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Abstract

Using a fast numerical technique, we investigate a large database of investor suboptimal non-

exercise of short maturity American call options on dividend-paying stocks listed on the Dow

Jones. The correct modelling of the discrete dividend is essential for a correct calculation of the

early exercise boundary as confirmed by theoretical insights. Pricing with stochastic volatility

and jumps instead of the Black-Scholes-Merton benchmark cuts by a quarter the amount lost

by investors through suboptimal exercise. The remaining three quarters are largely unexplained

by transaction fees and may be interpreted as an opportunity cost for the investors to monitor

optimal exercise.
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1. Introduction

Holders of short maturity American call options on dividend-paying stocks are known to

miss exercising their options in an apparently suboptimal way (see e.g. Pool, Stoll, and Whaley

(2008)). We investigate the suboptimal exercise by allowing alternative models for the underlying

stocks dynamics. To do this, we compile data on 30 individual dividend-paying stocks listed

on the Dow Jones, comprising a total of 101,295 series of short-term options amounting to

approximately 9.5 million records. We show that, by taking into account stochastic volatility

and jumps in the process of the underlying asset, we can explain up to 25% of the gain forgone

due to non-optimal exercise decisions, as computed in Pool et al. (2008). Because financial

frictions are a possible explanation of departure from the expected exercise behavior (e.g. Jensen

and Pedersen (2016)), we also show that transaction costs cannot fully explain the non-exercise

decisions.

Options written on single stocks are mainly of the American style. This means we can

exercise them at any time before maturity. Economic theory gives a clear guidance on the

early exercise decision: an investor should exercise the options if the proceeds from immediate

exercise exceed the value of the contract when kept alive. The value of the underlying stock that

makes the investor indifferent between holding onto the option or not, is the exercise boundary,

or frontier. Such a clear normative dictate is nevertheless accompanied by a strikingly high

level of suboptimal non-exercise. The figures reported in Pool et al. (2008), and confirmed

in our data, show that, in given periods, investors hold onto between one third and one half

of the contracts they should have exercised. This behavior can potentially be explained in

terms of costs, whether explicit, as fees and other forms of financial frictions, or implied, as

the opportunity cost of closely monitoring the option. Since the income in case of immediate

exercise, that is the intrinsic value of the option, is readily known, the main determinant of the

decision is the continuation value, that is the value of the option when it is not exercised. Our

analysis focuses on the correct estimation of the latter. As already noticed in Pool et al. (2008)

and in Barraclough and Whaley (2012), there are two ways of addressing this issue. One is the
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market-based approach. Market prices provide guidance in the exercise decision. If the market

time value of the option, that is the difference between the market and intrinsic values, vanishes,

then it is time for the investor to exercise. In practice, though, due to price discreteness and

bid-asks spreads, the time value may not be exactly equal to zero, even when exercise is optimal.

We prefer a model-based estimation. With this approach, we obtain an explicit figure for the

continuation value, and whenever exercise would have been optimal, we can compute how much

lower than the intrinsic value it is, thus quantifying the loss due to suboptimally holding onto

the contract. This loss gives us an estimate of the opportunity cost or of the implied fees.

Market prices are silent on this aspect, since the market time value of the option becoming zero

only tells us that the continuation has reached from above the intrinsic value, not that it has

crossed it, or, if it is the case, by how much. The model-based continuation value depends on

the assumptions on the underlying stock process, and this leads us to check how the exercise

boundary changes in different modelling environments. The crucial modelling assumption in this

context is how to represent the dividend. The most recent theoretical literature on American

options (Amin (1993), Adolfsson, Chiarella, Ziogas, and Ziveyi (2013)) models the dividend

payment as a continuous dividend yield. We see in the following that when assuming a constant

dividend yield, the introduction of jumps and stochastic volatility in the stock process may

exacerbate, instead of partially explaining, the suboptimality figures.

In our empirical investigation, we show that by correctly modelling the dividend as a dis-

crete payment, the boundary is higher under the Merton (1976) jump-diffusion and Heston

(1993) stochastic volatility models than under the Black-Scholes model. In the subsequent dis-

cussion, we provide new theoretical insights on why this is the case. This allows us to revise

the share of contracts that are suboptimally unexercised, since contracts that should be exer-

cised under Black-Scholes, should be instead kept alive under the more sophisticated models.

In our calibration, we price by fully taking into account the discrete nature of the dividend

distributed by the underlying stocks and the American style of the call options, and we do so

for different specifications of the stock dynamics. In the process, to our knowledge, we are the

first to provide comprehensive descriptive statistics of the parameters driving the jumps and
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the stochastic volatility of the constituents of the Dow Jones Industrial Average Index (DJIA)

traded in the period from January 1996 to December 2012. This feature is a peculiarity of

our work, given that the standard empirical literature on options mainly focuses on European

S&P500 options with a dividend yield (Bakshi, Cao, and Chen (1997), Eraker, Johannes, and

Polson (2003)). Broadie, Chernov, and Johannes (2007) and Broadie, Chernov, and Johannes

(2009) approximate American prices with European ones, and show that transforming American

options to European ones does not matter for calibration purposes when facing a continuous

dividend yield since differences in early exercise premia are not so large in that case. This is not

true with multiple discrete dividend payments, and we provide an example on how neglecting

the discrete character of a dividend or its time of payment leads to an incorrect exercise decision.

Overlooking this feature biases empirical findings on suboptimality.

To conclude this introduction, we point to the methodological contribution of our work. One

of the reasons that has kept researchers from correctly modelling the dividend as a discrete

process, is that the repeated option valuations needed to calibrate the different models for the

underlying stock to such a large dataset (we have approximately 9.5 million records) are too

time consuming with the existing numerical methods. To date, no empirical work on options

written on dividend-paying stocks exists outside the Black-Scholes world1. We develop a new

methodology to price American options, which, in the kind of pricing problems we face in our

empirical study, is more than one order of magnitude faster than the techniques based on the

discretization of the pricing partial differential equation, and four orders of magnitude faster

than simulation-based techniques. Our technique belongs to the quadrature family of numer-

ical routines (see Andricopoulos, Widdicks, Newton, and Duck (2007) and Chen, Härkönen,

and Newton (2014), Fang and Oosterlee (2011)) and we refer to it as Recursive Projections to

distinguish it from other variants. We are the first to characterize the convergence properties

of a quadrature-based method in the presence of discrete dividends and with the underlying
1Broadie et al. (2007), state that “The computation time required for American options makes calibration to

a very large set of options impractical.” As reported earlier in the text, what Broadie et al. (2007) show in their
Appendix A is that transforming American options into European ones does not matter for calibration purposes
in their application, but we show in the following that it does make a difference in our study.
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following a dynamics outside the Black-Scholes benchmark2.

The paper is organised as follows. In Section 2, we give a numerical example of how intro-

ducing jumps and stochastic volatility in the stock process leads to a higher exercise boundary.

This allows us to conjecture that by taking into account these features of the underlying process,

the figures on suboptimal exercise should decrease. This is what we test, and find, in Section

3.2. Section 3.3 shows that transaction fees cannot reasonably explain the part of suboptimality

in the exercise behavior that remains after taking into account jumps and stochastic volatility.

In Section 3.4, we give a theoretical justification for the findings of Section 3.2. Section 4 pro-

vides some concluding remarks. Appendices A-C provide the detailed description of the pricing

algorithms used in our empirical strategy, and gather further theoretical insights of the behavior

of the exercise boundary under the different modelling environments3.

2. Early exercise decision: a numerical example

In the example that follows, we show how the two most common assumptions made when

investigating exercise decisions for American call options written on dividend-paying stocks,

namely a continuous payment of the dividend, and a geometric Brownian motion for the under-

lying stock process, reinforce each other in introducing a downward bias in the computation of

the exercise frontier. This negative bias increases in turn the number of contracts that appear

to be irrationally kept alive. We design this example to provide an intuitive introduction to the

impact of modelling choices on the exercise decision of contracts. A more formal treatment is

left for the next section.

In our example, the call option has a remaining life of 6 months, that is the maturity is

T = 0.5, and the underlying stock distributes a regular quarterly dividend d. The two dividend

payments occur immediately, at t1 = 0, and at t2 = 0.25, corresponding to a time to maturity

of 0.5 and 0.25, respectively. If we model correctly the dividend payment as an event that takes

place at a precise point in time, then it is well known that it may be optimal to exercise the
2Our pricing library is publicly available on the website of the authors with a ready-to-use Matlab interface.
3The online supplementary materials gather additional technical details.
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call option only immediately before the dividend payment (see for instance Hull (2011)). In this

example, it means that we may exercise the option at times t = 0, and t = 0.25. It follows that

the value of the call option at t = 0.25 is the maximum between the continuation value, that

is the value of the option just after the dividend is paid if we do not exercise, and the intrinsic

value, that is the proceeds from exercising immediately before the dividend payment. Formally,

C(St, T,K) is the value of the American option as a function of the underlying stock price St

at time t, the strike K, and maturity T . Then, just before the stock goes ex dividend, that is

an infinitesimal time interval ε before t = 0.25, it holds:

C(S0.25, 0.5,K) = max{S0.25−ε −K,C(S0.25 − d, 0.5,K)}. (1)

We follow the accepted convention that no jumps other than the drop in value of St due to

the dividend payment occur at the dividend date, so that by continuity of the stock process,

St−ε = St, and St − d is the value of the stock immediately after the payment of the dividend4.

The value S∗0.25 such that S∗0.25 −K = C(S∗0.25 − d, 0.5,K) is the exercise boundary at t = 0.25.

For values S0.25 ≥ S∗0.25, it is optimal to exercise the option, while, for S0.25 < S∗0.25, the optimal

behavior is to keep the option until maturity. Since no further intermediate payment is foreseen

before maturity, C(S0.25 − d, 0.5,K) is the value of a European option:

C(S0.25 − d, 0.5,K) = E[e−r(0.5−0.25)(ST −K)|St = S0.25 − d]. (2)

The expectation in Equation (2) is taken with respect to the risk neutral transition density

of the stock value from t = 0.25 to t = 0.5. For most of the stochastic processes chosen to

model the stock price, Equation (2) has a closed or quasi-closed form solution. No arbitrage and

inter-temporal consistency of asset prices dictate that at, t = 0, we have to compare the value

of immediate exercise with the continuation value after the dividend payment, which now takes
4Whenever the dividend d does not appear in the argument of the call value, as in C(St,K, T ), we are

considering the value of the call before the stock goes ex-dividend, that is after the maximum in Equation (1) is
taken. If d appears explicitly, as in C(St − d, T,K), we are referring to the continuation value of the call, after
the dividend payment.
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the more complex form:

C(S0 − d, 0.5,K) = E[e−r(0.25)C(S0.25, 0.5,K)|St = S0 − d]. (3)

This time the expectation is taken with respect to the risk neutral transition density of the stock

value from t = 0 to t = 0.25. The value of the contract at t = −ε is max{S0−ε − K,C(S0 −

d, 0.5,K)}, and the exercise boundary S∗0 is the value such that S∗0 − K = C(S∗0 − d, 0.5,K).

Contrary to Equation (2), the right hand side of Equation (3) in most cases does not have a

simple-to-compute form. The Fast Recursive Projections, the numerical methodology we use

in the empirical work of Section 3, takes fully into account the discrete nature of the dividend

payment, and gives a consistent estimate of C(S0− d, 0.5,K). We determine below the exercise

boundaries S∗t at t = 0 and t = 0.25 by computing the expectations in Equations (2) and (3)

using the risk neutral transition densities implied by a pure diffusion model for the underlying

stock (Black-Scholes), a stochastic volatility model (Heston) and a process allowing for jumps at

discrete moments in time (Merton). A formal definition of the processes is left to Section 3.1. For

the moment, we are only interested in giving a qualitative overview of how the exercise boundary

changes as a consequence of the characterising features of the three process specifications.

We may be tempted to simplify the problem by approximating the discrete dividend payout

process by a continuous dividend payment. In this modelling approach, there are no more a

priori known dates when exercise could be optimal. Exercise can be optimal in any moment t

between 0 and 0.5, whenever the stock price is deep enough in the money and higher than the

critical value S∗t , which is the exercise boundary for an American call with a continuous dividend

yield. The boundary S∗t is defined as the lowest value of St such that St −K ≥ C(St, T,K). In

the continuous dividend approximation, there is therefore a value of S∗t for each moment in time

until maturity, whereas, in the discrete dividend case, we only had 2 possible exercise dates.

The continuous dividend approach may not appear as a simplification since the comparison

between the intrinsic value and the continuation value as in (3) has to be done at each point in

time. In practice, the comparison takes place on a finite number of points between 0 and T and

the most common numerical methods, such as trees and finite difference methods, adapt much
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more easily to a continuous dividend yield (that preserves the recombining property of these

schemes) than to a process that is discontinuous at each dividend date. In Panel A of Figure 1,

we plot the early exercise boundary for the Heston and Black-Scholes models for an American

call option with a continuous dividend yield rd = 0.03 (right graph) and with an equivalent

quarterly discrete dividend d = 1.38 (left graph). We choose d = 1.38 to have an equivalent

total annual dividend between the continuous dividend yield rd = 0.03 and the discrete dividend

case. Indeed, 1.38 = 0.03S∗/4, where S∗ = 184 is the critical stock price under the Black-

Scholes model in the dividend yield case for maturity T = 0.5. The strike price is K = 100.

We fix the parameters of the underlying processes at values commonly used in the studies of

options written on single stocks (see Adolfsson et al. (2013))5. With a continuous dividend yield,

the Heston early exercise boundary is always below the Black-Scholes boundary, whereas, with

discrete dividend, we face the opposite. Indeed, in the only two points in time at which the

option may be exercised, just before the dividend payments, the value of the exercise boundary

is lower under the Black-Scholes model than under the Heston model. In comparing the exercise

boundary under the Black-Scholes and the Merton models we slightly change the value of the

contract parameters to make our discussion comparable with the one in Amin (1993). Maturity

is still T = 0.5 and the dividends are distributed on t = 0, 0.25. The strike is now K = 40. In

the Panel A of Figure 2, we plot the early exercise boundary for the Merton and Black-Scholes

models for an American call option with a continuous dividend yield rd = 0.05 (right graph) and

in the case in which the stock pays an equivalent quarterly discrete dividend6 d = 1.125 (left

graph). For a discrete dividend, we observe a higher boundary in the Merton case than in the

Black-Scholes case, which holds true for all maturities. For the continuous dividend case, for

short maturities, the boundary is higher under the Merton model than under the Black-Scholes
5We use the following set of representative parameters: T = 0.5, K = 100, r = 0.05, σ0 = 0.2, ω = 0.1,

σLT = 0.3, β = 4, and ρ = −0.5 as in Adolfsson et al. (2013). See Section 3.1 for the definition of the process
parameters. For comparison, we follow Heston (1993), and we use the Black-Scholes model with a volatility
parameter that matches the (square root of the) variance of the spot return over the life of the option in the
Heston model.

6As before, we take d = 1.125 because 1.125 = 0.05S∗/4, where S∗ = 90 is the critical stock price with the
dividend yield rd = 0.05 for maturity T = 0.5. The process parameters for the Merton model are r = 0.08, γ = 5,
σ2
M = 0.05, σ2

ψ = 0.05, µψ = 0. See Section 3.1 for the definition of the process parameters. We set the volatility
parameter in the Black-Scholes model equal to the volatility of the underlying return over the life of the option
in the Merton model.
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model. For longer maturities, the boundary takes lower values in the Merton case than in the

Black-Scholes case, and we observe a crossing of the early exercise boundary in the far right end

of the right graph of Panel A, Figure 2. The exact point where the crossing between the exercise

frontiers under Black-Scholes and Merton happens depends on the configuration of the process

parameters. Nevertheless, this example shows how, for a choice of the parameters typically used

in the literature on calls on dividend-paying stocks, the crossing takes place in the range of

maturities that we use in the empirical investigation.

The example described in this section shows that by not correctly modelling the discrete

nature of the dividend payment, and by not taking into account important features of the un-

derlying process such as jumps and stochastic volatility, we introduce a bias in the determination

of the exercise boundary7. When the discrete dividend is modelled correctly, the bias introduced

by the simple Black-Scholes model is in the direction of lowering the value of the boundary. A

decision of non-exercise that would appear not optimal under the Black-Scholes model, may

appear much less so under a more realistic Heston or Merton model. This is why we expect

that the figures of call options left suboptimally non exercised will decrease by adding jump and

stochastic volatility in the process of the stock. This is what we test empirically, and justify

theoretically, in the next section.

3. Empirics and theoretical insights

In this section we investigate the early exercise decision of call holders in light of the dif-

ferent values that the exercise boundary can take under distinct modelling assumptions for

the underlying asset. Following the procedure suggested by Pool et al. (2008), we first check

which contracts should be exercised by comparing the intrinsic value immediately before the

dividend payment with the continuation value on the ex-dividend day. We quantify how much

is economically lost in the case of a suboptimal non-exercise decision. This amount depends

on the continuation value and is model-specific. We compare the results obtained under three
7In Appendix A we provide an additional example on how approximating American option prices by European

option prices when the stock distributes a dividend biases downwards the estimation of the exercise boundary.
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modelling environments that we formally define in the next paragraph, namely, Black-Scholes,

Merton jump-diffusion, and Bates. We observe a lower degree of incorrect exercise decisions if

we model the underlying security in the Merton or Bates framework, than if we restrict ourselves

to the Black-Scholes dynamics. This suggests that investors incorporate features of the more

sophisticated models when taking the exercise decisions. Finally, whenever we find evidence of a

suboptimal non-exercise decision, we show that trading costs alone cannot justify the behavior

of investors.

3.1. Data and modelling assumptions

The empirical analyses of this section are carried out using a large dataset of call options

having a maturity of less than six months and written on the dividend-paying stocks that

enter the Dow Jones Industrial Average Index (DJIA). The sample comprises daily observations

between January 1996 and December 2012. The daily data on all option attributes, the stock

price, and the dividend distribution details are from Optionmetrics. We obtain the daily data on

the interest rates from the Treasury constant maturities of the H15 report of the Federal Reserve8.

A total of 101,295 series of short-term options written on 30 stocks enter our database. The total

number of records is approximately 9.5 million. Table 1 reports the number of quotes for each

stock with a breakdown by maturity and moneyness. Our study focuses on the early exercise

behavior of investors; hence, we focus on the in-the-money options, which are the category of

options for which the number of quotes is the highest.

We now give formal definitions of the stochastic processes we use to model the evolution of

the underlying stock. Our choice of environments follows the empirical findings of Bakshi et al.

(1997), who suggest that jumps and stochastic volatility play a dominant role in pricing short-

term options whereas modelling stochastic interest rates does not seem to significantly improve

the pricing performance. We therefore choose a general model that allows for jumps in the mean

of the process, and for time-varying variance. Bates (1996) was the first to suggest combining

these features of the underlying process, and therefore, we refer to this process specification as
8We access the Optionmetrics and the H15 databases through the Wharton Research Data Services (WRDS)

research platform.
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the Bates model. Let Xt = log(St), then:

dXt = (r − rd − γυ −
1

2
σ2t )dt+ σtdW1,t + log(ψ)dqt, (4)

dσ2t = β
(
σ2LT − σ2t

)
dt+ ω

√
σ2t · dW2,t, E(dW1,t · dW2,t) = ρdt.

In the specification (4), r is the risk-free interest rate, rd is the continuous dividend yield paid

by the asset, dW1,t and dW2,t two correlated Wiener processes, σt the time-varying volatility of

stock returns. In the calibration, we impose rd = 0, but we leave it explicitly in model (4) to

give the general specification that we used in the numerical exercise of Section 2. The Poisson

process, q(t), is independent of Wi,t, i = 1, 2, and there is a probability γdt that a jump occurs

in dt, and 1− γ probability that no jump occurs. The parameter γ represents the mean number

of jumps per unit of time. The random variable ψ is such that ψ − 1 describes the percentage

change in the stock price if the Poisson event occurs, and υ = E[ψ − 1] is the mean jump size.

We further make the standard assumption (for instance, see Amin (1993); Bakshi et al. (1997))

that log(ψ) ∼ N(µψ, σ
2
ψ). The parameter σ2LT denotes the long term mean of the variance

process, and ω is the volatility of volatility. If ω = 0, the volatility is constant at the level

σ2LT , and Equation (4) simplifies to the Merton (1976) jump-diffusion model. When referring to

the Merton model, we will denote the (time-constant) volatility σM . If we simplify (4) further

and set the jump intensity γ = 0, we recover the standard Black-Scholes model with no jumps.

In the following, we will denote the Black-Scholes constant volatility with the symbol σBS . If

instead γ = 0 but ω 6= 0, Equation (4) is the Heston (1993) model, arguably the most popular

process among the family of stochastic volatility models.

The main challenge in this exercise is to compute the continuation value at the ex-dividend

date. As anticipated in Section 2, no closed form formula is available, and we need to rely on

a fast and accurate numerical method. To this end, we develop a new pricing methodology, the

Recursive Projections methodology, which consists in computing at specific moments in time

the value of the contract at a fixed (i.e. time-homogenous) grid of values of the relevant state

variables, that is the logarithm of the stock price and the stochastic variance. The Recursive

Projections are related to quadrature models in that they allow to reconstruct la value of the
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contract only at the specific points in time that are relevant to our study, that is, maturity

and ex-dividend dates. This characteristic is in contrast to finite different methods and trees,

that need to compute the value function at close consecutive points in time, and allows us to

avoid intermediate steps and to obtain fast pricing algorithms. The main feature that permits

reconstructing the value function of the call option at a time t1 from the value function function

at time t2, with t2 and t1 being arbitrarily distant from each other, is that we know the analytical

form for the risk neutral transition density of the stock price and variance level from t1 to t2

(the so-called Green function) either directly, as in the Black-Scholes-Merton case, or its Fourier

transform, as in the Heston-Bates case. Finally, the fact that the value of the call is computed

at fixed grid point allows us to exploit some invariance properties of the transition densities

that further increase the speed of the method. For the details of the methodology and the

convergence properties, see Appendix B9.

3.2. Estimating the cost of suboptimal non-exercise

The quantification of the suboptimality and the associated costs is computed in two steps:

1) At each day before the payment of the dividend the models of Black-Scholes, Merton and

Bates are calibrated separately for each stock 2) By looking at the open interest at the end of

the day, we calculate the money left on the table by investors who do not optimally exercise

their options.

3.2.1. Calibration results

Table 2 reports the results of the calibration for the three modelling frameworks. We ob-

tain the parameters through the minimization of the implied volatility mean squared error, as

in Christoffersen and Jacobs (2004)10. The first line of Table 2 displays the average values of

the parameters calibrated on our sample of single stocks, whereas the second line reports the

average values that Bakshi et al. (1997) obtain for the same parameters from contracts written
9Section B of the online supplementary materials describes how the invariance properties of the transition

densities simplifies the numerical implementation, while Section C makes an extensive comparison of the Recursive
Projections with existing numerical methods.

10Section D of the online supplementary materials gives a detailed description of the data and the calibration
procedure.
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on the S&P500 index. The parameters that rule the level of the volatility smile, namely, the

Black-Scholes volatility σBS , the long term volatility σLT , and the spot volatility σ0, are much

higher in our single stock calibration than in the index calibration, which reflects the well known

fact that an index is less volatile than its components. Indeed, in our sample, the average Black-

Scholes volatility is 29%, σ0, the instantaneous volatility the day of the calibration, is 28%,

and the average long-term implied volatility is 32%, whereas for the index options, the same

parameters take the values of 18.15%, 20%, and again 20%. The jump parameters in the Bates

model show that jumps are on average less frequent in the single stock case than in the index

case (γStocks = 0.5 against γSP500 = 0.61), but the amplitude and variability are higher for single

stocks (µψ,Stocks = −0.12 and σψ,Stocks = 0.18 respectively) than for the index (µψ,SP500 = −0.09

and σψ,SP500 = 0.14). The remaining two parameters of the stochastic volatility component of

the Bates model, the correlation parameter ρ and the volatility of volatility ω, have a specific

impact on the shape of the implied volatility smile (Hagan, Kumar, Lesniewski, and Woodward

(2002); West (2005)). A negative ρ implies a negatively sloped smile. The correlation parameter

is in absolute value lower in the single stock case (ρSP500 = −0.52 against ρStocks = −0.35),

meaning that the implied volatility smile for the index is more negatively sloped than for indi-

vidual stocks. This finding is consistent with the findings of Bakshi, Kapadia, and Madan (2003)

who describe the same relationship between the slopes of the index and of the individual stocks

implied volatility smiles. Bollen and Whaley (2004) also find the same pattern, and explain it

by relating the slope of the index smile to the buying pressure for index puts, with the demand

for call options driving the shape of the smile of single stocks. The volatility of volatility ω

determines the convexity of the implied volatility smile. The difference in the values taken by

ω is striking. We find ω to be 75% for stock options, whereas Bakshi et al. (1997) find a much

smaller value of 40% for short-term index options. This difference is due to the higher convexity

of the implied volatility smiles of stock options versus that of index options, another feature also

documented in Bollen and Whaley (2004). The parameters ρ and ω are related to the smile

shape through the higher moments of the distributions of the returns of the underlying. A more

negative ρ generates a more negatively skewed distribution of index returns with respect to stock
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returns, whereas a higher ω in the single stock returns leads to a higher kurtosis than in the

index return distribution11.

3.2.2. Suboptimality results

After having calibrated the models, we are able to compute the price C(Sth−1 − d,K, T ) on

the day previous to the dividend payment date th, by using the recursive projections. The price

C(Sth−1 − d,K, T ) is the continuation value of the option at date th, when the dividend d is

distributed. By comparing it with the intrinsic value Sth−1 − K, we can assess which options

should be exercised on th − 1. If an option should be exercised (i.e., C(Sth−1 − d,K, T ) ≤

Sth−1−K), then a positive open interest at the end of the day before ex-dividend (OIth−1 > 0)

measures the failure of investors to exercise the option. In this case, we calculate the suboptimal

non-exercise percentage as the following ratio:

NE% =
OIth−1
OIth−2

, (5)

i.e., the number of contracts outstanding at the end of the day th − 1 to the total number of

contracts outstanding at the end of day th − 2.12 The total amount of money that is left on the

table due to suboptimal non-exercise is given by the following formula:

TL = 100×OIth−1 × [(Sth−1 −K)− C(Sth−1 − d,K, T )]. (6)

The continuation value C(Sth−1 − d,K, T ) depends on the model used for pricing; hence, the

total loss due to suboptimal non-exercise (TL) is itself model-specific.

Table 3 presents the results on the suboptimal non-exercise behavior of investors. Table 3

clearly shows that the optimal early exercise decision depends on the model used for the stock

price. Under the Black-Scholes model, approximately 9.5% of the outstanding contracts should
11In Section D of the online supplementary materials, we provide more detailed results, including a breakdown

of the calibration by stock, and we show that the values of the calibrated parameters are homogeneous across
stocks.

12The quantity defined in Equation (5) is actually an approximation of the actual non-exercise ratio, because
it neglects a possible issue of new contracts on date th − 1. This event is unlikely; indeed Pool et al. (2008) test
the approximation on a subsample of contracts for which they have the real exercise data. They conclude that
the approximation (5) is a precise description of the actual exercise behavior of option investors.
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be exercised, and the percentage decreases (approximately 7.5%) under the alternative models.

This result is consistent with the numerical findings of Section 2, where we show that, in the

case of discrete dividends, the early exercise boundary under the Black-Scholes model is lower

compared to that implied by the Merton and Heston models. As a general rule, contracts that

should be exercised under the Merton or Bates models should also be exercised under the Black-

Scholes model. In our sample, we find some exceptions to this rule because, in Section 2, we

choose the model parameters such that the total variance of the returns over the life of the

option is the same in all models, whereas in real data, this condition may not hold. To give

some examples, 4,680 options should be exercised under Black-Scholes but not under the Bates

model, whereas the reverse is true only for 249 contracts. Similarly, we find that 2,872 options

should be exercised under the Black-Scholes model but not under the Merton model, whereas the

opposite occurs with only 53 options. The first important lesson we learn is that, by allowing for

more sophisticated models than the Black-Scholes model, the number of contracts that should

be optimally exercised decreases by almost 25%. The suboptimality figures are model-dependent

and one may argue that they depend on the implemented calibration procedure. The comparison

between our calibration results and the results of Bakshi et al. (1997) are reassuring in terms of

the reliability of our calibration method. To justify the suboptimal behavior found in our sample

entirely, we should obtain unreasonably high values for the jump and intensity parameters.

A second piece of evidence that stands out from Table 3 is that the percentage of investors

who leave the options suboptimally non-exercised is higher under the Black-Scholes model than

under the other models, 39% versus approximately 30%. We compute these percentages in

accordance with Definition (5). If we restrict our attention to the 1,965 contracts in our sample

that should be exercised under the Black-Scholes model but not under the Merton model or the

Bates model, we find a striking 81% of no-exercise. These results may suggest that investors

do not limit themselves to a Black-Scholes world when evaluating their options but rely on

more sophisticated models that include jumps or stochastic volatility. Even if this evidence is a

considerable step towards understanding the investor decision-making process, it does not fully

solve the puzzle. Indeed, even in the Merton and Bates models, we still find a high percentage of
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suboptimal non-exercises, which leads to a global loss of approximately 130−140 million dollars,

down approximately 30% from the loss of 206 million dollars in the Black-Scholes model. The

possible interpretation of this residual amount in terms of hidden fees, or as opportunity cost of

closely monitoring the options, leads us to the discussion of Section 3.3.

As a further reliability check on our calibration procedure, we compare our results regarding

the exercise decision with the ones obtained by Pool et al. (2008), limitedly to the Black-Scholes

case. In that work, the authors apply the early exercise decision rule to all options series by

using the Black-Scholes model with historical volatility and find that 53.1% of investors leave

their options unexercised when instead they should have been exercised. Their data span over

ten years (from 1996 to 2006) and to compare our results with theirs, we divide our sample into

two subsamples, the first spanning the years 1996-2006 and the second spanning the years 2006-

2012. For comparability, we calculate the average percentage of suboptimal non-exercise in the

two subsamples and find that the percentage of suboptimal non-exercise under the Black-Scholes

model is approximately 47% in the first subsample and 37% in the second. The decrease in the

non-exercise behavior with time intimates that investors become more attentive in monitoring

their investments. There is a small difference between our results (47%) and the 53.1% found

in Pool et al. (2008). The explanation is most likely our focus on the constituents of the Dow

Jones Industrial Average, whereas Pool et al. (2008) consider all option series. It is likely that,

for large-cap companies, stock and option prices are monitored more closely than they are on

average.

Throughout our empirical investigation, we choose a model-based approach to calculate

the continuation value of the option C(Sth−1 − d,K, T ). We could have also used a market-

based approach where the continuation value is the market price of the option. The market-

based approach checks whether the quantity CMKT (Sth−1,K, T )−(Sth−1−K)+ equals 0, where

CMKT (Sth−1,K, T ) is the observed market price at t = th−1. As discussed in Pool et al. (2008)

and in Barraclough and Whaley (2012), the market-based approach has shortcomings. The most

important is that it does not make it possible to calculate the total loss due to suboptimal non-

exercise, which we do in Equation (6). In addition, the bid-ask spread and the discreteness of the
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prices make it difficult to decide which CMKT should be used. For all of these reasons, we follow

Pool et al. (2008) and Barraclough and Whaley (2012) and use a model-based approach with

Equation (5) to account for the actual exercise behavior of options investors. Barraclough and

Whaley (2012) only use the market-based approach as a useful model-free test to confirm the

presence of suboptimal non-exercise behavior. They find that the market-based approach gives

a magnitude of suboptimality that is comparable to that implied by the model-based approach.

This last piece of evidence is an additional argument against the possible objection that an

incorrect calibration of the model parameters may be the source of the suboptimal exercise

figures.

3.3. The role of fees

According to the recent literature on option prices (Jensen and Pedersen (2016), Christof-

fersen, Goyenko, Jacobs, and Karoui (2017b)), trading costs and financial frictions in general

strongly affect both the option prices and the early exercise decision of American options. In

this section, we investigate whether the suboptimal non-exercise behavior of investors is due to

the trading costs that investors face when exercising their options.

Following Pool et al. (2008), we model the costs of exiting a long call position as a per

share lump sum F that the investor must pay at the moment he decides to exercise. The

specific value of F depends on how the exit is accomplished according to the different possible

objectives of the investor. The most expensive value of the fee F is attained when the investor

wants to exercise the option and reenter into the same call position. Pool et al. (2008) estimate

an average value for the rollover costs F by using the commissions of the high-cost brokers, and

they obtain a very conservative amount of F = 0.4446 dollar per share. A detailed description

of the components of the fee F can be found in Pool et al. (2008).

To understand the role of the fees in the early exercise decision, we perform two different

empirical exercises. As a first check, we re-perform the exercise of Section 3.2.2 and compute the

loss due to a suboptimal non-exercise decision, but this time using C(Sth−1 − d,K + F , T ) as

the continuation value, and (Sth−1−K−F ) as the intrinsic value. The fee value is F = 0.4446.
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The fee F enters both in the exercise proceeds and in the continuation value. Indeed, at the

moment of the exercise decision, the investor should decide whether to exercise and hence pay

the exercise fee immediately or not exercise and postpone the payment of the exercise fee to

a future date. Accordingly, the calculation of the total amount of money that is lost due to

suboptimal non-exercise is given by the following formula:

TLF = 100×OIth−1 × [(Sth−1 −K −F )− C(Sth−1 − d,K + F , T )]. (7)

The second column in Table 3 shows the summary results including the fee. They are not very

different from those obtained without considering the fee (first column of Table 3). We can

conclude that the inclusion of trading costs does not change the big picture on the suboptimal

non-exercise of investors, as outlined in the previous paragraph.

As a second empirical exercise, and in order to detect possible additional costs that are not

taken into consideration in the fee F , we calculate the value of the fee that would justify the

non-exercise decision of investors. To do so, for each option for which C(Sth−1 − d,K, T ) <

(Sth−1−K), but that is not optimally exercised by some of the investors, we compute the value

of the implied fee F that would justify the non-exercise decision. It amounts to numerically

finding the zero of the following function:

f(F ) = C(Sth−1 − d,K + F , T )− (Sth−1 −K −F ). (8)

The results are reported in Table 4. The average implied fee is between 7 and 8 dollars per

share, an incredibly high amount compared to the already conservative fee of 0.4446 dollar

per share estimated by Pool et al. (2008). No realistic hidden fees can sum up to 7 dollars

per share, and the trading costs of exiting a long call option position cannot fully justify the

suboptimal non-exercise behavior of investors. We can interpret the difference between the

implied fee of 8 dollars and the conservative fee of 0.4446 as an implied opportunity cost for

the holder of the option to monitor the optimal exercise of the American option. Investors may

not respond immediately to favorable stock price movements and may take some time before

reacting and optimally exercising their option, which would be in line with the behavior on the
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early prepayment of mortgages documented by Stanton (1995).

3.4. Discussion of the findings on the early exercise decision

In Section 3.2.2, we have documented a decrease in the suboptimal exercise behavior when

jumps and stochastic volatility are added to the stock process. The decrease is explained by an

increase of the value of the early exercise boundary under the alternative modelling environments.

We now extend the discussion on the early exercise boundary of Section 2, and provide theoretical

insights that justify our empirical findings.

In the discussion of Section 2, we found that the early exercise boundary reacted differently

when moving from Black-Scholes to Merton and Heston, depending on the modelling assumption

of the dividend payment. The findings in the case of a continuous dividend do not provide an

unambiguous prediction on the effect of the underlying process on the exercise boundary, and

are in line with the ones of Adolfsson et al. (2013) for the stochastic volatility case, and of

Amin (1993) for the jump-diffusion case. The former work documents a lower exercise boundary

in the Heston case (for all maturities) with respect to the Black-Scholes case, while the latter

shows evidence of a lower boundary in the Merton case than under Black-Scholes case for longer

maturities, while the opposite is true for shorter maturities. Adolfsson et al. (2013) and Amin

(1993) back up these findings using simulations, but do not explain why it is so. In Appendix

C, we provide theoretical insights on these results.

The results of Section 2 that are more relevant to our empirical application are the ones

in the case of a discrete dividend, and are, to our knowledge, entirely new. They consistently

predict an increase of the early exercise boundary. In the following, we explain why it is the case.

We first consider the stochastic volatility case. Assume there is only one discrete dividend to be

paid. The continuation value of the call option immediately after the ex-dividend date is that of

a European call with the remaining time to maturity. When the correlation ρ ≤ 0, the price of

European options for a deep in-the-money call, where early exercise could be optimal, is higher

in the Heston case than in the Black-Scholes case (see Heston (1993), Hull and White (1987)).

For instance, in the left graph of Panel B of Figure 1, for a time to maturity of 0.25, this would
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be the case in the range of stock prices of approximately 150. Even by taking into account the

dividend drop in computing the continuation value, the ex-dividend stock price should remain

in the region where the Heston price is higher. We can repeat the same argument for a number

of discrete dividends sufficiently small (typically of the order of a couple percent) to prevent the

stock price from falling in the price range where the call has more value under the Black-Scholes

model. A higher continuation value under Heston model in turn implies a higher early exercise

boundary.

We move on to considering the behavior of the early exercise boundary under the Merton

model, that is, model (4) with the volatility of volatility ω = 0 and σt set constant to σM . To

interpret the graphs in Figure 2, we have to make an important distinction. For short maturity

options, the jump component in the first line of Equation (4) dominates the diffusion component.

As explained in Amin (1993) and Merton (1976), the result is higher prices for short maturities

in-the-money call options under the Merton model than under the Black-Scholes model. We

call this effect the jump effect. For longer maturities, the jump effect no longer dominates

the diffusion component but instead creates an interplay that makes the jump-diffusion process

observationally similar to a stochastic volatility process. For a discrete dividend, both the jump

effect and the stochastic volatility effect, as previously discussed in the Heston case, predict

a higher boundary in the Merton case than in the Black-Scholes case, which holds true for

all maturities. The full Bates specification (4) must imply a higher exercise boundary than

the Black-Scholes model in the discrete divided case, as it displays both jumps and stochastic

volatility, and both features push the boundary upwards.

4. Concluding remarks

We investigate the exercise behaviour of investors in a large database of 101,295 series of

short-term American call options (9.5 million prices). Pool et al. (2008) find that more than 40%

of the investors fail to optimally exercise their contracts. We extend their analysis by including

stochastic volatility and jumps to the process of the underlying stock. In order to deal with the

large option database and the repeated calculations required for the calibration and pricing, we
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develop an option pricing technique which is at the same time fast, precise and which can handle

both multidimensional dynamics and cash dividend distributions. By applying our technique to

the dataset, we can explain up to 25% of the gain forgone due to suboptimal exercise decisions, as

computed in Pool et al. (2008). This result confirms the insights we obtain from the theoretical

developments of the paper. Indeed, we show that the exercise boundary is higher under the

Merton and Heston models than under the Black-Scholes model if the dividend is discrete.

This result underlines the importance of the correct modelling of the dividend distribution. We

show that by modelling the dividend as a continuous yield instead of a discrete cash flow, the

exercise frontier in the Bates model could have been lower instead of higher, and the suboptimal

exercise behavior of Pool et al. (2008) would have been reinforced instead of mitigated. We

further try to check whether we can explain the remaining part of the suboptimal behavior in

terms of transaction costs (Jensen and Pedersen (2016)). We show that hidden transaction costs

would need to be unrealistically large to explain the entire amount foregone by investors. This

observation leads us to interpret the implied transaction fee as a monitoring cost.

As a final remark, the new pricing methodology (Recursive Projections) we developed is a

powerful tool which allows new empirical research investigations. On the one side, American

option pricing is only a particular case of stochastic optimal control problems. We can think

of applying the recursive projection method to other problems, such as the optimal portfolio

allocation involving complex and path-dependent financial assets or incentives contracts (Hodder

and Jackwerth (2007)). Currently, these types of complex problems are solved by using Monte

Carlo simulations (Detemple, Garcia, and Rindisbacher (2003)) and our method could offer a

more efficient computational alternative. On the other side, our method facilitates the analysis

based on individual stocks paying discrete dividends and sophisticated pricing models, like for

instance the recent works of Kelly, Lustig, and Van Nieuwerburgh (2016b) and Christoffersen,

Fournier, and Jacobs (2017a). We can also think, for example, of extending the recent studies of

tail risk (Andersen, Fusari, and Todorov (2015, 2017)) and political uncertainty (Kelly, Pástor,

and Veronesi (2016a)) to single name stock options. We can also use our method to efficiently

compute the Greeks of the options, which are the risk metrics mostly used by option traders.
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All these analyses are outside the scope of this paper and are left for future research.
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Number of option quotes

maturity<60 days maturity>60 days

Ticker Stock OTM ATM ITM OTM ATM ITM

1 AA ALCOA INC 42827 6379 41206 28788 9621 29371

2 AXP AMERICAN EXPRESS CO 43360 10386 59656 27744 14941 50002

3 BAC BANK OF AMERICA CO 53785 7767 57794 48365 15446 58196

4 BA BOEING CO 41616 7385 52422 36022 13312 50357

5 CAT CATERPILLAR INC DEL 40592 8651 55672 34438 15377 54361

6 CHV CHEVRON CORPORATION 33444 5922 50092 28088 11238 51676

7 CSCO CISCO SYS INC 58276 8194 63177 44295 14142 55598

8 KO COCA COLA CO 34710 5055 44407 29054 9249 44421

9 DIS DISNEY WALT CO 40138 7052 47571 31350 10730 40773

10 XOM EXXON MOBIL CORP 39509 6427 55468 27944 9425 48375

11 GE GENERAL ELECTRIC CO 49637 6734 58779 42696 13072 58291

12 HWP HEWLETT PACKARD CO 54913 9182 53498 47707 17077 51029

13 HD HOME DEPOT INC 42968 7052 56732 36047 13413 53921

14 INTC INTEL CORP 55825 8666 61243 43796 14327 52367

15 IBM INTER. BUS. MACHS 70249 9060 85569 45355 13330 62979

16 JNJ JOHNSON & JOHNSON 34175 4551 47524 22974 7074 43322

17 MCD MCDONALDS CORP 33730 5674 47969 27630 10145 48000

18 MRK MERCK & CO INC 41559 7612 53181 31901 11486 47534

19 MSFT MICROSOFT CORP 68396 8725 78393 50253 14163 65728

20 MMM 3M CO 36835 6737 46521 24402 10205 38750

21 JPM MORGAN J P & CO INC 6991 3180 9940 4428 5874 10568

22 PFE PFIZER INC 51100 6170 54751 47414 12109 52358

23 PG PROCTER & GAMBLE CO 36971 5904 52782 25422 8974 46956

24 T AT&T INC 42547 5542 52123 32851 9496 46524

25 TRV TRAVELERS COMPANIES INC 21404 3803 27783 15069 5811 23646

26 UTX UNITED TECHNOLOGIES CORP 34765 6366 48200 28973 11712 45580

27 UNH UNITEDHEALTH GROUP INC 39924 8864 58885 32757 16724 56451

28 VZ VERIZON COMMUNICATIONS INC 39642 6461 56527 34306 11100 54563

29 WMT WAL-MART STORES INC 37172 5668 51904 31679 10429 52890

30 DD DU PONT E I NEMOURS & CO 35262 7404 46302 24077 11097 41173

Table 1: Number of observations for in-the-money (ITM), at-the-money (ATM) and out-of-the-money
(OTM) call option quotes for the stocks which are the constituents of the Dow Jones Industrial Average
Index (DJIA). The data are further broken down by maturity. According to the classification of Bollen
and Whaley (2004), a call option is considered OTM if its delta is less then 0.375, ATM if its delta ranges
between 0.375 and 0.625 and ITM if its delta is above 0.625.
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Underlying BS MRT BTS
σBS γ σM σψ µψ γ σψ µψ ω σLT β ρ σ0

All stocks 0.29 1.33 0.22 0.16 -0.12 0.50 0.18 -0.12 0.75 0.32 1.52 -0.35 0.28
SP500* 0.18 NA NA NA NA 0.61 0.14 -0.09 0.4 0.2 3.93 -0.52 0.2

Table 2: Average values of the parameters of the models of Black-Scholes (BS), Merton (MRT)
and Bates (BTS) calibrated at each day before the ex-dividend date on the options written on the
dividend-paying stocks belonging to the Dow Jones Industrial Average Index (DJIA). In total we
computed 1701 calibrations and the reported values are the averages across these calibrations.
The in-sample sum of squared error is on average equal to 0.26 for the Black-Scholes model, 0.20 for the
Merton model, and 0.16 for the Bates model with stochastic volatility.

*Calibrated parameters of the SP500 dynamics are from Bakshi et al. (1997).
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Model Without fee With fee
Contracts outstanding 406 414 980
Total market value 99 392 927 000

Contracts that should be BS 38 527 586 31 551 786
exercised (9.48%) (7.76%)

MRT 30 633 542 25 340 009
(7.54%) (6.23%)

BTS 30 486 666 25 050 616
(7.5%) (6.16%)

Contracts that are left BS 15 214 908 11 077 913
suboptimally non-exercised (39.49%) (35.11%)

MRT 9 404 406 7 118 002
(30.70%) (28.09%)

BTS 8 786 524 6 702 799
(28.82%) (26.76%)

Money available BS 770 287 766 647 088 372
due to exercise opportunity (0.77%) (0.65%)

MRT 555 922 918 460 980 123
(0.56%) (0.46%)

BTS 617 173 686 509 713 158
(0.62%) (0.51%)

Total loss due to BS 209 284 628 172 424 967
suboptimal non-exercise (27.17%) (26.65%)

(0.21%) (0.17%)
MRT 133 130 786 108 951 652

(23.95%) (23.63%)
(0.13%) (0.11%)

BTS 147 480 996 123 615 413
(23.9%) (24.25%)
(0.15%) (0.12%)

Table 3: Summary results of the total loss due to suboptimal non-exercise for the short-term call option
series. The numbers are calculated for each series and each day before the ex-dividend date separately,
and then pooled together.
The number of contracts outstanding is the total open interest of all contracts two days before the ex-
dividend date. The contracts that should be exercised under a specific model, i.e. Black-Scholes (BS),
Merton (MRT) and Bates (BTS), are the contracts outstanding for which the continuation value is lower
than the exercise proceeds. The number of contracts that are left suboptimally non-exercised is the sum
of the open interests one day before ex-dividend of the contracts that should have been exercised. We
compute the other quantities in the table in the following way:
Total market value = Contracts outstanding×Market price×100,
Money available = max{0, (S −K −F − Continuation value)× Contracts outstanding× 100},
Total loss = max{0, (S −K −F − Continuation value)×Open interestt−1 × 100},
where F is the exercise fee. In the first column the results are computed considering F = 0, while in
the second column the results are computed considering the conservative fee of 0.44 dollar. The first
percentage in parenthesis in the Total loss due to non-exercise is computed with respect to the money
available due to exercise opportunities, while the second one is computed with respect to the total market
value.
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Average rational implied fee %Implied fee > 0.4446

Underlying BS MRT BTS BS MRT BTS

All stocks 7.54 7.27 7.23 94% 93% 93%

Table 4: The table reports the average implied fee per share which would explain the non-exercise
behavior of investors in each model: Black-Scholes (BS), Merton (MRT) and Bates (BTS). The average
implied fee is calculated for each option that should be exercised but which is not optimally exercised
by some of the investors as the value of the trading costs F which makes the continuation value of the
option equal to the early exercise proceeds: C(S−d,K+F , T ) = (S−K−F ). In the last three columns
of the table we report the percentage of options for which the fee that would explain the suboptimal
non-exercise behavior is higher than the conservative fee of 0.4446 dollar per share estimated by Pool
et al. (2008).
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Panel A: Heston early exercise boundary
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Panel B: Heston minus Black-Scholes price
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Fig. 1. Panel A. Comparison between the early exercise boundary in the Heston and Black-
Scholes models of an American call with maturity 6 months, in the case in which the stock pays
a dividend yield rd = 0.03 (right) and in the case in which the stock distributes an equivalent
quarterly discrete dividend of d = 1.38 (left). The remaining parameters are: K = 100, r = 0.05,
σ0 = 0.2, ω = 0.1, σLT = 0.3, β = 4, ρ = −0.5. We set the volatility parameter in the Black-
Scholes model equal to the volatility of the underlying return over the life of the option in the
Heston model. Panel B. Heston minus Black-Scholes price of an American call with T = 0.25
for different values of S0 in the case of discrete dividend (left) and continuous dividend yield
(right). The remaining parameters are the same as in Panel A.
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Panel A: Merton early exercise boundary
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Panel B: Merton minus Black-Scholes price
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Fig. 2. Panel A. Comparison between the early exercise boundary in the Merton and Black-
Scholes models of an American call with maturity 6 months, in the case in which the stock pays
a dividend yield rd = 0.05 (right) and in the case in which the stock distributes an equivalent
quarterly discrete dividend of d = 1.125 (left). The other parameters are the following: K = 40,
T = 0.5, r = 0.08, γ = 5, σ2M = 0.05, σ2ψ = 0.05, µψ = 0. We set the volatility parameter
in the Black-Scholes model equal to the volatility of the underlying return over the life of the
option in the Merton model. Panel B. Merton minus Black-Scholes price of an American call
with the same parameters as those used in Panel A but different values of S0 in the case of
discrete dividend (left) and continuous dividend yield (right).
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Fig. 3. Comparison between the true early exercise boundary S∗A and the approximated early
exercise boundary S∗E . S

∗
E is calculated by approximating the continuation value of the option

with the price of a European option where the starting value of the stock is set equal to S0
minus the present value of all future dividends.
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Fig. 4. Recursive scheme without dividends (Panel A) and with discrete dividends (Panel B).
In Panel A, at date t = tl+1, the intrinsic value H(yi, tl+1) = max{yi −K, 0} is compared with
the continuation value C(yi, T,K) computed at the same grid point yi (black ball). In Panel B,
at the ex-dividend date th = tl+1, the intrinsic value H(yi, tl+1) at the grid point yi (black ball)
is compared with the continuation value C(yi − d, T,K) at yi − d (red ball).
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Appendix A. Approximating American option prices by Euro-

pean prices

In this section, we provide further evidence on the importance of a correct modelling of the

dividend as a discrete cash flow when computing the early exercise boundary.

The setup is the same as in Section 2 of the main text. There are two dividends to be paid

over the remaining life of the option, which is 6 months. One is to be paid immediately (t = 0),

the second in 3 months (t = 0.25). We compute the early exercise boundary by i) correctly

taking into account that the dividends are discrete, and ii) by using the “escrow dividend”

approximation, that is we price the contract at t = 0 as if it were a European option, with

the continuation value after the first dividend payment not being computed at S0 − d, but at

S0 − d − d · e−r(0.25). We compute the early exercise boundary under the three models (Black-

Scholes, Merton and Bates), with the following representative parameters: γ = 5, µψ = 0,

σψ = 0.2, σMRT = 0.2, σBS , σ0 = 0.2, ω = 0.1, σLT = 0.3, β = 4, ρ = −0.5, r = 0.05.

Figure 3 displays the results of our numerical study. We call S∗A,t the early exercise boundary

computed under assumption i), and S∗E,t the one under assumption ii). The two boundaries S∗A,t

and S∗E,t coincide after the dividend at t = 0.25 is paid out, since there are no more intermediate

cash flows before maturity, and the continuation value is in both cases the one of a European

call with a time-to-maturity of 3 months. At t = 0, the two boundaries are different, with

S∗E,t < S∗A,t. This means that an investor basing his exercise decision on the approximation

S∗E,t, may suboptimally decide to exercise the option at t = 0, if S∗E,0 < S0 < S∗A,0. He would

then incur a loss given by C(S0 − d, 0) − (S0 − K), where C(S0 − d, 0) is the correct price of

an American option, computed at the stock value S0 − d. The upper bound for the loss coming

from the escrowed dividend approximation is reached exactly when S0 = S∗E,0. In this case,

the following formulae give the maximum percentage loss at t = 0 under the three modelling

34



environments considered and with the model parameters given above:

DL%BS =
CBS(S∗E,BS)− (S∗E,BS −K)

CBS(S∗E,BS)
= 0.63%,

DL%MRT =
CMRT (S∗E,MRT )− (S∗E,MRT −K)

CMRT (S∗E,MRT )
= 0.48%,

DL%BTS =
CBTS(S∗E,BTS)− (S∗E,BTS −K)

CBTS(S∗E,BTS)
= 1.14%,

where we have suppressed for readability the dependence from time, and where the indexes

BS,MRT,BTS mean that we have computed the relevant quantities under the Black-Scholes,

Merton and Bates models, respectively. The investors can lose up to 1% of the market value of

their option if they exercise according to the wrong boundary.

We finally check in our database if there are situations in which the stock reaches the value

S∗E,t but not S∗A,t on the days before the ex-dividend dates. We find that this occurrence does

happen, and not sporadically. For example, on May 10th, 2006, the Dupont stock closes at 45.71

dollars. The call option with K = 30 and T = 0.45 should not be exercised if the continuation

value is computed correctly, but the option should be exercised if the continuation value is

approximated with a European price. In this case, if an investor exercises his option wrongly,

he will suffer a loss given by: DL%BS = 0.07%, DL%MRT = 2%, DL%BTS = 0.06%. These are

not small figures when compared to the bid-ask spreads.

Appendix B. Valuation by fast recursive projections

In this appendix, we detail the Recursive Projection method we developed to compute the

option prices, and consequently the exercise boundaries, of our study. The main innovation of

the methodology is that it can handle in a simple and fast way both multidimensional processes

and discrete dividend distribution for the underlying asset.

Let us assume that we need the value of an option at some specific points in time, (tl)l=1,··· ,L.

We use the notation V (x, tl) for the value of the option at time tl, and for a value of the

underlying Stl = x. The value function V (x, tl) does not need to be the value of a call option.

The Recursive Projections are a flexible tool that can value a wide range of path-dependent
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contracts (see Andricopoulos et al. (2007) for treatment of the kind of path-dependency that

we can address). For readability, we do not include in the arguments of the value function the

contract parameters T and K. At each time tl, the holder of the option decides whether to

exercise. Thus, the value of the option at time tl is given by the maximum between the intrinsic

value, i.e. the proceeds from exercising the option, and the continuation value of the option:

V (x, tl) = max
{
H(x, tl),E

[
e−r(tl+1−tl)V (Stl+1

, tl+1)|Stl = x
]}
. (9)

H(x, tl) is a payoff function, as for instance H(x, tl) = max{x−K, 0} in the case of a call option,

or H(x, tl) = I(x < K), I(·) being an indicator function, for a digital put. At maturity, tL = T ,

V (x, T ) = H(x, T ). The main requirement to be able to apply the Recursive Projections, is that

the discounted probability distribution (the so-called Green function), with respect to which the

conditional expectation in (9) is taken, be known analytically, whether in direct form, or through

its Fourier or Laplace transform. In the simple case when we have a direct analytical form for

the Green function, as for instance in the Black-Sholes case, we can write the expectation in (9)

as:

E
[
e−r(tl+1−tl)V (Stl+1

, tl+1)|Stl = x
]

=

∫
G(x, tl; y, tl+1)V (y, tl+1)dy. (10)

The integral in Equation (10) is taken over the values Stl+1
that the underlying asset can take,

and G(x, tl; y, tl+1) is the discounted transition density of the underlying asset form value x at

tl to the value y at time tl+1. We now restrict our attention to the value of the derivative at a

fixed grid of values of St: (y1, . . . , yN ) with constant step ∆y = yi − yi−1. The grid is the same

for each value t ∈ (tl)l=1,··· ,L. Then we can write the following equality in matrix form:

v(tl)
def
= max{H(tl),G(tl; tl+1)V (tl+1)}, (11)

where V (tl+1) is a N × 1 vector with entries V (tl+1)j = V (yj , tl+1), G(tl; tl+1) is a N × N

matrix with entries G(tl; tl+1)i,j = G(yi, tl; yj , tl+1)∆y, and H(tl) a N × 1 vector with entries

H(tl)j = H(yj , tl). It is easy to check that the multiplication of V (tl+1) by the i-th row of

G(tl; tl+1) is a discretization of the expectation on the right hand side of (9) for x = yi. The
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vector v(tl) is an approximation of the value of the contract V (tl) at tl, and can be fed again

into Equation (11) to obtain v(tl−1):

v(tl−1)
def
= max{H(tl),G(tl−1; tl)v(tl)}. (12)

The main difference between Equations (11) and (12) is that in the former we assumed V (tl+1)

known, as for instance at maturity where V (T ) = H(T ), whereas in the latter, v(tl) is an

approximation of the real value. Equation (12) is at the heart of the Recursive Projections. It

provides a recursive formula that relates the value of a contract at different points on a grid

of values for the underlying, and at successive points in times. Equations (11) shows how the

pricing of options that can be exercised at specific moments, as for instance Bermudan contracts,

can be expressed as a series of matrix times vector operations. Furthermore if the time interval

τ = tl+1 − tl, l = 1, . . . , L − 1, is constant and if the pricing operator enjoys a stationarity

property (time translation invariance), then the matrix G(tl; tl+1) = G(τ) has constant entries,

and the algorithm only involves one single computation of the matrix.

The methodology easily extends in the presence of discrete dividends paid on potential ex-

ercise dates. We only need to add the dividend δ to the continuation value in (12). Hence, in

order to price an American option on a dividend-paying stock, Equation (12) must be modified

by computing the state price density G(x, tl; yj , tl+1) at the grid (yi − δ(yi))i=1,...,N for the con-

ditioning value x, whenever tl is dividend distribution date. The entries of the matrix G(tl; tl+1)

then become Gij = G(yi − δ, tl; yj , tl+1)∆y. Given the freedom in choosing where to sample G,

δ(x) could be any function of x. If δ(x) = rd x, then we can accommodate for a proportional div-

idend. If δ(x) = d, then we can accommodate for a discrete dividend amount d 13. If δ(x) = 0,

then we return to the Bermudan option case. The value function v(tl) still gives the value of the

contract at the grid points (y1, . . . , yN ); thus we can use its approximation v(tl) as the input for

the following step of the algorithm, and the recursive property of the algorithm is maintained.

Figure 4 shows how the Recursive Projections easily accommodate dividend payments.

To carry out the analysis of Section 3.2.2, we need to be able to incorporate stochastic
13When we consider discrete dividends, we rule out arbitrage situations where the dividend is too large with

respect to the stock price (see Haug, Haug, and Lewis (2003) for a discussion).
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volatility and jumps in the description of the process. In the class of stochastic volatility

models, there are two state variables, the underlying asset Stl and the variance σ2tl . One of

the most popular model belonging to this class is the Heston model. In the Heston model,

we know the analytical form of the Fourier transform14 of the bivariate state price density

G2(Stl , σ
2
tl
, tl; y, w, tl+1), which describes the discounted transition probability density from the

asset level Stl and variance level σ2tl at time tl to the asset level y = Stl+1
and variance

level w = σ2tl+1
at time tl+1. Let its Fourier transform be Ĝ2(Stl , σ

2
tl
, tl;λ, κ, tl+1), so that

G2(Stl , σ
2
tl
, tl; y, w, tl+1) =

1

4π2

∫∫
dλdκe−ι(λy+κw)Ĝ2(Stl , σ

2
tl
, tl;λ, κ, tl+1), where ι is the imagi-

nary unit. There are different ways in which we can obtain a numerical approximation of G2.

One straightforward possibility is to consider the function Γ2(yi, wp, tl; yj , wq, tl+1) obtained by

numerically inverting Ĝ2 by using a Fast Fourier Transform (FFT)15, and that gives the approx-

imated discounted transition probability density from the asset level Stl = yi and variance level

σ2tl = wp at time tl to the asset level yj = Stl+1
and variance level wq = σ2tl+1

at time tl+1, where

(w1, . . . , wW ) is fixed, equispaced of values taken by the stochastic variance σ2t , with step ∆w.

In the stochastic volatility framework, the recursive pricing relation for an option that can

be exercised on a discrete set of dates consists in moving backwards in time as in Equation (12)

with:

V (x, ξ, tl) = max
{
H(x, tl),E

[
e−r(tl+1−tl)V (Stl+1

, σ2tl+1
, tl+1)

∣∣Stl = x, σ2tl = ξ
]}
. (13)

Thus, the recursive projections in the Heston model are the discrete counterpart of (13). We

give in the following proposition the convergence properties of the algorithm.

Proposition 1. Let H(y, w, T ) be such that |H(y, w, T ) − H(y′, w′, T )| < C∆ for a positive

constant C, and for |y − y′| < ∆y, |w − w′| < ∆w and ∆ =
√

(∆y)2 + (∆w)2. Let vip(tl) be
14For an explicit formula, see Griebsch (2013).
15In Cosma, Galluccio, Pederzoli, and Scaillet (2016) we describe a more general approach to obtain an ap-

proximation of the G2 function in terms of functional projections. The function Γ2(yi, wp, tl; yj , wq, tl+1) is an
approximation of G2(Stl , σ

2
tl , tl; y, w, tl+1) since it is obtained by a discrete transform, in place of the continuous

transform we would need to recover the true G2 transition density.
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defined for a set of dates (tl)l=1,...,L, with tL = T , as follows:

vip(tl) = max

{
H(yi, wp, tl),

∞∑
j=−∞
q=1

Γ2(yi, wp, tl; yj , wq, tl+1)H(yj , wq, tl+1)
√

∆y∆w

}
, for l = L− 1,

(14)

vip(tl) = max

{
H(yi, wp, tl),

∞∑
j=−∞
q=1

Γ2(yi, wp, tl; yj , wq, tl+1)vjq(tl+1)
√

∆y∆w

}
, for l = 1, . . . , L− 2.

(15)

Then, for each tl in (t1, . . . , tL−1), the approximated values vip(tl) defined in (14) and (15)

converge to the true value V (yi, wp, tl) with an approximation error of the order O
(
∆2
)
.

In almost all applications H(y, w, tl) only depends on the value y taken by the underlying

asset at tl, and the computed price vip(tl−1) depends on the stochastic variance only through

the conditioning value σ2tl−1
= wp.

Proof. See Section A of the online supplementary materials.

Appendix C. Exercise boundary with a continuous dividend

In this section, we provide theoretical insights on why the early exercise boundary in the

stochastic volatility models is lower than the boundary implied by the Black-Scholes model

when the underlying stock distributes a continuous dividend yield. The discussion also applies

to jump-diffusion processes for longer maturities, because in this case, as explained in Section

3.4, they are observationally similar to stochastic volatility processes.

Following Kim (1990) and Jamshidian (1992), we can decompose the value V (St, t) of an

American option into two components, namely, the European value V E(St, t) and the early

exercise premium V A(St, t), such that:

V (St, t) = V E(St, t) + V A(St, t) (16)

= e−r(T−t)E
[
(ST −K)+

∣∣St, σ2t ]+

∫ T

t
e−r(s−t)E

[
(rdSs − rK)I(Ss>S∗

s )

∣∣St, σ2t ]ds,
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where S∗s is the early exercise boundary at time s and I(Ss>S∗
s )

equals one if, at time s, the

stock is in the exercise region, otherwise zero. We can interpret V A(St, t) as a continuum of

European call options with maturity T − s, strike price S∗s , and payoff rdSs − rK. For each

of these European options, we can apply the results of Table II in Hull and White (1987) who

compare the values of European options under general stochastic volatility dynamics with the

Black-Scholes price. Call values under the stochastic volatility assumption are lower when the

contracts are at-the-money and ρ ≤ 0. The continuum of contracts composing the V A(St, t) are

at-the-money when Ss = S∗s . As confirmed from our numerical simulations, the S∗s values are

distributed in the region immediately above S = 150, that is, exactly where the price of the

American option under the Heston model is lower than that under the Black-Scholes model, so

that the early exercise premium is lower under the former of the two modelling environments.

This in turn explains the negative bump in the right graph of Panel B of Figure 1.
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Early exercise decision in American options

with dividend, stochastic volatility and jumps

- ONLINE MATERIAL -

Appendice A provides the proof of Propositions 1 of the main paper. In Appendix B,

we characterize the space translation invariance property of the transition matrices and

we describe how we take advantage of this property in the implementation of the algo-

rithm. Appendix C compares the recursive projections method with the finite difference

methodology, and other more recent numerical technique which can accommodate dis-

crete dividends. These methods are the binomial tree and its improved version provided

by Vellekoop and Nieuwenhuis (2006), and the simulation least square approach method

of Longstaff and Schwartz (2001). We also discuss the new duality approach method of

Haugh and Kogan (2004), Rogers (2002), and Andersen and Broadie (2004). Appendix

D gives a detailed description of the data and the of calibration procedure, as well as the

results of the calibration with a breakdown per stock.

Appendix A. Proofs

We prove Proposition 1 in three steps. Before stating the proof, we start by providing

some definitions that we will use extensively. We compute the value V (y, w, t) of the

contract on a grid {(yj, wq)}j=1,...,N ;q=1...,W . The constant steps in the two dimensions of

the grid are ∆y and ∆w. The convergence will be obtained with ∆y,∆w → 0, that is, we

keep the maximum and minimum values of the grids fixed, and we make the steps become

infinitesimally small. As ∆y,∆w → 0, N,W → ∞. Define y
j

= yj − ∆y
2

, yj = yj + ∆y
2
,

wq = wq − ∆w
2

, wq = wq + ∆w
2
. Let {ej(y)}q∈Z be the orthonormal set1 defined as

1The norm used here is the usual L2([ymin, ymax]) and L2([vmin, vmax]) where ymin, ymax, vmin, vmax

are the minimum and maximum values taken by the stock and variance.
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ej(y) = 1√
∆y

Iy
j
,yj , where Iy

j
,yj is the indicator function of the interval [y

j
, yj). Likewise,

let {εq(w)}q∈N 2 be the normalized indicator functions centered on the grid {wq}q∈N, and

of support of measure ∆w. We then define the following quantities:

V ⊥(y, w, T ) =
∑
j,q

∫
dθ1

∫
dθ2V (θ1, θ2, T )ej(θ1)εq(θ2)ej(ϑ)εq(w)

def
=
∑
jq

V ⊥jq ej(y)εq(w),

(1)

G⊥2 (yi, wp, t; y, w, T ) =
∑
j,q

∫
dθ1

∫
dθ2G2(yi, ξp, t; θ1, θ2, T )ej(θ1)εq(θ2)ej(y)εq(w) (2)

def
=
∑
j,q

G⊥2,ipjqej(y)εq(w).

Equations (1) and (2) define the coefficients {V ⊥jq }j∈Z,q∈N and {G⊥2,ipjq}j∈Z,q∈N of the or-

thogonal projections V ⊥(y, w, T ) and G⊥2 (yi, wp, t; y, w, T ). Due to the orthogonality of

the orthonormal sets {ej(y)}j∈Z and {εq(y)}q∈N, we obtain the following:

v⊥ip(t)
def
=

∫
dy

∫
dwG⊥2 (yi, wp, t; y, w, T )V ⊥(y, w, T ) =

∑
jq

G⊥2,ipjqV
⊥
jq . (3)

Moreover, we denote the following approximation by v?ip(t) :

v?ip(t) =
√

∆y∆w
∑
jq

Γ2(yi, wp, t; yj, wq, T )V (yj, wq, T ). (4)

Equation (4) gives approximation of the continuation value at t when the input at time

T is a true value. Most of the times, in practical applications, V (y, w, T ) = H(y, T ). In

the last case, v?ip(t) is the approximation of the price at t of a European contract.

In the following, we repeatedly use the second order Taylor expansion of bivariate

functions. Let χ(ξ1, ξ2) be twice differentiable in the two variables ξ1 and ξ2. Then, for
2Typically, in implementations yj = log(Sj), so that j takes values in Z. The variance values wq

being positive, q ∈ N. This convention has not impact on the proof.
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ξ̂1 ∈ [y
j
, yj) and ξ̂2 ∈ [wq, wq):

χ(ξ1, ξ2) = χ(yj, wq) + ∂ξ1χ(yj, wq)(ξ1 − yj) + ∂ξ2χ(yj, wq)(ξ2 − wq)

+ ∂2
ξ1ξ2

χ(ξ̂1, ξ̂2)(ξ1 − yj)(ξ2 − wq) +
1

2
∂2
ξ21
χ(ξ̂1, ξ̂2)(ξ1 − yj)2 +

1

2
∂2
ξ22
χ(ξ̂1, ξ̂2)(ξ2 − wq)2.

We then have the useful expansion:

∫ yj

y
j

dξ1

∫ wq

wq

dξ2 χ(ξ1, ξ2)

= χ(yj, wq)∆y∆w +
1

2

∫ yj

y
j

dξ1

∫ wq

wq

dξ2

[
∂2
ξ21
χ(ξ̂1, ξ̂2)(ξ1 − yj)2 + ∂2

ξ22
χ(ξ̂1, ξ̂2)(ξ2 − wq)2

]
= χ(yj, wq)∆y∆w +O

(
∆3
)
, as ∆→ 0, (5)

because, since yj and wq are the centre points of the integration interval, the integrals of

the other terms of the expansion vanish.

The proof of Proposition 1 is organized in the following four steps: 1) Lemma 1 tells

us that what matters for the convergence properties in Equations (14) and (15) of the

main paper is the rate of convergence of the approximated continuation value to the true

continuation value. 2) In Lemma 2, we show that the computed continuation value v?ip(t)

verifies v?ip(t) = v⊥ip(t) + O(∆2). 3) In Lemma 3, we prove that v⊥ip(t) = V (yi, wp, t) +

O(∆2), which entails that v?ip(t) = V (yi, wp, t) + O(∆2), which proves Proposition 1 in

the European option case, i.e. Equation (14) by setting t = tL−1. 4) In Lemma 4, we

conclude by proving the recursive formula of Equation (15) of the main paper. The

summations on the indices j and q are understood to be from −∞ to +∞ and from 1 to

+∞, respectively.

LEMMA 1. Let A1, A2 and a2 be real numbers such that A1 and A2 are true quantities

and a2 is an approximation of A2. Then, we have the following inequality:

|max{A1, a2} −max{A1, A2}| ≤ |a2 − A2|. (6)
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Inequality (6) shows that the rate of convergence of max{A1, a2} to max{A1, A2} is given

by the rate of convergence of a2 to A2.

Proof of Lemma 1:

Proof. We must analyze four possibilities.

1. if A1 > a2 and A1 > A2, then |max{A1, a2} −max{A1, A2}| = 0.

2. if A1 ≤ a2 and A1 ≤ A2, then |max{A1, a2} −max{A1, A2}| = |a2 − A2|.

3. if A1 > a2 and A1 ≤ A2, then we have |max{A1, a2}−max{A1, A2}| = |A1−A2| ≤

|a2 − A2|, because A1 lies between a2 and A2.

4. if A1 ≤ a2 and A1 > A2, then we have |max{A1, a2}−max{A1, A2}| = |a2−A1| ≤

|a2 − A2|, because A1 lies between a2 and A2.

Gathering points 1-4 yields inequality (6).

LEMMA 2. The approximation error between v⊥ip(t) and v?iq(t) defined in (3) and (4)

satisfies:

v?ip(t) = v⊥ip(t) +O(∆2), as ∆→ 0.

Proof of Lemma 2. We must bound the difference:

∑
jq

∣∣∣√∆y∆w Γ2(yi, wp, t; yj, wq, T )V (yj, wq, T )−G⊥2,ipjqV ⊥jq
∣∣∣.

By Fourier isometry, we have:

∫∫
dθ1dθ2G2(yi, wp, t; θ1, θ2, T )ej(θ1)εq(θ2) =

1

4π2

∫∫
dλdκĜ2(yi, wp, t;λ, κ, T )êj(−λ)ε̂q(−κ),

where êj(λ) and ε̂q(κ) are the Fourier transforms of ej(y) and εq(w), respectively. Then,
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we deduce:

∑
jq

∣∣∣√∆y∆w Γ2(yi, wp, t; yj, wq, T )V (yj, wq, T )−G⊥2,ipjqV ⊥jq
∣∣∣

=
1

4π2

∑
jq

∣∣∣√∆y∆w
( ∞∑
r,z=−∞

Ĝ2(xi, wp, t;λr, κz, T )êj(−λr)ε̂q(−κz)∆λ∆κ
)
V (yj, wq, T )

(7)

−
(∫∫

dλdκĜ2(yi, wp, t;λ, κ, T )êj(−λ)ε̂q(−κ)
)(∫∫

dθ1dθ2V (θ1, θ2, T )ej(θ1)εq(θ2)
)∣∣∣,

(λr)r∈Z and (κz)z∈Z being equispaced grids of step ∆λ,∆κ, of values taken by the trans-

form variables λ and κ. The functions Ĝ2(yi, wp, t;λ, κ, T ), êj(−κ) and ε̂j(−λ) are twice

continuously differentiable. Moreover, let ∆ =
√

∆κ2 + ∆λ2. Using the property (5)

with χ(λ, κ) = Ĝ2(yi, wp, t;λ, κ, T )êj(−λ)ε̂q(−κ) we have that:

∫∫
dλdκ Ĝ2(yi, wp, t;λ, κ, T )êj(−λ)ε̂q(−κ) +O(∆

3
), (8)

=
∞∑

r,z=−∞

Ĝ2(xi, ξp, t;λr, κz, T )êj(−λr)ε̂q(−κz)∆λ∆κ as ∆→ 0.

Exploiting the continuity property of V (y, w, T ), we obtain:

∣∣∣∣√∆y∆w

∫∫
dθ1dθ2V (θ1, θ2, T )ej(θ1)εq(θ2)− ∆y∆w V (yj, wq, T )

∣∣∣∣ (9)

≤
∫ yj

y
j

dθ2

∫ wq

wq

dθ1

∣∣∣V (θ1, θ2, T )− V (yj, wq, T )
∣∣∣ ≤ ∆y∆wC∆ = O(∆2), as ∆→ 0.

It then suffices to substitute Equation (9) and (8) into (7), and to choose ∆ = O(∆),

to prove the statement of Lemma 2.

LEMMA 3. The following equality holds:

v⊥ip(t) = V (yi, wp, t) +O(∆2), as ∆→ 0.

5



Proof of Lemma 3. We study the following difference:

V (yi, wp, t)− v⊥ip(t) =

∫∫
dydwG2(yi, wp, t; y, w, T )V (y, w, T )−

∑
jq

G⊥2,ipjqV
⊥
jq (10)

=
∑
jq

∫ yj

y
j

dy

∫ wq

wq

dwG2(yi, wp, t; y, w, T )V (y, w, T )

−
∑
jq

1

∆y∆w

∫ yj

y
j

dθ1

∫ wq

wq

dθ2G2(yi, wp, t; θ1, θ2, T )

∫ yj

y
j

dϑ1

∫ wq

wq

dϑ2V (ϑ1, ϑ2, T ).

We show that both terms in the right-hand side of (10) are equal to∑
j,q G2(yi, wp, t; yj, wq, T )V (yj, wq, T )∆y∆w + O(∆2). We start by the generic term of

the first summation. By applying (5) and (9):

∣∣∣∫ yj

y
j

dy

∫ wq

wq

dwG2(yi, wp, t; y, w, T )V (y, w, T )−G2(yi, wp, t; yj, wq, T )V (yj, wq, T )
∣∣∣ ≤∫ yj

y
j

dy

∫ wq

wq

dwG2(yi, wp, t; y, w, T )
∣∣V (y, w, T )− V (yj, wq, T )

∣∣
+ V (yj, wq, T )

∫ yj

y
j

dy

∫ wq

wq

dw
∣∣G2(yi, wp, t; y, w, T )−G2(yi, wp, t; yj, wq, T )

∣∣
≤ sup

y∈[y
j
,yj)

w∈[wq ,wq)

G2(yi, wp, t; y, w, T )O
(
∆2
)

+ sup
y∈[y

j
,yj)

w∈[wq ,wq)

ξ∈{y,w}

∂2
ξ2G2(yi, wp, t; y, w, T )O

(
∆3
)
.

We can easily check that the generic term of the second summation in Equation (10)

equals:

1

∆y∆w

[
G2(yi, wp, t; yj, wq, T )∆y∆w +O(∆3)

][
V (yj, wq, T )∆y∆w +O(∆2)

]
= G2(yi, wp, t; yj, wq, T )V (yj, wq, T )∆y∆w +G2(yi, wp, t; yj, wq, T )O(∆2).

Then:

|V (yi, wp, t)− v⊥ip(t)| ≤
∑
j,q

sup
y∈[y

j
,yj)

w∈[wq ,wq)

G2(yi, wp, t; y, w, T )O
(
∆2
)
.

Because G2(yi, wp, t; y, w, T ) is a density, the above summation is finite, and it proves

Lemma 3. Combining the results of Lemma 2 and Lemma 3, we have shown that the
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continuation value v?ip(t) = V (yi, wp, t) +O(∆2), that is, we have proven the convergence

of the algorithm in the European case.

LEMMA 4. Let vip(tl) be defined as in Equation (15) of the main paper, with l =

1, . . . , L − 2. Then vip(tl) converges to the true price V (yi, wp, tl) at a rate of the order

O(∆2).

Proof. We start by showing the convergence of vip(tL−2) to V (yi, wp, tL−2). Because of

Lemma 1, we only need to prove the convergence of the approximated continuation value

at t = tL−2 to the true continuation value at t = tL−2. We consider a contract evaluated

at two dates {tL−2, tL−1} prior to maturity, tL = T , namely tL−2 < tL−1 < T . Then:

∑
jq

Γ(yi, wp, tL−2; yj, wq, tL−1)vjq(tL−1)
√

∆y∆w

=
∑
jq

Γ(yi, wp, tL−2; yj, wq, tL−1)
[
V (yj, wq, tL−1)− V (yj, wq, tL−1) + vjq(tL−1)

]√
∆y∆w

=
∑
jq

Γ(yi, wp, tL−2; yj, wq, tL−1)V (yj, wq, tL−1)
√

∆y∆w

+
∑
jq

Γ(yi, wp, tL−2; yj, wq, tL−1)
[
vjq(tL−1)− V (yj, wq, tL−1)

]√
∆y∆w.

The quantities {V (yj, wq, tL−1)}j∈Z,q∈N are exact values; thus it follows from Lemma 2

and Lemma 3 that:

∑
jq

Γ(yi, wp, tL−2; yj, wq, tL−1)V (yj, wq, tL−1)
√

∆y∆w = V (yi, wq, tL−2) +O
(
∆2
)
.

Again, from Lemmas 1 and

3, it follows that vjq(tL−1) = max{v?jq(tL−1), H(yj, wq, tL−1)} = V (yj, tL−1) + O
(
∆2
)
.

Then:

∑
jq

Γ(yi, wp, tL−2; yj, wq, tL−1)
[
vjq(tL−1)− V (yj, wq, tL−1)

]√
∆y∆w

≤ sup
j
|vjq(tL−1)− V (yj, wq, tL−1)|e−r(tL−1−tL−2)

(
1 +O

(
∆3
))

= O
(
∆2
)
.
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In the last inequality, we take advantage of the fact that

∑
jq

Γ(yi, wp, tL−2; yj, wq, tL−1)
√

∆y∆w = e−r(tL−2−tL−1)
(
1 +O

(
∆3
))
,

because G(x, ξ, tL−2; y, w, tL−1) is the deterministic discount factor times a density.

Indeed, the approximation operators built on indicator functions are shape pre-

serving, (see Dechevsky and Penev (1997) and Cosma et al. (2007)), and the

property of integration to one of a density is preserved. The O
(
∆3
)

term is

the speed at which the sum
∑

jq Γ(yi, wp, tL−2; yj, wq, tL−1)
√

∆y∆w converges to∫
dydw

∑
jq

∫
dθ1θ2G(yi, wp, tL−2; θ1, θ2, TL−1)ej(θ1)εq(θ2)ej(y)εq(w), and can be checked

using the same series expansions techniques as in the proof of Lemma 2. It read-

ily follows that vi(tL−2) = V (yi, tL−2) + O
(
(∆y)2

)
. The extension to prior dates

tl = tL−3, tl = tL−4, . . . , immediately follows by recursively applying the same arguments

used above.

The proof of Proposition 1 can be performed in a more general framework, and for

basis sets other than indicator functions. The key requirement is that only a finite

number of basis functions contribute to the the approximation of a function at a given

point (yi, wp). Examples are orthonormal wavelets, non-orthogonal and bi-orthogonal

wavelet bases, and B-splines. The use of these function bases may be useful when we

need a basis that better adapts to the specific geometry of more complicated pricing

problems.
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Appendix B. Space Translation Invariance Property of

Transition Matrices

Let the N ×W matrix of computed prices at time t = tl be denoted by v2(tl), that

is v2,jq(tl) = vjq(tl). Let Γ2(yi, wp, tl; tl+1) be the N × W matrix of the approximated

transition probabilities from the initial point (yi, wp) to the end points of the entire grid

{(yj, wq)}j=1,...,N ;q=1...,W , as provided in Appendix B of the main paper. We then have

that Γ2,jq(yi, wp, tl; tl+1) = Γ2(yi, wp, tl; yj, wq, tl+1)
√

∆y∆w, and we can express Equation

(15) of the main paper as:

vip(tl) = max
{
H(yi, tl),

N∑
j=1

W∑
q=1

Γ2(yi, wp, tl; yj, wq, tl+1)vjq(tl+1)
√

∆y∆w
}

= max
{
H(yi, tl),Γ2(yi, wp, tl; tl+1) : v2(tl+1)

}
, (11)

where the symbol “:” denotes the Frobenius, or entry-wise, product. Figure 1 graphically

presents the Recursive Projections in the bivariate case.

The transition matrix Γ2(yi, wp, tl; tl+1), as implicitly defined in Equation (11), is a

function of the conditioning values (yi, wp). The following remark greatly simplifies and

speeds up the computation of the transition matrices. The evolution of the asset prices

logarithm in the stochastic volatility model has the property that increments are inde-

pendent of the price level. Let M2(log(x), ξ, tl; log(y), w, tl+1) = G2(x, ξ, tl; y, w, tl+1)y be

the bivariate state price density as a function of log(y) and let M̂2(log(x), ξ, tl;λ, κ, tl+1)

be its Fourier transform. Let furthermore Ψ2((log(y))i, wp, tl; tl+1) be a matrix whose

entries Ψ2,jq((log(y))i, wp, tl; tl+1) = Ψ2((log(y))i, wp, tl; qj, wq, tl+1)
√

∆y∆w are the ap-

proximations of M2((log(y))i, wp, tl; (log(y))j, wq, tl+1) obtained by applying a FFT on

M̂2((log(y))i, wp;λ, κ, tl+1).
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Then Equation (11) becomes:

vip(tl) = max
{
H(e(log(y))i , tl), Ψ2((log(y))i, wp, tl; tl+1) : v2(tl+1)

}
,

where vip(tl) is now the approximation to the value V (e(log(y))i , wp, tl). We have that

Ψ2,jq((log(y))i+ζ , wp, tl; tl+1) = Ψ2,j−ζ q((log(y))i, wp, tl; tl+1) for ζ ∈ Z, provided that 0 <

i + ζ < N . We refer to this property as to the space translation invariance property of

transition matrices. In implementations, we compute Ψ2((log(y))i, wp, tl; tl+1) only once

for at-the-money values of ((log(y))i, wp), and reconstruct the other transition matrices

exploiting the space translation invariance property. Again, this feature exemplifies the

computational advantage of direct sampling based on equally-spaced grids.

If we have to take into account discrete dividends, as in Section 3.2 of the main paper,

at each dividend date th, we must compute the continuation value of the option at the grid

{(log(elog(y)i−d), wp)}i=1,...,N ;p=1,...,W . If the original grid {(log(y)i, wp)}i=1,...,N ;p=1,...,W has

a regular step in the log(y)i direction, then this is no more true for the grid {(log(elog(y)i−

d), wp)}i=1,...,N ;p=1,...,W . We can still take advantage of the space translation invariance of

the transition matrices because the state price densityM2(log(x), σ2
t , th; log(y), w, th+1) is

a function of log(x) and log(y) only through the difference log(y)− log(x). Let us perform

the following change of variable:

V (x− d, σ2
t , th) =

∫∫
d log(y)dwM2(log(x− d), σ2

t , th; log(y), w, th+1)V (elog(y), w, th+1)

=

∫∫
d log(y)dwM2

(
log(x), σ2

t , th; log(y) + log
( x

x− d
)
, w, th+1

)
V (elog(y), w, th+1)

=

∫∫
d log(y)dwM2

(
log(x), σ2

t , th; log(y), w, th+1

)
V (e(log(y)+log(1−d/x)), w, th+1).

For pricing by recursive projection, this procedure translates into the relationship:

vip(th) = max
{
H(elog(y)i , th),Ψ2(log(y)i, wp, th; th+1) : ṽ2;d(th+1)

}
, where ṽ2;d(th+1) are

approximations of the value function V (e(log(y)j+log(1−d/elog(y)i )), wq, th+1) obtained by a
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second-order interpolation of the elements of v2(th+1). We can still compute the

Ψ2(log(y)i, wp, th; th+1) matrices on the regular grid {(log(y)i, wp)}i=1,...,N ;p=1,...,W , and

we can still use the space translation invariance property to speed up computations.

Appendix C. Comparison with Other Methods

In this section we compare the speed and performance of our recursive projection

method with i) finite difference methodologies ii) binomial trees iii) Monte-Carlo simula-

tion techniques.

C.1. Comparison with finite difference methodologies

We conduct two simulation studies under the assumption that the underlying process

follows a stochastic volatility Heston model. In the first, the American call has a time to

maturity of one year, and 3 dividends worth d = 2 are distributed at th = 0.25, 0.5, 0.75.

In the second, the time to maturity remains one year, but a single large dividend d = 10

is paid out after six months. The process parameter values are the following: r = 0.05,

σLT = 0.2, β = 2 and ω = 0.2. Moreover we choose the parameter ρ to be equal to zero.

We compute the price for an at-the-money option (S0 = K = 100). The benchmark

method in this analysis is a finite-difference (hereafter FD) numerical solution of the

partial derivatives equation (PDE ) that describes the evolution of the price process Vt

of the American call. We implement an alternating direction implicit (ADI ) variant of

the finite-difference scheme. For a recent discussion of schemes similar to FD, see, for

instance, in’t Hout and Foulon (2010). This implementation is equivalent to a Crank-

Nicolson scheme, which in standard problems converges at a rate O
(
(∆t)2

)
, where ∆t is

the temporal discretization interval. In both the FD scheme and the recursive projections,

the evolution of the option price Vt is studied on a rectangular grid in the space (X, σ2),
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withX ∈ [log(K)−10σLT
√
T , log(K)+10σLT

√
T ] and σ2 ∈ [0, 0.3]. In the FD scheme, the

parameter ms gives the number of equally spaced grid points in the X direction, and mv

gives the number of equally spaced grid points in the σ2 direction, so that the grid points

are {(Xi, σ
2
p)}i=1,...,ms;p=1,...,mv . The parameter LT gives the number of time steps used.

In the recursive projections, under a sampling scheme we define ∆y = 2−Ja, where a is a

positive constant that gives the step of the {yj}j=1,...,N grid when J = 0. Describing the

convergence of the recursive projections in terms of the parameter J emphasizes how the

approximation error decreases each time the number of grid points is doubled. Similarly,

∆w = 2−Jwaw, where aw is the step with Jw = 0 of the {w}p=1,..,W grid in which the σ2
t

variable takes values.

Assuming the contemporaneous correlation ρ = 0 simplifies the implementation of the

FD scheme, in the sense that neglecting the correlation between Xt and σ2
t makes the FD

scheme easier to code and faster. On the other hand, the speed and complexity of the

recursive projection method are unaffected by the value chosen for the parameter ρ. The

correlation is addressed in the Green function G2(x, σ2
t , t; y, w, T ) and consequently in the

coefficients of the matrix Ĝ2. Because the speed of the method depends on the number

of entries in the Ĝ2 matrix, and not on the values taken by the entries, it is clear that

the choice of ρ does not affect the convergence rate of the recursive projections. This

feature is the first advantage of the recursive projection over finite-difference schemes.

This simulation study will then give a lower bound to the difference in speed between

the recursive projections and the FD scheme. To price an American option on dividend-

paying stocks, we should implement the FD scheme-equivalent of the recombining tree.

Doing so is practically unfeasible because it would mean computing at each ex-dividend

date a new option price at each point of the grid. Instead, at each ex-dividend date

th and at each grid point (Xi, σ
2
p), we opt for comparing the intrinsic value H(Xi, th)

with the continuation value V (X̃d
i , σ

2
p, th), where X̃d

i is the value of the X grid closest to
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log(eXi − d). This choice amounts to perturbating the FD scheme at each ex-dividend

rate, which could translate into a convergence slower than the theoretical O
(
(∆t)2

)
.

This feature is a second advantage of the recursive projection over the finite-difference

schemes, because the recursive projections can easily adapt to discrete dividends without

their affecting the convergence properties of the algorithm. The recursive projections

achieve convergence quickly in the σ2 direction. The method does not seem to improve

by setting a resolution level greater than Jw = 4; thus, we keep this value fixed throughout

our simulations. The FD scheme is also not very sensitive to the number of points used

in the σ2 direction. We find no improvement beyond mv = 31.

Figure 2 shows the results for the 3-dividend case. The true value used to compute

the pricing errors is 7.397, obtained with the resolution level J = 13. The graph on the

right displays the pricing error of the FD scheme as a function of the time discretization

parameter LT . Each line is relative to a different value of the spatial discretization

parameter ms. The time labels are all relative to the ms = 3200 curve. The FD scheme

with LT = 2048 and ms = 6400 delivers a value within 1bp; thus, we assume that the

methods have converged when the absolute value of the relative error is within 1bp of

7.397. The graph on the left plots the relative pricing error of the recursive projections

against the resolution level J . The regression line on the left graph shows that the

estimated slope is almost exactly the slope of −2 predicted by the theoretical convergence

results of Proposition 1. The FD is at least one order of magnitude slower. Compare, for

instance, the computation time needed to deliver a 4bp error (2s against 65s), or a 1bp

error (8s against 130s). Figure 3 compares the convergence speed of the two methods

in the 1-dividend case. The true value of 7.302 is obtained by the recursive projection

method with J = 13. The FD scheme requires 48 seconds to reach a 5bp relative error,

with parameters ms = 400 and LT = 2048. The bottom curve, relative to ms = 200,

shows that the method does not converge for smaller values of the space discretization
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parameter. The small 5bp bias of the FD is due to the large value of the dividend d

and the perturbation of the scheme at each dividend date. The rate as a function of

the resolution level J at which the recursive projections attain the 1bp error band is

approximately -2, as theoretically predicted.

[Figure 2 and 3 about here]

The reason for the difference in speed between the recursive projections and the FD

scheme lies in the fundamentally different way finite differences and quadrature methods

deal with time stepping. Both methods achieve time stepping through matrix multipli-

cations. But while the number of time steps in the FD is of the order of 29 or higher,

the recursive projections only need 3 or 4 time steps, one per divided payment, plus

the expiry date. The size of the parameters LT , ms and mv determines the efficiency of

the implementation of the FD scheme. If we compare the magnitude of the parameters

LT , ms and mv that we need to obtain convergence with the values of the equivalent

parameters in in’t Hout and Foulon (2010), we find that our implementation is close to

the most recent ones in the literature. While specific implementations could marginally

improve on ours, we think that we give a fair representation of the potential of the two

techniques. We remind that the computational time per time step is underestimated in

our simulation, since the assumption of ρ = 0 reduces the number of intermediate steps

in the ADI implementation of the FD scheme. Finally, if we include jumps in the process

of the underlying stock, as we do in our empirical application, the numerical complexity

of the recursive projections remains exactly the same as in the stochastic volatility case.

Introducing jumps in the underlying process while keeping the finite differences viable

from a computational point of view asks for technical devices (see for instance d’Halluin

et al. (2005)) which are model specific and not yet implemented in conjunction with

stochastic volatility.

Another notable difference between the FD and the recursive projection method is
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that the latter demands far fewer changes to adapt to different pricing problems. The

matrix G(t;T ) depends only on the dynamics of the underlying asset and not on the

payoff. We can compute it once for all and use it to price different options with different

payoffs, because the payoff functional form only impacts the vector H(T ). Such a design

is particularly suited for object-oriented programming, which is often used in quant desks.

In finite-difference schemes, we cannot price options with different payoffs through the

use of the same transition matrices, as boundary conditions affect the way the matrices

are computed.

C.2. Comparison with binomial tree methodologies

As a first numerical example in the Black-Scholes framework, we compare the con-

vergence speed of a binomial tree and of the recursive projections method in pricing an

American call option on a dividend-paying stock. Two popular modeling choices for the

dividend payment are a known cash amount d or a known dividend yield rd. The latter

is computationally friendly because it leads to a recombining tree. The known dividend

amount assumption does not lead to a recombining tree, and a new tree is originated at

each node following an ex-dividend date, increasing the numerical complexity of the prob-

lem. The work of Vellekoop and Nieuwenhuis (2006) provides a recent enhancement of the

classical binomial tree method which incorporates discrete dividend payments through an

approximation of the continuation value of the option at the ex-dividend dates. This new

algorithm has been proven to be substantially faster than the standard non-recombining

binomial tree, and is therefore a reliable benchmark for this simulation exercise.

[Figures 4 and 5 about here]

Figure 4 compares the convergence speed of the enhanced binomial tree and that of the

recursive projections method in pricing an American call option on a discrete dividend-

paying stock. The option has a maturity of T = 3 years and a dividend d = 2 is paid
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out at the end of each year. Other parameters, namely the interest rate, volatility and

strike price, are set equal to r = 0.05, σ = 0.2, and K = 100, respectively. We compute 3

prices: at-the-money, in-the-money and out-of-the-money, corresponding to S0 = 80, 100,

and 120, respectively. The true values of 7.180, 18.526, and 34.033 are obtained with

10000 time steps in the binomial tree. The graphs show that, across the three different

values of S0, the recursive projections enjoy an increase of speed of approximately a

factor 10 for a comparable level of precision. The speed advantage is even larger if we

consider that a new tree is needed for each value of S0. Instead, the recursive projections

method delivers the entire value function v(0) at once in a straightforward manner.

This feature is particularly useful in computing Greeks through numerical differentiation.

As an additional benchmark, Figure 5 displays the convergence speed of the recursive

projections jointly with the one of a standard non-recombining tree. Even though the

non-recombining tree is known to be an inefficient method, it is still used as a common

reference point in the literature, and we show this graph for comparison purposes. We

can see that the gain of speed of the recursive projection is of the order of 104. As an

aside, for S0 = 100, if we approximate the known constant dividend d = 2 with a known

continuous dividend yield3 rd = 0.013, then a binomial tree with 10000 steps delivers a

value of 18.213 instead of 18.526, with a relative error of approximately 169bp. This error

is far above observed bid-ask spreads. This simple example points to the importance of

using models that can explicitly address discrete dividends in empirical analysis, instead

of using approximations based on continuous dividend yields.

Recursive projections provide an accurate approximation even for payoffs with strong

discontinuities, such as a digital payoff H(Stl , tl) = IStl>K
in a Bermudan digital call

option. In this numerical example, we use the standard binomial tree as a benchmark,
3The yield is obtained by considering the dividends paid at t = 1 and t = 2 only, because the dividend

paid at t = 3 has no impact on the price of the option. Considering a dividend yield of 2% would provide

an option value of 16.857, which is a much larger error.
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since the method of Vellekoop and Nieuwenhuis (2006) provides no advantage in the

absence of dividends. Figure 6 (see the caption of the table for the values of the parameters

of the example) shows that the binomial tree has problems capturing the discontinuity

in the payoff function. Consequently, an extremely slow convergence of the tree method

for at-the-money Bermudan digital call options is yielded. The recursive projections

are also at least an order of magnitude faster in pricing the out-of-the-money options.

The apparent non-monotonic convergence of the binomial tree for S0 = 120 is because

both methods achieve a quick convergence for in-the-money options, and the graph only

displays small oscillations on the order of half a basis point around the true value.

[Figure 6 about here]

C.3. Comparison with Monte-Carlo simulation methods

Another group of numerical methods that can be applied to the same pricing problems

are the Monte-Carlo simulation methods. They can handle both discrete dividends and

multidimensional settings. The least-squares approach of Longstaff and Schwartz (LS)

provides a simulation based algorithm to price American options, via a lower bound for the

true price. This lower bound is then coupled with an upper bound in the implementation

of Andersen and Broadie (2004) of the duality approach of Haugh and Kogan (2004)

and Rogers (2002). In their numerical results, Andersen and Broadie (2004) show that

the gap between the lower bound and the upper bound can be very tight, making the

algorithm appealing. In Figure 7, we compare the speed and accuracy of the LS algorithm

with our method in the same three examples as before. Our algorithm is faster than the

LS method by at least four orders of magnitude. Intuitively, the main advantage of our

algorithm is that it needs to evaluate the option only when it can be optimal to exercise

it. In the case of a call option, this happens just before the payment of the dividends.

In this specific example, when there are only two dividend payments, our algorithm
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computes the final price with only two recursions. On the contrary, every simulation

based method needs to simulate the entire trajectories, increasing the computation time.

The duality approach implementation of Andersen and Broadie (2004) builds on the LS

algorithm and necessitates additional simulations at each potential exercise date to build

the upper bound for the price, thus further increasing the numerical complexity and the

computation time. Given the results obtained for the LS algorithm, we can confidently

conclude that our algorithm is also faster than the duality approach in pricing a call

option written on a stock which distributes regular discrete dividends.

Appendix D. Data and Calibration Procedure

We conduct our analysis over the period January 1996 - December 2012. We use all

short term call option series with maturity less than six months written on the dividend-

paying stocks belonging to the Dow Jones Industrial Average Index (DJIA) at the end of

2012. According to other studies (Barraclough and Whaley (2012); Pool et al. (2008)),

we proxy for the timing of the expected dividends paid during an option life time with

the actual distribution time of dividends, and we proxy for future dividends amounts by

using the last known dividend amount. We exclude from our sample the data relative

to periods in which the underlying stock experiences an unusual corporate event that

may alter the option valuation, such as special dividend distribution, new equity issue,

or spin off. To ensure the exclusion of the effects of such corporate events and their

anticipation by investors from our sample, we do not consider the data starting from nine

months before the special corporate event up to nine months after. After applying these

exclusionary criteria, we obtain a dataset of 1701 days before ex-dividend to analyze.

For each stock and at each day before an ex-dividend date, we separately calibrate the

parameters of the models of Black-Scholes, Merton, and Bates on a calibration sample

by minimizing the implied volatility mean squared error (IVMSE) as IVMSE(χ) =
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∑n

i=1(σi−σi(χ))2, where χ is the set of parameters to estimate, σi = BS−1(Ci, Ti, Ki, S, r)

is the market implied volatility and σi(χ) = BS−1(Ci(χ), Ti, Ki, S, r) is the model implied

volatility, where Ci(χ) is the model price of the American option i. The choice of this loss

function follows the argumentation of Christoffersen and Jacobs (2004). The calibration

made on implied volatilities is more stable out of sample, in particular for the stochastic

volatility model. We infer the model specific parameters of the underlying process by

calibration on a set of reliable and liquid option data. More specifically, the calibration

sample consists of contracts traded in the four months preceding the calibration day,

that have no dividend payment in their remaining life. These contracts can be treated

as European. In this way we can take advantage of the semi-closed pricing formula for

European options. We then apply some exclusionary criteria: we do not consider options

that should be optimally exercised, because their price is equal to the exercise proceeds

for mostly all values of the parameters and the minimization problem is ill posed. We thus

consider the option quotations that strictly satisfy the following inequality: C > S−K; we

do not consider option data with a price less than 3/8 of a dollar, in order to avoid effects

due to price discreteness; we do not consider options with volume equal to zero as the non-

traded quoted prices are not reliable prices; finally, we do not consider options which are

deep in-the-money or deep out-of-the-money, as they can destabilize the minimization

problem. Following Bollen and Whaley (2004), a call option is classified deep in-the-

money if its delta is larger than 0.875. Symmetrically, a call option is classified deep out-

of-the-money if its delta is less than 0.125. After applying these criteria, the calibration

sample at each day before the ex-dividend date consists of 110 call options on average.

The models of Black-Scholes and Merton are one-dimensional and do not present any

particular numerical issue; so we simply calibrate all their parameters on the calibration

sample described above. The Bates model, on the contrary, is two-dimensional. There-

fore, in addition to the calibration of its parameters, it needs the calculation of the daily
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instantaneous spot volatility σ0, which is a non-observable variable. It is also a more

sophisticated model with its seven parameters. In order to efficiently calibrate it, we use

a procedure where we take into consideration the specific role of the parameters on the

implied volatility surface. To the best of our knowledge, we are the first academic work

in which the Bates model is calibrated on single stocks. Hence we borrow some intuition

for our new calibration procedure from the practitioners studies of Hagan et al. (2002),

and West (2005). According to these studies, each parameter of the volatility dynamics

has a specific impact on the term structure of the implied volatility smile. The volatility

of volatility ω rules the convexity of the smile while the correlation parameters ρ rules

the slope of the smile. In the two works cited above, the authors consider a pure diffusive

process for the volatility, ignoring the mean reversion part. They show that for short term

options this reduced model provides a very good fit to the data. Indeed, for the short

term options the value of ∆t is very small compared to the possible values of ∆W and

the dynamics of the stochastic volatility process is driven mainly by the Brownian motion

part. The role of the mean reverting part of the stochastic volatility process of Heston

is to reproduce that implied volatilities of long maturity options are less volatile than

those of short maturity options and are usually closer to the long run average volatility.

The mean reverting part avoids that the volatility increases indefinitely with maturity.

In principle, for our application on short term options, only the diffusion component of

the stochastic volatility is sufficient to give a good fit. However, as we want to employ

the full dynamics of the Bates model, we calibrate the mean reversion and the long term

volatility parameters as well on long term options.

To this end, we calibrate the parameters in two steps: first, we calibrate the jump pa-

rameters together with the volatility of volatility and the correlation on the short term

options calibration sample described above. In this optimization, we do not consider the

mean reversion part of the stochastic volatility. Then, as a second step, we calibrate
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the mean reversion and the long term volatility on a sample of two long term options,

while keeping the other parameters fixed to those obtained in the previous step. For the

calibration, we use the two long term options with the highest trading volume among the

long term options with maturity between ten months and two years which were recorded

in the four months before the calibration. In this long term calibration, we use as objec-

tive function the minimisation of the price percentage mean squared error instead of the

implied volatility mean squared error. As the long term options have dividends during

their life and their American price differs from the European one, we cannot recover the

implied volatility in the usual way. If we had calibrated the long term volatility and the

mean reversion on the short term options directly, we would have obtained an unreason-

able high value for the mean reversion and an unreasonable low value for the long term

volatility. This spurious effect is due to the very high convexity of the short term smile

combined with the drift part of the stochastic volatility dynamics having little or null

impact on the prices of short term options, as explained before.

For the calculation of the non-observable daily instantaneous spot volatility σ0(t),

we follow the result of Medvedev and Scaillet (2010). We use the time series of the

one month (or close to) European at-the-money implied volatility as proxy for the spot

volatility. For the days considered in the calibration sample we have European options by

construction. In addition to these days, we need as well to compute the value of σ0 on all

days before the ex-dividend dates in order to price options and determine which options

should be exercised. On the day before the ex-dividend date, however, all options have

a dividend during their life, as the first dividend is paid the day after. In principle there

are no European options available. In order to make it possible to calculate σ0 on the

day before the ex-dividend date, we consider as European the options which should not

be exercised and which have only the dividend paid the following day left during their

remaining life. These options are not European only because they have an early exercise
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possibility until the dividend is paid. However, as the dividend is paid the following day

and these contracts are outside the early exercise region, the early exercise premium is

nearly zero and the price of the American option almost coincides with the price of an

European option. In the same spirit, Bakshi et al. (2003) extract the European implied

volatility from the American options prices, and they show that the difference between

the European implied volatility and the American implied volatility is negligible and

within the bid-ask spread. By employing the same approximation, we calculate σ0 at

each day before the ex-dividend date as the average of the European implied volatility

of the at-the-money options that should not be exercised with maturity one month (or

close to).

The results of the calibration with a breakdown per stock are presented in Table 1.

We note that the calibrated values of the parameters are homogeneous among stocks, and

take sensible values in line with other studies made on index options (see Bakshi et al.

(1997)).
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Underlying BS MRT BTS
σBS γ σM σψ µψ γ σψ µψ ω σLT β ρ σ0

All stocks 0.29 1.33 0.22 0.16 -0.12 0.50 0.18 -0.12 0.75 0.32 1.52 -0.35 0.28
SP500* 0.18 NA NA NA NA 0.61 0.14 -0.09 0.4 0.2 3.93 -0.52 0.2
MMM 0.25 1.10 0.20 0.11 -0.13 0.40 0.16 -0.12 0.68 0.29 1.38 -0.44 0.36
AA 0.38 1.68 0.30 0.22 -0.14 0.50 0.28 -0.18 0.88 0.36 1.61 -0.33 0.34

AXP 0.34 2.19 0.25 0.14 -0.11 0.58 0.14 -0.06 0.78 0.37 1.34 -0.54 0.33
T 0.27 1.05 0.21 0.15 -0.09 0.37 0.16 -0.11 0.69 0.33 1.48 -0.26 0.29

BAC 0.32 1.58 0.24 0.18 -0.16 1.20 0.18 -0.14 0.98 0.36 1.60 -0.45 0.34
BA 0.31 1.54 0.24 0.15 -0.13 0.40 0.18 -0.12 0.80 0.33 1.56 -0.37 0.24
CAT 0.32 1.51 0.26 0.13 -0.10 0.54 0.15 -0.06 0.78 0.35 1.46 -0.37 0.30
CHV 0.24 1.00 0.20 0.12 -0.09 0.26 0.15 -0.10 0.55 0.27 1.55 -0.26 0.23
CSCO 0.32 1.36 0.25 0.17 -0.12 1.53 0.08 -0.10 1.08 0.32 1.88 -0.36 0.29
KO 0.24 1.03 0.19 0.13 -0.12 0.41 0.15 -0.11 0.66 0.27 1.49 -0.34 0.23

XOM 0.24 0.92 0.19 0.15 -0.12 0.79 0.17 -0.12 0.69 0.24 1.57 -0.38 0.27
GE 0.27 1.06 0.21 0.17 -0.14 0.41 0.18 -0.17 0.83 0.36 1.43 -0.30 0.34

HWP 0.37 1.81 0.28 0.20 -0.13 0.64 0.24 -0.20 0.98 0.45 1.76 -0.33 0.31
HD 0.32 1.45 0.24 0.21 -0.15 0.43 0.28 -0.19 0.77 0.38 1.77 -0.39 0.34

INTC 0.38 1.82 0.29 0.20 -0.14 0.38 0.30 -0.28 0.75 0.36 1.64 -0.32 0.26
IBM 0.28 1.81 0.21 0.13 -0.14 0.51 0.22 -0.15 0.71 0.29 1.84 -0.38 0.21
JNJ 0.22 0.87 0.17 0.13 -0.10 0.32 0.16 -0.10 0.67 0.25 1.49 -0.29 0.24
JPM 0.33 1.19 0.28 0.15 -0.10 0.27 0.18 -0.06 0.64 0.33 1.61 -0.34 0.26
MCD 0.25 1.08 0.20 0.13 -0.11 0.32 0.12 -0.12 0.65 0.26 1.31 -0.37 0.25
MRK 0.27 1.22 0.22 0.15 -0.11 0.40 0.14 -0.12 0.80 0.36 1.58 -0.32 0.24
MSFT 0.25 1.34 0.19 0.17 -0.09 0.35 0.24 -0.13 0.77 0.28 1.56 -0.22 0.34
PFE 0.28 1.45 0.21 0.17 -0.10 0.44 0.20 -0.13 0.80 0.28 1.25 -0.20 0.27
PG 0.21 1.00 0.17 0.14 -0.11 0.74 0.11 -0.07 0.57 0.25 1.29 -0.39 0.22
TRV 0.29 1.41 0.21 0.17 -0.08 0.49 0.16 -0.05 0.82 0.32 1.71 -0.23 0.27
UNH 0.33 1.30 0.27 0.18 -0.16 0.99 0.24 -0.17 0.93 0.32 1.55 -0.48 0.28
UTX 0.27 1.17 0.22 0.13 -0.11 0.38 0.16 -0.11 0.66 0.30 1.47 -0.38 0.26
VZ 0.28 1.24 0.21 0.18 -0.11 0.60 0.17 -0.09 0.74 0.33 1.41 -0.24 0.33

WMT 0.26 1.14 0.21 0.15 -0.09 0.40 0.19 -0.09 0.71 0.29 1.44 -0.31 0.26
DIS 0.29 1.23 0.22 0.16 -0.09 0.50 0.23 -0.05 0.74 0.31 1.44 -0.37 0.26
DD 0.28 1.25 0.22 0.15 -0.12 0.37 0.18 -0.13 0.67 0.28 1.51 -0.40 0.27

Table 1: Average values of the parameters of the models of Black-Scholes (BS), Merton
(MRT) and Bates (BTS), calibrated at each day before the ex-dividend date on the
options written on the dividend-paying stocks belonging to the Dow Jones Industrial
Average Index (DJIA). In total we computed 1701 calibrations and the average values
shown in the table are computed on the results of those calibrations.
The in-sample sum of squared error is on average equal to 0.26 for the Black-Scholes
model, 0.20 for the Merton model, and 0.16 for the Bates model.

*The source of the calibrated parameters of the SP500 dynamics is the work of
Bakshi, Cao and Chen (1997).
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