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Abstract

Objective: The likelihood ratio is a method for assessing evidence regarding two simple statistical hypotheses. Its interpretation is
simple — for example, a value of 10 means that the first hypothesis is 10 times as strongly supported by the data as the second. A
method is shown for deriving likelihood ratios from published trial reports.

Study design: The likelihood ratio compares two hypotheses in light of data: that a new treatment is effective, at a specified level
(alternate hypothesis: for instance, the hazard ratio equals 0.7), and that it is not (null hypothesis: the hazard ratio equals 1). The result
of the trial is summarised by the test statistic z (ie, the estimated treatment effect divided by its standard error). The expected value of
z is 0 under the null hypothesis, and A under the alternate hypothesis. The logarithm of the likelihood ratio is given by z-A — A%/2.
The values of A and z can be derived from the alternate hypothesis used for sample size computation, and from the observed treatment
effect and its standard error or confidence interval.

Results: Examples are given of trials that yielded strong or moderate evidence in favor of the alternate hypothesis, and of a trial
that favored the null hypothesis. The resulting likelihood ratios are applied to initial beliefs about the hypotheses to obtain posterior

beliefs.
Conclusions:  The likelihood ratio is a simple
in data about two

competing a priori hypotheses. © 2021 The Author(s).

evidence
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easily understandable method for assessing
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1. Introduction

Clinical trials are commonly designed around a sta-
tistical test of the effectiveness of a new treatment, and
the fate of a new treatment often depends on the resul-
tant P-value. However, statistical tests and P-values are
increasingly criticised, partly for epistemological reasons,
and partly because these methods are misunderstood by
users [1-5]. But alternatives are few. Confidence intervals
are used increasingly, with good reason, as they focus
on estimating the parameter of interest [6], but they are
often treated as substitutes of tests (“is the null value
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included in the interval or not*). Bayesian analysis [7-9]
is an appealing alternative, but this approach has not been
widely adopted, possibly because it represents a radical
departure from the status quo.

The likelihood ratio may be a tool worth considering
for the assessment of evidence from randomized clinical
trials [10-12]. The likelihood ratio compares the two
hypotheses under consideration in a clinical trial: that the
new treatment improves clinical outcomes compared with
the old treatment or with placebo (the degree of improve-
ment must be specified), and that it does not. It provides
the researcher with a quantitative measure of the strength
of evidence, or support, for one hypothesis over the other.
It is based on the same data summary (the z statistic)
as the P-value. It follows from the Bayes theorem, but
does not require a full Bayesian analysis. Thus far, this
concept has been presented in rather technical documents,
and has not been translated into a « how-to » guide for

0895-4356/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
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What is new?

Key findings

e The likelihood ratio is a useful tool for comparing
two competing point hypotheses (eg, the null and
the alternate hypotheses specified in a clinical trial)
in light of data.

e The likelihood ratio quantifies the support given by
the data to one hypothesis over the other.

What this study adds to what was known

e For randomized clinical trials, the likelihood ratio
for the alternate hypothesis (used for sample size
determination) vs. the null hypothesis can be com-
puted easily from published results (estimate of ef-
fectiveness with 95% confidence interval).

e The likelihood ratio can be combined with prior
beliefs about treatment effectiveness (eg, even odds
of a specific benefit vs. no benefit) by application
of the Bayes’ theorem.

What is the implication and what should change

now

e In addition to reporting the treatment effect and its
confidence interval, trial reports should include z
statistics for the key trial outcomes, as well as the
likelihood ratio for the a priori alternate hypothesis
vs. the null.

users of research evidence. The purpose of this paper is to
encourage the use of the likelihood ratio by clinical re-
searchers and by users of evidence from clinical trials, by
showing how it can be derived from published trial results.

2. Likelihood ratio
2.1. Hypotheses

A clinical trial is concerned with two hypotheses —
that the new treatment is ineffective (null hypothesis, Hy)
and that it is effective (alternate hypothesis, Ha). Data
are collected to produce a measure of effectiveness, such
as a ratio of mortality rates. Currently, upon seeing the
evidence, the researcher determines which hypothesis to
retain, based on the test of Hy.

Instead of seeking to reject or accept the null hy-
pothesis, the researcher may wish to weigh the relative
merits of Hy and H, in light of data. This can be done
by computing a likelihood ratio, provided that both hy-
potheses are simple hypotheses, that is, that the level
of effectiveness is specified in each case. For the null
hypothesis this is obvious, the effectiveness is nil. For
the alternate hypothesis as well the level of effectiveness
must be quantified, such as “on average blood pressure

is lowered by 5 mm Hg,” or the “relative hazard of
death equals 0.70” —composite hypotheses, defined by
an inequality, such as “blood pressure is lowered”, or
“mortality is reduced”, cannot be accommodated by this
method. Fortunately, in the case of randomized clinical
trials, a specific alternate hypothesis is required for the
calculation of sample size, and is typically reported.

2.2. Definition of the likelihood ratio

The likelihood of a hypothesis (H) given the data
(x), L(H[x), is proportional to the probability of the data
under that hypothesis, P(x|H). When two hypotheses are
compared, the one which assigns a higher probability
to the observed data is deemed the one more strongly
supported by the data. Specifically, the strength of support
for Hx over Hy is given by the likelihood ratio (LR):

LR = L(Halx)/L(Hol|x)

Because L(H|x) is proportional to P(x|H), this is
equivalent to:

LR = P(x[Ha)/P(x[Ho)

that is, the ratio of the probabilities (or probability densi-
ties) of the observed result under the two hypotheses. The
LR quantifies the support given by the observed data to
the specific hypothesis of effectiveness over the hypothesis
of no effect. The greater the likelihood ratio, the stronger
the support. A likelihood ratio less than 1 indicates that
the hypothesis in the numerator is less strongly supported
by the data than that in the denominator, and the inverse
can be taken to switch their positions.

2.3. Test statistic and likelihood ratio

Many clinical trials use as measure of effectiveness a
difference between means (A), or a hazard ratio (HR)
or another ratio measure (relative risk or odds ratio).
Because these measures are subject to sampling error,
statistical procedures apply a transformation, namely a
division of the quantity of interest — the observed A
or log(HR) — by its standard error. The result is a test
statistic; when the test statistic converges to the standard
normal distribution it is called z. The observed value of
z contains all the information the trial provides about
treatment effectiveness. Both the likelihood ratio and the
P-value require z. What differs is what is done once z
is observed: the frequentist analysis uses the P-value as
an argument against Hp; in contrast, the likelihood ratio
uses z to compare the support that data provide to H vs.
Ho.

Under the null hypothesis the distribution of z is cen-
tered at 0, and under the alternate hypothesis it is centered
at the chosen value of effectiveness, which can be called
A. To obtain a P-value, the test statistic z is computed from
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a) Significance test and p-value

Ho

Ha

b) Likelihood ratio

z A z

Fig. 1. Interpretation of evidence according to (A) statistical significance testing and P-value, and (B) likelihood ratios. The significance test is
defined by a two-sided type 1 error rate (dark grey area) under the null hypothesis Hg, and a type 2 error rate (light grey area) under the alternative
hypothesis Hp, both defined a priori. Once the study result z is observed, a P-value is computed (red area). The likelihood ratio is the ratio of
the probability densities of the observed result z under the two hypotheses Ha and Hg. (For interpretation of the references to color in this figure

legend, the reader is referred to the Web version of this article.)

observed data, then the probability that z may exceed the
observed value is obtained under Hy (Fig.1, upper panel).

To obtain the likelihood ratio, the probability density of
z under Hy is divided by its probability density under Hy
(Fig. 1, lower panel). It is a simple ratio of two numbers.
Only the observed value of z matters. The two hypotheses
are treated equally.

From the definition of the normal density with unit
variance, it follows that the natural logarithm of the LR
is linearly related to the test statistic z (Box 1). The
relationship is given by:

log(LR)=z-A—A?%/2

where A is the expectation (or mean) of z under the al-
ternate hypothesis. More generally, for a contrast between

two normal densities centered at A and B:

log(LR)=z- (A — B)—(A®-B?)/2

2.4. How to compute the likelihood ratio from trial results

Thus all that is needed to compute the likelihood ratio
are the values of A and z, and a hand-held calculator. The
z statistic can be retrieved from the 95% confidence inter-
val for the parameter of interest. For a difference between
means (A), divide the width of the confidence interval by
3.92 (ie, 2*1.96) to obtain the standard error, then divide
the point estimate by this standard error to get z. For a
hazard ratio, first take logarithms of the point estimate and
of the confidence bounds, then proceed in the same way.
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The choice of A is straightforward for randomized clin-
ical trials, since a specific alternate hypothesis has been de-
fined at the design stage of the trial as part of sample size
computation. The alternate hypothesis typically represents

Box 1.

Derivation of the likelihood ratio when the test
statistic is normally distributed

The probability density function of a normal distri-
bution with expectation z and variance o2 is defined
by:

f(z) = szﬂef%(m;uf

The z statistic has a normal distribution with param-
eters 4 = 0 and o = 1 under the null hypothesis,
and ¢ = A and 0 = 1 under the alternate hypothesis.
Thus the likelihood ratio is given by:

L m3ma)?
LR(A, 0;2) = fa8) = 2=

= folz) T ﬁef%(zw)?
and after simplifying the constants,

2
LR(A, 0;2) = <252
After taking the loegarithm
log(LR(A,0;2)) = —3(2% — 24z + A?%) — (—12?)
log(LR(A,0; 2)) = —5(—2A4z + A?)
log(LR(A,0;2)) = Az — £ A2
For a likelihood ratio of hypotheses p© = A and
uw=B
log(LR(A, B;z)) = —
(—3(2? — 2Bz + B?))
log(LR(A, B; z)) = —1(—2A4z + A> + 2Bz — B?)
log(LR(A, B; z)) = (A— B)z — $(A? — B?)

$(2? — 24z 4+ A?%) —

a clinically relevant difference in the primary outcome vari-
able. To obtain A when the trial seeks to find a difference
between means, divide the difference between means as-
sumed under the alternate hypothesis (A4) by the observed
standard error, thus A = Ax/se(A). For hazard ratios, first
obtain the logarithm of the HR used for the alternate hy-
pothesis (HR,), and then only divide by the observed stan-
dard error of log(HR), thus A = log(HRp)/se(log(HR)).
When no alternative hypothesis has been specified for the
outcome variable of interest, choose a value that is clini-
cally or scientifically relevant.

A caveat: it may be tempting to use for A the observed
value of z, which reflects the observed value of A or HR
(10). The hypothesis A = z receives the highest support
from the data and yields the highest value of LR vis-a-vis
the null hypothesis. But this is also its main weakness:
this “hypothesis” is fully data-driven and is therefore
overfitted to the sample at hand. It suffers from the
“Texas sharpshooter” fallacy — Joe fires at the barnside,
then paints the bull’s-eye around the bullet hole. With this
approach, the LR is always >1, and a surprising result that
favors the null hypothesis over the alternate cannot occur.

Once z and A are known, the computation of the log-
arithm of the likelihood ratio is trivial, as z-A — A%/2. To
obtain the likelihood ratio itself, exponentiate this quantity.

2.5. Interpretation of the likelihood ratio

The likelihood ratio can be considered on its own: it
quantifies how much the data support one hypothesis over
another. This is informative in its own right. There isn’t yet
an arbitrary interpretation guide, such as >10 representing
strong evidence, nor is such guideline necessary.

Furthermore, the likelihood ratio can be used to update
one’s beliefs based on new evidence, by application of
the Bayes’ theorem:

Posterior odds = LR - Prior odds

This equation shows the relationships between what the
researcher believed before the study (prior odds), what the
trial results say (likelihood ratio), and what the researcher
ought to believe once the results are in (posterior odds)
[12].

Many randomized trials start with a state of uncertainty
regarding the effectiveness or lack of effectiveness of the
new treatment. When only two simple hypotheses are
considered, as is required for the likelihood ratio, the
uncertainty regarding Hy and H, can be represented by
prior probabilities of 50% for each, which corresponds
to prior odds of 1. In such a case, posterior odds of Ha
vs. Hyp would equal the likelihood ratio. The post-trial
probability of Hy would reduce to LR/(LR+1), and that of
Hy to 1/(LR~+1). Uneven prior odds of the two hypotheses
(eg, prior odds of 4, if one put the probability of Hy at
80% and that of Hy at 20%) are easily accommodated
using the formula above.

Note the analogy with the clinical diagnostic process:
the clinician formulates prior odds of the patient having a
disease (vs. not) based on the history and physical exam-
ination, obtains a diagnostic test, and updates the odds of
the disease in light of the test result. The likelihood ratio
of a positive diagnostic test is sensitivity/(1-specificity),
and that of a negative test (l-sensitivity)/specificity [13].
For the clinician, the LR represents the strength of
evidence in favor of the disease, vs. its absence; for
the trialist, the LR represents the strength of evidence
in favor of effectiveness, at the specified level, vs. no
effectiveness.

3. Results

Let us consider three examples of application of the
likelihood ratio to published trial results.

3.1. Strong evidence

The first trial [14] examined the effect of a community-
based intervention, compared to usual care, on the change
in systolic blood pressure between baseline and 24 months
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Table 1. Procedure to obtain likelihood ratio from published difference in means and its 95% confidence interval

Step Step by step procedure Example 1 [14]:
Retrieve results a) Get difference in means A and confidence limits from article A =-5.17 mm Hg,
-7.13 t0 -3.20
Obtain z (normal test statistic) b) Obtain the width of the confidence interval Width = 3.93
c) Divide by 3.92 to obtain standard error of A SE(A) = 1.00
d) Divide A by its standard error to obtain z z=-5.17
Select alternate hypothesis e) Use difference to be detected used for power analysis (Ap) Ap = -5 mm Hg

f) Compute A as Ap divided by the observed standard error

Compute LR vs. null hypothesis

Compute LR for A vs. a different hypothesis B

g) Compute log(LR) = z*A — A2/2
h) Exponentiate to obtain LR in natural units

i) Choose difference under hypothesis B (Ag)
i) Compute log(LR) = z*(A-B) — (A2-B2)/2
k) Exponentiate to obtain LR in natural units

A=-5/1.00=-5

Log(LR) = 13.35
LR = 6.28*105

Ag = -2.5 mm Hg
Log(LRag) = 3.55
LRag = 34.8

Note: In the calculation of the standard error, 3.93/3.92 = 1.002551... was rounded off to 1.00, to reflect routine practice. Without rounding,
the log(LR) becomes 13.28, and the LR is 5.87*10°. For A vs. B, the log(LR) is 3.53, and the LR 34.2.

(Table 1). The between-group difference was -5.17 mm
Hg, 95% CI -7.13 to -3.20. The width of the confidence
interval is divided by 3.92 to obtain the standard error (as
luck would have it, it equals 1.00), so z is also -5.17. The
difference to be detected was 5 mm Hg, and so was A.
The two ingredients, z and A, yield a very large value of
log(LR). The observed result supports the hypothesis of
an average reduction in systolic blood pressure by 5 mm
Hg over the null hypothesis of no difference by a factor
of several hundred thousand.

Even someone who was very sceptical about the com-
munity intervention, perhaps giving it only one chance in
100 of reducing blood pressure by 5 mm Hg before the
trial, should now assign a probability of 99.98% that it re-
duces blood pressure by 5 mm Hg on average, as opposed
to 0 mm Hg. One can also compare other hypotheses:
for example, a reduction by 5 mm Hg vs. a reduction by
2.5 mm Hg (Table 1). The trial result supports the former
over the latter by a factor of 34.8. If one started with even
odds regarding these two hypotheses, after the trial the
probability of a reduction by 5 mm Hg would increase to
97.2%.

3.2. Weak evidence

The second trial tested pembrolizumab vs. standard
chemotherapy in patients with head and neck cancer [15]
(Table 2). The alternate hypothesis for overall survival
was HR = 0.70. The analysis yielded a reduction of
overall mortality by 20% (HR = 0.80), and the resulting
likelihood ratio was 4.3 for the planned alternate hypoth-
esis (HRy = 0.70) over the null hypothesis (HRy = 1).
This reflects much weaker evidence. The probability of

a relative mortality reduction by 30% (vs. none) would
increase from 50% (even odds) to only 81.1%. For a
strong proponent of this treatment, who would set the
a priori probability of effectiveness (ie, HRy = 0.7) to
80%, the result would increase this probability to 94.5%,
but for a sceptic, the probability of effectiveness (at
HRp = 0.7) might move from 20% to 51.8%. Both the
proponent and the sceptic apply the same likelihood ratio,
but they end up with different conclusions (or posterior
odds) because they start from different initial beliefs (prior
odds).

3.3. Evidence in favor of the null hypothesis

The third trial compared hydroxychloroquine plus
standard of care to standard of care alone, in patients hos-
pitalized with coronavirus disease 2019 [16]; the primary
outcome was the conversion to negative nasopharyngeal
swabs for the virus (Table 2, last column). The alternate
hypothesis was HR = 1.43 (formulated as HR = 0.7 for
standard of care vs. hydroxychloroquine, which translates
to 1/0.7 = 1.43 for hydroxychloroquine vs. standard of
care). The observed hazard ratio was 0.85 for hydrox-
ychloroquine vs. standard of care. The conclusion was
that “hydroxychloroquine did not result in a significantly
higher probability of negative conversion”. This is of
course correct, but the results are stronger than this
statement of “absence of evidence” suggests. The LR was
only 0.036. Taking the inverse yields a LR of 27.6 for the
null hypothesis over the alternate, a rather strong support
for no effect over the hypothesized HRp, = 1.43. For
someone who assigned even odds to these 2 hypotheses
before the trial, the probability that hydroxychloroquine
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Table 2. Procedure to obtain likelihood ratios from published hazard ratios and confidence intervals, and to apply Bayes theorem to the results

Step

Step by step procedure

Example 2 [15]:

Example 3 [16]

Retrieve results

Obtain z (normal test statistic)

Select alternate hypothesis

Compute LR for alternate
hypothesis vs. null hypothesis

Compute LR for null hypothesis

a) Get HR and confidence limits from article

b) Take logarithm of 95% confidence bounds of
HR

¢) Obtain the width of the confidence interval

d) Divide by 3.92 to obtain standard error of
log(HR)

e) Take natural logarithm of HR

f) Divide log(HR) by its standard error to obtain z

g) Use value of HRp used for power analysis
h) Take logarithm of HRp
i) Divide by the observed standard error of log(HR)

j) Compute log(LR) = z*A — A2/2
k) Exponentiate to obtain LR in natural units

I) Take inverse of LR; LRga = 1/LRag

HR 0.80;
95% Cl 0.65 to 0.98

-0.4308 and -0.0202

Width = 0.4106
SE(log(HR)) = 0.1047

Log(HR) = -0.2231
z=-2.1309

HR, = 0.70
Log (HRa) = -0.3567
A = -3.4066

Log(LR) = 1.4567

HR 0.85
95% Cl 0.58 to 1.23

-0.5447 and 0.2070

Width = 0.7517
SE(log(HR)) = 0.1918

Log(HR) = -0.1625
Z=-0.8472

HRa = 1.43
Log (HRa) = 0.3577
A= 1.8648

Log(LR) = -3.3186

vs. alternate hypothesis

Apply Bayes theorem to initial

even odds O=LR

n) Post-test probability P = 0/(0+1)

m) Under even odds, compute post-test odds

LR = 4.29 LR = 0.0362
LRoa = 27.6

0=14.29 0=276

Pa=81.1% Po = 96.5%

treatment leads to faster negativation of virus detection
tests by a factor 1.43 should now decrease to 3.5%.

4. Discussion
4.1. Desirable properties of the likelihood ratio

4.1.1. Theoretical foundation

Likelihood plays a central role in statistics [11]. Most
statistical estimation procedures yield the parameter value
that has the highest likelihood, given the data, and classic
statistical tests are based on the likelihood ratio. The idea
of choosing between hypotheses on the basis of their
likelihoods is therefore natural. The reasoning required to
apply a likelihood ratio to 2 hypotheses may be a stepping
stone to a full Bayesian analysis.

4.1.2. Interpretability

The likelihood ratio is a simple procedure, and this
may help avoid misinterpretation, a problem that plagues
P-values and statements of statistical significance. The two
hypotheses under consideration are treated equitably; only
the choice of the numerator vs. denominator is arbitrary,
and easily reversed. The likelihood ratio only depends on
the observed result, and not on possible results that have
not occurred. It has a non-technical interpretation: how
much do the results of the trial support one simple hypoth-
esis over another? Furthermore, many health professionals
are familiar with likelihood ratios applied to diagnostic
testing, where the goal is to assess the probability of the
absence or presence of disease, given a diagnostic test
result [7,13].

The likelihood ratio complements, but does not re-
place, descriptions of substantive results and estimation
procedures. The difference in means or the hazard ratio,
with a confidence interval, tells the researcher what the
most likely effect is based on the data, knowing that the
data are subject to random variation and that the estimator
is by definition overfitted. The likelihood ratio captures
what the data say about the relative merits of two pre-
specified hypotheses. When the selected hypotheses are
scientifically or clinically meaningful, this adds a useful
insight.

4.1.3. Integration of evidence

The likelihood ratio enables readers to update their
beliefs about treatment effectiveness by application of the
Bayes’ theorem. This mechanism also allows the combina-
tion of trial results with other sources of knowledge. This
is particularly important in the era of precision medicine
[17], as one difficulty lies in integrating knowledge
of molecular mechanisms (which can be represented by
strong prior odds) with the need for empirical confirmation
(represented by the likelihood ratio).

The likelihood ratio also allows the pooling of evidence
from several trials. If one trial yields a LR of 5, and
a second independent trial produces a LR of 3, then
the combined LR is the product, 15. This is a direct
consequence of the Bayes’ theorem. The evidence as
represented by log(LR) is additive. This is a particularly
useful property for meta-analysis of clinical trials. It also
simplifies the interpretation of trial results when an interim
analysis was performed: the log(LR) obtained for the first
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part of the trial is simply added to the log(LR) obtained in
the second part, without any adjustment for multiplicity.

4.2. Weaknesses

4.2.1. Two hypotheses

The likelihood ratio assesses the weight of evidence
regarding two point hypotheses. For clinical trials that
have pre-specified a null and an alternate hypothesis
this approach is natural. But for observational research,
selecting two point hypotheses may be challenging. Re-
searchers and readers may hold different opinions as to
which hypotheses should be compared, and indeed wonder
why only two deserve consideration. In such situations a
Bayesian analysis that starts with a full prior distribution
for the parameter of interest will be indicated. Of note,
any pair of simple hypotheses can be compared using the
likelihood ratio once z is known.

Even in the case of clinical trials, limiting possible
options to two simple hypotheses is an over-simplification
of reality. Noone believes that, say, HR = 1 and HR = 0.7
are the only possible parameter values. But these values
represent two scenarios, two paradigmatic states of the
world, one in which the new treatment doesn’t work, and
the other in which the treatment is clinically beneficial.
The likelihood ratio identifies the option that receives
stronger support from the data. This is valuable, but
does not replace other statistical procedures, such as the
estimation of the treatment effect.

In some cases, the binary simplification required by
the likelihood ratio may represent fairly the nature of
the underlying uncertainty. Many drugs have a known
molecular mechanism — a receptor is blocked, or an
enzyme inhibited — and the question addressed by the
clinical trial is whether this mechanism is causally related
to clinical outcomes. The two simple hypotheses stand in
for causality (Ha) and its absence (Hy).

4.2.2. No immunity from bias, confounding, or poor
practice

Like other statistical procedures, the likelihood ratio
can be affected by various methodologic problems, such as
biased sampling, missing data, non-compliance, imprecise
measurement, or model mis-specification. These still need
to be taken into account when interpreting the results
of a trial. For instance, while the evidence obtained in
the trial of hypertension management [14] supported the
hypothesis that the new program reduced blood pressure
by 5 mm Hg rather than not at all, one might still remain
doubtful if there had been large losses to follow-up in the
intervention arm, or if the measurement procedures had
been biased (neither were the case).

Statistical tests are sometimes unfairly blamed for
what is just poor scientific practice, including unjustified
dichotomization of results as “significant” or not [5], data
dredging for small P-values, or publication bias [18]. The

more intuitively understandable nature of the likelihood
ratio may protect it from such misuse.

4.2.3. Extra work

This paper shows that the computation of likelihood ra-
tios is reasonably easy for readers of trial reports, without
waiting for this method to be adopted by trial statisticians.
Nevertheless, this requires extra effort. But there is no
reason why z statistics and likelihood ratios couldn’t be
provided directly in trial reports, alongside the substantive
result (ie, difference in means or hazard ratios, with
confidence intervals). This process would be facilitated if
reporting guidelines such as CONSORT required it.

5. Conclusion

The likelihood ratio measures the relative support given
to two simple hypotheses by the results of a clinical trial.
It can be computed from information routinely available in
trial reports. Requiring authors of trial reports to publish
relevant likelihood ratios (eg, for the specified alternate
hypothesis vs. the null) and z statistics may enhance the
understanding and facilitate the application of trial results.
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