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Abstract 
The fundamental concept of phase is discussed in this tutorial aimed at providing 

students with an explanation of the delays and processing parameters they may find in 
NMR pulse programs. We consider the phase of radio-frequency pulses, receiver, 
magnetization and how all these parameters are related to phases and offsets of 
signals in spectra. The impact of the off-resonance effect on the phase of the 
magnetization is discussed before presenting an overview of how adjustment of the 
time reference of the free induction decay (FID) avoids first-order correction of the 
phase of spectra. The main objective of this tutorial is to show how the relative phase 
of a pulse and the receiver can be used to change the reference frequency along direct 
and indirect dimensions of NMR experiments. Unusual applications of phase 
incrementation with non-90 degree angles will be illustrated on 1D and 2D NMR 
spectra. 
  



1 | Introduction 
Phase appear at every turn in conversations about NMR spectroscopy and refer to 

many different features, often without clear distinction. This can make it quite 
mystifying to beginners. Even a simple 1D NMR spectrum involves a total of four 
phase-related quantities: the phase of the excitation pulse, the phase of the receiver, 
the phase of the detected magnetization, and finally the phase of the peak resulting 
from the phase correction of the spectrum.  

This tutorial will carry readers through a journey addressing some interesting but 
overlooked aspects of basic pulsed NMR spectroscopy. It will discuss some 
mysterious delays and parameters having to do with phase that can be found in 
modern pulse programs that are not explained in pulse sequence manuals. We have in 
mind the short delay between the excitation pulse and the start of the acquisition in 
1D experiment, the subtraction of a fraction of pulse duration from t1 in some two-
dimension experiments, the argument for using 180° as the first-order corrections in 
the indirect dimension of some 2D spectra, etc. We shall not attempt to provide a 
complete background of NMR spectroscopy - this can be found in standard 
textbooks[1-4] - but introduce them at the relevant point of a focused presentation of a 
simple excitation pulse (Section 2) followed by detection (Section 3). A comparison 
of direct and indirect detection will follow in Section 4.  

One of the puzzling questions for beginners concerns the frequencies visualized 
in NMR spectra. On modern NMR spectrometers, the precession frequencies are 
usually in the order of hundreds of MHz, however, the maximal frequencies in NMR 
spectra are typically in the tenths of kHz. In order to explain this apparent 
inconsistency we should remind that the “carrier” frequency 𝜈#$  is subtracted from 
the NMR signal. The frequencies observed in a spectrum are often called “offset” 
frequencies and are given by:  

	 𝛥&' = 𝜈&' − 𝜈#$ 	 (1)	

where 𝜈&'  is the Larmor frequency of the signal 𝑖  expressed in Hertz. This 
subtraction is performed for direct observation (of 1D and the t2 axis of 2D 
experiments) using a quadrature detection[2, 3] we shall discuss in some details below. 
Concerning the indirect detection of two-dimensional experiments it is interesting to 
already point out that signals in t1 directly appear as 𝛥&' , because the pulses, which 
flank the t1 evolution, are phase-coherent (see below) and this acts as the subtractor of 
𝜈#$ . An important exception is J-spectroscopy where the Larmor precession is 
refocused at the end of t1.  

A loss of information about the relative signs of the frequencies of signals may 
occur because of the subtraction of the reference frequency (Eqn 1). The ability to 
distinguish these relative signs is called a “frequency discrimination”. This is 
particularly important when the carrier is located in the middle of the NMR spectrum. 
In contrast, frequency discrimination is not necessary when the carrier frequency is 
set outside the range of observed frequencies (e.g. 𝜈#$ < {𝜈&' }). We should see, in 
Section 2, a disadvantage of this circumvention and, in section 3.7 the elegant 
solution introduced by Redfield using a phase incrementation of the receiver resulting 
in a virtual shift of the carrier frequency. We will call this apparent carrier frequency, 
the reference frequency 	𝜈/0$  which may differ from 𝜈#$ . A clue towards the 
understanding of the relationship between phase and reference frequency appears 



when realizing that a phase incrementation introduces a time dependence that can be 
characterized by a frequency. 

This tutorial will demonstrate mathematically and graphically how the carrier 
frequency can be virtually shifted using the phase of the receiver during direct 
detection and how the 2D quadrature detection method called TPPI (Time 
Proportional Phase Incrementation)[5] operates. It will also show that the phase 
incrementation is not limited to 90° increment, thus providing a superior control over 
reference frequencies in one- and two-dimensional experiments. 

2 | Hard pulses 
NMR spectrometers are equipped with frequency synthesizers that permanently 

generate sinusoidal radiofrequency (RF) signals (dotted line in Figure 1). Hard pulses 
are produced by opening, for a few microseconds, an electronic gate between the 
synthesizer and the amplifier connected to the coil located in the probe head.  

 

	
Figure 1 Radio-frequency pulses and their phases. The x pulse (broad black line) has 
a phase zero: it is aligned with the carrier frequency (dotted black line). The grey 
pulse is shifted by 20°. The pulses with phase 0° (black), 90° (blue), 180° (green) and 
270° (orange) are called x, y, -x, and -y according to the direction of the corresponding 
vectors in the rotating frame. 

The effect of these pulses will be to tilt the magnetization of the nucleus 
resonating at this frequency from the equilibrium state along the direction of the main 
magnetic field (z-axis) towards the x/y plane where its free precession will be 
recorded until its decay. The phase of the pulse therefore determines the phase of the 
detected signal.  

The signal produced by the synthesizer is also used for referencing the detection 
of the signal. It is subtracted during the quadrature detection in a similar manner as 
pulses, it can be given any arbitrary phase shift, 𝜙/0#, which is called the receiver 
phase. (see the Supplementary Material) 

2.1 The phase of hard pulses 

On modern spectrometers, the RF pulses can be given a phase which corresponds 
to the direction of the pulse in the rotating frame. This is obtained by shifting the RF 
signals (see colored signals in Figure 1 and the Supplementary Material) to obtain any 
desirable phase 𝜙2 relative to the carrier. This produces a RF signal  

	 𝐵4(𝑡) = 𝐵4 cos;2𝜋	𝜈2𝑡 + 𝜙2?	 (2)	



where 𝜈2 is the frequency of the pulse, 𝐵4 is the amplitude of the RF field (see 
below), and 𝜙2 is its phase. Note that the frequency of the pulse can also be shifted 
(see the Supplementary Material), but it is usually set to correspond to the frequency 
of the middle of the spectral range of the isotope of interest and 𝜈2 = 𝜈#$ . 

Most of the time, the phase shift is a multiple of 90°, but some applications use 
other increments, in particular in multiple-quantum NMR spectroscopy.[6-9] 
Alternating the phases of pulses and detector in successive acquisition is a central tool 
of NMR spectroscopy called “phase cycling”. It is used to cancel out unwanted 
signals by adding and subtracting FID's according to the phase of pulses and adding 
up the desired magnetization.[1-4] 

The pulse amplitude 𝐵4 in Eqn 2 corresponds to the strength of the applied RF 
magnetic field. It is set on the spectrometer in dB or in Watt depending on the 
spectrometer manufacturer. But in the NMR literature, it is of common practice to 
relate a magnetic field strength to a precession frequency expressed in Hz (or kHz). 
This has the advantage to directly express the nutation frequency, i.e. the frequency of 
the precession of the spin magnetization about the 𝐵4	field: 

 𝜈/$ = @4
A
BCD
AE
@	 (3)	

where 𝛾  is the nuclear gyromagnetic ratio, and the factor 4
A
 arises from the 

rotating wave approximation.[3] We follow here the convention used in “Spin 
Dynamics”[3] where the nutation frequency is always positive regardless the sign of 𝛾, 
so the nutation happens according to right-hand rule for both nuclear types. The phase 
of the rotating frame in this convention 𝜑/$ = 𝜋 for nuclei with 𝛾 > 0, and 𝜑/$ = 0 
for 𝛾 < 0, which is assumed in the Bloch spheres of this paper.[10, 11] 

The product of the duration of the pulse 𝜏2	and the nutation frequency 𝜈/$ 
determines how much the magnetization will turn about the RF field. It is called the 
“flip” angle. 

	 𝛽 = 360°	𝜏2𝜈/$ .	 	(4)	

It is often set to 90°, but in most routine 1D NMR experiments, the desired tilt 
angle is not 90°, the angle resulting to the strongest signal of fully relaxed 
magnetization, but 30°. Compared to a 90° pulse, such a “small flip or tilt angle” 
produces half the signal (because sin(30°) = 0.5) which is detrimental. But the 
recovery delay can be reduced to an extent that more than compensates this reduction 
because the magnetization starts closer to the equilibrium position.[1] Note that the 
actual optimal angle, called the Ernst angle[12] requires the knowledge of the T1 
relaxation time, making it of little practical use.[1]  

In general, a hard RF pulse with a flip angle b, and a duration 𝜏2 should have an 
amplitude  

	 𝐵4 = 4𝜋 O
PQ&°B

4
RS
.	 	(5)	



2.2 Effects of the offset on the phase of the magnetization  

A 90° pulse has a typical duration of 10 µs which, according to Eqn 4, 
corresponds to a 25 kHz nutation frequency. In the rotating frame (considering that it 
rotates with a frequency 𝜈#$), the on-resonance magnetization, (i.e. the magnetization 
of a spin resonating at the frequency of the 𝐵T⃗ 4field) will follow a circular trajectory 
across the surface of a Bloch sphere about 𝐵T⃗ 4. At 25 kHz, it makes a quarter cycle 
towards the x/y plane in 10 µs (see Figure 2A). 

		
Figure 2 Bloch spheres representation of the trajectory of the on-resonance (A) and 
off-resonance (B) magnetization during a 90° RF pulse. The off-resonance trajectory 
was calculated for an offset frequency ∆	= 12.5 kHz (𝜈/$/2). The phase shift 𝜃 was 
measured on the projection of the trajectory of the magnetization onto the x/y plane. 
(C) In-plane components of the magnetization during and after the pulse for ∆	ranging 
from −𝜈/$/2 to 𝜈/$/2 and steps of 𝜈/$/10. The star indicates the virtual origin of the 
periodic function representing the free evolution of the magnetization starting at the 
end of the pulse. 



When the spin is off-resonance, that is when its Larmor frequency differs from 
the carrier frequency by ∆, the effective field 𝐵T⃗ 0$$ must be considered instead of 𝐵T⃗ 4 
alone. The Figure 2B shows that the coordinates of 𝛾𝐵T⃗ 0$$ are 𝛾𝐵4	and 2π∆ in the x 
and z dimensions respectively and its norm  

	 |𝛾B]^^| = _𝛾B4A + (2π∆)A.	 	(6)	

In general, the magnetization follows a trajectory deviating from the x/z-plane 
and ends up slightly off the x direction (see Figure 2B). This causes the magnetization 
to display a phase shift 𝜃 corresponding to the angle between the x-axis and the 
projection of the magnetization onto the x/y-plane. This shift can be calculated by 
simple integration and turned out to be reasonably linear (see Figure S1 in the 
Supplementary Material) over the usual spectral window of 1H and 13C isotopes.  

This phase deviation of the magnetization, in turn, causes a phase shift b in the 
spectrum. This will give some dispersive character to the peaks with the characteristic 
negative component (see the peaks on the right of Figure 2A and B and the Real 
component of the spectrum in Figure 3). A pure absorption shape can be restored 
using a first-order correction; the well-known process by which most spectra are 
tuned - often manually - to eliminate any negative contribution due to a dispersive 
component and present spectra with the pure-absorptive lineshape.[1-4] In the absence 
of signal overlap, the phase of signals can be measured in the DISPA representation 
of spectra (see left part of Figure 3).[13, 14] 

	
Figure 3 Three-dimensional representation of a simulated spectrum of a singlet with a 
30° phase shift. It is composed of the real (horizontal project) and imaginary (vertical 
projection) components of the spectrum. Note that the projection of the spectrum 
along the frequency axis (Dispersion versus Absorption – or DISPA representation) of 
a pure Lorentzian shape corresponds to a circle (left). The angle between its top 
position and the vertical axis corresponds to the phase of the signal. In a well-phased 
spectrum, the curls should all point up. 

2.3 Avoiding phase correction of the spectra by shifting the time reference of 

the FID 

An elegant alternative to the first-order phase correction caused by chemical-shift 
evolution during hard pulses consists in moving the time reference of the acquisition 
in such a manner as to cancel the linear component of the phase shift. Indeed, the 
magnetization evolves during the pulse as shows the dashed colored lines in Figure 
2C. As a consequence, the start of the acquisition of the FID does not correspond to 
the true beginning of the in-plane evolution. Interpolating the trajectory of the 



transverse magnetization back from the end of the pulse shows that there is a point 
where they all join (see the stars in Figure 2C).  

Setting the time reference of the detected signal to - 𝑡`&°
#  before Fourier 

Transformation eliminates the need to apply a first-order correction. For a 90° pulse, 

	 𝑡`&°
# = A

E
𝜏2 .	 (7)	

This property is exploited on modern spectrometer using digital filters to define 
the reference time (on Bruker instruments this time is called acqt0) of the acquisition 
of the FID and to eliminate most of the first-order phase shift introduced by hard 
pulses.  

 For a pulse with b 	< 90°, the correction is smaller because the phase 
dispersion is less active when the magnetization is far from the transverse plane. In 
general, the time correction is 

	 𝑡O# =
O
`&

A
E
𝜏2,		 (8)	

when 𝛽 < 90°. In the absence of digital filtering, a manually set first-order 
correction (phc1 in the Bruker language) would therefore be set to: 

 −360 ∙ 2 ∙ 𝑆𝐵 ∙ 𝑡# (9)	

where SB is the sampling bandwidth (sometimes called "spectral width" – SW in 
the Bruker language) of the spectrum in Hz. This angle, expressed in degrees, 
corresponds to the difference in the phase of the two ends of the spectrum.  

2.4 Off-resonance effect, out-of-phase magnetization and excitation profile 

In order to observe the bandwidth limitation of hard pulses, one should study the 
effect of the pulse beyond the ±	0.5	𝜈/$ boundaries. The dotted lines in Figure 4A and 
4B plot the trajectories of the magnetization for values of 1𝜈/$ and from 2 to 6𝜈/$, 
respectively. The position of the magnetization at the end of the pulse, i.e. the 
moment when the free evolution starts, is highlighted with a blue line in Figure 4A 
and 4B. The projection of these positions on the x/y plane (bold black line) represents 
the amplitude and phase of the signal that can be directly detected during the free 
evolution. The Mx and My components and the norm of these vectors plotted as a 
function of the frequency offset constitute the so-called “excitation profile” of the 
pulse shown in Figure 4D.  



	
Figure 4 (A, B) Bloch spheres of the magnetization following a 90° pulse. The full 
trajectories of the magnetizations were plotted using dashed lines for 𝛥/𝜈/$ = 1 (A) 
and for integer values ranging from 1 to 6 (B). Open green circles indicate where the 
effective-field vectors penetrate the surface of the sphere, i.e. the direction about 
which the magnetization (dotted line) precesses. (C) Out-of-phase singlets with phase 
shift of 0, 55.0, 101.8, 143.7, 5.2, 48.8, 93.7° respectively. (D) Excitation profile of 
the final position of the magnetization following the pulse as a function of 𝛥/𝜈/$. The 
bold black line corresponds to the norm of the vector formed of the Mx (blue line) and 
My (red line) components of the magnetization.	The dashed blue line corresponds to 
the square of the Mx component, the expected profile of a combination of two 
consecutive pulses. 

For an offset of 1𝜈/$, the magnetization ends up with nearly equal Mx and My 
components, but the signal amplitude is expected to be almost quantitative as the 
projection is quite close to the x/y-unit circle (Figure 4A) i.e. high on the excitation 
profile (bold line in Figure 4D). The signal amplitude is quite satisfactory, but a phase 
shift of about 45° will be observed. For 2𝜈/$, the magnetization draws almost a 
quarter-circle, ending up quite high above the y axis and with a small Mx component 
of opposite sign relative to on-resonance magnetization. (see Figure 4B) In this case, 
that is at frequencies	±2𝜈/$, the -y pulse is not producing Mx-magnetization (as on 
resonance), but My-magnetization. Whether a phase shift is problematic or not 
depends on what follows the pulse and is discussed in the next two paragraphs. 

When the magnetization is detected after the pulse - as in a simple 1D pulse-

detection experiment - the signal intensity is proportional to f𝑀h
A + 𝑀i

A (continuous 



line in Figure 4D). In this case, the boundaries of the 90% efficiency (horizontal 
dashed line in Figure 4D) is found at ±1.58 ∙ 𝜈/$  which corresponds to a range of 
±39.5 kHz for a 10 µs excitation pulse. But, one should remember that a signal at 
these boundary positions will be nearly 90° out of phase (see the position 2, in Figure 
4B).  

When the magnetization is not detected immediately after the pulse, but further 
transformed by hard pulses (for example in 2D experiments, when using z-filters, [15] 
spin echo, etc.), only one component of the magnetization can be exploited : the x 
component which has a 90% efficiency covering only ±0.5 ∙ 𝜈/$ . This corresponds to 
roughly one third of the bandwidth of the direct detection. In many cases, and because 
of the combined imperfections of the two pulses, the ideal profile corresponds to the 
square of the Mx-profile and the 90% is further reduced to ±0.3 ∙ 𝜈/$ . In practice it 
may be even smaller because of inhomogeneity in the 𝐵4  field caused by the 
imperfections of the RF coil.  

The offset corresponding to the first minimum of the excitation profile is found at 

	 𝛥 = _(PQ&/`&)kl4
RS

mn
= √4p

RS
mn
= √15𝜈/$ ,		 (10)	

and corresponds to a magnetization drawing a full circle ending-up along the z-
axis. (See “4” in Figure 4B) This minimum can be understood by the fact that the 
corresponding spins have felt an effective field during the second half of the pulse 
exactly cancelling the one of the first half of the pulse.  

2.5 Further reading 

The hard pulses are still quite commonly used even if numerous alternatives have 
been introduced. Their discussion is beyond the scope of this article but we shall 
mention of few of them. The hard pulse can be improved, for example, by replacing 
the 90 with a 270 degree rotation[16] to make them self-refocusing pulses (see the 
Supplementary Material to compare the trajectories of 270° and 90° pulses). The off-
resonance effects of hard pulses can also be reduced using composite pulses[17-21] 
consisting of catenated multiple pulses - typically three - with different phases. But 
they can also be replaced by pulses that vary either in amplitude (shaped pulse) [22, 23] 
or frequency (e.g. CHIRP pulses).[24-26]  

Another interesting property of the off-resonance effects were studied by D. Suter 
et al.[27], who showed how a non-linear phase evolution of the magnetization is related 
to geometrical phase factors, i.e. the phase acquired due to motion of spins along 
different trajectories. The reader can refer to the numerous reviews available on these 
topics knowing that the above-mentioned references were selected arbitrarily.  

3 | Quadrature detection 

3.1 “Complex” detection of the free-induction decay 

After an excitation pulse, the magnetization evolves in the x/y plane and 
generates the detected signal. This magnetization is decomposed into Dr =
c𝑜𝑠(2𝜋𝛥&𝑡) and Du = 	𝑠𝑖𝑛(2𝜋𝛥&𝑡) components using quadrature detectors (see the 
Supplementary Material). The use of “complex numbers” allows one to use Euler 



formula to combine Dr and Du values as the real and imaginary components of a 
complex function  

	 Dw = Dr + iDu = 𝑐𝑜𝑠(2𝜋𝛥&𝑡) + 𝑖𝑠𝑖𝑛(2𝜋𝛥&𝑡) = 𝑒'AE{|} 	 	(11)	

where	𝑖 = √−1.	 Note	 that	 relaxation	 is	 not	 considered	 here,	 but	 would	
simply	introduce	an	𝑒𝑥𝑝(−𝑡/𝑇A)	factor	to	account	for	the	signal	decay.	

The 𝑐𝑜𝑠 and 𝑠𝑖𝑛 components of a positive signal with a 2 Hz offset frequency are 
plotted in Figure 5A and 5B respectively together with their three-dimensional 
representation (in blue). 

	
Figure 5 Three-dimensional representation with projection of the Dx (A) and Dy (B) 
components of a signal with an offset frequency of 𝛥& =	+2 Hz (blue). (C, D) Positive 
(green) and negative (red) signals with 𝛥& 	=	-2 Hz frequencies. For clarity the Mx- 
and My-components are projected vertically and horizontally respectively (black 
lines). The relaxation time 𝑇A	= 5/π s for this and the following figures. 

3.2 “Standard” quadrature 

The “classical” detection of NMR signals uses two outputs in order to measure 
the orthogonal components simultaneously. The principle of quadrature detection is 
described in the Supplementary Material. In short, the carrier frequency of the pulses 
is set to the middle of the spectral range of the isotope so that the excitation profile is 
centered and the off-resonance effects are minimized (see Figure 4). When the two 
outputs of the quadrature detector are perfectly orthogonal and assuming the 
magnetization lies along the x-direction in the rotating frame after the pulse, the signal 
induced in the receiver are the real (Dx) and imaginary (Dy) components of D+ (see 
Sim detection in Table 1). A simulated spectrum acquired using this quadrature is 
shown at the top of Figure 6.  
  



 
Table 1. Phase sequences and detection times used for frequency discrimination.  

	 	 	 	 	 	 	 	 	 	 	 Sign	of	aliased	signals2	 	

	 	 	 	 	 	 	 	 	 	 Nyquist1	 with	initial	t1	evolution	=	
	 n3	=	 0	 1	 2	 3	 4	 5		 6	 7	 violation	 0	 inc/2	 inc	 Artifacts4	 Remark	 	

	 Real	 x	 x	 x	 x	 x	 x	 x	 x	 folding	 +	 -	 +	 		 CF-shift5	 		

	 Real6	 x	 		 x	 		 x	 		 x	 		 aliasing	 +	 -	 +	 middle	 FT-shift7	 	

	 Imag.	 y	 		 y	 		 y	 		 y	 	 	 		 	 	 	 	 	 	

	 Real8	 x	 	y	 x	 	y	 x	 y	 x	 y	 folding	 -	 +	 -	 middle	 	 	 	

	 Real9	 x	 	y	 -x		-y	 x	 y	 -x	 -y	 folding	 -	 +	 -	 bottom	only	 	 	

	 Real10	 x	 		 y	 		 -x	 		 -y	 		 aliasing	 +	 -	 +	 top	and	bot.	 	

	 Imag	 y	 	 -x	 	 -y	 	 x	 	 	 	 	 	 	 	 	 	
1 See Section 4.1. 
2 See Section 4.3. 
3 At time t = n dw, where dw is the dwell time of the sampling. The phases x, y, -x and -y 

correspond to 0, 90, 180 and 270° respectively. 
4 According to Ref.[28] 
5 The carrier frequency has to be set to the side of the spectrum for frequency discrimination. 
6 Called Sim and States for direct and indirect detection in the Bruker language. 
7 The two halves of the spectrum have to be swapped after FFT to correct the scale. 
8 Called Seq and QSEQ for direct and indirect detection in the Bruker language. The relative 

phases of the pulses for QSEQ and TPPI are identical. For QSEQ, the relative phases are [x, y, x, y] and 
the detector alternates as [x, x, -x, -x] while for TPPI, the cycle is [x, y, -x, -y] for the pulses and the 
detector phase is constant on x. 

7 Called TPPI for indirect detection in the Bruker language. 
8 Called States-TPPI for indirect detection in the Bruker language. Same properties as for E/AE. 
 

		
Figure 6 Simulated spectra obtained after Fourier transformation of the FID 

acquired using (A) a simultaneous detection of the two channels of the quadrature 
detector, (B) a single-channel detection with the ν�^ at one side of the spectrum, (C) 
the single-channel detection with 90° phase incrementation (Redfield trick) and (D) 
the simultaneously detection of orthogonal components and phase incrementation. 
The phase of the detector was aligned to the excitation pulse. When the detector is set 
to 45 or 90 degrees out of phase relative to the excitation pulse, the negative peaks 
appear dispersive or positive respectively (see Figures S4 in the Supporting 
information). Note that one half of the data generated by the Fourier transform is 
discarded when single-channel detection is used.  



3.3 Fourier transformation 

The NMR spectra are usually obtained using the Fourier transform (FT), which 
converts the time-domain signal into a frequency domain spectrum: [1-4] 

	 S(𝜐)=	∫ 𝐷(𝑡)𝑒l'AE�}𝑑𝑡�
l� .	 (12)	

When combining Eqns 11 and 12 the integral becomes 

	 S(𝜐)=∫ 𝑒'AE{|}𝑒l'AE�}𝑑𝑡�
l� = ∫ 𝑒'AE({|l�)}𝑑𝑡�

l� ,	 (13)	

Such a spectrum consists of a single delta function 𝛿(𝛥&), a function that returns 
zero except when 𝜐 = 𝛥&. In other words, a signal can be observed at the frequency 
𝛥&.	 Including the exponential decay would produce absorptive and dispersive 
Lorentzian lineshape centered at 𝛥& in the real and imaginary components of the 
spectrum respectively.  

When considering discretely recorded data, the range of correctly determined 
frequencies depends on the dwell time - the time between two sampled data points - 
according to the Nyquist condition, which is usually expressed as[1-4] 

	 𝑑𝑤 = 1/2𝑆𝐵.	 (14)	

In the case of standard acquisition data (“Sim” in the Bruker language), the sign 
discrimination being possible, the effective frequency range is [-SB/2 : +SB/2]. 

3.4 Alignment of the pulses and receiver phases 

The phase of the pulse and the receiver, φ� and φ�]�, acquire some discrepancy 
because of the sensitivity of the resonant circuit to the experimental conditions in the 
vicinity of the detector’s coil. This phase difference 𝜑�'$$ on the detected signals 
influences the detected signal: 

	 Dw0// = 𝑒'[AE({|l�)}w�����].	 (15)	

A spectrum with 𝜑�'$$  = 30° is shown in Figure 3. A property of the exponential 
function allows to isolate the 𝜑�'$$  term as 

	 Dw�'$$ = 𝑒'AE({|l�)}𝑒'����� .	 (16)	

The zero-order phase corrections consist in multiplying the signal 𝐷w�'$$  with a 
phase correction functions 𝑒'�����  to obtain the corrected signal: 

	 Dw = 𝑒'AE({|l�)}𝑒'�����𝑒'����� .	 (17)	

The zero-order correction 𝜑#�// is adjusted manually or automatically until the 
spectrum shows an absorption lineshape. This occurs when φ���� = −φ]��, which 
cancels the 𝑒'����� 	term because 



	 𝑒'�𝑒(l'�) = 1.	 (18)	

When considering the 3D representation of the signal (see Figure 5), the phase 
difference has the effect of turning the whole spiral by a 𝜑�'$$  angle. This rotation is 
simply corrected by a rotation in the opposite direction. 

Note that the zero-order phase difference can be corrected in the time or the 
frequency domains. But the correction of frequency-dependent phase is done using a 
first-order correction in the frequency domain. First-order correction in the time 
domain has a completely different effect: it shifts the frequencies of signals as will be 
shown in Section 3.7. Finally, note that the first-order phase correction in the 
frequency domain is mathematically not a perfect solution to restore a pure absorption 
lineshape, especially in case of severe overlap and the presence of a dispersive 
component[3]. It may, for instance, cause a “rolling” of the baseline requiring further 
processing.  

3.5 The problem with single output hardware  

Historically, signals have not always been detected using quadrature detection. 
Early spectrometers could detect only one component of FIDs. The problem with 
single-output detection (only Dx or Dy) is that the relative signs of the signals cannot 
be determined unambiguously after subtraction of the carrier frequency. For the x 
component, the problem is an ambiguity in the sign of the frequency because cos(Δ) = 
cos(-Δ). This can also be understood by observing that those projections of positive 
and negative frequencies have the same shape (compare the projections in Figure 5A 
with Figure 5C). For the y channel, the problem is that positive signal cannot be 
distinguished from negative signals with the opposite frequency because sin(Δ) = –
sin(–Δ) (compare Figure 5B with Figure 5D).  

The application of the FT to real data (called real because they miss the 
orthogonal imaginary component to make them complex) results to two delta 
functions, instead of one. When considering the cos component, a property of the 
trigonometric functions expressing the cos	(a) as (e�� + el��)/2, the result of the 
Fourier transform is 

	 𝑆(2𝜋𝜈) = ∫ cos	(2𝜋𝛥&𝑡)𝑒l'AE�}𝑑𝑡
�
l� = ∫ 0��k�( �¡|)¢w0��k�( £¡|)¢

A
𝑑𝑡�

l� .(19)	

This corresponds to two non-zero elements for +δ(−Δ&)  and +δ(Δ&) often 
characterized as “inphase” or [++] pattern. For the sin component, sin	(a) expressed 
as (e�� − el��)/2i, the FT results to  

	 𝑆(2𝜋𝜈) = ∫ sin(2𝜋𝛥&𝑡) 𝑒l'AE�}𝑑𝑡
�
l� = −𝑖 ∫ 0��k�( �¡|)¢l0��k�( £¡|)¢

A
𝑑𝑡�

l� (20)	

which is corresponding to −𝛿(−𝛥&) and +𝛿(𝛥&) often called “antiphase” or 
[−+] pattern. 

Obviously combining the two components (Eqns 19 and 20) results to Eqn 13 
with unambiguous frequency discrimination because the resulting spectrum is the sum 
of the [+ +] and the [− +] patterns where one of the two lines cancels out to produce 
a single peak [0 +]. Note that historically, the detection of the two components of the 
signal was relying on two separate electronic devices making the subtraction 



imperfect. This was resulting in small so-called “quadrature images” at the −𝛥& 
frequency which can be seen as the results of the imperfect subtraction of signals with 
opposite signs. During the last 20 years, the digital quadrature detection systems 
deployed on NMR spectrometer avoid this problem.[29] 

3.6 Avoiding single-channel problems with shift of the frequency to a spectral 

boundary 

In order to avoid the problem with the sign of the peaks and the sign of their 
frequencies mentioned earlier, one solution consisted in moving the frequency of the 
carrier (affecting the RF pulses and the dectector) to one of the sides of the spectrum 
instead of the center.[12] The spectral window was set to double the effective value 
causing the dwell time to become twice as small. But instead of detecting n real and n 
imaginary points (each measured simultaneously), 2n real data points were 
(sequentially) detected over the same acquisition time (see Table 1). The spectra 
obtained after Fourier transformation were twice as large (Figure 6B) but presented 
symmetry properties with respect their centers. Only one half of the produced data 
were stored as spectrum. The second half was discarded, being either symmetrical 
(with pure cos modulation), antisymmetric (with pure sin modulation) or more 
generally out-of-phase (when the cos and sin components were mixed). (See Figure 
S4 in the Supplementary Material). Note that this method has the disadvantage to 
introduce spectral discontinuity because signals that are accidentally cut at the 
spectral boundaries are not continuing at the other side, unlike those acquired using 
the simulteneous method (compare Figure 6A and 6C). 

When using single-channel detection, the frequency range is [0 : SB] instead of 
[-SB/2 : SB /2] for the standard detection. In other words, the problem of negative 
frequencies is avoided by shifting the carrier frequency. The number of digitized 
points is the same (2N real instead of N complex data points) and the maximal 
evolution time is also the same. But a major drawback of this approach is that the 
pulses are not applied in the middle of the spectrum thus not optimal with respect to 
the offset effects discussed in Section 2.4.  

3.7 Phase incrementation for quadrature detection 

The solution to the problem of shifting the carrier frequency to a side of the 
spectrum was introduced in 1975[30] by Redfield and coworkers. It is quite interesting 
historically and also fundamental for understanding the TPPI quadrature schemes 
used in many multidimensional NMR spectroscopy.  

The “Redfield trick” consists of avoiding the problem of negative frequencies by 
adding a virtual rotation of the detector with a frequency υ¨0� 	= SB/2 . This 
translates the range of detected frequencies to [-SB /2 : SB /2] instead of [0 : SB] and 
allows frequency discrimination with a single output detection. Instead of detecting 
signals with a constant phase, (𝜑/0# = 0) as in Figure 7A, the phase is incremented by 
an angle ψ for each detected point : 

	 𝜑/0#(𝑛) = 𝑛ψ,	 (21)	

where n is the point number. For ψ = 90°, this phase series corresponds to 0, 90, 
180, 270, 360, etc. which corresponds to the x, y, -x, -y, x, etc. directions in the 
rotating frame.  



A mathematical demonstration of the relationship between the phase 
incrementation and the frequency shift is given in the Supporting material while the 
3D representations of Figure 7 demonstrates graphically how the 90 °  phase 
incrementation corresponds to adding SB /2 to the apparent frequency of signals. 

	
Figure 7 (A) Single channel detection of a decaying signal with an apparent 
frequency of 0.5 Hz (one cycle over 2 s). The 3D and projection on the y axis are 
plotted in blue and black respectively. Winding the time axis clockwise with a 90° 
increment at each point in a manner similar to the opening of a hand fan illustrates 
Redfield’s sampling (B). The direction of the detector (grey dashed lines) is constant 
in A, but follow the outer black helix in B. The green ticks representing the signal 
amplitudes measured at discrete time intervals have the same length in A and B, but 
in B, the apparent frequency of the signal is decreased by 2.5 Hz (SB /2) and appear 
to be of -2 Hz (the bold blue line in B makes four turns over two seconds). The 
spectral width SB = 5 Hz is determined from the dwell time of 0.1 s using the Nyquist 
condition (Eqn 14). Note that the y axis was inverted relative to Figure 5 for clarity. 

3.8 Setting the reference frequency to any arbitrary position 

The phase incrementation does not necessarily move the apparent carrier to a side 
of the spectrum. It can be shifted to any desired frequency by setting the ψ angle to 
values other than 90°. The Figure 8 shows the effect of a 4.5° (𝜋/40) incrementation 
in the case of a 5 Hz spectrum. The spectrum is shifted by 5/40 = 0.125 Hz which is 
expected knowing that a 90° (𝜋/2) phase shift would causes a shift of signal of 2.5 Hz 
(SB /2) .  



	
Figure 8 (A) Detection of a signal with a 4.5° phase incrementation. (B) Spectra 
obtained using Redfield and (C) complex quadrature detection. Compared to non-
incremented detection (upper traces in B and C), the resulting spectra (lower traces in 
B and C) are shifted by 0.125 Hz.  

Note that depending on the type of quadrature, the signals reaching the spectral 
boundaries are either folded in (Figure 8B) or aliased (Figure 8C). Spectral aliasing is 
usually preferred because it allows restoration of a normal spectrum by simple 
rotation (cycling permutation) of the data points relative to the scale. 

4 | Two-dimensional NMR spectroscopy 

4.1 Quadrature in the indirect dimension 

Two-dimensional NMR spectroscopy requires two independent time evolutions 
to achieve frequency discrimination. In general, one needs to acquire sine and cosine 
modulated 2D datasets along the indirect dimension, although it is not always 
possible. The possibility to do this depends on the spin dynamics; for correlation 
spectroscopy it is achieved by changing the phases of some pulses flanking the 𝑡4 
evolution. 

In the indirection dimension of correlation spectroscopy experiments, the detector 
is replaced by the pulse marking the end of the t1 evolution. It is a hard 90° pulse, 
characterized by a frequency and a phase, the same two relevant properties of the 
detector in direct detection. Let us consider the situation of phase cohorence, occuring 
when the last pulse has the same frequency 𝜈#$  as the first one and is produced by the 



same synthesizer. What truly matters is the relative phase of the pulses of the 
indirectly detected isotope. Repeating the experiment twice by shifting the relative 
phase by 90° produces two orthogonal modulations for the indirect dimension. Note 
that it is important to properly digitize this data as hypercomplex numbers[31], thus 
giving independent control of the phases in the two spectral dimensions.[5, 32, 33] 

Beside this important difference, the other aspects of quadrature are quite similar 
in direct and indirect detections, but some are named differently (see Table 1). In the 
indirect dimension, there is no problem of phase alignment between pulses and the 
detector, meaning that there is, in principle, no need of zero-order phase correction.  

The right part of Table 1 reports some properties of diverse F1-quadrature[33]. The 
“standard” simultaneous detection is usually called “States” [32] or “SHR” (the initials 
of the authors of the paper States, Haberkorn, and Ruben) for indirect quadrature. The 
Redfield method applied to indirect dimensions is called QSEQ in the Bruker 
vocabulary, but a variant called TPPI (Time-Proportional Phase Incrementation)[5] is 
usually preferred. The States-TPPI, which combines the phase incrementation and 
simultaneous detection is favored when using spectral aliasing to improve the indirect 
F1 resolution[34]. Another advantage of States-TPPI and TPPI methods over States 
(Sim) is to avoid the zero-frequency artifacts to appear in the middle of the F1 
dimension.   

When the Nyquist condition is violated, signals outside the boundaries either 
appear as if the spectrum had been folded at the edges (folding) or at the other side of 
the spectrum (aliasing).[1]  

4.2 Avoiding phase correction in the indirect dimension 

An advantage of indirect detection is to facilitate the manipulation of the 
magnetization - something which is difficult to do when a data point is recorded every 
few microseconds. One can include, for example, a J-coupling refocusing pulse, such 
as the 180° pulse on the 1H channel during the 13C evolution of HSQC experiments. 
In some cases, one can also include a refocusing pulse to compensate for the chemical 
shift evolution during the pulses and the minimal inter-pulse delay (usually 3 us).  

In most homonuclear experiments, such as COSY, TOCSY, etc., it is impossible 
to avoid a minimal t1 chemical shift evolution because chemical shift refocusing is not 
possible. This minimal evolution may be quite short (a few microseconds 
corresponding to the minimal inter-pulse delay or the time of evolution during the 
pulses delimiting the t1 evolution) or much longer (hundreds of microseconds) if a 
pulse-field gradient is included during the t1 evolution time. In the second case, 
phasing the F1 dimension would be quite difficult and the spectra would probably 
need to be displayed in the magnitude mode. (The standard quick gCOSY[35, 36] 
experiments are of this type.) In the first case, a phase correction could be applied in 
F1 in a manner similar to the one presented in section 2.3, but the next paragraph will 
show that a property of the Fourier transform allows to produce spectra in pure 
absorption even when the spectra include aliased or folded signals.  

4.3 Starting t1 evolution with half the dwell time 

The solution to the problem of evolution during the first t1 increment is 
reminiscent of the one presented in paragraph 2.3. But instead of allowing the phase 
correction to take the value dictated by the 𝑡O# evolution time, one inserts an additional 
delay to the first t1 evolution time so that 𝑡4'¬'}. =

4
A
𝑑𝑤.[37] According to Eqn 9, the 



required phase correction will be exactly -180° (phc1 on Bruker’s software) because 
the phase of peaks will vary from 90 to -90 across the spectrum. The advantage of 
using this additional delay is that after phase correction, all signals, including the 
aliased ones, will appear in pure absorption. A pictorial demonstration is given as 
Supplementary Material, (Figure S5B), but the argument is that the phase correction 
needed at any F1 position is the same except for a 𝑛 ∙180° (𝑛 ∈ ℕ) residual phase 
which only influences the sign of the peak.  

When the aliasing order 𝑛 of a peak is odd,[34] which occurs for frequencies just 
outside the spectral boundaries, the sign of the peak will be opposite (see column 
"inc/2" in Table 1) relative the same aliased/folded peak in a spectrum recorded with 
an initial t1 evolution equal to zero.  

Note that using 𝑡4'¬'}. = 𝑑𝑤  instead of 4
A
𝑑𝑤  avoids the sign alternation of 

aliased/folded signal (see figure S5C and column "inc" in Table 1). 

4.4 Reference frequency in 2D NMR spectroscopy 

We shall demonstrate in this section that a full control of the reference frequency 
in the indirect dimension of 2D experiments can be obtained by adjusting the phases 
of pulses in a similar manner as for direct detection. Before this, we will see that a 
simple change in the carrier frequency during t1 is not always satisfactory. 

The simplest method to shift spectra in the indirect dimension consists of 
changing the carrier frequency during the t1 evolution time. Let’s, for convenience, 
consider a simple two-pulse COSY sequence. Moving the carrier frequency just after 
the first pulse and setting it back to the middle of the spectrum just before the second 
pulse (see Figure 9) does the trick: The pulses are applied in the middle of the spectral 
window which is desired to limit off-resonance effects, and indeed the spectra will be 
shifted (only) in the indirect dimension after the usual double Fourier transformation. 
The main argument against this approach is technical. If modern spectrometers can 
easily switch frequency, this requires a short period of time, meaning that additional 
delays are introduced in the pulse programs. Even if we discussed solutions to this 
situation in the previous section, it is preferable to avoid them when possible. By 
contrast, the phase-adjustment approach only requires the ability of pulses to have 
user-definable phase, a feature which is included on modern spectrometers and 
requires no additional delay. 

It may be counter-intuitive that changing a frequency during a period with no 
pulse can make any difference in the spectra. But, indeed, the number of cycles per 
time unit changes during the delay and the relative position in the cycle (the phase) 
will be different when the frequency is set back. The relative phase of the pulses is 
therefore affected as the Figure 9 illustrates.  



	
Figure 9 (a) Schematic illustration of the change of pulse phase (broad black lines) 
when the carrier frequency is shifted during the inter-pulse delay. The carrier 
frequency (blue) was increased (dashed line) during the inter-pulse delay. The same 
pulse can be obtained with no change of frequency by adjusting its phase according to 
the inter-pulse delay and frequency offset. For clarity of the figure, the frequencies 
and pulse durations were not drawn to scale. 

Two x-pulses separated by some delay do not have the same relative phases if the 
carrier frequency changes during the delay. This demonstrates that adjusting the 
phases of the pulses is all that is needed to change the reference frequency in a two-
dimensional spectrum.  

A shift of the reference frequency can be obtained, without changing the actual 
RF frequency, by adding to the phase of one of the relevant pulses, the angle 
expressed in degrees 

	 𝜓 = 360(𝜈/0$ − 𝜈#$)𝜏,	 (22)	

where 𝜏 is the difference between the time of application of the pulses, and 𝜈#$  
the carrier frequency. When the t1 evolution period includes multiple pulses, such as 
in standard HSQC where a refocusing pulse is used, the phases of all the pulses of the 
indirectly detected isotope need to be adjusted relative to a reference. (See 
Supplementary material for the implementation on Bruker spectrometers.)  

An example of application of a frequency offset by phase adjustment (FOPA) is 
shown in Figure 10 for an HSQC experiment acquired using the Echo/Antiecho 
quadrature scheme. Because signals outside the window are aliased with this 
quadrature scheme (see Table 1), a 30 ppm shift of the carrier frequency moves the 
spectrum down and brings the bottom part up (Figure 10B). The Supplementary 
Material presents how to control phases on Bruker spectrometer and shows the result 
of an implementation to the pulse programs of HSQC and DQF-COSY sequences.  



	
Figure 10. Comparison of a normal HSQC centered at 75 ppm (A) and an HSQC 
with a reference frequency shifted to 45 ppm by phase adjustment of the 13C pulses 
during t1 (B). The spectra recorded with E/AE quadrature (as here) have the same 
properties as the ones obtained with a States-TPPI quadrature. Aliased and non-
aliased peaks have the same sign (see column 𝑡4  evolution = 0 in Table 1). 

When using the FOPA method, one should select quadrature causing aliasing 
(versus folding) because the resulting spectra are simply rolled/up as a whole (see 
Figure 10) instead of being folded which may cause offset-dependent overlap in F1 
(not shown).  

The non-90 °  phase incrementations (FOPA) was developed for a double-
chemical shift encoding experiments[38] where the precise but ambiguous chemical 
shift information is encoded by the position of signals in the aliased spectrum while 
the complementary low-precision but unambiguous chemical shift is provided by their 
splitting[38, 39]. In these experiments, requiring a frequency shift to control the splitting 
of the signals, the delays associated to a double change of the carrier frequency 
position had to be avoided. These applications will be presented elsewhere. 

5 | Conclusion 
 In the course of this tutorial, we laid out the relation between the phase and 
frequency of pulse and detector, and the phase of the signals in NMR spectra. We also 
delineated how phase incrementation can change the apparent frequency of signals. 
After discussing simple one-dimension pulse/acquisition experiments, we extended 
the scope of the presentation to the indirect dimension of two-dimensional 
experiments. 
 Finally, we showed how non-standard phase incrementation can produce any 
arbitrary spectral rotation when using complex data.  

Experimental details 
Most figures were generated using the Matlab/Octave programs available as 

Supplementary Material.  



The spectra, including the one shown in the Figures in the Supplementary 
Material were recorded on a 300 MHz 1H Larmor frequency spectrometer. The HSQC 
experiments were recorded on a sample of two cyclopropane derivatives with 256 t1 
time increments for a spectral window of 150 ppm, an offset of 75 ppm and two scans 
per increment. The recovery delay was set to 3 s for a total acquisition time of 30 min. 
The DQF-COSY experiments were recorded for a sample of cyclosporine-A using 
128 time increments over a spectral window of 10 ppm with two scans per 
increments. The recovery delay was set to 3 s for a total acquisition time of 17 min. 
The hard pulse duration were 15 and 10 µs for the 1H and 13C channels respectively. 
All pulse programs and spectra are available as Supplementary Material.  

Supplementary Material 
Beside the material mentioned in the article, the experimental spectra and the 

Matalb/Octave programs used for the preparation of the figures, a set of movies 
representing the dephasing of magnetization during pulses were included in the 
supplementary material and the Github repository https://github.com/Gr-Jeannerat-
unige/SuppDataFOPAphase. 
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1 Phase modulation of pulses 

Besides the time-constant shift of the radiofrequency that determines the phase of 
a pulse, a time-dependent phase shift can change its effective frequency. Phase 
shifters are used to produce a phase modulation resulting in a shift of the pulse 
frequency. Instead of the original value given by the synthesizer frequency 𝜈#$  the 
effective frequency can be adjusted to 𝜈2. It is obtained by applying a linear time 
dependency on the phases: 

 cos;2𝜋	𝜈#$𝑡 + 𝜑(𝑡)? = cos;2𝜋	𝜈#$𝑡 + 2𝜋	𝛿𝑡? = cos;2𝜋	𝜈2𝑡?		

2 Phase shift of the magnetization as a function of the offset 

The deviation from linearity of the phase shift is no more than 3° over 0.5	𝜈/$  

(See Figure S1). This is small enough to make a first-order correction with a value of 
-57 quite satisfactory for the most common isotopes 1H, 13C. Indeed, 0.5	𝜈/$   = 
12’500 Hz and corresponds to +/- 5 ppm at 500 MHz proton Larmor frequency and 
+/- 100 ppm at 125 MHz carbon Larmor frequency. A phase correction over a much 
broader range would require a correction based on the full phase shift function shown 
in Figure S1. 

 

	
Figure S1. Phase shift of signals as a function of the offset given as 𝑛 = ∆/𝜈/$.  

3 Evolution and profiles of 270° pulses 

The bandwidth of a 270° pulse is much smaller than of a 90° pulse (see Figure 
S2). The 90% excitation covers ±0.38, instead of ±1.58 𝜈/$, but for the y component 
alone, the difference is much smaller ±0.38 instead of ±0.5 𝜈/$  . In other words, the 
bandwidth corresponding to a “good” excitation (i.e. with signal having the same 𝑥 
phase) is larger. Indeed, the Mx and the absolute-value profiles are almost 
indistinguishable, unlike for 90° pulses. This property of self-refocusing is 
particularly useful when using selective pulses, that is for pulses with much longer 
evolution. 



		
Figure S2 (A-C) Bloch spheres and (D) excitation profiles of the final position 
of the magnetization following a 270° pulse as a function of 𝜈/$ . The full 
trajectory of the magnetizations (dotted lines in A-C) were plotted for integer 
values of 𝜈/$ equal to 0 (A), 1 (B) and 2 (C). Open green circles indicate the 
direction of the effective-field vectors about which the magnetization (dotted 
lines) precesses. The blue lines and their black projections on the x/y plane in B 
and C correspond to the end point of the magnetization for 𝜈/$ values ranging 
from 0 to 1 (in B) and 0 to 2 (in C). In (D), the broad line corresponds to the 
norm of the vector formed of the Mx (blue) and My (red) components of the 
magnetization. Note that the x-component is quite small within the central bell 
and that the boundaries of the 90% excitation are located at ±0.38 ∙ 𝜈/$	while 
the zero is found at ±0.9 ∙ 𝜈/$ . 

4 Direct quadrature detection 

Let us consider a simple case of just one signal in the spectrum produced by a 
spin-1/2 with the Larmor frequency 𝜈&. The phase of the pulse is set to 𝜑2 =

E
A
, 

corresponding to 𝑦 axis in a rotating frame with a frequency 𝜈#$ . This situation is 
illustrated in Figure 2 of the main text. We consider the action of a hard 90 degree 
pulse 

 𝐵4(𝑡) = − 4
mBRS

sin;2𝜋	𝜈#$𝑡?	

and neglect the off-resonance effects, so the magnetization is flipped to the 𝑥 axis in 
the rotating frame. The probe coil picks up the evolution of the signal, resulting in a 
signal: 



 𝑠(𝑡) ∝ cos(2𝜋	𝜈&𝑡) exp	(−𝑡/𝑇A)	

where 𝑇A is the transverse relaxation time. It is impossible to determine the sense of 
the precession using a single coil, but in NMR we usually do not worry about the 
absolute direction of Larmor precession. Instead, quadrature detector subtracts the 
carrier frequency, as described below.  
 

The Figure S3 illustrates what happens to the signal. Apart from the signal 𝑆(𝑡) 
itself, there is a reference signal, produced by the synthesizer. We consider the case 
when the receiver has a phase 𝜑/0# = 0, so it is as if the detector was along the 𝑥 axis 
of the rotating frame. In the laboratory frame, the reference signal is thus given by: 

 𝑟𝑒𝑓1(𝑡) ∝ cos;2𝜋	𝜈#$𝑡?.	

Both 𝑠(𝑡) and 𝑟𝑒𝑓(𝑡) are then duplicated, and one of the components of the reference 
signal is additionally shifted by E

A
 to produce: 

 𝑟𝑒𝑓2(𝑡) ∝ −sin;2𝜋	𝜈#$𝑡?.	

The mixers perform a mutual amplitude modulation of the 𝑆(𝑡) and 𝑟𝑒𝑓(𝑡) signals, 
thus producing the “real” and “imaginary” parts of the complex FID: 

 𝑅𝑒(𝑡) ∝ cos;2𝜋	𝜈#$𝑡? cos(2𝜋	𝜈&𝑡) exp	(−𝑡/𝑇A)	

	 𝐼𝑚(𝑡) ∝ −sin;2𝜋	𝜈#$𝑡? cos(2𝜋	𝜈&𝑡) exp	(−𝑡/𝑇A).	

A low-pass filter removes high-frequency oscillations and trigonometric properties 
allow to write 

 𝑅𝑒(𝑡) = cos;2𝜋	{𝜈& − 𝜈#$}𝑡? exp	(−𝑡/𝑇A)	

	 𝐼𝑚(𝑡) = sin;2𝜋	{𝜈& − 𝜈#$}𝑡? exp	(−𝑡/𝑇A).	

The reader may verify how these functions depend on the relative values of 𝜈#$  
and 𝜈& . The Figure 5 of the main text illustrates these different cases. Thus, 
quadrature detection conserves the information about the sign of the frequency 
difference with the carrier frequency. 

In modern spectrometers this scheme is a bit more complex, consisting of two 
steps to subtract the frequency: In the first step an intermediate frequency, which is 
far from spectral range, is subtracted in order to avoid the problems with frequency 
discrimination. The signal is then converted by an analog-to-digital converter (ADC) 
and further frequency subtraction is performed digitally. Digital quadrature detection 
generates much cleaner spectra.[1] 
 
 



	
Figure	S3.	Electronic	scheme	of	simple	quadrature	detection.		

5 Influence of the phase of the detector on the phase of detected signals 

 

		
Figure S4 Spectra obtained after Fourier transformation of the FID acquired 

using a detector phase set to 45 (A) and 90° (B) relative to the excitation pulse. (See 
Figure 6 of the main text for more details).  

6 Demonstration of the apparent frequency shift obtained by phase 

incrementation 

At the detected times  

	 tº = 	𝑛 ∙ 𝑑𝑤,	 	

where n is an integer ranging from [0 : 2N-1], and N the number of detected 
points, the signal with a 𝛥& frequency is  

	 𝑆¬ ∝ 	 𝑐𝑜𝑠(2𝜋	𝛥& · 𝑛 ∙ 𝑑𝑤)	 	

The Redfield trick multiplies the detected points with a coefficient 



	 𝑐𝑜𝑠;2𝜋	𝜈#$ · 𝑛 ∙ 𝑑𝑤 + 	𝑛 ∙ ψ?	 	

which, is evaluated after the filtering of high-frequency components to a detected 
signal 

	 𝑆¬ ∝ 𝑐𝑜𝑠 ¼2𝜋(	𝛥& − 𝜈#$ −
½
AE

4
�¾
) ∙ 𝑛 ∙ 𝑑𝑤¿.	 	

The frequency shift caused by the phase incrementation is therefore given by the 
following term: 

	 𝜐À0�(ψ) =
½
AE

4
�¾
.	 	

After combination with the Nyquist condition, it becomes: 

	 𝜐À0�(ψ) =
AÁÂ½
AE

.	 	

This completes the demonstration that a phase incrementation of	𝜋/2 shifts the 
reference frequency from the center to the side of the spectrum because  

	 𝜐À0�(𝜋/2) = 𝑠𝑤/2.	 	

7 Frequency dependence of the F1-phase of peaks when the initial t1 increment 

is non-zero 

Compared to a normal spectrum (top left of Figure S5), spectra recorded with 
𝑡4'¬'}'ÃÄ > 0 show peaks with F1 phases proportional to the difference between their 
frequency and the carrier frequency (black line). This phase is represented in Figure 
S5 by the angle 𝜑 between the cross-sections running from the blue to the red sides of 
the spectra and the horizontal plane (left spectra in Figure S5). 

One can consider aliased spectra (right parts of Figure S5) as spectra that are 
rolled on a cylinder and cut at the opposite side of the carrier frequency.[2] When 
𝑡4'¬'}'ÃÄ = 0, all peaks are positive with a pure-absorption lineshape as shows the flat 
surface of the cylinder in the top-right part of Figure S5.  



	
Figure S5 (left) Representation of the F1-phase of signals of 2D spectra. (A) The 
cross-section is horizontal when the phase is zero. In other cases, the phase is 
represented by the angle between the horizon and the cross-section running from 
the blue to the red sides. The phase varies linearly across the F1 boundaries, by 𝑛 ∙
𝑓 ∙180°	where 𝑓 = 3 and 𝑛 increases from top to bottom. When reducing the 
spectral width by a factor 𝑓, the spectra (left) look as if they were rolled on a rod 
with a perimeter equal to the aliased spectral width (middle) and aligned to 
represent the aliased spectra (right). When the red and blue sides superpose 
(Möbius strip) they were plotted in magenta (right part in B).  

When 𝑡4'¬'}. =
4
A
𝑑𝑤, the phase of signals in the aliased spectrum changes by 180° 

across the aliased spectrum (second row of Figure S5, 𝑛	 = 	1). Because walking over 
a Möbius strip changes of side at every turn, signals with odd and even aliasing order 
𝑛 will have opposite signs (their phases increase by 180° at each turn) as indicated in 
Table 1 of the main text. A 180° first-order phase correction can be applied and 
results in pure absorption for all signals. An advantage of this choice is that the 
change of sign can be used to identify aliased peak. This is commonly done in protein 
NMR spectroscopy where HSQC spectra are often recorded with two-fold aliasing in 
the 15N dimension. 

When 𝑡4'¬'}. = 𝑑𝑤 , (third row, 𝑛	 = 	2) the phases of signals in the aliased 
spectrum changes by 360° across the aliased spectrum (third row). Because of the 
double changes of side of the strip at every cycle (right) all signals have the same sign 



after phase correction. This may be a better choice when signal cancellation is of 
concern.  

When 𝑡4'¬'}. is set to an arbitrary value (last row in Figure S5) the phases of 
signals in the aliased spectrum is different at each turn. The spectrum is therefore 
impossible to phase in the indirect F1 dimension. Note that these F1-phases carry 
information on the aliasing order[2], i.e. the region of the spectrum where the signal 
comes from. Combined with the F1 position of signals in the aliased spectrum, it has 
been used to reconstruct full high-resolution spectra from aliased spectra.[3] 

8 FOPA of DQF-COSY experiments 

The frequency offset by phase adjustment (FOPA) was applied to HSQC (Figure 
10 of the main article) and DQF-COSY experiments (Figures S6 and S7).  

	
Figure S6 DQF COSY spectra recorded without (A) and with (B) a shift of the 
apparent carrier frequency obtained by adjustment of the phase of pulses. The center 
of the spectrum was moved to 1.8 ppm in B. The quadrature was obtained using the 
Echo/Anti-echo method.  



	

	



	
Figure S7 DQF COSY spectra recorded without (left) and with (right) a shift of the 
apparent carrier frequency obtained by adjustment of the phase of pulses. The center 
of the spectrum was moved to 8.15 ppm in the right spectra. The quadrature was 
obtained using (from top to bottom) the TPPI, States and States-TPPI method 
respectively. Note the folding (instead of aliasing) with the TPPI quadrature, and the 
inversion of the signs of aliased signals with the States and States-TPPI quadratures.  

The pulse programs and spectra (including DQF-COSY spectra recorded with the 
States, the TPPI and the States-TPPI methods) are available on GitHub: 
https://github.com/Gr-Jeannerat-unige/SuppDataFOPAphase.  
  



 

9 Pulse sequences including FOPA 

Phase adjustment compatible with Topspin version 2.1pl8 are explained and 
provided in the following section for HSQC E/AE and DQF-COSY E/AE, States-
TPPI, States and TPPI experiments. It is using the first pulse after the end of the t1 
evolution time delay as reference.  

The phase adjustment takes the time between the shifted and the reference pulse, 
the desired reference frequency (cnst21) and the center of the spectrum 
(cnst22=o1/bf1) into account.  

The difference in frequency is calculated as 
"cnstXX=(cnst22-cnst21)*bf1" 
when pulses follow the reference pulse and as 
"cnstXX=(-cnst22+cnst21)*bf1" 
otherwise. 
The phase shift is calculated as 
"cnstYY = 360* cnstXX*((Sum of delays in s) + 0.000001* 

(sum of pulses in us))" 
Example: 
"cnst22=o1/bf1" 
"cnst23=(cnst22-cnst21)*bf1" 
"cnst24=(-cnst22+cnst21)*bf1" 
"DELTA=p16+d16+d13" 
"cnst29=360*cnst24*(d0+0.000001*(p1/2+p1/2))" 
"cnst30=360*cnst23*(d13+d16+0.000001*(p1/2+p16+p2/2))" 
4u ip6+cnst29 
p1 ph1+ph6 
d0 
p1 ph2 ;REFERENCE PULSE PHASE 
DELTA*0.5 UNBLKGRAD 
DELTA*0.5 ip4+cnst30 
p2 ph4 
When a phase phX is modified by the quadrature loop, one should use a dummy 

phase phY which is taking the FOPA into account 
4u iphY + cnstYY 

and	then	add	it	to	𝒑𝒉𝑿	when	the	pulse	is	used	with	
p1 phX + phY 
When the receiver phase has to be incremented, it cannot be done by directly 

modifying ph31 because it is only allowing values equal to 0, 90, 180 and 270 
degrees. But one can use ph30 for the FOPA and use the following command for 
detection: 

 go = 2  ph31  ph30:r 
  



10 POPA pulse sequences 

hsqc_ea_FOPA_2_0.esg 

;$CLASS=HighRes 
;$DIM=2D 
;$TYPE= 
;$SUBTYPE= 
;$COMMENT= 
#include <Avance.incl> 
#include <Grad.incl> 
#include <Delay.incl> 
"p2=p1*2" 
"p4=p3*2" 
"d4=1s/(cnst2*4)" 
"d0=3u" 
"d10=3u" 
"d11=30m" 
"d12=3u" 
"d13=4u" 
"in0=(inf1/2)" 
"in10=in0/cnst9" 
"cnst22=o2/bf2" 
"cnst23=(cnst22-cnst21)*sfo2" ;for ref. to calc. 
"cnst24=(-cnst22+cnst21)*sfo2" ;for calc. to ref. 
"DELTA1=d4-p16-larger(p2,p14)/2-8u" 
"DELTA2=d4-larger(p2,p14)/2" 
"DELTA3=d4-30u-larger(p2,p14)/2" 
"DELTA=p16+d16" 
1 ze 
  d11 pl12:f2 
2 d1 do:f2  
3  
"cnst30 = 360*(cnst24)*(2*d0 + d13 + d16 + 

0.000001*(p3/2 + p2 + p16 + p24/2))" 
"cnst31 = 360*(cnst23)*(d13 + 2*d12 + d16 + 

0.000001*(p24/2 + p16 + p2 + p3/2))" 
  (p1 ph1) 
  DELTA2 pl0:f2 
  4u 
  (center (p2 ph1) (p14:sp3 ph6):f2 )  
  4u 
  DELTA2*0.5 pl2:f2 UNBLKGRAD  
  DELTA2*0.5 ip9+cnst30 
; p28 ph1 
; 4u  
  (p1 ph2)  
  (p3 ph3+ph9):f2 ;ph9 
; first evolution time - t1 
  d0  
  (p2 ph5)  
  d0 



  p16:gp1*EA 
  d16 pl0:f2 
  4u 
  (p24:sp7 ph7):f2 ;REFERENCE PHASE 
  4u 
  DELTA*0.5 pl2:f2 
  DELTA*0.5 ip9+cnst31 
  3u 
  (p2 ph5)  
  3u 
  (p3 ph9):f2 
  (p1 ph1)   
  DELTA2 pl0:f2 
  (center (p2 ph1) (p14:sp3 ph8):f2 )  
  4u 
  p16:gp2 
  DELTA1 pl12:f2 
  4u BLKGRAD 
  go=2 ph31 cpd2:f2 
  d1 do:f2 mc #0 to 2 
     F1EA(igrad EA, id0 & ip3*2 & ip6*2 & ip31*2)  
exit 
    
ph1=0  
ph2=1 
ph3=0 2 
ph4=0 0 0 0 2 2 2 2 
ph5=0 0 2 2 
ph6=0 
ph7=0 0 0 0 2 2 2 2 
ph8=0 
ph9=0 ;incrementation dummy phase for ph3 
ph31=0 2 0 2 2 0 2 0 
;pl0 : 120dB 
;pl1 : f1 channel - power level for pulse (default) 
;pl2 : f2 channel - power level for pulse (default) 
;pl3 : f3 channel - power level for pulse (default) 
;pl12: f2 channel - power level for CPD/BB decoupling 
;sp3: f2 channel - shaped pulse 180 degree for 

inversion 
;sp7: f2 channel - shaped pulse 180 degree for 

refocussing 
;p1 : f1 channel -  90 degree high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;p3 : f2 channel -  90 degree high power pulse 
;p14: f2 channel - 180 degree shaped pulse for 

inversion 
;p16: homospoil/gradient pulse 
;p22: f3 channel - 180 degree high power pulse 
;p24: f2 channel - 180 degree shaped pulse for 

refocussing 
;p28: f1 channel - trim pulse 



;d0 : incremented delay (2D)                [3 usec] 
;d1 : relaxation delay; 1-5 * T1 
;d4 : 1/(4J)XH 
;d11: delay for disk I/O                    [30 msec] 
;d16: delay for homospoil/gradient recovery 
;cnst2: = J(XH) 
;cnst21: F1 reference chemical shift 
;inf1: 1/SW(X) = 2 * DW(X) 
;in0: 1/(2 * SW(X)) = DW(X) 
;nd0: 2 
;NS: 1 * n 
;DS: >= 16 
;td1: number of experiments 
;FnMODE: echo-antiecho 
;cpd2: decoupling according to sequence defined by 

cpdprg2 
;pcpd2: f2 channel - 90 degree pulse for decoupling 

sequence 
;use gradient ratio: gp 1 : gp 2 
;     80 : 20.1    for C-13 
;     80 :  8.1    for N-15 
;for z-only gradients: 
;gpz1: 80% 
;gpz2: 20.1% for C-13, 8.1% for N-15 
;use gradient files:    
;gpnam1: SINE.100 
;gpnam2: SINE.100  



DQF-COSY_ea_FOPA_2_0.esg 

;$CLASS=HighRes 
;$DIM=2D 
;$TYPE= 
;$SUBTYPE= 
;$COMMENT= 
 
#include <Avance.incl> 
#include <Grad.incl> 
#include <Delay.incl> 
 
"p2=p1*2" 
"d11=30m" 
"d12=3u" ;inicial d0 
"d13=4u" 
"in0=inf1" 
"d0=3u" 
"cnst22=o1/bf1" 
"cnst23=(cnst22-cnst21)*bf1" ;ref. to calc. 
"cnst24=(-cnst22+cnst21)*bf1" ;calc. to ref. 
"DELTA=p16+d16+d0" 
"DELTA1=p16+d16+8u" 
 
1 ze 
2 d11 
3  
"cnst29 = 360*cnst24*(d12 + d0 + 2*d16 + 

0.000001*(p1/2 + p16 + p2 + p16 + p1/2))" 
"cnst30 = 360*cnst24*(d0 + d16 + 0.000001*(p2/2 + p16 

+ p1/2))" 
"cnst31 = 360*cnst23*(2*d13 + d16 + 0.000001*(p1/2 + 

p16 + p2/2))" 
"cnst32 = 360*cnst23*(4*d13 + 2*d16 + 0.000001*(p1/2 + 

p16 + p2 + p16 + p1/2))" 
"cnst33 = 360*cnst23*(6*d13 + 3*d16 + 0.000001*(p1/2 + 

p16 + p2 + p16 + p1 + p16 + p2/2))"  
"cnst34 = 360*cnst23*(8*d13 + 4*d16 + 0.000001*(p1/2 + 

p16 + p2 + p16 + p1 + p16 + p2 + p16))"  
 
4u ip3+cnst29 
  d1 
  50u UNBLKGRAD 
  p1 ph1+ph3 
  DELTA   ip3+cnst30 
  p2 ph2+ph3 
  d0 
  p16:gp1*EA 
  d16 
  p1 ph2 ;REFERENCE PULSE PHASE 
  DELTA1   ip3+cnst31 
  p2 ph2+ph3 
  8u 



  p16:gp2 
  d16   ip3+cnst32 
  p1 ph2+ph3 
  DELTA1   ip3+cnst33 
  p2 ph2+ph3 
  4u 
  p16:gp3 
  d16   ip30+cnst34 
  4u BLKGRAD 
  go=2 ph31 ph30:r  
  d11 mc #0 to 2 F1EA(igrad EA, id0 & ip1*2 & ip31*2) 
exit 
 
ph1=0 2 
ph2=0 
ph3=0 ;incrementation dummy phase for ph1 and ph2 
ph30=0 ;incrementation phase for ph31 
ph31=0 2 
 
;pl1 : f1 channel - power level for pulse (default) 
;p1 : f1 channel -  90 degree high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;p16: homospoil/gradient pulse 
;d0 : incremented delay (2D)              [3 usec] 
;d1 : relaxation delay; 1-5 * T1 
;d11: delay for disk I/O                  [30 msec] 
;d13: short delay                         [4 usec] 
;d16: delay for homospoil/gradient recovery 
;cnst21: F1 reference chemical shift 
;inf1: 1/SW = 2 * DW 
;in0: 1/(1 * SW) = 2 * DW 
;nd0: 1 
;NS: 8 * n 
;DS: 16 
;td1: number of experiments 
;FnMODE: echo-antiecho 
 
;use gradient ratio: gp 1 : gp 2 : gp 3 
;             30 :   10 :   50 
 
;for z-only gradients: 
;gpz1: 30% 
;gpz2: 10% 
;gpz3: 50% 
 
;use gradient files:    
;gpnam1: SINE.100 
;gpnam2: SINE.100 
;gpnam3: SINE.100  



 

DQF-COSY_ph_FOPA_2_0.esg 

 
;$CLASS=HighRes 
;$DIM=2D 
;$TYPE= 
;$SUBTYPE= 
;$COMMENT= 
 
#include <Avance.incl> 
#include <Delay.incl> 
#include <Grad.incl> 
 
"p2=p1*2" 
"d13=4u" 
"in0=inf1" 
"d0=in0/2-p1*4/3.1416" 
"cnst22=o1/bf1" 
"cnst23=(cnst22-cnst21)*bf1" ;ref. to calc. 
"cnst24=(-cnst22+cnst21)*bf1" ;calc. to ref. 
"DELTA=p16+d16+d13" 
 
1 ze 
2 d1 
3  
"cnst29 = 360*cnst24*(d0 + 0.000001*(p1/2 + p1/2))" 
"cnst30 = 360*cnst23*(d13 + d16 + 0.000001*(p1/2 + p16 

+ p2/2))"  
"cnst31 = 360*cnst23*(2*d13 + 2*d16 + 0.000001*(p1/2 + 

p16 + p2 + p16 + p1/2))"  
"cnst32 = 360*cnst23*(3*d13 + 3*d16 + 0.000001*(p1/2 + 

p16 + p2 + p16 + p1 + p16 + p2/2))" 
"cnst33 = 360*cnst23*(4*d13 + 4*d16 + 0.000001*(p1/2 + 

p16 + p2 + p16 + p1 + p16 + p2 + p16))" 
 
  4u ip6+cnst29 
  p1 ph1+ph6 
  d0 
  p1 ph2 ;REFERENCE PULSE PHASE 
  DELTA*0.5 UNBLKGRAD 
  DELTA*0.5 ip4+cnst30 
  p2 ph4 
  d13 
  p16:gp1 
  d16 ip3+cnst31 
  p1 ph3 
  DELTA ip5+cnst32 
  p2 ph5 
  d13 
  p16:gp2 
  d16 ip30+cnst33 



  4u BLKGRAD 
  go=2 ph31 ph30:r 
  d1 mc #0 to 2 F1PH(ip1, id0) 
exit 
 
ph1=1 3 
ph2=0  
ph3=1  
ph4=0 
ph5=0 
ph6=0 ;incrementation dummy phase for ph1 
ph30=0 ;incrementation phase for ph31 
ph31=0 2 
 
;pl1 : f1 channel - power level for pulse (default) 
;p1 : f1 channel -  90 degree high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;p16: homospoil/gradient pulse 
;d0 : incremented delay (2D) 
;d1 : relaxation delay; 1-5 * T1 
;d13: short delay                            [4 usec] 
;d16: delay for homospoil/gradient recovery 
;cnst21: F1 reference chemical shift 
;inf1: 1/SW = 2 * DW 
;in0: 1/(1 * SW) = 2 * DW 
;nd0: 1 
;NS: 1 * n 
;DS: 16 
;td1: number of experiments 
;FnMODE: States-TPPI, TPPI, States or QSEQ 
 
;use gradient ratio: gp 1 : gp 2 
;     10 :   20   for double quantum filter 
;     10 :   30   for triple quantum filter 
 
;for z-only gradients: 
;gpz1: 10% 
;gpz2: 20% for DQF, 30% for TQF 
 
;use gradient files:    
;gpnam1: SINE.100 
;gpnam2: SINE.100 
 
;Processing 
 
;PHC0(F1): 90 
;PHC1(F1): -180 
;FCOR(F1): 1 
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