 to a Reelin-enriched medium or a control medium and
the phosphorylation status of AKT (pS473) and ERK1/2
(pT202/pY204) was assessed using flow cytometry (Figure 7B).
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Reelin-induced phosphorylation of phosphorylated AKT
(Figure 7C) and phosphorylated ERK1/2 (Figure 7D) were
decreased in all replicates in the Dgcr2-KD condition as
compared with the control condition. Overall, these experi-
ments indicate that DGCR2 is a novel member of the Reelin
complex, regulating Reelin-dependent signaling targets in
PNs.

To identify genetic pathways dysregulated by Dgcr2 KD in
migrating PNs, RNA sequencing was performed on PNs iso-
lated at E17.5 using fluorescence-activated cell sorting, after
E14.5 in utero electroporation. Dgcr2 was among the top
downregulated genes in the Dgcr2-KD condition, validating the

experimental approach. Expression levels of 98 genes were
found to be specifically altered in the Dgcr2-KD condition in
contrast to the control and rescue conditions (Figure 8A,
Supplemental Table S1). Interestingly, Reelin target genes (32)
were significantly enriched in our dataset (p = 1.60E-04, hy-
pergeometric testing; Figure 8A, D). Some of the Dgcr2-KD
dysregulated genes were associated with mental disorders (54)
(Figure 8B), and among them some were positively associated
with psychiatric disorders such as SZ and bipolar spectrum
disorders (55) (Figure 8C). Finally, Gene Set Enrichment Anal-
ysis (56) revealed that dysregulated Dgcr2-KD target genes
were enriched in biological pathways linked to developmental
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processes and neuronal specific functions (Figure 8D,
Supplemental Figure S3G, Supplemental Table S1).

DISCUSSION

Overall, this study reveals that the SZ-risk gene Dgcr2 regu-
lates the migration and laminar positioning of upper-layer
cortical PNs. Using mutated DGCR2 constructs, we find that
the extracellular LDL-A and the cytoplasmic C0-terminal
domains of DGCR2 are important molecular domains required
for the migratory function of the protein. In addition, our results
indicate that the missense SZ-risk mutation P429R (3) has a
pathogenic effect on PN migration by leading to a state of
DGCR2 protein insufficiency. Mechanistically, we show that

DGCR2 is part of the Reelin complex and that Dgcr2 KD reg-
ulates Reelin-dependent signaling pathways. Finally, using
RNA sequencing we identify in migrating PNs a set of
Dgcr2-dependent genes, which are significantly enriched in
previously reported Reelin-dependent genetic targets (32).

The migration of upper-layer PNs is controlled by a variety
of factors (23,24), including Reelin (57). Using time-lapse im-
aging and sequential electroporation in vivo we find that Dgcr2
regulates both radial-guided locomotion as well as terminal
translocation. Strikingly, the Dgcr2-KD PN mispositioning
phenotype observed in the CP phenocopies the migratory
phenotype described following in utero KD of DAB1, a key
Reelin effector (20), thus suggesting that DGCR2 regulates PN
migration through the Reelin signaling pathway.

=

represents DGCR2/Reelin PLA puncta as isolated particle ,5 mm2 and offset by 5 pixels. PNs were visualized by immunohistochemistry against GFP. (C0/C0 0)
In the MZ the number of PLA puncta that colocalize with the electroporated PNs is reduced by Dgcr2 KD as compared with the control condition. Arrowheads
depict DGCR2/Reelin PLA puncta colocalizing with GFP. n = 5–6 brains per condition from $3 separate litters. *p , .05, Mann-Whitney. Error bars indicate
95% confidence interval. (C) Scale bar = 100 mm. (C0) Scale bar = 10 mm. CP, cortical plate; IZ, intermediate zone.
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Using coimmunoprecipitation and PLA, we reveal that
DGCR2 is part of the Reelin complex. Mechanistically, we find
that DGCR2 regulates Reelin-dependent phosphorylation of key
intracellular effectors such as DAB1, AKT, and ERK1/2. Finally,
recent work has revealed key transcriptional changes induced

by Reelin activation (32). Here, we identify a core set of genes
whose expression is specifically dysregulated following
Dgcr2 KD. The mitogen-activated protein kinase pathway
(58,59) was enriched in the pathway analysis of Dgcr2-depen-
dent genes and in this context, Mapk4 represents an interesting
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gene set that were positively associated with schizophrenia spectrum disorder and bipolar disorder spectrum. (D) Gene Set Enrichment Analysis revealed
selected biological processes enriched in Dgcr2-KD differentially expressed genes. FDR, false discovery rate; GO, gene ontology; MAP, mitogen-activated
protein.
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link between Dgcr2 and Reelin (32). In addition, a significant
proportion of these genes were enriched for Reelin target genes
previously identified (32). Overall, these results provide evidence
that DGCR2 is functionally linked to the Reelin pathway and
suggests that the Dgcr2-KD migratory phenotype could be due
to defective Reelin signaling in PNs.

Our experimental approach is based on shRNA-induced
downregulation in PNs using targeted in utero electropora-
tion. Given that this method has been reported to induce off-
target effects (60), we performed rescue experiments using
an hDGCR2 construct that did not contain the mouse shRNA
target sequence. The hDGCR2 construct induced a full rescue
of the shRNA-induced mispositioning phenotype, indicating
the specificity of our Dgcr2-KD approach. In addition, this
rescue approach was used to control for potential off-target
gene expression changes and allowed the identification spe-
cific Dgcr2-KD target genes in our RNA sequencing dataset.
Finally, our quantitative analysis did not detect major changes
in proliferation and early neuronal differentiation following
Dgcr2 KD. However, a role for Dgcr2 in these early develop-
mental processes cannot be fully excluded because the effi-
ciency of shRNA-induced KD may not be sufficiently high at
these early developmental time points.

In a disease perspective, allelic variations of Reelin have
been associated with SZ (61–64) and endophenotypes of SZ
(65). However, single nucleotide polymorphisms and de novo
mutations alone have a relatively modest effect size on the risk
of developing SZ (66), compared with rare copy number vari-
ations such as 22q11.2DS (67). Among the genes encoded in
this locus, DGCR2 has been associated with SZ (3,11),
although a lack of replication has been reported (68,69). More
recently, an exome-sequencing study identified a potentially
disruptive de novo mutation in DGCR2 associated with idio-
pathic SZ (3). Here we found that this SZ-risk mutation (P429R)
had a pathogenic effect on PN migration by decreasing
DGCR2 protein but not transcripts levels. Decreased levels of
DGCR2-P429R could be linked to increased protein degrada-
tion by the proteasome, but other mechanisms such as
defective subcellular targeting or a reduced translation rate
due to codon usage bias might also be involved. Overall, our
results indicate that the P429R mutation could phenocopy a
state of haploinsufficiency as observed in 22q11.2DS, thus
suggesting that the rare de novo DGCR2 mutation detected in
a single case of idiopathic SZ (3) shares a common pathogenic
mechanism with the 22q11.2DS. In a more general perspec-
tive, although numerous genetic studies provide support for an
association between rare de novo mutations and SZ
(3,5,70–72), this study provides, to our knowledge, the first
insight into the biological pathogenicity of one of these rare
mutations in vivo. SZ is conceived as neurodevelopmental
disorder due to multiple pathogenic hits operating at early
embryonic stages and at the later adolescent period (73). Here
we display evidence that a human rare SZ-risk DGCR2 muta-
tion affects early steps of cortical assembly, further indicating
the relevance of early embryonic hits in SZ.

The long-term effects of Dgcr2 KD on the connectivity and
circuit function of PNs will have to be assessed in future
studies. Altered embryonic migration of PNs due to genetic
insults has been proposed to impair their integration into
cortical circuits and lead to network dysfunction as well as

SZ-related behavioral deficits (74). For example, transient and
selective KD of the SZ-risk gene Disc1 in cortical PNs has
been reported to affect neuronal migration (75), impair the
electrophysiological properties of PNs as well as their
response to dopamine pharmacological challenge, and
induce SZ-relevant behavioral abnormalities, which could be
reversed by clozapine (76). In addition, several studies using
mouse models of 22q11.2DS have revealed developmental
alterations including decreased progenitor proliferation of
superficial layer PNs (77), delayed migration of hippocampal
dentate progenitors (78), altered migration and distribution of
parvalbumin-expressing cortical interneurons (78,79), and
decreased density of superficial cortical PNs (77,80). Further-
more, at the functional level,mousemodels of 22q11.2DShave
revealed an imbalance between excitation and inhibition in
local cortical circuits upon dopamine challenge (81), have
disrupted axonal branching and synaptic transmission (82),
have altered spine turnover and short-term plasticity (80), and
have impaired activity patterns in neuronal ensembles (83) as
well as theta- and gamma-band oscillation deficits (83,84).
Whether DGCR2 plays a role in these SZ-relevant functional
phenotypes remains to be determined. Finally, alterations in
the distribution or density of CUX11 superficial PNs were
observed in the Dgcr2-KD model and in a 22q11.2DS mouse
model (77,80). Given that the recent use of laminar markers
revealed patches of abnormal cortical microstructure in post-
mortem tissue from children with autism spectrum disorders
(85), similar types of investigations should be performed in
human brains of 22q11.2DS patients.

In conclusion, we report that the SZ-risk gene Dgcr2 regu-
lates PN migration and acts through the Reelin pathway by
modulating the phosphorylation of downstream effectors, and
by regulating the expression of Reelin-dependent genes.
Moreover, we found that a rare SZ-associated missense
mutation in DGCR2 has a pathogenic effect on PN migration,
possibly by leading to a state of DGCR2 haploinsufficiency as
seen in 22q11.2Del carriers. This study adds support to the
hypothesis that SZ risk variants confer vulnerability to SZ by
affecting early embryonic events involved in cortical circuit
assembly.
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