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Résumé

Dans cette thèse, nous étudions la géométrie de Poisson des espaces des modules
des connexions plates et méromorphes sur des surfaces de Riemann, ces dernières
étant liées au phénomène de Stokes. Notre objectif est de comprendre certains
nouveaux résultats dans ce domaine du point de vue de la physique mathématique.
Ceci est motivé par 1) la comparaison de deux approches différentes du théorème
de linéarisation de Ginzburg-Weinsten [49]: l’approche de Boalch [16] utilisant le
phénomène de Stokes et l’approche de Enriquez-Etingof-Marshall [32] basée sur la
théorie des r-matrices dynamiques et les groupes quantiques; 2) le travaille recent
de Toledano Laredo [78], où les phoenomènes de Stokes à valeurs dans U(g) ont
été utilisés pour donner une construction trascendente du groupe quantique de
Drinfeld-Jimbo.

Les résultats principaux de cette thèse sont les suivants:
• La construction d’une transformation de jauge entre la r-matrice classique

standard et la r-matrice dynamique de Alekseev-Meinrenken en utilisant les données
de monodromie (matrice de connexion) d’un certain problème irrégulier de Riemann-
Hilbert. Cette transformation de jauge a été utilisée par Enriquez-Etingof-Marshall
[32] pour construire la linéarisation de Ginzburg-Weinstein. Sur la base de ce
résultat, une relation étonnante entre le phénomène de Stokes et le twist de Drinfeld
est donnée. Parmi les autres sous-produits on trouve une généralisation d’une version
du voisinage symplectique du théorème de linéarisation de Ginzburg-Weinstein, ainsi
qu’une nouvelle description du double symplectique de Lu-Weinstein [64].
• Une extension de l’analogue quantique des matrices de Stokes, et sa relation

avec l’équation de Yang-Baxter. Ceci est basé sur le travail de Toledano Laredo [78],
dans lequel il a utilisé le phénomène de Stokes à valeurs dans Ug pour construire une
torsion annihilant l’associateur KZ, et donc donner une construction transcendantale
canonique du groupe quantique de Drinfeld-Jimbo. L’aspect de la géométrie de
Poisson du phénomène de Stokes dans [16] est démontré être la limite classique de la
construction dans [78], et amène ainsi une interprétation de la théorie des groupes
quantiques. Dans le même esprit, une description symplectique des équations de
déformation isomonodromique de Jimbo, Miwa et Ueno [55] [18] est calculée comme
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la limite classique de l’équation de Casimir [77].
• À la fin, nous regardons l’espace des modules symplectiques de connexions plates

sur les surfaces de Riemann. Nous utilisons une r-matrice dynamique généralisée,
induite par la procédure de fixation de jauge, pour donner une nouvelle description de
dimension finie de la structure symplectique d’Atiyah-Bott sur l’espace des modules.
Avec cela, nous trouvons le groupöide Poisson de symétrie de l’espace des modules.
Nous donnons aussi une étude systématique de la théorie des r-matrices dynamiques
classiques généralisées.
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Abstract

In this thesis, we study the Poisson geometry of moduli spaces of flat and meromorphic
connections over Riemann surfaces, the latter involves the Stokes phenomenon. The
aim is to understand some new achievements in this direction from the perspective
of mathematical physics. This is motivated by 1) the comparison of two different
approaches to the Ginzburg-Weinsten linearization theorem [49], i.e., the approach
of Boalch [16] using the Stokes phenomenon and the approach of Enriquez-Etingof-
Marshall [32] based on the theory of dynamical r-matrices and quantum groups; 2)
the recent work of Toledano Laredo [78], where U(g)–valued Stokes phenomenon was
used to give a canonical transcendental construction of the Drinfeld–Jimbo quantum
group.

This thesis consists of three main results:
• A construction of a gauge transformation between the standard classical r-

matrix and the Alekseev-Meinrenken dynamical r-matrix, using the monodromy data
(connection matrix) of a certain irregular Riemann-Hilbert problem. This gauge
transformation was used by Enriquez-Etingof-Marshall [32] to construct Ginzburg-
Weinstein linearization. Based on this result, a surprising relation between the
Stokes phenomenon and the Drinfeld twist is given. Further byproducts include
a generalization of a symplectic neighborhood version of the Ginzburg-Weinstein
linearization theorem as well as a new description of the Lu-Weinstein symplectic
double [64].
• An extension to the quantum analogue of the Stokes matrices, and its relation

with the Yang-Baxter equation. This is based on Toledano Laredo’s work [78], where
he used Ug-valued Stokes phenomenon to construct a Drinfeld twist killing the KZ
associator. The Poisson geometry aspect of the Stokes phenomenon in [16] is proven
to be the classical limit of the construction in [78], and thus carries an interpretation
from the theory of quantum groups. In the same spirit, a symplectic description
of the isomonodromic deformation equations of Jimbo, Miwa and Ueno [55][18] is
derived as the classical limit of the Casimir equation [77].
• In the end, we look at Atiyah-Bott symplectic moduli spaces of flat connections

over Riemann surfaces. We use a generalized dynamical r-matrix, induced by the

3



gauge fixing procedure, to give a new finite dimensional description of the Atiyah-Bott
symplectic structure on the moduli space. Using this, we find a Poisson groupoid
symmetry of the moduli space. We also give a systematic investigation of the theory
of generalized classical dynamical r-matrices.
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Chapter 1

Introduction

Since Atiyah and Bott introduced canonical symplectic structures on the moduli
spaces of flat connections over Riemann surface in [10], a lot of attention has been paid
to the moduli spaces by mathematicians and physicists due to their rich mathematical
structures and their links with a variety of topics. From the physics perspective, a
major motivation for their study is their role in Chern-Simons theory. An independent
mathematical motivation for investing in moduli spaces of flat connections arises
from Poisson geometry.

The extension to the meromorphic case of the Atiyah-Bott symplectic moduli
spaces was due to Boalch [17]. The biggest difference between holomorphic connec-
tions and meromorphic connections is that there are local moduli at the poles of
general meromorphic connections. In other words, it is not sufficient to only consider
the complement of the polar divisor and take the corresponding monodromy. The
extra data, in terms of which one can describe the local moduli of meromorphic
connections, has been studied in the theory of differential equations and is known
as Stokes matrices. Roughly speaking, given a meromorphic connection, in gl(n,C)
case we can think of a matrix-valued first order ordinary differential equation with
arbitrary order poles, the solution will generally have exponential behaviour at the
poles. However, on different sectors at each pole, this exponential behaviour varies,
and the Stokes matrices encode the change in asymptotic behaviour of solutions on
different sectors. See e.g. [13][14][81] for more details. Thus the monodromy data
of meromorphic connections should incorporate the Stokes matrices at each pole,
besides the fundamental group representation.

Later on, more study of the geometry of moduli spaces of meromorphic connections
has been done by many others. To begin an introduction to the thesis, we next
present a very brief review of some of these works. We will discuss them in more
details in the following chapters.
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• In [17], natural symplectic structures (generalising the Atiyah-Bott approach)
were described on moduli spaces of meromorphic connections. Explicitly, the extended
moduli space (see Definition 2.6 of [17]) of meromorphic connections on a holomorphic
vector bundle V over P1 with poles on an effective divisor D = ∑m

i=1 ki(ai) and a
fixed irregular type at each ai was proven to be isomorphic to the symplectic quotient
of the form Õ1× · · · × Õm//G, where Õi is an extended orbit with natural symplectic
structure associated to the irregular type at ai. In [18], it was shown that these
results extend to any complex reductive group G by introducing G-valued Stokes
data for meromorphic connections on principal G-bundles.
• In [19], a finite dimensional construction of the natural symplectic structures

on the spaces of monodromy/Stokes data of meromorphic connections over Rie-
mann surfaces is given, by using the quasi-Hamiltonian geometry introduced by
Alekseev–Malkin–Meinrenken [2]. Explicitly, a family of new examples of complex
quasi-Hamiltonian G-spaces C̃ with G-valued moment maps was introduced as gener-
alization of the conjugacy class example in [2]. It was further shown that given the
divisor D = ∑m

i=1 ki(ai), the symplectic spaces of monodromy data for meromorphic
connections on V with poles on D and fixed irregular types are isomorphic to the
quasi-Hamiltonian quotient spaces C̃1~ · · ·C̃m//G, where C̃i is the space of monodromy
data at ai and ~ denotes the fusion product between quasi Hamiltonian G-manifolds.

The main result of [17] [19] leads to that the irregular Riemann-Hilbert corre-
spondence

ν : (Õ1 × · · ·Õm)// ↪→ (C̃1 × · · · × C̃m)//G

associating monodromy/Stokes data to a meromorphic connection on V is a symplec-
tic map. In a particular case, this statement is equivalent to the main theorem in [16],
where the Stokes map is proven to give rise to a Ginzburg-Weinstein linearization.
This statement is closely related to the study of Poisson Lie groups.

To get more feeling about the objects we will work with, we set the stage by
reviewing some related notions.

The notion of quantum group was introduced by Drinfeld [24]. Since then, a
lot of attention has been paid into this field, due to its rich mathematical structure
and its links with a variety of topics from geometry, algebra and analysis. The idea
behind quantum groups is that we consider the deformation of a group algebra (a
universal enveloping algebra) within the category of Hopf algebras, that are not
required to be either commutative or cocommutative. Then we think of the deformed
object as an algebra of functions on a "noncommutative space", in the spirit of
the noncommutative geometry. Thus in Drinfeld’s approach, quantum groups arise
as Hopf algebras depending on an auxiliary parameter ~, which become universal
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enveloping algebras of a certain Lie algebra when ~ = 0. While the notion of quantum
enveloping algebras is very general, the most famous example is the Drinfeld-Jimbo
quantum group U~(g) [24]. Just as groups often appear as symmetries, quantum
groups act on many other mathematical objects, for example quantum planes and
quantum Grassmannians.

In a recent paper of Toledano Laredo [78], U(g)–valued Stokes phenomenon were
used to give a canonical transcendental construction of the Drinfeld–Jimbo quantum
group. We will come back to this point later. At this moment, let us recall the
classical counterpart of a quantum group.

The notion of Poisson Lie groups arose as the classical limit of the Drinfeld’s
quantum groups. A Poisson–Lie group is a Lie group G equipped with a Poisson
bracket for which the group multiplication G×G→ G is a Poisson map, where the
manifold G×G has been given the structure of a product Poisson manifold. The
most important example of Poisson Lie groups is the standard Poisson structure on
a semisimple Lie group [64][75].

Poisson Lie groups also give a geometric interpretation of the classical Yang-
Baxter equation. The classical Yang-Baxter equation (CYBE) plays a key role in
the theory of integrable systems. The classical dynamical Yang-Baxter equation
(CDYBE) is a differential equation analogue to CYBE and is introduced by Felder in
[40] as the consistency condition for the differential Knizhnik-Zamolodchikov-Bernard
equations for correlation functions in conformal field theory on tori. It was shown
by Etingof and Varchenko [37] that dynamical r-matrices correspond to Poisson Lie
groupoids (a notion introduced by Weinstein [82]) in much the same way as classical
r-matrices correspond to Poisson Lie groups.

In the study of non-commutative Weil algebra [3], Alekseev and Meinrenken
introduced a particular dynamical r-matrix rAM, which is an important special case
of classical dynamical r-matrices ([40], [37]). Let g be a complex reductive Lie algebra
and t ∈ S2(g)2 the element corresponding to an invariant inner product on g, then
rAM, as a map from g∗ to g ∧ g, is defined by

rAM(x) := (id⊗ φ(adx∨))(t), ∀x ∈ g∗, (1.1)

where x∨ = (x ⊗ id)(t) and φ(z) := −1
z

+ 1
2cotanh z

2 , z ∈ C \ 2πiZ∗. Remarkably,
this r-matrix came to light naturally in two different applications, i.e., in the context
of equivariant cohomology [3] and in the description of a Poisson structure on the
chiral WZNW phase space compatible with classical G-symmetry [11].

Among the properties of Poisson Lie groups, the existence of the dual and of
the double of a Poisson Lie group is the most important. The Ginzburg-Weinstein
linearlization theorem [49] states that for any compact Lie group K with its standard
Poisson structure, the dual Poisson Lie group K∗ is Poisson diffeomorphic to the
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dual of the Lie algebra, with the canonical Poisson structure. This result was later
reproved and generalized in [4], [5], [16], [32]. Among these works, new insights to
the linearization theorem and its connections with many other fields were developed.

Ginzburg-Weinstein linearization via the Stokes phenomenon. Let G be a
complex reductive Lie algebra with g = Lie(G) and t ⊂ g a Cartan subalgebra. Let
G be equipped with the standard Poisson structure, and G∗ the corresponding dual
Lie group. We consider the meromorphic connection on a holomorphic principal G-
bundle P over the unit disc D ⊂ C, which has the form (by choosing a trivialization
of P )

∇ = d− (A0

z2 + B

z
)dz (1.2)

where A0 ∈ treg and B ∈ g an arbitrary element. It follows from [17] that the resulting
moduli space is isomorphic to G∗: actually the elements of G∗ are the Stokes matrices
of such connections. The natural Poisson structure on this moduli space from the
Atiyah-Bott construction is proven to coincide with the dual Poisson Lie structure
on G∗. Thus the statement of irregular Riemann-Hilbert correspondence becomes

Theorem 1.0.1. [16] For each choice of A0, the Stokes map

νA0 : g∗ → G∗

taking an element B ∈ g ∼= g∗ to the Stokes data of the corresponding connection
(4.3), is a local Poisson isomorphism, relating the linear Poisson structure on g∗ and
the dual (non-linear) Poisson structure on G∗.

Ginzburg-Weinstein linearization via dynamical r-matrices. In [32], En-
riquez, Etingof and Marshall constructed formal Poisson isomorphisms between the
formal Poisson manifolds g∗ and G∗ (the dual Poisson Lie group). Here g∗ is equipped
with its Kostant-Kirillov-Souriau structure, and G∗ with its Poisson-Lie structure
given by the standard classical r-matrix r. Their result relies on constructing a
formal map g : g∗ → G satisfying the following gauge transformation equation (as
identity of formal maps g∗ → ∧2(g))

g−1
1 d2(g1)− g−1

2 d1(g2) + (⊗2Adg)−1r0 + 〈id⊗ id⊗ x, [g−1
1 d3(g1), g−1

2 d3(g2)]〉 = rAM,

Here r0 := 1
2(r − r2,1), g−1

1 d2(g)(x) = ∑
i g
−1∂εig(x) ⊗ ei is viewed as a formal

function g∗ → g⊗2, (εi), (ei) are dual bases of g∗ and g, g−1
i dj(gi) = (g−1

1 d2(g1))i,j
and ∂ξg(x) = ( d

dε
)|ε=0g(x+ εξ).
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Theorem 1.0.2. [32] Let g(x) ∈ Map(g∗, G) be a solution of the above equation.
Then there exists a unique formal Poisson isomorphism g∗(x) : g∗ → G∗, defined by
the identity

g(x)ex∨g(x)−1 = L(g∗(x))R(g∗(x))−1.

Here L,R : G∗ → G are the formal group morphisms corresponding to the Lie algebra
morphisms L,R : g∗ → g given by L(x) := (x⊗ id)(r), R(x) := −(id⊗ x)(r21).

Note that this theorem may be viewed as a generalization of the formal version
of the Ginzburg-Weinstein linearization theorem [49]. Two constructions of solutions
of (1.3) are given: the first one uses the theory of the classical Yang-Baxter equation
and gauge transformations; the second one relies on the theory of quantization of
Lie bialgebras. We will present the latter in more details as follows.

Ginzburg-Weinstein linearization via the Drinfeld twists. Let us take an ad-
missible Drinfeld associator Φ, and (U(g),m,∆,Φ) be the corresponding quasi-Hopf
algebra. (See e.g. [25]) For the associator Φ, there exists a Drinfeld twist killing Φ
(see [25][34]), and according to [33], this twist can be made admissible by a suitable
gauge transformation. The resulting twist J ∈ U(g)⊗̂2J~K satisfies J = 1− ~ r2 + ◦(~),
~log(J) ∈ U(g)⊗̂U(~g)J~K, (ε⊗ id)(J) = (id⊗ ε)(J) = 1 (ε is the counit), and

Φ = (J2,3J1,23)−1J1,2J12,3. (1.3)

Let us identify the second component U(g) of this tensor J with C[g∗] via the
symmetrization (PBW) isomorphism S.(g)→ U(g). We use this identification view
J as a function from g∗ to U(g)J~K, denoted by J(x). Then the admissibility of J
guarantees the reduction module ~ of J(~−1x), i.e., J(~−1x)|~=0 is a well-defined
map.

Theorem 1.0.3. [32] The reduction modulo ~ of J(x), denoted by g(x) = J(x)|~=0,
belongs to exp(g⊗ Ŝ(g))>0 (thus a formal map from g∗ to exp(g)) and satisfies the
equation rg(x)

0 = rAM.

Therefore, the classical limit of an admissible Drinfeld twist gives rise to a
Ginzburg-Weinstein linearization.

Motivations.

Apart from the desire to learn more mathematical fields, the motivation for
studying the Poisson geometry of meromorphic connections arose from the following
two aspects.
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(1) Firstly, the three different subjects, i.e., Stokes phenomenon, dynamical r-
matrices and Drinfeld twists naturally appear in the study of linearization problem
of Poisson Lie groups. It is a natural attempt to make connections among them.

(2) At first glance, the appearance of Stokes phenomenon in the study of Poisson
Lie groups is very surprising. Thus the understanding of the deep connection between
Stokes phenomenon and Poisson geometry may be a formidable task. However, our
results in [85] (based on the first motivation) suggest some new ways to this task. On
the other hand, in a recent paper of Toledano Laredo [78], the Stokes phenomenon of
the dynamical KZ equations (introduced by Felder, Markov, Tarasov and Varchenko
in [41]) was used to construct Drinfeld twists. Recall that Poisson Lie groups can be
viewed as the classical limit of quantum groups. Thus the point we wish to make is
that the role of Poisson Lie groups as moduli space of meromorphic connections is
not occasional, and it carries an interpretation from the theory of quantum groups.

Summary of results.

Irregular Riemann-Hilbert correspondence, Drinfeld twists and Alekseev-
Meinrenken r-matrices. In [85], we construct explicit solutions of (1.3) via the
monodromy (connection matrix) for a certain irregular Riemann-Hilbert problem.
This allows us to understand the geometric meaning of equation (1.3) and clarify its
relation with certain irregular Riemann-Hilbert correspondence. To be precise, let us
consider the meromorphic connection ∇ that appeared in (1.2). Then one can take
the monodromy of ∇ from 0 to ∞, known as the connection matrix of ∇, which is
computed as the ratio between canonical fundamental solutions of ∇ at one chosen
Stokes sector at 0 and at ∞. Thus we get a map, denoted by C, associating B ∈ g∗

to the connection matrix C(B) of ∇ = d− (A0
z2 + B

z
)dz. Here we assume that g is a

complex reductive Lie algebra.

Theorem 1.0.4. [85] The rescaled connection matrix C2πi ∈ Map(g∗, G), defined by
C2πi(x) := C( 1

2πix) for all x ∈ g∗, is a solution of equation (1.3) (provided r0 ∈ g∧ g
is the skew-symmetric part of the standard classical r-matrix for g).

Having proved that the connection matrix satisfies the gauge transformation
equation, we further discuss its relation with Drinfeld twist. In [32], the gauge
transformation equation was interpreted as the classical limit of a vertex-IRF
transformation equation (see [33]) between a dynamical twist quantization Jd(x) ∈
Map(g∗, U(g)⊗̂2 J~K) of rAM and a constant twist quantization Jc ∈ U(g)⊗̂2 J~K of
r0 associated to an admissible associator Φ. As a result, the quasi-classical limit
of each vertex-IRF transformation ρ ∈ Map(g∗, U(g) J~K) which maps J(x) to Jc
gives rise to a solution of (1.3). According to [31][32], the renormalization of an
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admissible Drinfeld twist J ∈ U(g)⊗2 (killing the associator Φ) gives rise to such a
vertex-IRF transformation, where J is regarded as an element in (U(g)⊗̂Ŝ(g)) J~K,
a formal map from g∗ to U(g) J~K, by identifying the second component U(g) with
Ŝ(g) via symmetrization (PBW) isomorphism (see section 4). In particular, an
admissible Drinfeld twist provides us with a solution of (1.3). On the other hand, for
a semisimple Lie algebra g, the inverse is also true, i.e., for any g(x) ∈ Map(g∗, G)
satisfying (1.3), there exists an admissible Drinfeld twist J ∈ U(g)⊗̂2 J~K whose
renormalized quasi-classical limit is g(x). In particular, with the help of Theorem
1.0.4, we have

Theorem 1.0.5. For each (rescaled) connection matrix C2πi ∈ Map(g∗, G), regarded
as an element in U(g)⊗ U(g) by taking Taylor expansion at 0 and identifying the
S·(g) component with U(g) via PBW isomorphism, there exists a Drinfeld twist
killing the associator Φ whose renormalized quasi-classical limit is C2πi.

In particular, if Φ is the Knizhnik-Zamolodchikov (KZ) associator ΦKZ , then the
connection matrix (the KZ associator) can be seen as the monodromy from 0 to ∞
(1 to∞) of the differential equation with one order two pole at 0 and one simple pole
at ∞ (three simple poles at 0, 1, ∞). The confluence of two simple poles in KZ3
system may be related to the fact that certain Drinfeld twist kills the KZ associator.
The relation between Stokes phenomenon and the theory of quantum groups will be
discussed more in our next result.

Stokes phenomenon, Poisson Lie groups and quantum groups. We have
seen that G–valued Stokes phenomena were used in [16] and [85], to give a canonical,
analytic linearisation of the Poisson–Lie group structure on G∗ and its symplectic
neighbourhood respectively. On the other hand, in a recent paper of Toledano
Laredo [78], the Stokes phenomenon of the dynamical KZ equations (introduced by
Felder, Markov, Tarasov and Varchenko in [41]) was used to construct Drinfeld twists.
In the joint paper with Toledano Laredo [79], we observe that the quantization
problem (quantization of Poisson Lie groups to Quantum groups) is analogous to
the deformation of certain irregular Riemann-Hilbert problem (meromorphic ODE).
The main contributions are
• we prove that the quantum Stokes matrix for the dynamical KZ equations

satisfies Yang-Baxter equation, therefore is a quantum R-matrix.
• we show that the classical limit of the dynamical KZ equation is the meromor-

phic differential equation (1.2). Along the way, the constructions in [16] and [85] can
be obtained as semiclassical limits of the one in [78]. Thus we give an interpretation
of the appearance of Poisson geometry in the study of Stokes phenomenon from the
perspective of quantization of Lie bialgebras.
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• The dependence of quantum Stokes matrices on regular elements A0 ∈ treg is
described by a differential gauge transformation equation. Hamiltonian description
of isomonodromic deformation equations [55][18] is then proven to be the classical
limit of this equation.

Generalized classical dynamical r-matrices and moduli space of flat con-
nections. Having studied the Poisson geometry aspect of the moduli space of
meromorphic connections, we come back to Atiyah-Bott symplectic moduli spaces
of flat connections over Riemann surface. Several simple finite dimensional descrip-
tions of this symplectic structure are then given by many authors using different
approaches. See e.g. [2][8][45][50][51][56]. One possibility is to obtain the moduli
space of flat G-connections on a surface Σg,n of genus g with n punctures by (quasi-
)Poisson reduction from an enlarged ambient Gn+2g. In Fock-Rosly’s approach [47],
the Poisson structure on Gn+2g is described using a classical r-matrix. In Alekseev-
Malkin-Meinrenken’s approach via Lie group valued moment maps [2], the moduli
space is obtained by a reduction of a canonical quasi-Poisson structure on Gn+2g.

In the meantime, besides the applications of the classical dynamical Yang-Baxter
equation (CDYBE) we mentioned before, it is also proven to be closely connected
with the theory of homogeneous Poisson spaces [25], Dirac structures and Lie
bialgebroids [67]. See e.g., [64], [62] and references therein. Inspired by the study of
Lie bialgebroids, the notion of generalized classical dynamical Yang-Baxter equations
was introduced by Liu and Xu [62], in which the base manifold underlying the
CDYBE can be a general Poisson manifold. Despite its importance, this subject
suffered from the lack of examples for a long time.

Some recent works indicate the possible connection between these two very
different subjects of dynamical Yang-Baxter equations and moduli spaces of flat
connections. From the viewpoint of Hamiltonian formalism, the moduli spaces
of flat connections can be viewed as constrained Hamiltonian systems. In [72],
Meusburger and Schönfeld proved that Dirac gauge fixing for the moduli space of
flat ISO(2, 1)-connections on a Riemann surface gives rise to generalized classical
dynamical r-matrices.

In [86], we deepen the connection between these two subjects by giving a system-
atic investigation of the theory of generalized classical dynamical r-matrices:
• we explain how generalized dynamical r-matrices can be obtained by (quasi-

)Poisson reduction. New examples of Poisson structures, Poisson G-spaces and
Poisson groupoid actions naturally appear in this setting. For example, associated
to a classical dynamical r-matrix, we construct a natural Poisson manifold carrying
simultaneously a Hamiltonian action and a Poisson action, whose Hamiltonian
reduction gives rise to a homogeneous Poisson space;
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• we concretely analyze the dynamical r-matrices arising from the reduction of
the canonical quasi-Poisson manifold G~G (see [2]). We also introduce the notion
of gauge transformations for generalized dynamical r-matrices. As an application,
we use these dynamical r-matrices to give a new finite dimensional description of
the Atiyah-Bott symplectic structure on the moduli space. Using this description,
we find a Poisson groupoid symmetry of the moduli space.
• two examples are given, one of them was previously studied by Meusburger-

Schönfeld in the framework of the ISO(2, 1)-Chern-Simons theory of (2+1)-dimensional
gravity.

The thesis consists of the following parts. We start with two introductory chapters.
In the first one, we recall some basic notions in Poisson and quasi-Hamiltonian
geometry. In the second one, we recall the symplectic moduli space of meromorphic
connections, and the irregular Riemann-Hilbert correspondence. The core part of
the thesis is Chapters 4-6, which are from the following publications:

Chapter 4: X. Xu, Irregular Riemann-Hilbert correspondence, Alekseev-Meinrenken
dynamical r-matrices and Drinfeld twists. Preprint arxiv:1507.07149.

Chapter 5: V. Toledano Laredo and X. Xu, Stokes phenomenon, Poisson Lie groups
and quantum groups.

Chapter 6: X. Xu, Generalized classical dynamical r-matrices and moduli spaces of
flat connections over surfaces, Commun. Math. Phys. 341, 523-542 (2016).

Another publications of mine that are independent of this thesis are:

X. Xu, Twisted Courant algebroids and coisotropic Cartan geometries, J. Geom.
Phys. 82 (2014), 124–131.

N. Ikeda and X. Xu, Canonical functions, differential graded symplectic pairs in
supergeometry, and Alexandrov-Kontsevich-Schwartz-Zaboronsky sigma models with
boundaries, J. Math. Phys, 55 (2014).

Z. Liu, Y. Sheng and X. Xu, The Pontryagin class for pre-Courant algebroids,
Journal of Geometry and Physics (2016).

H. Lang, Y. Sheng and X. Xu, Nonabelian Omni-Lie algebras, Banach Center
Publications, Polish Acad. Sci., Warsaw (2016).
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H. Lang, Y. Sheng and X. Xu, Strong homotopy Lie algebras, homotopy Pois-
son manifolds and Courant algebroids. Preprint arXiv:1312.4609,

N. Ikeda and X. Xu, Current Algebras from DG symplectic Pairs in Supergeometry.
Preprint arXiv:1308.0100.
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Chapter 2

Background Material: Poisson
Geometry

In this chapter we recall the background material we will use. It includes some
basic notations and definitions regarding Poisson geometry and quasi-Hamiltonian
geometry. The main references used are [3][38][63][80].

2.1 Poisson manifolds
Definition 2.1.1. A Poisson bracket on a smooth manifold M is an R-bilinear
map {·, ·} on the algebra C∞(M) of smooth functions on M satisfying the following
conditions:

(i) Skew-symmetry: {f, g} = −{g, f}.

(ii) Jacobi identity: {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

(iii) Lebniz’s rule: {fg, h} = f{g, h}+ g{f, h}.

The pair (M, {·, ·}), a manifold equipped with a Poisson bracket, is called a
Poisson manifold.

Note that the first two conditions make {·, ·} a Lie algebra structure on C∞(M),
and the third guarantees that the operation {f, ·} : C∞(M) → C∞(M), for each
f ∈ C∞(M), is a derivation of the commutative product on C∞(M), i.e., is a vector
field. It follows that given a Poisson manifold (M, {··}), we can define a bivector
field π ∈ X2(M) by

π(df, dg) = {f, g}.
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Conversely, given any bivector field π on M , we can define a bilinear skew-
symmetric bracket {·, ·} (that automatically obeys Leibniz’s rule) by the formula
{f, g} = π(df ∧ dg). However, in general, this bracket will not satisfy the Jacobi
identity. The extra property, that ensuring that the bivector field defines a Poisson
bracket, is characterized by the non-linear partial differential equation [π, π] = 0,
where

[·, ·] : Xp(M)× Xq(M)→ Xp+q−1(M)

denotes the Schouten–Nijenhuis bracket (see e.g. [42]) on multivector fields. None of
these descriptions of a Poisson structure is always the most efficient one, thus we
will be switching between the bracket and the bivector field points of view.
Example 2.1.2. Suppose we are given a linear coordinates (q1, ..., qn, p1, ..., pn) on
R2n. Then the formula

{f, g} := ∂f

∂pi

∂g

∂qi
− ∂f

∂qi
∂g

∂pi
(2.1)

defines a Poisson bracket (Here we use the Einstein summation convention). It is a
direct check that this Poisson bracket is also characterized by the bivector

π := ∂

∂pi
∧ ∂

∂qi

Example 2.1.3. Associated to any n× n skew symmetric matrix A = (aij), there is
a quadratic Poisson bracket on Rn defined by the formula

{f, g}A := aijx
ixj

∂f

∂xi
∂g

∂xj
.

Example 2.1.4. Let g be any finite dimensional Lie algebra. Let f ∈ C∞(g∗) be
any smooth function, and x ∈ g∗. Because g is a vector space, the differential dfx of
f at x ∈ g∗ can be seen as an element of g. One can check that the following binary
operation on C∞(g∗) gives rise to a Poisson bracket

{f, g}(x) := 〈[dfx, dgx], x〉.

Now suppose we are given two Poisson manifolds (M1, {·, ·}1) and (M2, {·, ·}2),
a map Φ : M1 →M2 is called a Poisson map if the pull-back preserves the Poisson
bracket, i.e.,

{f ◦ Φ, g ◦ Φ}1 = {f, g}2 ◦ Φ, ∀f, g ∈ C∞(M2).

Using Poisson bivector fields, a Poisson map can be described as follows. Let
(M,πM ) and (N, πN ) be Poisson manifolds and Φ : M → N a smooth map. Then Φ
is a Poisson map if and only if Φ∗(πM) = πN .
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Example 2.1.5. Given any Lie algebra homomorphism Ψ : η → g, the transpose
map Ψ∗ : g∗ → η∗ is a Poisson map, where g∗ and η∗ are equipped with the linear
Poisson bracket induced from the Lie algebra structure.

Example 2.1.6. The Cartesian product (M×N, πM×πN ) of two Poisson manifolds
(M,πM) and (N, πN) is again a Poisson manifold, and the canonical projections
PrM : M ×N →M and PrN : M ×N → N are Poisson maps.

Besides enabling us to describe a Poisson bracket by a bivector field, the Leibniz
rule for a Poisson bracket leads to the following definition.

Definition 2.1.7. Let (M, {·, ·}) be a Poisson manifold. Then Hamiltonian vector
field of a function H ∈ C∞(M) is the vector field XHX defined by

XH(f) := {H, f}, ∀f ∈ C∞(M).

One immediate property about the Hamiltonian vector fields is as follows.

Proposition 2.1.8. The assignment C∞(M) → X; f 7→ Xf is a Lie algebra
morphism. That is for any f, g ∈ C∞(M),

X{f,g} = [Xf , Xg].

A relevant notion is the Casimir functions for any Poisson manifold (M,π). A
function f ∈ C∞(M) is called a Casimir function if the associated Hamiltonian vector
field Xf = 0. These notions are originated from the study of classical mechanics. See
e.g. [9] for a thorough discussion in this direction.

2.1.1 Symplectic leaves
Let π ∈ X2(M) be a bivector field. Then π induces a smooth bundle map π] :
T ∗M → TM which is defined by (on the sections)

π] : Ω1(M)→ X(M); π](α) 7→ iαπ, ∀α ∈ Ω1(M).

The bivector field π ∈ X2(M) is called non-degenerate (at x ∈ M) if the map
π] : T ∗M → TM is an isomorphism (at x ∈M). The inverse of this isomorphism π]

determines a map (π])−1 : TM → T ∗M .
Similarly, a two form ω ∈ Ω2(M) is called non-degenerate if the following map is

an isomorphism for any x ∈M

ωb : TxM → T ∗xM ; ωb(X) := iXωx, ∀X ∈ X(M).
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Definition 2.1.9. A symplectic form/structure ω on a manifold M is a closed non-
degenerate differential two-form. Then pair (M,ω) is called a symplectic manifold.

It is a direct check that there is a one-to-one correspondence between non-
degenerate bivector fields π and non-degenerate two-forms ω such that

ωb = (π])−1 ←→ π] = (ωb)−1,

and under this one-to-one correspondence, a non-degenerate Poisson bivector field π
becomes a non-degenerate closed two form ω and vice versa. Thus we have

Proposition 2.1.10. There is a one-to-one correspondence between non-degenerate
Poisson structures and symplectic structures on a manifold M .

From this perspective, the notion of Poisson manifolds is a natural generalization
of the notion of symplectic manifolds. The point we want to make in the following is
that a Poisson manifold is naturally partitioned into regularly immersed symplectic
manifolds.

Recall that a bivector field π induces a map π] : T ∗M → TM which is generally
degenerate. The rank of π at a point x ∈ M is defined as the rank of the induced
linear mapping π]x. Then a point x ∈M is called regular for a Poisson structure π
on M if the rank of π is constant on an open neighborhood of x ∈M . Otherwise, it
is called singular. Regular points form an open dense subset. If all the points are
regular, we call the Poisson structure itself regular.

An integral submanifold for the (singular) distribution π](T ∗M) is a path con-
nected submanifold S satisfying

TxS = π](T ∗xM), ∀x ∈ S.

On each intergral submanifold S, there is a natural symplectic form ωS ∈ Ω2(S)
determined by

ωS(Xf , Xg)(x) = −{f, g}(x), ∀f, g ∈ C∞(M), ∀x ∈ S.

Here we use the fact that the image of π] : T ∗M → TM consists of the values Xf (x)
of all Hamiltonian vector fields evaluated at x.

Definition 2.1.11. Maximal integral submanifolds of π are called the symplectic
leaves of the Poisson manifold (M,π).

Because the space of regular points and its complement are saturated by symplectic
leaves, symplectic leaves may be either regular or singular. Thus a Poisson manifold
is partitioned into its symplectic leaves.
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2.2 Poisson Lie groups
Most of the material in this section is based on [63].

A Poisson Lie group is a Lie group G equipped with a Poisson bracket such that
the group multiplication G×G→ G is a Poisson map. Here the manifold G×G is
given the structure of a product Poisson manifold. Explicitly, a Poisson bivector π
on G gives rise to a Poisson Lie structure if and only if the following identity holds:

π(gg′) = Lg∗(π(g′)) +Rg′∗(π(g)).

Note that we always have π(e) = 0, thus a Poisson Lie structure on G is never
symplectic.

The Lie algebra g of a Poisson Lie group G has an extra structure induced from
the Poisson structure. In brief, the Lie group structure gives the Lie bracket on g as
usual, and the differential of the Poisson bivector induces a linear map

deπ : g→ g ∧ g,

which is called the linearization of π at e ∈ G. Thus associated to a Poisson Lie
group, there is a Lie algebra g and a linearization δ : g→ g ∧ g. To characterise this
pair, we need the following notion.
Definition 2.2.1. A Lie bialgebra is a pair (g, δ) of a Lie algebra g and a linear
map δ : g→ g ∧ g, such that the following cocyle relation is satisfied:
(i) the dual map δ∗ : g∗ ∧ g∗ → g∗ defines a Lie bracket on g∗;

(ii) δ : g→ g ∧ g is an 1-cocycle on g, i.e.,
δ([X, Y ]) = (adX ⊗1 + 1⊗ adX) δ(Y )− (adY ⊗1 + 1⊗ adY ) δ(X).

Then we have
Theorem 2.2.2. [24] Let (G, π) be a Poisson Lie group, then the linearization deπ
of π at e ∈ G defines a Lie bialgebra structure (g, deπ) on g, called the tangent Lie
bialgebra to (G, π). Conversely, if G is connected and simply connected, then every
Lie bialgebra (g, δ) on g defines a unique Poisson Lie structure π on G such that
(g, δ) is the tangent Lie bialgebra to (G, π).
Proof. See e.g. [63] for a proof and a thorough discussion in this direction.

The name "bialgebra" stands for the following facts: if (g, δ) is a Lie bialgebra,
then the map dual to δ, δ∗ : g∗ ⊗ g∗ → g∗, gives rise to a structure of Lie algebra on
the dual vector space g∗. Furthermore, the definition of Lie bialgebras is symmetric,
i.e., if (g, δ) is a Lie algebra, then (g∗, δ∗) is also a Lie bialgebra, called the dual Lie
bialgebra. It naturally leads to the following definition.
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Definition 2.2.3. Let (G, π) be a Poisson Lie group with tangent Lie bialgebra (g, δ),
and let G∗ be the connected and simply-connected Lie group with the Lie algebra g∗

induced by δ. Then G∗ with the unique Poisson Lie structure, such that (g∗, δ∗) as
its tangent Lie bialgebra, is called the dual Poisson Lie group of (G, π).

Example 2.2.4. Let us take a Lie group G = SL(2,R) with the Lie algebra g =
Lie(G). Let

e1 = 1
2

(
1 0
0 −1

)
, e2 = 1

2

(
0 1
−1 0

)
, e3 = 1

2

(
0 1
1 0

)
be a basis of g. We equip G with a bivector field π(g) = 2(rg(e2 ∧ e3)− lg(e2 ∧ e3)),
where rg and lg denote the right and left translations in G by g respectively. Then
one can check that (G, π) is a Poisson Lie group, whose dual Poisson lie group can
be identified with the Lie group

SB(2,C) = {
(
a b+ ic
0 a−1

)
, | a > 0, b, c ∈ R}.

By Theorem 2.2.2, more examples of Poisson Lie groups can be obtained by
constructing Lie bialgebras. One main source of the Lie bialgebras structure on a
Lie algebra g are from classical r-matrices.

Definition 2.2.5. An element r ∈ g⊗ g is called a classical r-matrix if r + r2,1 ∈
S2(g)g and r satisfies the classical Yang-Baxter equation:

[r1,2, r1,3] + [r1,2, r2,3] + [r1,3, r2,3] = 0. (2.2)

A straightforward computation leads to the following proposition.

Proposition 2.2.6. A classical r-matrix r on g induces a Lie bialgebra (g, δ), where
the linear map δ : g→ g ∧ g is given by

δ(x) = dr(x) := [x⊗ 1 + 1⊗ x, r], ∀x ∈ g. (2.3)

We denote by r0 := 1
2(r − r2,1) the skew-symmetric part of a classical r-matrix r.

The following proposition is straightforward.

Proposition 2.2.7. (see [64]) Associated to any classical r-matrix r ∈ g⊗ g, there
is a Poisson Lie structure π on G taking the form

π(g) = rg(r0)− lg(r0), ∀g ∈ G,

where rg and lg are respectively the right and left multiplication given by g ∈ G.
Furthermore, the tangent Lie bialgebra to (G, π) is (g, dr).
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The propositions listed above can be illuminated in the following example. Let g
be a semisimple Lie algebra. Let t ⊂ g be a Cartan subalgebra, and ∆ ∈ t∗ the root
system. Let Eα denote the one-dimensional root subspace with respect to α ∈ ∆.
Then it is well-known that associated to a polarization ∆ = ∆+ ∪∆− of ∆, there is
a classical r-matrix defined by

r := 1
2t+ 1

2
∑
α∈Σ+

Eα ∧ E−α, (2.4)

where t ∈ S2(g)g is the Casimir element. We call r the standard classical r-matrix,
and denote by πr ∈ X2(G) the corresponding Poisson Lie structure on G. Thus
by Proposition 2.2.7 (G, πr) is a Poisson Lie group, and its dual Poisson Lie group
is given in the following. First, the standard classical r-matrix determines a Lie
bialgebra on g, and the induced dual Lie algebra structure on g∗ can be described
as follows. Let T ⊂ G be a maximal torus with Lie algebra t ⊂ g. Let B± denote a
pair of opposite Borel subgroups corresponding to the choice of positive roots ∆+.
Using the explicit expression in (2.3) and a straightforward calculation we find the
simply connected dual Lie group associated to (g, r) is

G∗ = U− × U+ × t,

where U± are the unipotent parts of the Borel subgroups B± and t is viewed as an
abelian group under addition. This dual Poisson Lie group G∗ will play an important
role in this thesis.

A somewhat not obvious fact about G∗ is the description of the Poisson bivector
field on it: let us consider the natural embedding of G∗ to G

a : G∗ → G; a(u−, u+, λ) = u−1
− u+e

λ, ∀(u−, u+, λ) ∈ G∗.

Then the dual Poisson Lie structure πG∗ on G∗, such that (g∗, (dr)∗) as its tangent
Lie bialgebra, is determined by

Proposition 2.2.8. [75] The image of the Poisson bivector field πG∗ on G∗ under
the embedding a : G∗ → G coincides with the Poisson bivector field πG on G

πG = 1
2
∑
a∈I

Ra ∧ La + 1
2r

ab
0 (La +Ra) ∧ (Lb +Rb),

where {ea}a∈I is an orthogonal basis of g, Ra, La are right and left invariant vectors
generated by ea, and r0 is the skew-symmetric part of r = rabea ⊗ eb.

We will next discuss the group action within the Poisson category.
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Definition 2.2.9. An action ρ : G×M →M of a Poisson Lie group G on a Poisson
manifold P is called a Poisson action if ρ is a Poisson map, where G×M is equipped
with the product Poisson structure.

Notice that the left (right) action of a Poisson Lie group G on itself is a Poisson
action. Given the action ρ, let ρg : M → M ; ρg(m) := g · m and ρm : G →
M ; ρm(g) := g ·m for any g ∈ G, m ∈M be the two natural induced maps. Let π
and πM be the Poisson vector fields on G and M respectively. Then ρ is a Poisson
action if and only if

πg·m = ρgπm(m) + ρmπ(g), ∀g ∈ G, m ∈M.

When the Poisson structure π is zero, a Poisson action on M is just an action
by Poisson automorphisms. However, in general, a Poisson action by G does not
necessarily preserve the Poisson structures on M . Thus some notions involving group
actions, like moment maps, should be different from their counterparts in the study
of symplectic geometry.

Let ρ : G×M →M be a left Poisson action of a Poisson Lie group (G, πG) on a
Poisson manifold (M,πM ). Let (G∗, πG∗) be the dual Poisson Lie group of G. Denote
by the same symbol ρ : g → X(M) the infinitesimal group action, and denote by
θ ∈ Ω1(M)⊗ g the left invariant Cartan one-form on G.

Definition 2.2.10. [63] A smooth map µ : M → G∗ is called a moment map for the
Poisson action ρ if

ρg = π]M(µ∗(θ)).

Here ρg ∈ X(M)⊗ g is defined by ρg := ∑
ρ(ea)⊗ ea in terms of an orthogonal basis

{ea} of g.

IfG has the zero Poisson structure, andM has a non-degenerate Poisson (therefore
symplectic) structure, then the above definition reduces to the usual definition of
the moment map in symplectic geometry. See e.g. [52].

Example 2.2.11. Let G be a Poisson Lie group, and G∗ a dual Poisson Lie group.
Define maps

λ : g∗ → X(G); x 7→ π]G(xl), ρ : g∗ → X(G); x 7→ −π]G(xr),

where xl (xr) is the left (right) invariant one-form on G generated by x ∈ g∗. One can
check that ρ (λ) is a Lie algebra (anti-)morphism. The integration of the Lie algebra
(anti-)morphism ρ (λ), if exists, gives rise to an action of G∗ on G, called the right
(left) dressing transformation. For both the left and right dressing transformations of
G∗ on G, the identity map of G is a moment map.
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The usual symplectic reduction procedure can be carried out for Poisson actions
with moment maps. See e.g. [63] for more details.

2.3 Quasi-Hamiltonian spaces
Let G be a Lie group with the Lie algebra g = Lie(G). Let θ, θ̄ denote the left and
right invariant g-valued Cartan one-forms on G respectively, and let ψ denote the
canonical three-form of G, i.e., ψ := 1

6〈θ, [θ, θ]〉.

Definition 2.3.1. ([2]) A quasi-Hamiltonian G-space is a G-manifold M with a
G-equivariant map µ : M → G (where G acts on itself by conjugation), and a
G-invariant two-form ω ∈ Ω2(M) such that

(i) dω = µ∗(ψ), where ψ is the canonical three-form on G;

(ii) ω(vX , ·) = 1
2µ
∗(θ + θ̄, X) ∈ Ω1(M), for all X ∈ g, where vX is the fundamental

vector field (vX)m = − d
dt

(etX ·m)|t=0.

(iii) the kernel of ω at each point m ∈M is

kerωm = {(vX)m | X ∈ g such that hXh−1 = −X, where h := µ(m) ∈ G}.(2.5)

The most important example of a quasi-Hamiltonian G-space is as follows.

Example 2.3.2. Suppose C ⊂ G is a conjugacy class with the conjugation action
of G. Then C is a quasi-Hamiltonian G-space with the moment map µ given by the
inclusion map, and two-form ω defined by

ωh(vX , vY ) = 1
2(〈X,AdhY 〉 − 〈Y,AdhX〉), (2.6)

for any X, Y ∈ g and vX , vY the fundamental vector field with respect to the conjuga-
tion action of G.

Theorem 2.3.3. ([2]) SupposeM is a quasi-Hamiltonian (G×H)-space with moment
map (µ, µH) : M → G×H. If the quotient µ−1/G of the inverse image µ−1(1) of the
identity under the first moment map is a manifold, then the restriction of ω to µ−1(1)
descends to the reduced space M//G := µ−1/G and makes it into a quasi-Hamiltonian
H-space. In particular, if H is abelian, then M//G is a symplectic manifold.

We can introduce the following monoid structure in the category of quasi-
Hamiltonian G-spaces.
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Definition 2.3.4. ([2]) Let M1 and M2 be quasi-Hamiltonian G-spaces with moment
map µ1 and µ2 respectively. Their fusion product M1 ~ M2 is defined to be the
quasi-Hamiltonian G-space M1 ×M2, where G acts diagonally, with two-form

ω̃ = ω1 + ω2 −
1
2(µ∗1θ, µ∗2θ̄) (2.7)

and moment map

µ̃ = µ1 · µ2 : M → G. (2.8)

One of the main applications of quasi-Hamiltonian geometry is to give a finite
dimensional description of the Atiyah-Bott symplectic moduli space [10]. We will
discuss this in the next chapter.

The axioms in the definition of a quasi-Hamiltonian G-space are motivated in
terms of Hamiltonian loop group manifolds. Let us finish this chapter by recalling
this in brief. See [2] for more details.

Let G be a compact Lie group, and LG = Map(S1, G) the loop group consisting
of continuous maps and pointwise group multiplication. Its Lie algebra is the space
of maps Lg = Ω0(S1, g), while the dual space Lg∗ of Lg is the space of one forms
Lg∗ = Ω1(S1, g). The natural pairing between Lg and Lg∗ is given by

〈A, ξ〉 =
∮
S1

(A, ξ).

Definition 2.3.5. A Hamiltonian LG-space is a Banach manifold N together with
an LG action, an invariant closed two form ωL ∈ Ω2(N), and an equivariant map
Φ : N → Lg∗ such that

(i) The induced map ωb
L : TxN → T ∗xN is injective.

(ii) The map Φ is a moment map for the LG action, i.e.,

ivξωL = d
∮
S1

(Φ, ξ).

Now Let us choose a local coordinate on S1, and let the based loop group
ΩG ⊂ LG be the kernel of the evaluation map LG→ G; g 7→ g(0). Then the action
of ΩG on Lg∗ is free, and by equivalence of Φ, its action on N is also free. Assume
further that the moment map Φ is proper, then the quotientM := N/ΩG is a smooth
finite-dimensional manifold. Since G = LG/ΩG, the LG action on N defines a G
action on M .
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By identifying Lg∗ with the space of connections on the trivial bundle S1 ×G,
we can define a holonomy map

Hol : Lg∗ → G; A 7→ g,

where g is the holonomy of A around S1 based at 0 and in a positive sense. In
particular, this map is equivariant with respect to the gauge action of G (constant
loop in LG) on Lg∗ and the adjoint action of G on itself. Thus the LG equivariant
moment map Φ : N → Lg∗ descends to a G equivariant map u : M → G, through
the holonomy map Hol : Lg∗ → G. In the end, we get a pair (M,µ) of a quotient
manifold M = N/ΩG and a G equivariant map µ : M → G out of any Hamiltonian
LG-space N with proper moment map. The quotient M = N/ΩG inherits a natural
two form which can be described as follows. Let us choose the local coordinate s on
S1 and define a two form on Lg∗: ω̄ = 1

2
∫ 1
0 ds(Hol∗sθ̄, ∂∂sHol∗sθ̄).

Theorem 2.3.6. [2] Let (N,ωL,Φ) be a Hamiltonian LG-space with proper moment
map, then the two form ωL + Φ∗(ω̄) is the pull-back Hol∗ω of a unique two form ω
on M = N/ΩG, and (M,ω, µ) is a quasi-Hamiltonian G-space, called the holonomy
manifold of N . Conversely, given a quasi-Hamiltonian G-space (M,ω, µ) there is a
unique Hamiltonian LG-space (N,ωL,Φ) such that M is its holonomy manifold.

We have seen that the idea of quasi-Hamiltonian geometry is to replace the
infinite dimensional Hamiltonian LG-space N with the finite dimensional space M
with µ as a moment map. There are many aspects of the Hamiltonian geometry that
carry over the quasi-Hamiltonian geometry, with suitable modifications. For a select
few developments in this direction, see [70][71]. Also see [69] for good lecture notes
on quasi-Hamiltonian geometry.
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Chapter 3

Background Material: Moduli
Spaces of Meromorphic
Connections over Riemann
Surfaces

In this chapter, we will recall some basic definitions in the study of meromorphic
connections. In particular, we recall symplectic moduli spaces of meromorphic
connections on a trivial holomorphic vector bundle, the corresponding symplectic
spaces of monodromy data and the irregular Riemann-Hilbert correspondence between
them. We mainly follow the papers [17][18][19] of Boalch.

3.1 Moduli spaces of flat connections over Rie-
mann surfaces

For simplicity, let us explain the picture in the case G = GLn(C). Let us consider
the following meromorphic connection on the trivial holomorphic vector bundle of
rank n over P1 (the Riemann sphere)

∇ := d− ( A1

z − a1
+ · · ·+ Am

z − am
)dz,

where A1, ..., Am ∈ GLnC are m matrices and a1, ..., am are distinct complex numbers.
Let us assume the only simple poles of ∇ are {ai}, which imposes the condition
A1 + · · ·+Am = 0. In particular, it is a flat holomorphic connection on P1 \ (D1 ∪ · ·
· ∪Dm), where Di is a small open disc around ai for each i. We also say ∇ is a flat

27



connection over P1 with m punctures. Therefore, taking the monodromy of ∇ gives
rise to a representation of π1(P1 \ {ai}), the fundamental group of the punctured
sphere.

Explicitly, this monodromy map associates the representations of the fundamental
group (monodromy around each pole) to the connections ∇:

{(A1, · · ·, Am) | A1 + · · ·+ Am = 0} → {(M1, · · ·,Mm) | M1 · · ·Mm = 1}. (3.1)

The symplectic geometry of the monodromy map starts with the assignment
of natural symplectic structures to both the set of connections and the set of
representations of the fundamental groups. To this end, we restrict the matrices
Ai to be in fixed adjoint orbits, which implies that the monodromy of ∇ around
ai will be inside the conjugacy class Ci containing e2πiAi . Then each (co)adjoint
orbit (identified with the trace) has the natural Kostant-Kirillov-Souriau symplectic
structure. Thus the symplectic manifold we consider is the product of m generic
coadjoint orbits Oi.

Note that (1) removing the dependence of the choice of a basepoint amounts to
quotient on both sides of (3.1) by the diagonal conjugation GLn(C) action; (2) the
condition A1 + · · ·+ Am = 0 can be expressed as the vanishing of the moment map
for the diagonal conjugation G action on O1 × · · · ×Om. Therefore, the monodromy
map becomes

µ : O1 × · · · ×Om//G→ HomC(π1, G)/G.
Here C denotes the choice of the set of conjugacy classes.

The symplectic geometry of this representation space is due to Atiyah and Bott
[10]. Their method starts with all smooth connections on P1 with punctures {ai},
and interprets the representation space as an infinite dimensional symplectic quotient.
The above finite dimensional description of these moduli spaces can be carried over
to a higher genus Riemann surface: let Σg,n be an oriented surface of genus g with n
punctures and {Ci}i=1,...,n a set of conjugacy classes of G. Then the moduli space of
flat G-connections on Σg,n is given by the character variety, i.e., the space of group
homomorphisms h : π1(Σg,n) → G that map the homotopy equivalence class of a
loop around the i-th puncture to the associated conjugacy class Ci ⊂ G. Two such
group homomorphisms describe gauge-equivalent connections if and only if they are
related by conjugation with an element of G. This implies that the moduli space of
flat G-connections on Σg,n is given by

HomC(π1(Σg,n, G))/G = {h ∈ Hom(π1(Σg,n), G) | h(mi) ∈ Ci}/G,

where G acts by conjugation, C denotes the choice of the set of conjugacy classes,
and mi ∈ π1(Σg,n) corresponds to the loop around i-th puncture.
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Several simple finite dimensional descriptions of this symplectic structure are then
given by many authors using different approaches. See e.g. [2][8][45][50][51][56]. For
example, the Alekseev-Malkin-Meinrenken approach gives rise to such a description
based on the quasi-Hamiltonian geometry.

Theorem 3.1.1. [6] Consider the quasi-Hamiltonian G-manifold

Pg,n = C1 ~ ...~ Cn ~D(G)~ ...~D(G),

where C1,...,Cn (conjugacy classes of G) and D(G) carry quasi-Hamiltonian structures
defined in Chapter 2, and ~ denotes the fusion product of quasi-Hamiltonian G-spaces.
Then the quasi-Hamiltonian reductions Pg,n//G of Pg,n are isomorphic to the moduli
spaces of flat G-connections on Σg,n with the Atiyah-Bott symplectic form.

3.2 Moduli spaces of meromorphic connections
The above picture can be generalised to meromorphic connections with higher order
poles in a similar way, such that the corresponding irregular Riemann-Hilbert map
is symplectic. We will recall this construction in the rest of this chapter. Let
D = ∑m

i=1 ki(ai) > 0 be an effective divisor on P1 and V a rank n holomorphic vector
bundle.

Definition 3.2.1. A meromorphic connection ∇ on V with poles on D is a map
∇ : V → V ⊗ K(D) from the sheaf of holomorphic sections of V to the sheaf of
sections of V ⊗K(D), satisfying the Leibniz rule: ∇(fv) = (df)⊗ v + f∇v, where
v is a local section of V , f is a local holomorphic function and K is the sheaf of
holomorphic one-forms on P1.

Let us choose a local coordinate z on P1 vanishing at ai, and a local trivialisation
of V . Then any meromorphic connection ∇ takes the form of ∇ = d− A, where

A = Aki
zki

dz + · · ·A1

z
dz + A0dz + · · ·, (3.2)

and Aj ∈ End(Cn), j ≤ ki. We restrict to generic meromorphic connections ∇
whose leading coefficient Aki at each ai is diagonalizable with distinct eigenvalues
(for ki ≥ 2), or diagonalizable with distinct eigenvalues mod Z (for ki = 1).

Definition 3.2.2. [17] A compatible framing at ai of a vector bundle V with generic
connection ∇ is an isomorphism g0 : Vai → Cn between the fibre Vai and Cn such
that the leading coefficient of ∇ is diagonal in any local trivialisation of V extending
g0.
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Let us fix at each point ai a germ d − iA0 of a diagonal generic meromorphic
connection. Let ∇ = d− A be a meromorphic connection and zi a local coordinate
vanishing at ai, then (∇, V ) with compatible framing g0 at ai has irregular type iA0

if there is some formal bundle automorphism g ∈ GLnJziK with g(ai) = g0 such that
gAg−1 + dg · g−1 = iA0 + iΛ

zi
dzi for some diagonal matrix iΛ. Let a denote the choice

of the effective divisor D and all the germs iA0.

Definition 3.2.3. ([17]) The extended moduli space M̃∗(a) is the set of isomorphism
classes of triples (V,∇,g) consisting of a generic connection ∇ with poles on D on a
trivial holomorphic vector bundle V over P1 with compatible framing g = (g0) such
that (V,∇,g) has irregular type iA0 at each ai.

3.2.1 Symplectic moduli space of meromorphic connections
Next let us recall (from [17] Section 2) the building blocks Õ of the moduli space
M̃∗(a). Fix an integer k 6= 2. We define Gk := G(C[ξ]/ξk) as the group of (k−1)-jets
of bundle automorphisms, where ξ is an indeterminate. We denote by gk = Lie(Gk)
its Lie algebra, which contains elements of the form X = X0 +X1ξ + · · ·+Xk−1ξ

k−1

with Xi ∈ g.
Let us denote by Bk the subgroup of Gk of elements having constant term 1.

Then the Lie group Gk is the semi-direct product GnBk, where G acts on Bk by
conjugation. The Lie algebra of Gk accordingly decomposes as a vector space direct
sum, and we have (by taking the dual): g∗k = b∗k ⊕ g∗. Elements of g∗k will be written
as

A = A0
dξ

ξk
+ · · ·+ Ak−1

dξ

ξ
(3.3)

via the pairing with gk given by 〈A,X〉 := Res0(A,X) = ∑
i+j=k−1(Ai, Xj). In this

way b∗k is identified with the set of A having zero residue and g∗ with those having
only a residue term (zero irregular part). Let πres : g∗k → g∗ and πirr : g∗k → b∗k denote
the corresponding projections.

Now choose an element A0 = A0
0
dz
zk

+ · · · + A0
k−2

dz
z2 of b∗k with A0

i ∈ t and with
regular leading coefficient A0

0 ∈ treg. Let OA0 ⊂ b∗k denote the Bk coadjoint orbit
containing A0.

Definition 3.2.4. ([17]) The extended orbit Õ ⊂ G× g∗k associated to OA0 is

Õ := {(g0, A) ∈ G× g∗k | πirr(g0Ag
−1
0 ) ∈ OA0} (3.4)

where πirr : g∗k → b∗k is the natural projection removing the residue.
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We have a natural symplectic form on Õ such that is naturally a Hamiltonian
G-manifold. Any tangents v1, v2 to Õ ∈ G× g∗k at (g0, A) are of the form

vi = (Xi(0), [A,Xi] + g−1
0 Rig0) ∈ g⊕ g∗k (3.5)

for some X1, X2 ∈ gk and R1, R2 ∈ t∗ (where g ∼= Tg0G via left multiplication), and
the symplectic structure on Õ is given by

ω
Õ

(v1, v2) = 〈R1,Adg0X2〉 − 〈R2,Adg0X1〉+ 〈A, [X1, X2]〉. (3.6)

Proposition 3.2.5. ([17]) The G action h · (g0, A) := (g0h
−1, hAh−1) on (Õ, ω

Õ
) is

a Hamiltonian action with the moment map µG : Õ → g∗, µ(g0, A) = πres(A).

In the simple pole case k = 1 we define

Õ := {(h, x) ∈ G× g∗ | Adhx ∈ t′} ⊂ G× g∗. (3.7)

The spaces Õ enable one to construct global symplectic moduli spaces of mero-
morphic connections on trivial G-bundles over P1 as symplectic quotients of the form
Õ1×· · ·× Õm//G (the Hamiltonian reduction of the direct product of m Hamiltonian
G-spaces).

Proposition 3.2.6. ([17]) M̃∗(a) is isomorphic to the symplectic quotient

M̃∗(a) ∼= Õ1 × · · · × Õm//G (3.8)

where Õi ⊂ G × g∗ki is the extended coadjoint orbit associated to OAi ⊂ b∗k, the Bk

coadjoint orbit containing the diagonal element Ai which arises from the irregular
part of iA0 at ai.

3.2.2 symplectic spaces of monodromy data
In this subsection, we explain what is the monodromy data (Stokes matrices, connec-
tion matrices and formal monodromy) of a meromorphic connection. Then we define
the space of monodromy data with the Atiyah-Bott symplectic structure (generalized
to meromorphic connections setting). We mainly follow [16] and [19]. Let us first
take a meromorphic connection with an order two pole as an example to motivate
the general construction.

Monodromy data of meromorphic connections with one degree two pole.
Let V be a rank n trivial holomorphic vector bundle on P1. Let A0 ∈ GL(n,C) be
a diagonal matrix with distinct diagonal elements and B ∈ gl(n,C) an arbitrary
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matrix. Choose coordinate {z} to identify P1 with C ∪∞ and a trivialization of V .
We consider the following meromorphic connection on V

∇ := d− (A0

z2 + B

z
)dz, (3.9)

which has an order two pole at origin and (if B 6= 0) a first order pole at ∞. Next
we fill in the details of the definition of the monodromy data of ∇.

Definition 3.2.7. The Stokes rays of the connection ∇ are the rays R>0ζ, where ζ
ranges over the non-zero eigenvalues of adA0.

We choose an initial sector Sect0 at 0 bounded by two adjacent Stokes rays and
a branch of log(z) on Sect0. Then we label the Stokes rays d1, d2, ..., d2l going in a
positive sense and starting on the positive edge of Sect0. Set Secti = Sect(di, di+1)
for the open sector swept out by rays moving from di to di+1 in a positive sense.
(Indices are taken modulo 2l, so Sect0 = Sect(d2l, d1).

The following basic result is well-known for G = GL(n,C) and A regular and was
extended in [18] to the case of complex reductive groups. It was further extended to
the general simple A ∈ t in [21].

Theorem 3.2.8. (see e.g. [14][18][21][66][68]) On each sector Secti, there is a unique
holomorphic functions Fi such that

∇Fi = dFi
dz
− (A0

z2 + B

z
)Fi = 0,

and functions Fi can be analytically continued to the i-th ‘supersector’ Ŝecti :=
Sect(di − π

2 , di + π
2 ) and then

Fi · e
A0
z 7→ 1, as z 7→ 0 ∈ Ŝecti.

On the other hand, there is a unique fundamental solutions

χ := HzB on a neighbourhood of ∞ slit along d1,

where H : P1 \ {0} → GL(n,C) is a holomorphic map such that H(∞) = 1 (See e.g.
[81] for the existence and uniqueness of H).

One more data we need to describe the monodromy data of ∇ is a permutation
matrix.
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Definition 3.2.9. The permutation matrix P ∈ GL(n,C) associated to the choice of
Sect0 is defined by (P )ij = δπ(i)j where π is the permutation of {1, ..., n} corresponding
to the dominance ordering of {eq1 , ..., eqn} along the direction γ bisecting the sector
Sect(d1, dl):

π(i) ≤ π(j) ⇐⇒ eqi/eqj → 0 as z → 0 along γ.

The monodromy data of ∇ is then composed of the quadruple (S−, S+,Λ, C),
where

(i) the Stokes matrices (S−, S+) are determined by

Fl = F0PS−P
−1, when Fl is continued in a positive sense to Sect0,

F0 = FlPS+P
−1e2πiδ(B), when Fl is continued in a positive sense to Sect0;

(ii) the formal monodromy Λ is defined by Λ := P−1e2πiδ(B)P ;

(iii) the connection matrix C ∈ GL(n,C) is determined by the identity χ = F0 · C
in the domain of definition of F0, where χ is extended along a path in Sect0.

Let U+ (U−) be the set of strictly upper (lower) triangular matrices. It follows
from the asymptotic behavior of F0 and Fl at 0 that

Proposition 3.2.10. (see [14]). S+ ∈ U+ and S− ∈ U−.

It motivates us to define the monodromy manifold as

M̃(A0) := G× U− × U+ × T.

Then the monodromy map associates a point (C, S−, S+,Λ) ∈ M̃(A0) to any con-
nection ∇ in (3.9). This monodromy manifold is equipped with the Atiyah-Bott
symplectic structure (generalized to meromorphic connections setting), which will be
described in the following via quasi-Hamiltonian geometry.

Local moduli of meromorphic connections with an arbitrary degree pole.
We have seen that for the local moduli of meromorphic connections with one degree
two pole, it is not sufficient to only consider the complement of the polar divisor
and take the corresponding monodromy. The extra data, Stokes matrices are part
of the monodromy data. In general, the local moduli of meromorphic connections
with an arbitrary order pole can be described in a similar way. They play the role
of the building blocks of the monodromy data of meromorphic connection on the
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trivial vector bundle over P1, with fixed irregular types at a Divisor D. One should
compare them to the building blocks Õ in (3.2.5).

Let us now recall these building blocks of the spaces of monodromy data,
and the quasi-Hamiltonian description of the symplectic structure on these mon-
odromy/Stokes data. Let θ, θ̄ denote the left and right invariant g-valued Cartan
one-forms on G respectively. Let ψ denote the canonical three-form of G, i.e.,
ψ := 1

6〈θ, [θ, θ]〉.Let T be a maximal torus of G with Lie algebra t ⊂ g and let B±
denote a pair of opposite Borel subgroups with B+ ∩B− = T . Let us consider the
family of complex manifolds (see [19] for the geometrical origins of these spaces
where their infinite-dimensional counterparts are described)

C̃ := {(C,d, e,Λ) ∈ G× (B− ×B+)k−1 × t | δ(dj)−1 = e
πiΛ
k−1 = δ(ej) for all j},

parameterised by an integer k ≥ 2, where b = (d1, ..., dk−1), e = (e1, ..., ek−1) with
deven, eodd ∈ B+ and dodd, eeven ∈ B−, and δ : B+ → T is the homomorphism with
kernel U±.

Proposition 3.2.11. ([19]) The manifold C̃ is a complex quasi-Hamiltonian G× T -
space with the G-action

(g, t) · (C,d, e,Λ) = (tCg−1, td1t
−1, ..., tdk−1t

−1, te1t
−1, ..., tek−1t

−1,Λ) ∈ C̃, (3.10)

and the moment map (µ, e−2πiΛ) : C̃ → G× T where

µ : C̃ → G, (C,d, e,Λ) 7→ C−1d−1
1 · · · d−1

k−1ek−1 · · · e1C, (3.11)

and two-form

ω = 1
2(D̄, Ē) + 1

2

k−1∑
j=1

(Dj,Dj−1)− (Ej, Ej−1) (3.12)

where D̄ = D∗θ̄, Ē = E∗θ̄, Dj = D∗jθ, Ej = E∗j θ ∈ Ω1(C̃, g) for maps Dj, Ej : C̃ → G
defined by Di(C, , ,Λ) = di · · · d1C, Ei = ei · · · e1C, D := Dk−1, E := Ek−1,
E0 = D0 := C.

For example, in the order two pole case k = 2, we recover the monodromy
manifold defined before

C̃k=2 ∼= G× U− × U+ × T, µ = C−1b−1
− b+C,

ω = 1
2(D∗θ̄, E∗θ̄) + 1

2(D∗θ, C∗θ)− 1
2(E∗θ, C∗θ),
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where D = b−C,E = b+C. In general, the quotient C̃/G has an induced Poisson
structure [2]. For k = 2 this Poisson structure coincides with standard Poisson
structure on the dual Poisson Lie group G∗ = U− × U+ × t (see Chapter 2).

In first order pole case k = 1 let us define C̃k=1 := G × et∗ ⊂ C̃k=2 ∼= G × G∗.
The two-form and moment map in this case are the restriction of the two-form and
moment map (4.54) of C̃k=2 to C̃k=1 .

Symplectic moduli space of meromorphic connections over Riemann sphere.
The next step is to build the spaces of monodromy data of meromorphic connections
with arbitrary poles out of the local moduli spaces defined as above. This can be
done by using the quasi-Hamiltonian fusion procedure in [2], which amounts to gluing
two surfaces with one boundary component into two of the holes of a three-holed
sphere.

Given a divisor D = ∑m
i=1 ki(ai) having each ki ≥ 1 at ai on P1, let M̃(a) denote

the corresponding monodromy manifold for compatibly meromorphic connections
(V,∇,g) with irregular type a. The extension of the Atiyah-Bott symplectic structure
to the case of singular C∞-connections induces natural symplectic structure on M̃(a)
(see [17]). On the other hand, the infinite dimensional description of the Atiyah-Bott
symplectic structure leads to certain Hamiltonian loop group manifolds, and in
each local moduli C̃ in Proposition 3.2.11 is the corresponding quasi-Hamiltonian
space. See the end of Chapter 2 for the equivalence between Hamiltonian loop group
manifolds and quasi-Hamiltonian spaces.

Therefore, Proposition 3.2.11 and the quasi-Hamiltonian fusion procedure enable
us to give explicit description of the symplectic manifold M̃(a).

Proposition 3.2.12 (Lemma 3.1 [19]). The symplectic space M̃(a) is isomorphic to
the quasi-Hamiltonian quotient C̃1~ · · ·~ C̃m//G, where ~ denotes the fusion product
of two quasi-Hamiltonian G-manifolds.

3.2.3 Irregular Riemann-Hilbert correspondence
Let a be the data of a divisor D = ∑

ki(ai) and connection germs d− iA0 at each
ai. The irregular Riemann-Hilbert map, which depends on a choice of tentacles
(see Definition 3.9 in [17]), is a map ν from the global symplectic moduli space of
meromorphic connections M̃∗(a) ∼= (Õ1 × · · ·Õm)//G to the symplectic space of
monodromy data M̃(a) ∼= (C̃1 × · · · × C̃m)//G. In brief, the map arises as follows.
Let (V,∇,g) be a compatibly framed meromorphic connection on a holomorphic
vector bundle V with irregular type a. The irregular type a canonically determines
some directions at ai (Stokes rays) for each i. We then consider the Stokes sectors
at each ai bounded by these directions (and having some small fixed radius). The
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key fact is that, similar to the discussion in subsection 3.2.2, the framings g (and a
choice of branch of logarithm at each pole) determine, in a canonical way, a choice
of basis of solutions of the connection ∇ on each Stokes sector at each pole. Now
along any path in the punctured sphere P1 \ {a1, ..., am} between two such sectors,
we can extend the two corresponding bases of solutions and obtain a constant n by
n matrix relating these two bases. The monodromy data of (V,∇,g) is simply the
set of all such constant matrices, plus the exponents of formal monodromy, thus it
corresponds to a point in the space of monodromy data C̃1 × · · · × C̃m. Note that
(V,∇,g) can be seen as a point in Õ1 × · · ·Õm. Such a map taking the monodromy
data of meromorphic connections is G-equivariant and descends to give ν. The main
result of [17] leads to:

Theorem 3.2.13. ([17]) The irregular Riemann-Hilbert map

ν : (Õ1 × · · ·Õm)//G ↪→ (C̃1 ~ · · ·~ C̃m)//G (3.13)

associating monodromy/Stokes data to a meromorphic connection on the trivial
G-bundle over P1 is a symplectic map (provided the symplectic structure on the
right-hand side is divided by 2πi).

The two by two matrix case. In the following, we will work out the Stokes
matrices and irregular Riemann-Hilbert maps in two by two matrix case. We mainly
follow [14].

Let us consider the meromorphic connection on the trivial rank 2 holomorphic
vector bundle of the following form (under a chosen trivialization)

dF

dz
=
(
λ1 0
0 λ2

)
+ 1
z

(
t1 b2
b1 t2

)
F, (3.14)

where F (z) is valued in C2.

Remark 3.2.14. In previous discussion we assume the irregular singularity is at 0,
this meromorphic connection has one degree two pole at ∞. However, every notion
and property given in previous subsections carry over to this case in an obvious way.

Let F̂ := ρ̂zΛ′eΛz denote the formal fundamental solution matrix, where Λ =(
λ1 0
0 λ2

)
, Λ′ =

(
t1 0
0 t2

)
, and ρ̂ = Id +∑∞1 ρmz

−m is a formal series. Suppose the
ordering of λ1, λ2 is such that λ2−λ1 = ρeiθ, −π

2 < θ ≤ π
2 . Then by definition, 3π

2 −θ
and −π

2 − θ determine the Stokes’ rays of equation (3.14), and the corresponding
Stokes sectors are

Sect0 : −π2 − θ < arg(z) < 3π
2 − θ; Sect1 : π2 − θ < arg(z) < 5π

2 − θ.
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Next, we will find the canonical fundamental solutions in each sector. Let us define
α, β by

α + β = t2 − t1, αβ = −b1b2,

and denote F1(a, c; z) by Kummer’s function

F1(a, c; z) =
∞∑
n=0

(a)nzn
n!(c)n

,

where (a)0 = 1, (a)n = a(a+ 1) · · · (a+ n− 1) and c is not a negative integer or 0.
Using the identities for Kummer functions (see e.g. [15]), one can verify that

Y (z) =
(
b2e

λ1z(ξ)t1+βF1(β, β − α+ 1;−ξ) b2e
λ1z(ξ)t1+αF1(α, α− β + 1;−ξ)

βeλ2z(ξ)t1+βF1(−α, β − α+ 1; ξ) αeλ2z(ξ)t1+αF1(−β, α− β + 1; ξ)

)
,

where ξ := z(λ1 − λ2), is a fundamental solution matrix for (3.14) provided F1 is
well-defined, i.e., b2 6= 0 and α− β is not an integer. In the following, we make this
assumption. Then consistent with ξ = z(λ1 − λ2), we define arg(ξ) = arg(z) + θ − π.
It follows that

−3π
2 < arg(z) < π

2 , for z ∈ Sect0,

−π2 < arg(z) < 3π
2 , for z ∈ Sect1.

In the expression of ξλ = zλ(λ2 − λ1)λe−iπλ in Y (z), (λ2 − λ1)λ is defined as the
principal value and zλ is defined according to z ∈ Sect0 or Sect1. Thus we use the
notation Y0(z ∈ Sect0) and Y1(z ∈ Sect1) to identify the function Y (z) for these
choices of ξλ.

It then follows from the asymptotic expansion formulas for Kummer functions
(see, e.g., [73])

Y0(z) ∼ ρ̂(z)zΛeΛzDU0 = F̂ (z)DU0, z →∞, z ∈ Sect0,

Y1(z) ∼ ρ̂(z)zΛeΛzDU1 = F̂ (z)DU1, z →∞, z ∈ Sect1,

where
D =

(
b2(λ2 − λ1)t1e−iπt1 0

0 (λ2 − λ1)t2e−iπt2

)
,

and

U0 =
( Γ(β−α+1)

Γ(1−α)
Γ(α−β+1)

Γ(1−β)
eπiαΓ(β−α+1)

Γ(β)
eπiβΓ(α−β+1)

Γ(α)

)
, U1 =

( Γ(β−α+1)
Γ(1−α)

Γ(α−β+1)
Γ(1−β)

e−πiαΓ(β−α+1)
Γ(β)

e−πiβΓ(α−β+1)
Γ(α)

)
.
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Due to the uniqueness of the fundamental solution matrices with the asymp-
totic expansion ρ̂zΛ′eΛz as z → ∞ in Sect0 and Sect1, we have that Fi(z) :=
Yi(z)U−1

i D−1, for z ∈ Secti, is the canonical fundamental solution matrix with F̂ (z)
as the asymptotic expansion in Secti.

Therefore by the definition of Stokes matrices (see subsection 3.2.2), for z ∈
Sect1,2 = {z | 3π

2 −θ < arg(z) < π
2 −θ}, we have that S− = DU1U

−1
0 D−1. Similar, for

z ∈ Sect2,1 = {z | π2−θ < arg(z) < −π
2 −θ}, we have that S+ = DU0PU

−1
1 D−1e−2πiΛ′ ,

where P =
(
e2πi(t1+β) 0

0 e2πi(t1+α)

)
. The Stokes matrices (S−, S+) are explicitly given

by Γ functions

S− =
(

1 0
2πib1(λ2−λ1)t2−t1eπi(t1−t2)

Γ(1+α)Γ(1+β) 1

)
, S+ =

(
1 2πib2(λ2−λ1)t1−t2

Γ(1−α)Γ(1−β)
0 1

)
.

Note that (t1, t2, b1, b2) are coordinates on GL(2,C). Let us define the coordinate
(r1, r2, s−, s+) on the space U− × U+ × t of monodromy data:(

1 0
s− 1

)
,
(

1 s+
0 1

)
,
(
r1 0
0 r2

)
.

Thus the above discussion gives rise to

Proposition 3.2.15. For any fixed Λ =
(
λ1 0
0 λ2

)
, the irregular Riemann-Hilbert

map is given by

ν : GL(2,C)→ U− × U+ × t; (t1, t2, b1, b2) 7→ (e2πit1 , e2πit2 , s−, s+),

where s− = 2πib1(λ2−λ1)t2−t1eπi(t1−t2)

Γ(1+α)Γ(1+β) and s+ = 2πib2(λ2−λ1)t1−t2
Γ(1−α)Γ(1−β) .

Using some standard identities for Γ functions, one can check that in this g =
GL(2,C) case, the irregular Riemann-Hilbert map ν pushes forward the canonical
linear Poisson structure on g∗ to the dual Poisson Lie structure on G∗ = U−×U+× t.
This is an special case of Theorem 3.2.13. From this example, one can see the
complexity of irregular Riemann-Hilbert maps.
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Chapter 4

Irregular Riemann-Hilbert
correspondence,
Alekseev-Meinrenken dynamical
r-matrices and Drinfeld twists

Xiaomeng Xu

Abstract: In 2004, Enriquez-Etingof-Marshall suggested a new approach
to the Ginzburg-Weinstein linearization theorem. This approach is based
on solving a system of PDEs for a gauge transformation between the
standard classical r-matrix and the Alekseev-Meinrenken dynamical r-
matrix. In this paper, we explain that this gauge transformation can be
constructed as a monodromy (connection matrix) for a certain irregular
Riemann-Hilbert problem. This further indicates a surprising relation
between the connection matrix and Drinfeld twist. Our construction is
based on earlier works by Boalch. As byproducts, we get a symplectic
neighborhood version of the Ginzburg-Weinstein linearization theorem as
well as a new description of the Lu-Weinstein symplectic double.

0Keyword: Irregular Riemann-Hilbert correspondence, Alekseev-Meinrenken dynamical r-matrix,
Drinfeld twist, Ginzburg-Weinstein linearization, Lu-Weinstein symplectic double

0MSC: 53D17, 34M40, 17B37.
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1 Introduction
In the study of non-commutative Weil algebra [3], Alekseev and Meinrenken intro-
duced a particular dynamical r-matrix rAM, which is an important special case of
classical dynamical r-matrices ([40], [37]). Let g be a complex reductive Lie algebra
and t ∈ S2(g)2 the element corresponding to an invariant inner product on g, then
rAM, as a map from g∗ to g ∧ g, is defined by

rAM(x) := (id⊗ φ(adx∨))(t), ∀x ∈ g∗, (4.1)

where x∨ = (x ⊗ id)(t) and φ(z) := −1
z

+ 1
2cotanh z

2 , z ∈ C \ 2πiZ∗. Remarkably,
this r-matrix came to light naturally in two different applications, i.e., in the context
of equivariant cohomology [3] and in the description of a Poisson structure on the
chiral WZNW phase space compatible with classical G-symmetry [11].

Let r ∈ g ⊗ g be a classical r-matrix such that r + r2,1 = t (thus (g, r) is a
quasitriangular Lie bialgebra). In [32], Enriquez, Etingof and Marshall constructed
formal Poisson isomorphisms between the formal Poisson manifolds g∗ and G∗ (the
dual Poisson Lie group). Here g∗ is equipped with its Kostant-Kirillov-Souriau
structure, and G∗ with its Poisson-Lie structure given by r. Their result relies on
constructing a formal map g : g∗ → G satisfying the following gauge transformation
equation (as identity of formal maps g∗ → ∧2(g))

g−1
1 d2(g1)− g−1

2 d1(g2) + (⊗2Adg)−1r0 + 〈id⊗ id⊗ x, [g−1
1 d3(g1), g−1

2 d3(g2)]〉 = rAM,(4.2)

Here r0 := 1
2(r − r2,1), g−1

1 d2(g)(x) = ∑
i g
−1∂εig(x) ⊗ ei is viewed as a formal

function g∗ → g⊗2, (εi), (ei) are dual bases of g∗ and g, g−1
i dj(gi) = (g−1

1 d2(g1))i,j and
∂ξg(x) = ( d

dε
)|ε=0g(x+εξ). Two constructions of solutions of (4.2) are given: the first

one uses the theory of the classical Yang-Baxter equation and gauge transformations;
the second one relies on the theory of quantization of Lie bialgebras. The result
in [32] may be viewed as a generalization of the formal version of [49], in which
Ginzburg and Weinstein proved the existence of a Poisson diffeomorphism between
the real Poisson manifolds k∗ and K∗, where K is a compact Lie group and k is its
Lie algebra. Different approaches to similar results in the subject of linearization of
Poisson structures can be found in [1] and [16].

The main purpose of the present paper is to give an explicit solution of the above
equation when r is a standard classical r-matrix. This allows us to understand the
geometric meaning of equation (4.2) and clarify its relation with irregular Riemann-
Hilbert correspondence. The solutions will be constructed as the monodromy of
certain differential equations with irregular types. To be precise, for the case
G = GL(n,C) with g := Lie(G) = gl(n,C) and r0 ∈ g ∧ g the skew-symmetric part
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of the standard classical r-matrix, let us consider the meromorphic connection on V
over the unit disc D ⊂ C which has the form (by choosing a trivialization of V )

∇ = d− (A0

z2 + B

z
)dz (4.3)

where A0 ∈ gl(n,C) is a diagonal matrix with distinct diagonal elements and
B ∈ gl(n,C) an arbitrary matrix. One can take the monodromy of ∇ from 0 to
∞, known as the connection matrix C(B) of ∇, which is computed as the ratio of
canonical fundamental solutions of ∇ at one chosen Stokes sector Sect0 at 0 and ∞
(see section 3). Thus we get a map, also denoted by C, associating B ∈ g∗ to the
connection matrix C(B) of ∇ = d− (A0

z2 + B
z

)dz.

Theorem 1.1. The rescaled connection matrix C2πi ∈ Map(g∗, G), defined by
C2πi(x) := C( 1

2πix) for all x ∈ g∗, is a solution of equation (4.2) (provided r0 ∈ g∧ g
(4.2) is the skew-symmetric part of the standard classical r-matrix for GL(n,C)).

The meromorphic connections ∇ taking the form of (4.3) were previously studied
by Boalch. In particular, link between the connections ∇ and the dual Poisson Lie
group G∗ was discovered in [16], where the Poisson manifold G∗ is proven to be a
space of Stokes data, and local analytic isomorphisms g∗ to G∗ in a neighbourhood
of 0 were constructed. Furthermore, the connection matrix C was used by Boalch to
construct the Duistermaat twist [30].

Having proved the connection matrix satisfies the gauge transformation equation,
we can further discuss its relation with Drinfeld twist. This is based on a series
work of Enriquez, Etingof and others. In [32], the gauge transformation equation
was interpreted as the classical limit of a vertex-IRF transformation equation (see
[33]) between a dynamical twist quantization Jd(x) ∈ Map(g∗, U(g)⊗̂2 J~K) of rAM
and a constant twist quantization Jc ∈ U(g)⊗̂2 J~K of r0 associated to an admissible
associator Φ. As a result, the quasi-classical limit of each vertex-IRF transformation
ρ ∈ Map(g∗, U(g) J~K) which maps J(x) to Jc gives rise to a solution of (4.2).
According to [31][32], the renormalization of an admissible Drinfeld twist J ∈ U(g)⊗2

(killing the associator Φ) gives rise to such a vertex-IRF transformation, where J
is regarded as an element in (U(g)⊗̂Ŝ(g)) J~K, a formal map from g∗ to U(g) J~K,
by identifying the second component U(g) with Ŝ(g) via symmetrization (PBW)
isomorphism (see section 4). Thus in particular, an admissible Drinfeld twist provides
us with a solution of (4.2). On the other hand, for semisimple Lie algebra g, the
inverse is also true, i.e., for any g(x) ∈ Map(g∗, G) satisfying (4.2), there exists an
admissible Drinfeld twist J ∈ U(g)⊗̂2 J~K whose renormalized quasi-classical limit is
g(x). In particular, with the help of Theorem 1.1, we have
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Theorem 1.2. For each (rescaled) connection matrix C2πi ∈ Map(g∗, G), regarded
as an element in U(g)⊗ U(g) by taking Taylor expansion at 0 and identifying the
S·(g) component with U(g) via PBW isomorphism, there exists a Drinfeld twist
killing the associator Φ whose renormalized quasi-classical limit is C2πi.

In particular, if Φ is the KZ associator ΦKZ , then the connection matrix (the KZ
associator) can be seen as the monodromy from 0 to ∞ (1 to ∞) of the differential
equation with one order two pole at 0 and one simple pole ∞ (three simple poles
at 0, 1, ∞). Naively it seems that the confluence of two simple poles at 0 and 1 in
the KZ case turns the monodromy representing KZ associator to the monodromy
representing the connection matrix. Thus one may expect an explanation of the
above theorem from this perspective. It also indicates that the confluence of two
simple poles in KZ equation may be related to the fact that certain Drinfeld twist
kills the KZ associator.

In the second part of this paper, we clarify the relation between the gauge
transformation equation (4.2) and certain irregular Riemann-Hilbert correspondence.
This is motivated and based on Boalch’s early works, e.g. [17] [18] [19] [20], on the
study of the geometry of moduli spaces of meromorphic connections on a trivial
principal G(a complex reductive Lie group)-bundle over Riemann surfaces with
divisors. We next present a brief review of these works. In [17], natural symplectic
structures were found and described on such moduli spaces both explicitly and
from an infinite dimensional viewpoint (generalising the Atiyah-Bott approach).
Explicitly, the extended moduli space (see Definition 2.6 of [17]) of meromorphic
connections on a holomorphic vector bundle V over P1 with poles on an effective
divisor D = ∑m

i=1 ki(ai) and a fixed irregular type at each ai was proven to be
isomorphic to the symplectic quotient of the form Õ1 × · · · × Õm//G, where Õi is
an extended orbit with natural symplectic structure associated to the irregular type
at ai. In [19], a family of new examples of complex quasi-Hamiltonian G-spaces C̃
with G-valued moment maps was introduced as generalization of the conjugacy class
example of Alekseev–Malkin–Meinrenken [2]. It was further shown that given the
divisor D = ∑m

i=1 ki(ai), the symplectic spaces of monodromy data for meromorphic
connections on V with poles on D and fixed irregular types is isomorphic to the
quasi-Hamiltonian quotient space C̃1~ · · ·C̃m//G, where C̃i is the space of monodromy
data at ai and ~ denotes the fusion product between quasi Hamiltonian G-manifolds
[2]. In the simple pole case, it recovers the quasi-Hamiltonian description of moduli
spaces of flat connections in [2]. The main result of [17] [19] leads to that the irregular
Riemann-Hilbert correspondence

ν : (Õ1 × · · ·Õm)// ↪→ (C̃1 × · · · × C̃m)//G (4.4)

associating monodromy/Stokes data to a meromorphic connection on V is a symplec-
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tic map. In [18], it was shown that these results extend to any complex reductive
group G by introducing G-valued Stokes data for meromorphic connections on
principal G-bundles.

In [16], Boalch studied a T -reduction version of the irregular Riemann-Hilbert
correspondence in the case of the meromorphic connections on V with one simple
pole and one order two pole. The key feature of this case is that the correspondence
gives rise to a Poisson map from the dual of the Lie algebra g∗ to the dual Poisson Lie
group G∗ associated to the standard classical r-matrix on g. To have more details,
one can define Stokes matrices (see e.g [14]) of the meromorphic connection ∇ in
(4.3), a pair of lower and upper triangular matrices (S−(B), S+(B)), as the ratio of
canonical fundamental solutions of ∇ on two chosen Stokes sectors. Then the main
result of [16] shows that for each choice of diagonal matrix A0, the irregular Riemann-
Hilbert map S : g∗ → G∗ relating B ∈ g∗ to the Stokes data (S−(B), S+(B)) ∈ G∗,
is a Poisson map. Note that the connection matrix uniquely determines the Stokes
matrices via the important monodromy relation (from the fact that a simple positive
loop around 0 is also a simple negative loop around ∞)

C(B)e2πiB∨C(B)−1 = S−S+e
2πiδ(B), (4.5)

where δ(B) is the diagonal part of B.
To prove our main Theorem 1.1, the first step is to find a symplectic geometric

interpretation of equation (4.2), which turns to be a new geometric framework
generalizing the Ginzburg-Weinstein linearization. For this purpose, we consider a
symplectic slice Σ of T ∗G and its Poisson Lie analogue, a symplectic submanifold
Σ′ of the Lu-Weinstein symplectic double Γ (locally isomorphic to G × G∗) [64].
(See section 2.1 for more details). Then associated to any map g ∈ Map(g∗, G), we
define a local diffeomorphism Fg : (Σ, ω)→ (Σ′, ω′). Then a symplectic geometric
interpretation of the gauge transformation equation is as follows.

Theorem 1.3. Fg is a local symplectic isomorphism from (Σ, ω) to (Σ′, ω′) if and
only if g ∈ Map(g∗, G) satisfies equation (4.2).

With the help of the above theorem, we only need to prove the expected symplectic
geometry property of the connection matrix C. This is immediate as long as we
consider the irregular Riemann-Hilbert correspondence in the setting of the extended
moduli space (see Definition 2.6 in [17]) of meromorphic connections with one
simple pole and one order two pole. Actually, following the discussion above, the
corresponding irregular Riemann-Hilbert map is

ν : (Õ1 × Õ2)//G ↪→ (C̃1 × C̃2)//G. (4.6)
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On the other hand, the Hamiltonian and quasi-Hamiltonian quotient (Õ1×Õ2)//G and
(C̃1×C̃2)//G are isomorphic to Σ and Σ′ respectively. We thus obtain a symplectic map
ν : Σ→ Σ′. Next, following the construction of the irregular Riemann-Hilbert map,
we prove that ν can be chosen in such a way that for any (h, λ) ∈ Σ ⊂ T ∗G ∼= G× g∗

(via left multiplication)

ν(h, λ) = FC(h, λ), (4.7)

where C(B) is the connection matrix of ∇ in (4.3). Therefore, combining with
Theorem 2.2, we prove that the connection matrix C ∈ Map(g∗, G) satisfies the
gauge transformation equation (4.2). This clarifies the relation between the gauge
transformation of dynamical r-matrices and certain irregular Riemann-Hilbert prob-
lem. As a byproduct, we give a new description of Lu-Weinstein symplectic groupoid
via Alekseev-Meinrenken r-matrix. We also clarify the meaning of the gauge trans-
formation equation in the framework of generalized classical dynamical r-matrix.

The organisation of this paper is as follows. The next section gives the background
material and a geometric description of the equation (4.2). Section 3 defines the
connection matrix C(B) of the meromorphic connection ∇ in 4.3 and states that
C : g∗ → G gives rise to a solution of (4.2), i.e., a gauge transformation from r0 to
rAM. Section 4 discusses the quantum version, i.e., the vertex-IRF transformation
equation and formulates a surprising relation between connection matrices and
Drinfeld twists. Section 5 gives the background material on the moduli space of
meromorphic connections over surfaces and irregular Riemann-Hilbert correspondence
in this setting. At the second part of Section 5, we study in details one special case
of this correspondence and show that how it gives rise to the equivariant geometric
description of the equation (4.2). Section 6 describes Lu-Weinstein symplectic
groupoid via Alekseev-Meinrenken r-matrix. Next Section 7 studies the Poisson
structure on one symplectic slice Σ′ of Lu-Weinstein symplectic double and gives a
proof of the main theorem in Section (2.1).
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Alan Weinstein, Ping Xu and Chenchang Zhu for their useful discussions, suggestions

44



and interests in this paper. This work is supported by the NCCR SwissMAP of the
Swiss National Science Foundation and the project MODFLAT of the European
Research Council (ERC).

2 Gauge transformation between the standard r-
matrix and the Alekseev-Meinrenken r-matrix

Throughout this section, let g be a complex reductive Lie algebra and t ∈ S2(g)g the
element corresponding to an invariant inner product on g.

First recall that an element r ∈ g⊗g is called a classical r-matrix if r+r2,1 ∈ S2(g)g
and r satisfies the classical Yang-Baxter equation:

[r1,2, r1,3] + [r1,2, r2,3] + [r1,3, r2,3] = 0. (4.8)

Throughout this paper, we will denote by r0 := 1
2(r − r2,1) the skew-symmetric part

of a classical r-matrix r.
A dynamical analog of a classical r-matrix is as follows. Let η ⊂ g be a Lie

subalgebra. Then a classical dynamical r-matrix is an η-equivariant map r : η∗ → g⊗g
such that r + r2,1 ∈ S2(g)g and r satisfies the dynamical Yang-Baxter equation
(CDYBE):

Alt(dr) + [r1,2, r1,3] + [r1,2, r2,3] + [r1,3, r2,3] = 0, (4.9)

where Alt(dr(x)) ∈ ∧3g is the skew-symmetrization of dr(x) ∈ η⊗ g⊗ g ⊂ g⊗ g⊗ g
for all x ∈ η∗.

In the distinguished special case η = g, the Alekseev-Meinrenken dynamical
r-matrix rAM : g∗ → g⊗ g is defined by

rAM(x) = (id⊗ φ(adx∨))(t), ∀x ∈ g∗, (4.10)

where x∨ = (x ⊗ id)(t) and φ(z) := −1
z

+ 1
2cotanh z

2 , z ∈ C \ 2πiZ∗. Taking the
Taylor expansion of φ at 0, we see that φ(z) = z

12 + ◦(z2), thus φ(adx) is well-defined.
One can check that rAM + t

2 is a classical dynamical r-matrix (The maximal domain
of definition of φ(adx) contains all x ∈ g∗ for which the eigenvalues of adx lie in
C \ 2πiZ∗).

Denote by G the formal group with Lie algebra g and by Map0(g∗, G) the space
of formal maps g : g∗ → G such that g(0) = 1, i.e., the space of maps of the form
em, where m ∈ g⊗ Ŝ(g)≥0 (Ŝ(g) is the degree completion of the symmetric algebra
S(g)). The following theorem states that existence of formal solution of gauge
transformation equation (4.2)
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Theorem 2.1. [32] Let r be a classical r-matrix with r + r2,1 = t. Then there exists
a formal map g ∈ Map0(g∗, G), such that

g−1
1 d2(g1)− g−1

2 d1(g2) + (⊗2Adg)−1r0 + 〈id⊗ id⊗ x, [g−1
1 d3(g1), g−1

2 d3(g2)]〉 = rAM,(4.11)

Here r0 := 1
2(r − r2,1), g−1

1 d2(g)(x) = ∑
i g
−1∂εig(x) ⊗ ei is viewed as a formal

function g∗ → g⊗2, (εi), (ei) are dual bases of g∗ and g, g−1
i dj(gi) = (g−1

1 d2(g1))i,j
and ∂ξg(x) = ( d

dε
)|ε=0g(x+ εξ).

We will denote by rg0 ∈ Map(g∗, g∧g) the left hand side of equation (4.11). Because
of the g-invariance of t, one checks that rg0 = rAM if and only if rg = rAM + t

2 . In [32],
this equation is proven to be the classical limit of vertex-IRF transformation between
certain dynamical twists(see section 4) and the authors give two constructions of the
formal solutions of equation (4.11) based on formal calculation and quantization of
Lie bialgebras respectively. In the following two sections, we will give a geometric
interpretation and a construction of explicit solutions of equation (4.11), where
instead of the formal setting, we will work on a local theory.

2.1 Geometric construction
Following the same convention from last section, and let t ⊂ g be a maximal abelian
subalgebra and t′ the complement of the affine root hyperplanes: t′ := {Λ ∈ t | α(Λ) /∈
Z}. In the following, t′ is regarded as a subspace of g∗ via the isomorphism g ∼= g∗

induced by inner product. Let Σ be a cross-section of T ∗G ∼= G× g∗ (identification
via left multiplication), defined by

Σ := {(h, λ) ∈ G× g∗ | λ ∈ t′}. (4.12)

Then one can check that Σ is a symplectic submanifold of T ∗G with the canonical
symplectic structure (see [52] Theorem 26.7). The induced symplectic structure ω on
Σ is given for any tangents v1 = (X1, R1), v2 = (X2, R2) ∈ g× g∗, where R1, R2 ∈ t∗,
at (h, λ) ∈ Σ by

ω(v1, v2) = 〈R1, X2〉 − 〈R2, X1〉+ 〈λ, [X1, X2]〉. (4.13)

Now let r ∈ g⊗ g be a classical r-matrix with r + r2,1 = t. Let G∗ be the simply
connected dual Poisson Lie group associated to the quasitriangular Lie biaglebra
(g, r) and D the double Lie group with Lie algebra d = g 1 g∗ which is locally
diffeomorphic to G×G∗ (see e.g [63]). A natural symplectic structure on D is given
by the following bivector,

πD = 1
2(rdπ0 + ldπ0), (4.14)
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where π0 ∈ d∧d such that π0(ξ1+X1, ξ2+X2) = 〈X1, ξ2〉−〈X2, ξ1〉 for ξ1+X1, ξ2+X2 ∈
d∗ ∼= g∗ ⊕ g.

Following [64], the Lu-Weinstein double symplectic groupoid, associated to the
Lie bialgebra (g, r), is the set

Γ := {(h, h∗, u, u∗) | h, u ∈ G, h∗, u∗ ∈ G∗, hh∗ = u∗u ∈ D} (4.15)

with a unique Poisson structure πΓ such that the local diffeomorphism (Γ, πΓ) →
(D, πD): (h, h∗, u, u∗) 7→ hh∗ is Poisson. We define a submanifold Σ′ of Γ, as a
Poisson Lie analogue of Σ, by

Σ′ := {(h, h∗, u, u∗) ∈ Γ | h∗ ∈ et′ ⊂ G∗} (4.16)

(e denotes the exponential map with respect to the Lie algebra g∗). In section 7, we
will prove that Σ′ is a symplectic submanifold of (Γ, πΓ). Now let us take this fact
and denote the induced symplectic structure on Σ′ by ω′. On the other hand, the
map

Σ′ → G× et′ ; (h, eλ, u, u∗) 7→ (h, eλ) (4.17)

expresses Σ′ as a cover of a dense subset of G× et′ ⊂ G×G∗. Thus associated to
any g ∈ Map0(g∗, G), we have a local diffeomorphism (defined on a dense subset of
Σ) Fg : Σ→ Σ′ defined by

Fg(h, λ) := (g(Adhλ)h, eλ, u, u∗), ∀(h, λ) ∈ Σ, (4.18)

where u ∈ G, u∗ ∈ G∗ are determined by the identity heλ = u∗u. Note that Fg
is well-defined for elements (h, λ) ∈ Σ such that hλ in the double Lie group D is
sufficiently near the unit, and this is enough for our purpose.

Theorem 2.2. Fg is a local symplectic isomorphism from (Σ, ω) to (Σ′, ω′) if and
only if g ∈ Map(g∗,G) satisfies the gauge transformation equation (4.11), rg0 = rAM.

Proof. See section 7.

The case when r is a standard r-matrix. Let T ⊂ G be a maximal torus
with Lie algebra t ⊂ g. Let B± denote a pair of opposite Borel subgroups with
B+ ∩B− = T . For the choice of positive roots Σ+ corresponding to Borel subgroup
B+, we take the standard r-matrix given by

r := 1
2t+ 1

2
∑
α∈Σ+

Eα ∧ E−α, (4.19)
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where t ∈ S2(g)g is the Casimir element. In this case, the simply connected dual
Poisson Lie group associated to (g, r) is

G∗ = {(b−, b+,Λ) ∈ B− ×B+ × t | δ(b−)δ(b+) = 1, δ(b+) = exp(πiΛ)}, (4.20)

where δ : g→ t takes the diagonal part. Thus Σ′ is a submanifold of the double

Γ : {h, (b−, b+,Λb), u, (c−, c+,Λc) | hb± = c±u} ⊂ (G×G∗)2, (4.21)

defined by

Σ′ := {(h, (e−πiΛ, eπiΛ,Λ), u, (c+, c−,Λc)) ∈ Γ | he±πiΛ = c±u,Λ ∈ t′}, (4.22)

where t′ ⊂ t is the complement of the affine root hyperplanes. To simplify notation, we
will write e2πiλ instead of (eπiλ∨ , e−πiλ∨ , λ∨) ∈ G∗, where λ ∈ g∗, λ∨ = (λ⊗ id)(t) ∈ g
and e2πiλ (eπiλ∨) is respect to the exponential map of the Lie algebra g∗ (g).

Now given any g ∈ Map(g∗, G), let us consider a local diffeomorphism F ′g : Σ→ Σ′
which will be more directly involved in the following discussion,

F ′g(h, λ) := (g(2πiAdhλ)h, e2πiλ, u, u∗), ∀(h, λ) ∈ Σ (4.23)

where u ∈ G, u∗ ∈ G∗ are uniquely determined by the identity heλ = u∗u. It is
obvious that the map (Σ, ω)→ (Σ, 1

2πiω), (h, λ) 7→ (h, 2πiλ) is symplectic. Therefore,
as a corollary of Theorem 2.2, we have

Corollary 2.3. The map Fg2πi is a local symplectic isomorphism from (Σ, ω) to
(Σ′, ω′) (provided the symplectic structure on the right-hand side is divided by 2πi) if
and only if g satisfies the gauge transformation equation (4.11), rg0 = rAM.

3 A gauge transformation between rAM and the
standard r-matrix from connection matrix

In this section, we will construct an explicit solution of the gauge transformation
equation (4.11) for the case G = GL(n,C) and r is the standard r-matrix. However,
our result does not depend on the choice of GL(n,C), and so extends to any connected
complex reductive group G with the choice of a maximal tours and the corresponding
r-matrix given in (4.19) as long as we use the G-valued Stokes data for meromorphic
connections on a principal G-bundle (see [18]) and consider the irregular Riemann-
Hilbert correspondence in this setting.

Let V be a rank n trivial holomorphic vector bundle on P1. Let A0 ∈ GL(n,C)
be a diagonal matrix with distinct diagonal elements and B ∈ gl(n,C) an arbitrary
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matrix. Choose coordinate {z} to identify P1 with C ∪∞ and a trivialization of V .
We consider the following meromorphic connection on V which has an order 2 pole
at origin and (if B 6= 0) a first order pole at ∞,

∇ := d− (A0

z2 + B

z
)dz. (4.24)

Associated to the connection ∇, one can define a connection/monodromy matrix
C ∈ GL(n,C) as the "monodromy" of ∇ from 0 to ∞. Our aim in this section is to
fill in the details of the definition of C.

Definition 3.1. Let us assume −A0/z = diag(q1, ..., qn). The anti-Stokes directions
at 0 on the complex plane are the directions between pairs of eigenvalues of A0 (when
plotted in the z-plane).

We choose an initial sector Sect0 at 0 bounded by two adjacent anti-Stokes
directions and a branch of log(z) on Sect0. Then we label the anti-Stokes directions
d1, d2, ..., d2l going in a positive sense and starting on the positive edge of Sect0. Set
Secti = Sect(di, di+1) for the open sector swept out by rays moving from di to di+1
in a positive sense. (Indices are taken modulo 2l, so Sect0 = Sect(d2l, d1).

Given a map f : C → GL(n,C), we denote the gauge action of f on any
meromorphic connection d− A by square bracket:

f [d− A] = d− fAf−1 − df · f−1. (4.25)

Proposition 3.2. (see [14]) There is a unique F̂ ∈ GLn(CJzK) with F̂ (0) = 1 such
that

F̂ [A0

z2 dz + δ(B)
z

da] = A0

z2 dz + B

z
dz

as formal series, where δ(B) is the diagonal part of B.

The radius of convergence of the series F̂ is generally zero. Thus F̂ zδ(B)e−
A0
z

is just a formal fundamental solution for ∇. Now the point is that on each Secti,
there is a canonical way to choose one holomorphic isomorphism between ∇0 and ∇,
where ∇0 := d− (A0

z2 + δ(B)
z

)dz.

Theorem 3.3. (see e.g. [14][66][68]) On each sector Secti, there is a unique invertible
n× n matrix of holomorphic functions Fi such that Fi[∇0] = ∇, and the matrix of
functions Fi can be analytically continued to the i-th ‘supersector’ Ŝecti := Sect(di −
π
2 , di + π

2 ) and then Fi is asymptotic to F̂ at 0 within Ŝecti.
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Definition 3.4. The canonical fundamental solution of ∇ on Secti is

Φi := Fiz
δ(B)e−

A0
z , (4.26)

where (by convention) the branch of log(z) chosen on Sect0 is extended to the other
sectors in a negative sense.

Now let us consider the fundamental solutions of ∇:

Φ := Φ0 on Sect0, (4.27)
χ := HzB on a neighbourhood of ∞ slit along d1, (4.28)

where H : P1 \ {0} → GL(n,C) is a holomorphic map such that H[d − B
z
dz] = ∇

and H(∞) = Id, here the square bracket denotes the gauge action. (See e.g. [81] for
the existence, uniqueness of H.) Finally, for any B ∈ gl(n,C) we obtain a transition
matrix C ′(B) relating these two fundamental solutions, i.e., if χ is extended along
a path in Sect0 then χ = Φ · C ′ in the domain of definition of Φ. C ′ is a constant
invertible matrix because both bases extend uniquely (as solutions of ∇) along the
path and they are both ∇-horizontal bases. Further, associated to the diagonal
matrix A0 and the choice of Sect0, there is a permutation matrix which will be used
to "normalize" the matrix C ′(B).

Definition 3.5. The permutation matrix P ∈ GL(n,C) associated to the choice of
Sect0 is defined by (P )ij = δπ(i)j where π is the permutation of {1, ..., n} corresponding
to the dominance ordering of {eq1 , ..., eqn} along the direction γ bisecting the sector
Sect(d1, dl):

π(i) ≤ π(j) ⇐⇒ eqi/eqj → 0 as z → 0 along γ.

Definition 3.6. The connection matrix C(B) of ∇ = d− (A0
z2 + B

z
) associated to the

choice of Sect0 and the branch of log(z), is defined as C(B) := P−1C ′(B).

Thus we obtain a map C (depends on the choice of A0) from g∗ to GL(n,C)
which associating any B ∈ g∗ to the connection matrix C(B) of ∇. Now we can
introduce our main theorem.

Theorem 3.7. The map C2πi ∈ Map(g∗, G), defined by C2πi(x) := C( 1
2πix) for all

x ∈ g∗, is a solution of the gauge transformation equation (4.11) (provided r0 in
(4.11) is the skew-symmetric part of the standard r-matrix associated to GL(n,C)).

A proof will be given in Section 5. The idea is as follows. Following Theorem 2.2,
to prove rC0 = rAM, we only need to verify its symplectic geometric counterpart. This
will be realized as certain irregular Riemann-Hilbert correspondence in section 5.
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4 Vertex-IRF transformations and Drinfeld twists
In this section, we will recall the notion of vertex-IRF transformations between
dynamical twists [35]. Following [32], equation (4.11) is the classical limit of a
vertex-IRF transformation equation between a constant twist Jc and a dynamical
twist Jd(x) which are the twist quantizations of r0 and rAM respectively. In particular,
a Drinfeld twist which kills an admissible associator gives rise to such a vertex-IRF
transformation. Further discussions will lead to a conjectural relation between
connection matrices and Drinfeld twists.

Definition 4.1. Let Φ = 1 + [t12,t23]
24 ~2 + O(~3) ∈ U(g)⊗3J~K be such that Φ is g-

invariant and satisfies the pentagon equation and the counit axiom. Then a function
Jd : g∗ → U(g)⊗2J~K is called a dynamical twist associated to Φ if Jd(x) = 1 +O(~)
is g-invariant and

J12,3
d J1,2

d (x+ ~h(3)) = Φ−1J1,23
d (x)J2,3

d (x), (4.29)

where for J1,2
d (x+ ~h3) we use the dynamical convention, i.e.,

J1,2
d (x+ ~3) =

∑
N≥0

~N

N !

n∑
i1,...,iN

(∂ξi1 · · · ∂ξiN Jd)(x)⊗ (ei1 · · · eiN ) (4.30)

where n = dim(g), and {ei}i=1,...,n, {ξi}i=1,...,n are dual bases of g and g∗.

Assume (Φ, Jd(x)) satisfies the conditions in Definition 4.1. Let j(x) := (Jd(x)−1
~ )

mod ~, and r(x) := j(x)− j(x)2,1. Then following [31], r(x) + t
2 is a solution of the

CDYBE (4.9), i.e., a classical dynamical r-matrix. In this case, Jd(x) is called a
dynamical twist quantization of r(x).

In particular, a constant twist Jc ∈ U(g)⊗2J~K is such that

J12,3
c J1,2

c = Φ−1J1,23
c J2,3

c . (4.31)

Similarly, we say Jc = 1 + ~ r2 + ◦(~2) is a twist quantization of r0 := 1
2(r − r2,1).

Set U ′ := U(~g)J~K, the subalgebra generated by ~x, ∀x ∈ g. Note that U ′/~U ′ =
Ŝ(g). An associator Φ ∈ U(g)⊗̂3J~K is called admissible (see [33]) if

Φ ∈ 1 + ~2

24[t1,2, t2,3] +O(~3), ~log(Φ) ∈ (U ′(g))⊗̂3.

Given an admissible associator Φ ∈ U(g)⊗3J~K, we identify the third component U(g)
of this tensor cube with C[g∗] via the symmetrization (PBW) isomorphism S.(g)→
U(g) and use this identification view Φ−1 as a function from g∗ to U(g)⊗2J~K, denoted
by Φ−1(x). Then we have Φ−1(~−1x) is a well-defined element in U(g)⊗2⊗̂C[g∗].
Following [33], any universal Lie associator gives rise to an admissible associator.
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Theorem 4.2. [31] Assume that Φ is the image in U(g)⊗3J~K of a universal Lie
associator. Let Jd(x) := Φ−1(~−1x), where Φ−1 is regarded as an element of (U(g)⊗2⊗
C[g∗])J~K. Then

(1). Jd(x) is a formal dynamical twist. More precisely, Jd(x) = 1+~j(x)+O(~2) ∈
(U(g)⊗2⊗̂Ŝ(g))J~K, is a series in nonnegative powers of ~ and satisfies the dynamical
twist equation.

(2). Jd(x) is a twist quantization of the Alekseev-Meinrenken dynamical r-matrix,
that is rAM = j(x)− j(x)2,1.

(3). If ΦKZ is the Knizhnik-Zamolodchikov associator, then Jd(x) is holomorphic
on an open set and extends meromorphically to the whole g∗.

Definition 4.3. [35] Let Jd(x) : g∗ −→ U(g)⊗2J~K be a function with invertible
values and ρ : g∗ −→ U(g)J~K a function with invertible values such that ε(ρ(λ)) = 1
(ε is the counit). Set

Jρd (x) = ∆(ρ(x))Jd(x)ρ1(x− ~h(2))−1ρ2(x)−1, (4.32)

and call ρ a vertex-IRF transformation from Jd(x) to Jρd (x), where for ρ−1(x− ~h(2))
we use the dynamical convention.

Now let us take an admissible associator Φ. Let Jc (Jd(x)) be a (dynamical)
twist quantization of r0 (rAM). Let ρ(x) ∈ (U(g)⊗ Ŝ.g)J~K be a formal vertex-IRF
transformation which maps the g-invariant but dynamical twist Jd(x) to the constant
but non-invariant twist Jc. This is to say

Jc = ∆(ρ(x))Jd(x)ρ1(x− h(2))−1ρ2(x)−1. (4.33)

Then by comparing the coefficients of equation (4.33) up to the first order of ~, we
have

Proposition 4.4. [32] The reduction modulo ~ of ρ(x), denoted by g(x) = ρ(x)|~=0,
belongs to exp(g⊗ Ŝ(g))>0 (thus a formal map from g∗ to exp(g)) and satisfies the
equation rg(x)

0 = rAM.

Let Jd(x) = Φ(~−1x) be the dynamical twist in Theorem 4.2, then the IRF-
transformations satisfying (4.33) are constructed in [32] as follows. For the admissible
associator Φ, there exists a twist killing Φ (see [25][34]), and according to [33], this
twist can be made admissible by a suitable gauge transformation. The resulting twist
J ∈ U(g)⊗̂2J~K satisfies J = 1−~ r2+◦(~), ~log(J) ∈ U ′⊗̂2, (ε⊗id)(J) = (id⊗ε)(J) = 1,
and

Φ = (J2,3J1,23)−1J1,2J12,3. (4.34)
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Let us now identity the second component U(g) of J with C(g∗) via PBW isomorphism
S.(g) ∼= U(g), and regard J as a formal function from g∗ to U(g)J~K, denoted by J(x).
Let ρ(x) := J(~−1x) ∈ Map(g∗, U(g)J~K) denote the corresponding renormalization
by sending x ∈ g∗ to ~−1x. Then if we identify the third component U(g) of the
tensor cube with C(g∗) in equation (4.33) and renormalize the resulting formal maps
from g∗ to U(g)⊗̂2 by sending x ∈ g∗ to ~x, the equation (4.34) becomes

J−1 = ∆(ρ(x))Jd(x)ρ1(x− h(2))−1ρ2(x)−1 (4.35)

(Here Jd(x) := Φ−1(~−1x) is the dynamical twist in Theorem 4.2). One checks that
Jc := J−1 satisfies (4.31) (thus a constant twist). Therefore, the admissible Drinfeld
twist J gives rise to a vertex-IRF transformation between Jd(x) and Jc = J−1.

Following Proposition 4.4 and the above discussion, we know that the renormalized
quasi-classical limit g(x) ∈ Map(g∗, G) of an admissible Drinfeld twist J satisfies
equation (4.11). Now for the case g is semisimple, we prove that the inverse is also
true, i.e., given any solution g(x) of (4.11), there exists an admissible Drinfeld twist
J whose quasi-classical limit is g(x).

Note that Map0(g∗, G) has a group structure, defined by (g1∗g2)(x) = g2(Ad∗g1(x)x)g1(x).
Following [32], we have a subgroup Map0

ham(g∗, G) whose elements g(x) are such
that (use the same convention in (4.11))

g−1
1 d2(g1)− g−1

2 d1(g2) + 〈id⊗ id⊗ x, [g−1
1 d3(g1), g−1

2 d3(g2)]〉 = 0. (4.36)

Furthermore, the right action of Map0(g∗, G) on itself restricts to an action of
Mapham0 (g∗, G) on the space of solutions of equation (4.11), i.e., for α ∈ Mapham0 (g∗, G),
(α ∗ g)(x) = g(Ad∗α(x)x)α(x) is a solution of (4.11) if g(x) is.

The infinitesimal of the above action is as follows. For each a = w⊗ f ∈ ∧n(g)⊗
Ŝ(g), we define da := ∑

iw⊗ei⊗ d
dε
a(x+εξi) and if v ∈ ∧n−1(g)⊗g, set Alt(v⊗f) :=

(v + v2,...,n,1 + · · ·+ vn,1,...,n−1)⊗ f . Then it is direct to check that Mapham0 (g∗, G) is
a prounipotent Lie group with Lie algebra {α ∈ g ⊗ Ŝ(g)≥1 | Alt(dα) = 0}. This
Lie algebra is isomorphic to (Ŝ(g)>1, {−,−}) under the map d : f → df , f ∈ Ŝ(g)>1.
Then the infinitesimal action of Mapham0 (g∗, G) on the space of all g(x) ∈ Map0(g, G)
satisfying (4.11) is described as follows: the Lie algebra (Ŝ(g)>1, {−,−}) acts by
vector fields on the space of solutions by

g−1δf (g) = 〈id⊗ id⊗ x, [d3(f2), g−1
12 d3g12]〉 − d1(f2) ∈ g⊗ Ŝ(g)≥0. (4.37)

Next let U ′0 := Ker(ε) ∩ U ′. Then V := {u ∈ ~−1U ′0 ⊂ U(g)J~K} | u = O(~)} is a
Lie subalgebra for the commutator. One checks that eu ∗ J := (eu)1(eu)2J(∆(eu))−1

is a solution of (4.34) if J is. Thus V acts on the set of admissible Drinfeld
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twists by δu(J) = u1J + u2J − Ju12, u ∈ V . Note that V/~V = (Ŝ(g)>1, {−,−}).
The reduction modulo ~ of the Lie algebra V action on a twist is described as
follows. The Lie algebra (Ŝ(g)>1, {−,−}) acts on the set of solutions of (4.11) by
δf(g) = {1 ⊗ f, g} − g · df , f ∈ Ŝ(g)>1, which coincides with the action (4.37).
Therefore, this action is the infinitesimal of the right action of Map(g∗, G) on the set
of solutions of (4.11).

Recall that for an admissible Drinfeld twist J , regarded as a formal function
J(x) : g∗ → U(g)J~K (via PBW), the renormalized quasi-classical limit of J is g(x) :=
J(~−1x)|~=0 ∈ Map(g∗, U(g)J~K) (g(x) is actually in Map0(g∗, G) by Proposition 4.4).

Proposition 4.5. Given any g ∈ Map0(g∗, G) satisfying rg0 = rAM, there exists an
admissible Drinfeld twist J whose renormalized quasi-classical limit is g(x), and the
identity rg0 = rAM is the classical limit of the identity Φ = (J2,3J1,23)−1J1,2J12,3.

Proof. Let J ′ be an admissible Drinfeld twist with g′(x) as its renormalization
classical limit (thus a solution of (4.11)). Following [32], Mapham0 (g∗, G) acts sim-
ply and transitively on the space of solutions of (4.11). Therefore, there exists
an α ∈ Mapham0 (g∗, G) such that g(x) = g′ ∗ α. Assume a ∈ Ŝ(g)>1 (Lie algebra
of Mapham0 (g∗, G)) be such that ea = α. Let us take u ∈ V ⊂ U(g)J~K whose
(renormalized) reduction modulo ~ is a. We thus have that J := eu ∗ J ′ is also an ad-
missible twist. Let us regard J as a formal function from g∗ to U(g)J~K by identifying
the second component U(g) with Ŝ(g), then we can check that g(x) = J(~−1x)|~=0.

In particular, given any connection matrix C, C2πi ∈ Map0(g∗, G) is a solution of
(4.11) (see section 3), thus can be quantized. From the above discussion, it means
that if we regard C2πi as an element in U(g)⊗2 by taking the Taylor expansion at
0 and identifying Ŝ(g) with U(g), then there exists an admissible Drinfeld twist
J ∈ U(g)⊗2J~K satisfying (4.34) whose renormalized quasi-classical limit is C2πi.

Theorem 4.6. Assume Φ is the image in U(g)⊗̂3 of a universal Lie associator. Then
for any connection matrix C ∈ Map0(g∗, G), there exists an admissible Drinfeld twist
J killing the associator Φ whose renormalized quasi-classical limit is C2πi.

Remark 4.7. In particular, we can take Φ to be the KZ associator. Then the
connection matrix (the KZ associator) can be seen as the monodromy from 0 to ∞
(1 to ∞) of the differential equation with one order two pole at 0 and one simple
pole ∞ (three simple poles at 0, 1, ∞). Naively it seems that the confluence of
two simple poles at 0 and 1 in the KZ case turns the monodromy representing KZ
associator to the monodromy representing connection matrix. Thus one may expect
an explanation of the above theorem from this perspective. It also indicates that the
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identity ΦKZ = (J2,3J1,23)−1J1,2J12,3 may be related to the confluence of two simple
poles.

5 Irregular Riemann-Hilbert correspondence
In this section, we will recall symplectic moduli spaces of meromorphic connections
on a trivial holomorphic vector bundle, the corresponding symplectic spaces of
monodromy data and the irregular Riemann-Hilbert correspondence between them.
We mainly follow the papers [17][18][19] of Boalch, in which these symplectic spaces
are found and described both explicitly and from an infinite dimensional viewpoint
(generalising the Atiyah-Bott approach). After that, we will consider the case of the
meromorphic connection with one simple pole and one order two pole, and show
that the irregular Riemann-Hilbert correspondence in this case gives rise to a gauge
transformation between r0 and rAM.

5.1 Moduli spaces of meromorphic connections and the spaces
of monodromy data

Let D = ∑m
i=1 ki(ai) > 0 be an effective divisor on P1 and V a rank n holomorphic

vector bundle.
Definition 5.1. A meromorphic connection ∇ on V with poles on D is a map
∇ : V → V ⊗ K(D) from the sheaf of holomorphic sections of V to the sheaf of
sections of V ⊗K(D), satisfying the Leibniz rule: ∇(fv) = (df)⊗ v + f∇v, where
v is a local section of V , f is a local holomorphic function and K is the sheaf of
holomorphic one-forms on P1.

Let z be a local coordinate on P1 vanishing at ai then in terms of a local
trivialisation of V , any meromorphic connection ∇ takes the form of ∇ = d − A,
where

A = Aki
zki

dz + · · ·A1

z
dz + A0dz + · · · (4.38)

is a matrix of meromorphic one-forms and Aj ∈ End(Cn), j ≤ ki. ∇ is called generic
if at each ai the leading coefficient Aki is diagonalizable with distinct eigenvalues (for
ki ≥ 2), or diagonalizable with distinct eigenvalues mod Z (for ki = 1).
Definition 5.2. [17] A compatible framing at ai of a vector bundle V with generic
connection ∇ is an isomorphism g0 : Vai → Cn between the fibre Vai and Cn such
that the leading coefficient of ∇ is diagonal in any local trivialisation of V extending
g0.
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At each point ai choose a germ d − iA0 of a diagonal generic meromorphic
connection in some trivialisation of V . Let ∇ = d− A in some local trivialisation
and zi a local coordinate vanishing at ai, then (∇, V ) with compatible framing g0 at
ai has irregular type iA0 if there is some formal bundle automorphism g ∈ GLn[[zi]]
with g(ai) = g0 such that gAg−1 + dg · g−1 = iA0 + iΛ

zi
dzi for some diagonal matrix

iΛ. Let a denote the choice of the effective divisor D and all the germs iA0.

Definition 5.3. ([17]) The extended moduli space M̃∗(a) is the set of isomorphism
classes of triples (V,∇,g) consisting of a generic connection ∇ with poles on D on a
trivial holomorphic vector bundle V over P1 with compatible framing g = (g0) such
that (V,∇,g) has irregular type iA0 at each ai.

Next let us recall (from [17] Section 2) the building blocks Õ of the moduli space
M̃∗(a). Fix an integer k 6= 2. Let Gk := G(C[z]/zk) be the group of (k − 1)-jets
of bundle automorphisms, and let gk = Lie(Gk) be its Lie algebra, which contains
elements of the form X = X0 + X1z + · · · + Xk−1z

k−1 with Xi ∈ g. Let Bk be
the subgroup of Gk of elements having constant term 1. The group Gk is the semi-
direct product GnBk (where G acts on Bk by conjugation). Correspondingly the
Lie algebra of Gk decomposes as a vector space direct sum and dualising we have:
g∗k = b∗k ⊕ g∗. Elements of g∗k will be written as

A = A0
dz

zk
+ · · ·+ Ak−1

dz

z
(4.39)

via the pairing with gk given by 〈A,X〉 := Res0(A,X) = ∑
i+j=k−1(Ai, Xj). In this

way b∗k is identified with the set of A having zero residue and g∗ with those having
only a residue term (zero irregular part). Let πres : g∗k → g∗ and πirr : g∗k → b∗k denote
the corresponding projections.

Now choose an element A0 = A0
0
dz
zk

+ · · · + A0
k−2

dz
z2 of b∗k with A0

i ∈ t and with
regular leading coefficient A0

0 ∈ treg. Let OA0 ⊂ b∗k denote the Bk coadjoint orbit
containing A0.

Definition 5.4. ([17]) The extended orbit Õ ⊂ G× g∗k associated to OA0 is

Õ := {(g0, A) ∈ G× g∗k | πirr(g0Ag
−1
0 ) ∈ OA0} (4.40)

where πirr : g∗k → b∗k is the natural projection removing the residue.

Õ is naturally a Hamiltonian G-manifold. Any tangents v1, v2 to Õ ∈ G× g∗k at
(g0, A) are of the form

vi = (Xi(0), [A,Xi] + g−1
0 Rig0) ∈ g⊕ g∗k (4.41)
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for some X1, X2 ∈ gk and R1, R2 ∈ t∗ (where g ∼= Tg0G via left multiplication), and
the symplectic structure on Õ is given by

ω
Õ

(v1, v2) = 〈R1,Adg0X2〉 − 〈R2,Adg0X1〉+ 〈A, [X1, X2]〉. (4.42)

Proposition 5.5. ([17]) The G action h · (g0, A) := (g0h
−1, hAh−1) on (Õ, ω

Õ
) is

Hamiltonian with moment map µG : Õ → g∗, µ(g0, A) = πres(A).

In the simple pole case k = 1 we define

Õ := {(h, x) ∈ G× g∗ | Adhx ∈ t′} ⊂ G× g∗. (4.43)

One checks that the map Õ → Σ, (h, x) 7→ (h,Adhx) is an isomorphic of Õ to the
symplectic slice Σ defined in section 3.

The spaces Õ enable one to construct global symplectic moduli spaces of mero-
morphic connections on trivial G-bundles over P1 as symplectic quotients of the form
Õ1×· · ·× Õm//G (the Hamiltonian reduction of the direct product of m Hamiltonian
G-spaces).

Proposition 5.6. ([17]) M̃∗(a) is isomorphic to the symplectic quotient

M̃∗(a) ∼= Õ1 × · · · × Õm//G (4.44)

where Õi ⊂ G × g∗ki is the extended coadjoint orbit associated to OAi ⊂ b∗k, the Bk

coadjoint orbit containing the diagonal element Ai which arises from the irregular
part of iA0 at ai.

Quasi-Hamiltonian G-spaces and symplectic spaces of monodromy data.
Next, let us recall the quasi-Hamiltonian description of the symplectic structure on
the space of monodromy/Stokes data. Let G be a Lie group with the Lie algebra
g = Lie(G). Let θ, θ̄ denote the left and right invariant g-valued Cartan one-forms on
G respectively, and let ψ denote the canonical three-form of G, i.e., ψ := 1

6〈θ, [θ, θ]〉.

Definition 5.7. ([2]) A quasi-Hamiltonian G-space is a G-manifold M with a
G-equivariant map µ : M → G (where G acts on itself by conjugation), and a
G-invariant two-form ω ∈ Ω2(M) such that

(i) dω = µ∗(ψ), where ψ is the canonical three-form on G;

(ii) ω(vX , ·) = 1
2µ
∗(θ + θ̄, X) ∈ Ω1(M), for all X ∈ g, where vX is the fundamental

vector field (vX)m = − d
dt

(etX ·m)|t=0.
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(iii) the kernel of ω at each point m ∈M is

kerωm = {(vX)m | X ∈ g such that hXh−1 = −X, where h := µ(m) ∈ G}.(4.45)

The most important example of a quasi-Hamiltonian G-space is as follows.

Example 5.8. Suppose C ⊂ G is a conjugacy class with the conjugation action of
G. Then C is a quasi-Hamiltonian G-space with the moment map µ given by the
inclusion map, and two-form ω defined by

ωh(vX , vY ) = 1
2(〈X,AdhY 〉 − 〈Y,AdhX〉), (4.46)

for any X, Y ∈ g and vX , vY the fundamental vector field with respect to the conjuga-
tion action of G.

Theorem 5.9. ([2]) Suppose M is a quasi-Hamiltonian (G×H)-space with moment
map (µ, µH) : M → G×H. If the quotient µ−1/G of the inverse image µ−1(1) of the
identity under the first moment map is a manifold, then the restriction of ω to µ−1(1)
descends to the reduced space M//G := µ−1/G and makes it into a quasi-Hamiltonian
H-space. In particular, if H is abelian, then M//G is a symplectic manifold.

We can introduce the following monoid structure in the category of quasi-
Hamiltonian G-spaces.

Definition 5.10. ([2]) Let M1 and M2 be quasi-Hamiltonian G-spaces with moment
map µ1 and µ2 respectively. Their fusion product M1 ~ M2 is defined to be the
quasi-Hamiltonian G-space M1 ×M2, where G acts diagonally, with two-form

ω̃ = ω1 + ω2 −
1
2(µ∗1θ, µ∗2θ̄) (4.47)

and moment map

µ̃ = µ1 · µ2 : M → G. (4.48)

The quasi-Hamiltonian spaces from conjugacy classes can be seen as the building
blocks of moduli spaces of flat connections on trivial G-bundles over P1. Indeed, let
Σm be a sphere with m boundary components, the quasi-Hamiltonian reduction

C1 ~ · · ·~ Cm//G (4.49)

of the fusion product of m conjugacy classes Ci is isomorphic to the moduli space of
flat connections over Σm with the Atiyah-Bott symplectic form.
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Now let us recall the building blocks of the spaces of monodromy data. They
are the monodromy manifolds corresponding to higher degree poles, and conjugacy
classes can be seen as the monodromy manifolds in first order pole cases. Let T
be a maximal torus of G with Lie algebra t ⊂ g and B± denote a pair of opposite
Borel subgroups with B+ ∩B− = T . Let us consider the family of complex manifolds
(see [19] for the geometrical origins of these spaces where their infinite-dimensional
counterparts are described)

C̃ := {(C,d, e,Λ) ∈ G× (B− ×B+)k−1 × t | δ(dj)−1 = e
πiΛ
k−1 = δ(ej) for all j},(4.50)

parameterised by an integer k ≥ 2, where b = (d1, ..., dk−1), e = (e1, ..., ek−1) with
deven, eodd ∈ B+ and dodd, eeven ∈ B− and δ : B+ → T is the homomorphism with
kernel U±.
Proposition 5.11. ([19]) The manifold C̃ is a complex quasi-Hamiltonian G× T -
space with action

(g, t) · (C,d, e,Λ) = (tCg−1, td1t
−1, ..., tdk−1t

−1, te1t
−1, ..., tek−1t

−1,Λ) ∈ C̃, (4.51)

and the moment map (µ, e−2πiΛ) : C̃ → G× T where

µ : C̃ → G, (C,d, e,Λ) 7→ C−1d−1
1 · · · d−1

k−1ek−1 · · · e1C, (4.52)

and two-form

ω = 1
2(D̄, Ē) + 1

2

k−1∑
j=1

(Dj,Dj−1)− (Ej, Ej−1) (4.53)

where D̄ = D∗θ̄, Ē = E∗θ̄, Dj = D∗jθ, Ej = E∗j θ ∈ Ω1(C̃, g) for maps Dj, Ej : C̃ → G
defined by Di(C, , ,Λ) = di · · · d1C, Ei = ei · · · e1C, D := Dk−1, E := Ek−1,
E0 = D0 := C.

For example, in the order two pole case k = 2,

C̃k=2 ∼= G×G∗, µ = C−1b−1
− b+C, ω = 1

2(D∗θ̄, E∗θ̄) + 1
2(D∗θ, C∗θ)− 1

2(E∗θ, C∗θ)(4.54)

where D = b−C,E = b+C. In general the quotient C̃/G has an induced Poisson
structure [2] and for k = 2 this coincides with standard Poisson structure on G∗.

In first order pole case k = 1 we define C̃k=1 := {(h, (e−πiλ, eπiλ, λ)) | h ∈ G, λ ∈ t′}
which is a submanifold of C̃k=2 ∼= G×G∗. The 2 form and moment map in this case
are the restriction of the 2-form and moment map (4.54) of C̃k=2 to C̃k=1 .

Given a divisor D = ∑m
i=1 ki(ai) having each ki ≥ 1 at ai on P1, the above

proposition enables one to construct the symplectic space M̃(a) of monodromy data
for compatibly meromorphic connections (V,∇,g) with irregular type a.
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Proposition 5.12 (Lemma 3.1 [19]). The symplectic space M̃(a) is isomorphic to
the quasi-Hamiltonian quotient C̃1~ · · ·~ C̃m//G, where ~ denotes the fusion product
of two quasi-Hamiltonian G-manifolds.

The extension of the Atiyah-Bott symplectic structure to the case of singular
C∞-connections given in [17] leads to certain Hamiltonian loop group manifolds and
C̃ is the corresponding quasi-Hamiltonian space.

5.2 Irregular Riemann-Hilbert correspondence
Let a be the data of a divisor D = ∑

ki(ai) and connection germs d− iA0 at each
ai. The irregular Riemann-Hilbert map, which depends on a choice of tentacles
(see Definition 3.9 in [17]), is a map ν from the global symplectic moduli space of
meromorphic connections M̃∗(a) ∼= (Õ1 × · · ·Õm)//G to the symplectic space of
monodromy data M̃(a) ∼= (C̃1 × · · · × C̃m)//G. In brief, the map arises as follows.
Let (V,∇,g) be a compatibly framed meromorphic connection on a holomorphic
vector bundle V with irregular type a. The irregular type a canonically determines
some directions at ai (Stokes rays) for each i. We then consider the Stokes sectors
at each ai bounded by these directions (and having some small fixed radius). The
key fact is that, similar to the discussion in subsection 3.2.2, the framings g (and a
choice of branch of logarithm at each pole) determine, in a canonical way, a choice
of basis of solutions of the connection ∇ on each Stokes sector at each pole. Now
along any path in the punctured sphere P1 \ {a1, ..., am} between two such sectors,
we can extend the two corresponding bases of solutions and obtain a constant n by
n matrix relating these two bases. The monodromy data of (V,∇,g) is simply the
set of all such constant matrices, plus the exponents of formal monodromy, thus it
corresponds to a point in the space of monodromy data C̃1 × · · · × C̃m. Note that
(V,∇,g) can be seen as a point in Õ1 × · · ·Õm. Such a map taking the monodromy
data of meromorphic connections is G-equivariant and descends to give ν. The main
result of [17] leads to:

Theorem 5.13. ([17]) The irregular Riemann-Hilbert map

ν : (Õ1 × · · ·Õm)//G ↪→ (C̃1 ~ · · ·~ C̃m)//G (4.55)

associating monodromy/Stokes data to a meromorphic connection on the trivial
G-bundle over P1 is a symplectic map (provided the symplectic structure on the
right-hand side is divided by 2πi).

We will analyze the case with one pole of order one and one pole of order two
and show that the irregular Riemann-Hilbert map ν gives rise to a local symplectic
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isomorphism from (Σ, ω) to (Σ′, ω′). Furthermore, given a choice of tantacles,
the corresponding map ν can be expressed explicitly by the connection matrix
C ∈ Map(g∗, G) defined in section 3. Thus with the help of Theorem 2.2, one can
show that C is a solution of the equation (4.11), i.e., rC0 = rAM.

Proposition 5.14. Let Õ1 and Õ2 be two copies of Õ with k = 1 and k = 2
respectively. Then the Hamiltonian quotient Õ1 × Õ2//G is symplectic isomorphic to
(Σ, ω).

Proof. By definition, Õ1 = {(g1, B1) ∈ G×g∗ | g1B1g
−1
1 ∈ t′} and Õ2 = {(g2, A,B2) ∈

G×g∗×g∗ | Adg2A = A0}, where A0 is a fixed diagonal matrix with distinct elements.
Because A is determined by g2, Õ2 is naturally isomorphic to G × g∗ by sending
(g2, A,B2) to (g2, B2). Note that the moment map is

µ : Õ1 × Õ2 −→ g∗; (g1, B1, g2, B2) 7→ B1 +B2. (4.56)

The submanifold µ−1(0) is defined by µ−1(0) := {(g1, B1, g2,−B1) ∈ (G×g∗)2 |Adg1B1 ∈
t′}. We have a subjective map

ι : µ−1(0) −→ Σ; (g1, B1, g2,−B1) 7→ (g2g
−1
1 ,−Ad∗g1B1) (4.57)

whose fibres are the G orbits. Thus it induces an isomorphism from Õ1 × Õ2//G
to (Σ, ω). To verify this is actually a symplectic isomorphism, let us take two
tangents v1, v2 to µ−1(0) which at each point (g1, B1, g2,−B1) take the forms vi =
(0,Adg−1

1
Ri,Adg−1

2
Xi,−Adg−1

1
Ri) for some Xi ∈ g, Ri ∈ t∗ and i = 1, 2 (g ∼= Tg2G via

left multiplication).
Let ωµ−1(0) be the restriction of the (direct sum) symplectic structure ω

Õ1×Õ2
on

µ−1(0). Following the formula (4.42), we have that at (g1, B1, g2,−B1),

ωµ−1(0)(v1, v2) = ω
Õ1

((0,Adg−1
1
R1), (0,Adg−1

1
R2))

+ω
Õ2

((Adg−1
2
X1,−Adg−1

1
R1), (Adg−1

2
X2,−Adg−1

1
R2))

= 〈R2,Adg1g
−1
2
X1〉 − 〈R1,Adg1g

−1
2
X2〉 − 〈B1,Adg−1

2
([X1, X2])〉.(4.58)

On the other hand, a direct computation gives ι∗(vi) = (Adg1g
−1
2
Xi,−Ri) at (g2g

−1
1 , Adg1B1),

here g ∼= Tg2g
−1
1
G via left multiplication. Formula (4.13) makes it transparent that

at (g2g
−1
1 ,−Ad∗g1B1) ∈ Σ,

ω(ι∗(v1), ι∗(v2)) = ω((Adg2g
−1
1
X1,−R1), (Adg2g

−1
1
X2,−R2))

= 〈R2,Adg1g
−1
2
X1〉 − 〈R1,Adg1g

−1
2
X2〉 − 〈B1, Adg−1

2
([X1, X2])〉.(4.59)
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Therefore, we have that ι∗ω = ωµ−1(0), i.e., ι induces a symplectic isomorphism
between Õ1 × Õ2//G and (Σ, ω).

As for the Poisson Lie counterpart, we have

Proposition 5.15. Let C̃1 and C̃2 be two copies of C̃ with k = 1 and k = 2 respectively.
Then the quasi-Hamiltonian reduction of the fusion of C̃1 and C̃2 is isomorphic as a
symplectic manifold to the symplectic submanifold (Σ′, ω′) of the double Γ.

Proof.We assume that the Borels chosen at the first pole are opposite to those chosen
at the second (which we may since isomonodromy will give symplectic isomorphisms
with the spaces arising from any other choice of Borels intersecting in T ). Thus we
have,

C̃1 = {(h, e2πiλ
− ) | h ∈ G, λ ∈ t′}, C̃2 = {(C, (b−, b+,Λ)) | δ(b±) = e±πiΛ}, (4.60)

here e2πiλ
− = (eπiλ∨ , e−πiλ∨ , λ∨) (exponential map of g∗ with the opposite Borels

chosen). The moment map on C̃1 ~ C̃2 is µ = h−1e−2πiλ∨hC−1b−1
− b+C. Therefore the

condition µ = 1 becomes Ce2πiAdh−1λ∨C−1 = b−1
− b+, where B := Adh−1(λ∨). Recall

that Σ′ is a submanifold of Lu-Weinstein symplectic double Γ,

Σ′ := {(g1, e
2πiλ
− , g2, (b−, b+,Λ)) ∈ Γ | δ(b±) = e±πiΛ, g1e

±πiλ∨ = b±g2}. (4.61)

We have a surjective map from µ−1(1) = {(h, e2πiλ
− , C, (b+, b−,Λ)) | e2πiAdh−1λ∨ =

Cb−1
− b+C

−1} to Σ′,

(h, e2πiλ
− , C, (b+, b−,Λ))→ (Ch−1, e−2πiλ, u, (b−, b+,Λ)) (4.62)

whose fibres are precisely the G orbits, where u := b−1
+ Ch−1eπiλ ∈ G. Therefore, it

induces an isomorphism from C̃1~ C̃2//G to Σ′. An explicit formula for the symplectic
structure on Σ′ can be computed by using Theorem 3 of [4]. On the other hand we
have an explicit formula for the symplectic structure on C̃1~ C̃2//G. A straightforward
calculation shows these explicit formulae on each side agree.

To specify an irregular Riemann-Hilbert map, we have to make a choice of tenta-
cles (see [17]). We introduce coordinate z to identify P1 with C ∩∞ and assume the
divisor D has one pole of order two at a2 := 0 and one pole of order one at a1 :=∞.
Then we consider the meromorphic connections ∇ on the trivial rank n holomorphic
vector bundle V over P1 with compatible framings g such that (V,∇,g) have an
irregular type −A0

z
at 0, where A0 is a diagonal matrix with distinct elements. Let

us take a prior Sect0 between two anti-Stokes rays (only depend on A0) at 0, and
make a choice of tentacles as follows.
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(i) A choice of a point p2 in Sect0 at 0 and a point p1 in Sect0 near ∞.

(ii) A lift p̂i of each pi to the universal cover of a punctured disc Di\{ai} containing
pi for i = 1, 2.

(iii) A base point p0 which coincides with p1.

(iv) A contractible path γ : [0, 1]→ P1 \ {0,∞} in the punctured sphere, from p0
to p1.

Note that the chosen point p̂2 determines a branch of logz on Sect0. According
to section 3, let C ∈ Map(g∗, G) be the connection matrix associated to the diagonal
matrix A0, the choice of Sect0 and the branch of logz. Then we have

Proposition 5.16. For the above choice of tentacles, the corresponding irregular
Riemann-Hilbert map ν : (Õ1 × Õ2)//G ∼= Σ→ (C̃1 × C̃2)//G ∼= Σ′ is given by

ν(h, λ) = (C(Ad∗hλ)h, e2πiλ, u, u∗), ∀(h, λ) ∈ Σ, (4.63)

for certain u ∈ G, u∗ ∈ G∗ satisfying C(Ad∗hλ)he2πiλ = u∗u.

Proof. Let (V,∇,g = (g1, g2)) be a compatibly framed meromorphic connection with
irregular type −A0

z
at a2, where A0 is a diagonal matrix with distinct elements. Let

us choose a trivialization of V , then the compatible framing {gi}i=1,2 are represented
by constant matrices (also denoted by {gi}i=1,2). We assume Φ0, Φ1 and Φ2 are
canonical fundamental solutions (see Definition 3.6 in [17]) of ∇ on a neighbourhood
of p0 = p1 and p2 with respect to the compatible framing 1, g1 and g2 respectively.
Then the monodromy data of (V,∇,g), corresponds to a point

(C1, e
2πiλ
− , C2, (b−, b+,Λ)) ∈ C̃1 × C̃2 ∼= G× et′− ×G×G∗, (4.64)

(e2πiλ
− = (eπiλ∨ , e−πiλ∨ , λ∨) is the exponential map of g∗ with the opposite Borels

chosen) is the set of constant n× n matrix Ci (the ratio of the canonical solutions
Φi at pi with Φ0 at p0 for i = 1, 2), as well as the Stokes data (b−, b+) at a2 and the
formal monodromy at a1, a2. They can be described as follows.
• along the path γ in the punctured sphere P1 \ {0,∞}, we can extend the two

corresponding bases of solutions Φ0 and Φ2, then Φ2P1C2 = Φ0 ∈ G, where P1 is the
permutation matrix (see section 3) depends on the choice of Sect0 at a2;
• p0, p1 can be seen as connected by an identity path, thus Φ1C1 = Φ0. Therefore

C1 is equal to g1, the ratio of the frame chosen at p0 and p1;
• b−, b+ at a2 can be determined by the monodromy relation from the fact that a

simple positive loop around 0 is also a simple negative loop around ∞.
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Explicitly, we assume (V,∇,g) represents a point (g1,−B′, g2, A,B
′) ∈ µ−1(0) ⊂

Õ1 × Õ2, where µ is the moment map (see Proposition 5.14). To obtain the corre-
sponding monodromy, we need to find the canonical fundamental solutions {Φi}i=0,2
of the meromorphic connection ∇ = d− ( A

z2 + B′

z
)dz. By the assumption that ∇ has

the irregular type −A0
z
, we get g2[∇] = d−(A0

z2 +B
z

)dz, where B := Adg2B
′. According

to section 3, let Φ0 and H be the canonical fundamental solutions of d− (A0
z2 + B

z
)dz

on a neighbourhood of a2 = 0 and a0 = ∞ respectively. Then one checks that
g−1

2 Hg2 and g−1
2 Φ are the fundamental solutions of ∇ on a neighbourhood of p0 and

p2 with respect to the local trivialisation of V given by 1 and g2 respectively. From
the uniqueness, we have that Φ0 = g−1

2 Hg2 and Φ2 = g−1
2 Φ. Now by the definition of

connection matrix, C(B) (C2) is the ratio of the two solutions Φ (Φ0) and H (Φ2),
i.e., HPC2 = Φ (Φ2PC2 = Φ0), here P is the permutation matrix depends on A0
and Sect0 (see section 3). Then it is easy to see that C2 = C(B)g2. On the other
hand, the formal monodromy e2πiλ = e2πiAdg1B

′∨ . Therefore, the corresponding map
ν ′ which associates any (V,∇,g) to its monodromy data is given by

ν ′(g1,−B′, g2, B
′) = (g1, e

−2πiAdg1B
′

− , C(B)g2, (b−, b+,Λ)) ∈ µ′−1(1) ⊂ C̃1 × C̃2,(4.65)

where b− ∈ B−, b+ ∈ B+ satisfy the identity (the moment map condition)

C(B)e2πiBC(B)−1 = b−1
− b+. (4.66)

This map ν ′ : µ−1(0) ⊂ Õ1 × Õ2 → µ′−1(0) ⊂ C̃1 × C̃2 is G-equivariant and descends
to give the irregular Riemann-Hilbert map ν : Σ→ Σ′ which takes the form

ν(g2g
−1
1 ,Adg1B

′) = (C(B)g2g
−1
1 , e2πiAdg1B

′
, u, (b−, b+,Λ)), (4.67)

here u := b−1
+ C(B)g2e

πiB′∨g1 and we use the isomorphisms µ−1(0)/G ∼= Σ and
µ′−1(1)/G ∼= Σ′ constructed in Propostion 5.14 and 5.15 respectively. It indicates
that the map ν is given by

ν(h, λ) = (C(Ad∗hλ)h, e2πiλ, u, u∗), (4.68)

for any (h, λ) ∈ Σ and certain u ∈ G, u∗ ∈ G∗ satisfying C(Ad∗hλ)he2πiλ = u∗u.

The proof of Theorem 3.7. Following Proposition 5.16, the irregular Riemann-
Hilbert map ν coincides with the local diffeomorphic map F ′C2πi

: Σ → Σ′ defined
in Section 2, where C2πi(x) = C( 1

2πix), for all x ∈ g∗. Thus, according to Corollary
2.3, ν : (Σ, ω)→ (Σ′, ω′) is a symplectic map provided the symplectic structure on
the right-hand side is divided by 2πi if and only if C2πi is a solution of the gauge
transformation equation (4.11). However, the former is guaranteed by Theorem
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5.13. As a result, we get a proof of Theorem 3.7, i.e., C2πi is a solution of the gauge
transformation equation (4.11).

The T -reduction version. Let T be the set of diagonal matrices. The irregular
Riemann-Hilbert map ν = F ′C2πi

: Σ→ Σ′ is equivariant with respect to the T -actions
on Σ and Σ′ given by

a · (h, λ) = (ha, λ), a · (h, eλ, u, u∗) = (ha, eλ, u, u∗), (4.69)

for any a ∈ T . Thus we can consider a T reduction version of F ′C . Define two maps
P : Σ→ g∗, P ′ : Σ′ → G∗ whose fibres are the T orbit as follows

P (h, λ) = Ad∗hλ, ∀(h, λ) ∈ Σ, P ′(h, eλ, u, u∗) = dhe
λ, ∀(h, eλ, u, u∗) ∈ Σ′.(4.70)

Here d denotes the left dressing transformation of G on G∗. Then there exists a
unique map SC : g∗ → G∗ such that the following diagram commutes:

Σ
F ′C2πi−−−→ Σ′

P1

y P2

y
g∗

SC−−−→ G∗

This map SC naturally appears in the theory of Stokes matrix. Actually, given the
meromorphic connection ∇ = d− (A0

z2 + B
z

)dz on a trivial holomorphic vector bundle,
the Stokes matrices of ∇ are S+ = e−πiδ(B)b+(B)e2πiδ(B) and S− = b−1

− (B)e−πiδ(B)

(see e.g [16]). Thus the Stokes matrices are uniquely determined by the connection
matrix C(B) of ∇ through the monodromy relation (from the fact that a simple
positive loop around 0 is also a simple negative loop around ∞)

C(B)e2πiB∨C(B)−1 = S−S+e
2πiδ(B). (4.71)

The main result of [16] shows that the monodromy map SC : g∗ → G∗ relating
B ∈ g∗ to the monodromy data (b−(B), b+(B)) ∈ G∗ at 0 of ∇, is a Poisson map.
Here we use an extended moduli space version (see Definition 2.6 in [17]) of the
one used in [16] to get a generalization, a symplectic neighborhood version, of the
linearization of Poisson structures in [49]. Geometrically, from the above discussion
one can view the Poisson monodromy map SC : g∗ → G∗ as a T -reduction version of
the symplectic map F ′C2πi

: Σ→ Σ′.
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6 Lu-Weinstein symplectic groupoids via Alekseev-
Meinrenken r-matrices

As an application of the above construction, we describe the Lu-Weinstein symplectic
groupoids via Alekseev-Meinrenken r-matrices.

Following the construction of section 2.1 in [86], for any r-matrix with the
skew-symmetric part r0,

πAM(h, x) := πKKS(x) + lh(θ) + lh(rAM(x))− rh(r0), (4.72)

defines a symplectic structure on G× g∗, where θ := ∂
∂xa
∧ ea ∈ Γ(∧2(Tg∗ ⊕ g)) for

a base {ea} of g and the corresponding coordinates {xa} on g∗. We will prove that
(G× g∗, πAM) is a natural symplectic groupoid and is locally symplectic isomorphic
to Lu-Weinstein double sympelctic groupoid with respect to (g, r).

To do this, let us consider the Semenov-Tian-Shansky (STS) Poisson tensor on
g∗ defined by

πSTS(x)(df, dg) = 〈df(x)⊗ dg(x), adx ⊗
1
2adxcoth(1

2adx)(t)−⊗2adx(r0)〉, (4.73)

for any f, g ∈ C∞(g∗). We denote by L,R the group morphisms corresponding to
the Lie algebra morphisms L,R : g∗ → g

L(x) := (x⊗ id)(r), R(x) := −(x⊗ id)(r2,1) ∀ x ∈ g∗. (4.74)

Let (G∗, πG∗) be the simply connected Poisson Lie group associated to the quasitri-
angular Lie bialgebra (g, r).

Proposition 6.1. [38] The map I : (g∗, πSTS) → (G∗, πG∗) determined by ex∨ =
L(I(x))−1R(I(x)) for any x ∈ g∗, is a Poisson map.

Actually, the STS Poisson structure on g∗ is completely determined by the above
proposition. Now let us take any solution g ∈ Map(g∗, G) of the gauge transformation
equation (4.11).

Theorem 6.2. (G × g∗, πAM) is a Poisson(therefore symplectic) groupoid over g∗

with the structure maps given by

α(h, x)→ x ∈ g∗, β(h, x)→ Ad∗hx ∈ g∗, ∀h ∈ G, x ∈ g∗,

ε : g∗ → G× g∗ : x 7→ (g(x), Ad∗g(x)x) ∈ G× g∗, (4.75)
m : G2 := {((h1, x), (h2, y)) ∈ G × G | β(h1) = α(h2)} → G :
(h1, x), (h2, y = Ad∗h1x) 7→ Ad∗h1h2x, ∀(h1, h2) ∈ G2.

Furthermore, it is the integration of the STS Poisson structure on g∗.
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A straightforward proof can be obtained verifying the following equivalent condi-
tions one by one.

Lemma 6.3. ([83]) (G =⇒M,π) is a Poisson groupoid if and only if all the following
hold.

(1) For all (x, y) ∈ G2,

π(xy) = RY π(x) + LXπ(y)−RYLXπ(m), (4.76)

where m = β(x) = α(y) and X, Y are (local) bisections through x and y respectively.
(2) M is a coisotropic submanifold of G,
(3) For all x ∈ G, α∗π(x) and β∗π(x) only depend on the base points α(x) and

β(y) respectively.
(4) For all f, g ∈ C∞(M), one has {α∗f, β∗g} = 0,
(5) The vector field Xβ∗f is left invariant for all f ∈ C∞(M).

Theorem 6.4. The map v : G × g∗ → G × G∗, v(h, x) = (g(x)h, g∗(x)) for all
(h, x) ∈ G × g∗, gives a local symplectic isomorphism from (G × g∗, πAM) to Lu-
Weinstein symplectic double Γ, where g∗ : g∗ → G∗ is the unique local isomorphism
defined by the identity

g(x)ex∨g(x)−1 = L(g∗(x))R(g∗(x))−1. (4.77)

Actually, under the transformation F : G × g∗ → G × g∗ given by F (h, x) =
(hg−1(x), Ad∗g(x)x), then the Poisson tensor πAM becomes

F∗(πAM)(h, x) = πSTS(x) + lh(θg(x)) + lh(r0)− rh(r0), ∀(h, x) ∈ G× g∗ (4.78)

where θg ∈ Γ(∧2(Tg∗ ⊕ g)) is the gauge transformation of θ under g ∈ Map(g∗, G)
(see [86] for more details about a generalized dynamical r-matrix and its gauge
transformations). According to [86], we have that (πSTS, θ

g, r0) is a gauge transfor-
mation of the dynamical r-matrix (πKKS, θ, rAM) under g ∈ Map(g∗, G), thus also a
generalized classical dynamical r-matrix. It therefore verifies that equation (4.11)
is indeed a gauge transformation equation in the theory of generalized dynamical
r-matrices.

7 Proof of Theorem 2.2
In this section, we will study in details the symplectic submanifold Σ′ of Lu-Weinstein
symplectic double groupoid Γ and then give a proof of Theorem 2.2. According
Section 2, associated to a quasitriangular Lie bialgebra (g, r), (Γ, πΓ) is the set

Γ = {(h, h∗, u, u∗) | h, u ∈ G, h∗, u∗ ∈ G∗, hh∗ = u∗u} (4.79)
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with the unique Poisson structure πΓ such that the local diffeomorphism (Γ, πΓ)→
(D, πD): (h, h∗, u, u∗) 7→ hh∗ is Poisson (D is the double of (g, r))). Then the
submanifold Σ′ takes the form

Σ′ = {(h, h∗, u, u∗) ∈ Γ | h∗ ∈ et′ ⊂ G∗}. (4.80)

Proposition 7.1. Σ′ is a symplectic submanifold of the Lu-Weinstein symplectic
double (Γ, πΓ).

Proof. An explicit formula for the restriction of symplectic 2-form on Σ′ ∈ Γ can be
computed by using Theorem 3 of [3]. One checks directly that it is symplectic.

Thus Σ′ inherits a symplectic structure. We denote by π′ the corresponding
Poisson tensor. Note that the inclusion map (Σ′, π′) ↪→ (Γ, πΓ) and the dressing
transformation map (Γ, πΓ) → (G∗, πG∗); (h, h∗, u, u∗) 7→ dh(h∗) are Poisson, so is
their composition. Thus we have

Proposition 7.2. The map

P ′ : (Σ′, π′)→ (G∗, πG∗); (h, eλ, u, u∗) 7→ dhe
λ (4.81)

is a Poisson map.

To simplify the notation, we take a local model of (Σ′, π′) as follows. Note that
we have the local diffeomorphism

Σ′ → G× et′ ; (h, eλ, u, u∗) 7→ (h, eλ). (4.82)

To simplify the notation, we will take G × et′ as a local model of (Σ′, π) with the
induced Poisson tensor, denoted also by π′. Generally, π′ is only defined on a dense
subset of G× et′ , however this is enough for our purpose.

Let T act on G×et′ by t·(h, eλ) = (ht, eλ). The fibres of the map P ′ : G×t′ → G∗,
(h, eλ) 7→ dh(eλ) are precisely the T -orbits. Thus a general 1-form on G× et′ takes
the form P ′∗(β) + η̂, where β ∈ Ω1(G∗), η ∈ t∗ ⊂ g∗ (via inner product) and at each
point (h, eλ), η̂ := (lh−1 ◦ re−λ)∗η.

Proposition 7.3. At each point (h, eλ), π′ is given for any forms φ1 := P ′∗(β1) + η̂1,
φ2 := P ′∗(β2) + η̂2 by

π′(h, eλ)(φ1, φ2) = πG∗(dheλ)(β1, β2) + 〈X1, η2〉 − 〈X2, η1〉
+ (lh−1πG(h))(η1, ξ2)− (lh−1πG(h))(η2, ξ1) + (lh−1πG(h))(η1, η2),(4.83)

where ξi +Xi ∈ g∗ ⊗ g is the pull back of P ′∗(βi) under lh−1 ◦ re−λ for i = 1, 2.
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Proof. Following [63], if m ∈ D ( the double Lie group) can be factored as m = hu
for some h ∈ G and u ∈ G∗ (locally it is always the case), then explicit formula for
πD is given by

((lh−1 ◦ ru−1)(πD))(m)(ξ1 +X1, ξ2 +X2)
= 〈X1, ξ2〉 − 〈X2, ξ1〉+ (lh−1πG(h))(ξ1, ξ2) + (ru−1πG∗(u))(X1, X2) (4.84)

for ξ1 +X1, ξ2 +X2 ∈ g∗ ⊕ g.
On one hand, Proposition 7.2 gives that

π′(P ′∗(β1), P ′∗(β2)) = πG∗(β1, β2), (4.85)

for any β1, β2 ∈ Ω1(G∗).
On the other hand, let us consider the one form taking the form of η̂ := l∗h−1(r∗e−λη),

η ∈ t∗ ⊂ g∗. From the expression of πD, we see that π]D(heλ)(η̂) is tangent to G× et′

at (h, eλ). Thus

π′(η̂1 + P ′∗(β1), η̂2) = πD(η̂1 + d∗(β1), η̂2)|G×et′
= 〈X1, η2〉+ lh−1πG(ξ1, η2) + lh−1πG(η1, η2) (4.86)

where ξ1 +X1 ∈ g∗ ⊗ g is the pull back of P ′∗(β1) under lh−1 ◦ re−λ . The above two
identities indicate the expression (4.83) of π′.

In the following, we will give a description of the Poisson space (G × et
′
, π′)

by using r-matrices. Let us define a bivector field on G × t′ which at each point
(h, λ) ∈ G× t′ takes the form

πr(h, λ) = lh(ti) ∧
∂

∂ti
+ lh((id⊗ ad−1

λ∨ )(t)) + lh(rAM(λ))− rh(r0) (4.87)

where t ∈ S2(g)g is the Casimir element, {ti} is a basis of t and {ti} the corresponding
coordinates on t∗ and at any point x ∈ g, ad−1

x : g→ g is the trivial extension of the
map ad−1

x : g⊥x → g⊥p ⊂ g corresponding to the decomposition g = gx ⊕ g⊥x . Here gx
is the isotropic subalgebra of g at x and g⊥x its complement with respect to the inner
product. By using the dynamical Yang-Baxter equation of rAM, one can show that
πr is a Poisson tensor.

Proposition 7.4. The image of πr under the diffeomorphism Ψ : G× t′ → G× et′,
(h, λ) 7→ (h, eλ) coincides with π′.

Proof. Recall that (from the discussion above Proposition 7.3) a general 1-form on
G× et′ takes the form P ′∗(β) + η̂, where β ∈ Ω(G∗) and η ∈ t∗ ⊂ g∗. We will prove
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that Ψ∗(πr)(η̂, ·) = π′(η̂, ·) and Ψ∗(πr)(P ′∗(β), ·) = π′(P ′∗(β), ·) respectively. First
note that at each point (h, λ) (by the equivariance of rAM)

lh(rAM(λ) + (id⊗ ad−1
λ∨ )(t)) = rh(rAM(x) + (id⊗ ad−1

x∨ )(t)) = rh((id⊗ coth(1
2adx∨)(t)),(4.88)

where x = Ad∗hλ ∈ g∗. By the definition of the map P , a direct calculation gives that

πr(h, λ)(P ∗(α1), P ∗(α2)) = (ad∗x∨ ⊗
1
2ad∗x∨coth(1

2ad∗x∨)(t)−⊗2ad∗x∨(r0)(α1, α2),(4.89)

where (h, λ) ∈ G× t′ and x = Ad∗hλ. In other words,

πr(h, λ)(P ∗(α1), P ∗(α2)) = πSTS(x)(α1, α2). (4.90)

On the other hand, we have the following commutative diagram

G× t′
Ψ−−−→ G× et′

P

y P ′

y
g∗

I−−−→ G∗

,

where I : (g∗, πSTS)→ (G∗, πG∗) is the local Poisson isomorphism defined in Section
6. Thus P ∗(I∗(βi)) = Ψ∗(P ′∗(βi)) for any βi ∈ Ω1(G∗), i = 1, 2. Therefore,

Ψ∗πr(P ′∗(β1), P ′∗(β2)) = πr(P ∗(I∗(β1)), P ∗(I∗β2)) = πSTS(I∗(β1), I∗(β2)),
π′(P ′∗(β1), P ′∗(β2)) = πG∗(β1, β2). (4.91)

Combining with Proposition 6.1 which says πr(I∗(β1), I∗(β2)) = πG∗(β1, β2), we have
that

Ψ∗πr(P ′∗(β1), P ′∗(β2)) = π′(P ′∗(β1), P ′∗(β2)). (4.92)

For the remaining part, by the definition of the diffeomorphism Ψ and the
expression of πG = lh(r0)− rh(r0), one can easily get that

Ψ∗(πr)(P ′∗(β1) + η̂1, η̂) = 〈X1, η〉+ lh−1πG(ξ1, η) + lh−1πG(η1, η), (4.93)

where ξ1 + X1 ∈ g∗ ⊗ g is the pull back of P ′∗(β1) under lh−1 ◦ re−λ and η, η1 ∈ t′.
By comparing with the expression of π′, we have that Ψ∗(πr)(η̂, ·) = π′(η̂, ·) for any
η ∈ t∗.

Eventually, we prove that Ψ∗(πr)(P ′∗(β) + η̂, ·) = π′(P ′∗(β) + η̂, ·) for any
β ∈ Ω1(G∗), η ∈ t∗ ⊂ g∗. That is, the image of πr under the diffeomorphism
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Ψ coincides with π′.

In other words, we have a local symplectic isomorphism (denoted by same
symbol) Ψ : (G × t′, πr) → Σ′, (h, λ) 7→ (h, eλ, u, u∗), where u ∈ G, u∗ ∈ G∗ are
unique determined by the identity heλ = u∗u.

For the Poisson tensor π corresponding to the symplectic form ω on G× t′, we
have

Proposition 7.5. The Poisson tensor π takes the form

π(h, λ) = lh(tj) ∧
∂

∂tj
+ lh(id⊗ (ad−1

λ∨ )(t)) (4.94)

where {tj} is a basis of t and {tj} the corresponding coordinates on t∗.

After these preliminary work, we can give a proof of Theorem 2.2. Following
Proposition 7.4, (G× t∗reg, πr) is locally isomorphic to (Σ′, π′). Therefore we can take
(G× t′, πr) as a local model of (Σ′, π′) and then the map defined by (4.18) becomes
Fg : Σ = G× t′ → G× t′, (h, λ) 7→ (g(x)h, λ), where x = Ad∗hλ. Theorem 2.2 is thus
equivalent to that

Theorem 7.6. Fg : (G × t′, π) → (G × t′, πr) is a Poisson map if and only if
g ∈ Map(g∗, G) satisfies the gauge transformation equation (4.11), rg0 = rAM.

Proof. We only need to show that Fg∗π = πr is equivalent to the equation rg0 = rAM.
By comparing the expressions of π and πr, we have

πr(h, λ) = π(h, λ) + lh(rAM(λ)−⊗2Adh−1(r0)). (4.95)

At any point (h, λ) ∈ G × t′, Fg(h, λ) = (g(x)h, λ) where x := Ad∗hλ ∈ g∗. We
take {ei}, {ei} as dual bases of g∗, g and {tj}, {tj} dual bases of t∗ and t. A
straightforward calculation gives that at each point (g(x)h, λ) ∈ G× t∗reg

Fg∗(lh(ei)) = lgh(ei) + lgh(h−1g−1 ∂g

∂X i
h), (4.96)

Fg∗(
∂

∂tj
) = ∂

∂tj
+ lgh(h−1g−1 ∂g

∂T j
h) (4.97)

where X i := [Adhei, x], T j := Ad∗htj are tangent vectors at x = Ad∗hλ. Note that
Tm ∈ gx (the isotropic subalgebra at x) and X i span the tangent space Txg∗ and thus
the above formulas involve all the possible derivative of g ∈ Map(g∗, G). A direct
computation shows that at each point (g(x)h, λ) ∈ G× t′ (here x = Ad∗hλ ∈ g∗)

Fg∗(π)(g(x)h, λ) = π(g(x)h, λ) + lgh(⊗2Adh−1U(x)), (4.98)
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where U(x) ∈ g ∧ g is defined, by using the notation in Theorem 2.1, as

U(x) = g−1
1 d2(g1)− g−1

2 d1(g2) + 〈id⊗ id⊗ x, [g−1
1 d3(g1), g−1

2 d3(g2)]〉. (4.99)

Thus by comparing with the expression of πr,

πr(g(x)h, λ) = π(g(x)h, λ) + lgh(rAM(λ)−⊗2Ad(gh)−1r0), (4.100)

we obtain that Fg∗(π) = πr at point (g(x)h, λ) ∈ G× t′ if and only if

rAM(λ) = ⊗2Ad(gh)−1r0 +⊗2Adh−1U(x). (4.101)

Note that x = Ad∗hλ, by the equivariance of rAM , we have ⊗2AdhrAM(λ) = rAM(x).
Thus the above formula is exactly the gauge transformation equation rg0 = rAM.
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Chapter 5

Stokes phenomena, Poisson–Lie
groups and quantum groups

1 Introduction
This chapter is part of the joint work with Toledano Laredo [79].

Let g be a complex, semisimple Lie algebra, h a Cartan subalgebra of g, and
b± ⊂ g a pair of opposite Borel subalgebras intersecting along h. Let G be the
simply-connected Poisson-Lie group corresponding to (g, r), and G∗ = B− ×H B+
its dual. We have seen from last chapter that G–valued Stokes phenomenon were
used in [16] and [85], to give a canonical, analytic linearisation of the Poisson–Lie
group structure on G∗ and its symplectic neighbourhood in respectively. On the
other hand, in a recent paper of Toledano Laredo [78], the Stokes phenomenon of the
dynamical KZ equations (introduced by Felder, Markov, Tarasov and Varchenko in
[41]) was used to construct a Drinfeld twist killing the KZ associator, and therefore
give an explicit transcendental construction of the Drinfeld-Jimbo quantum group
Uh(g). Because a Poisson-Lie group can be viewed as a classical limit of a quantum
group, thus the Stokes phenomenon used in [16] and [78] should relate to each other
in a similar way.

In this chapter, we show that the quantization problem (quantization of Poisson
Lie groups to Quantum groups) can be studied in the frame of the deformation of cer-
tain irregular Riemann-Hilbert problem (meromorphic ODE). The main contributions
are
• we prove that the quantum Stokes matrix for the dynamical KZ equations

satisfies Yang-Baxter equation, therefore is a quantum R-matrix.
• we observe that the classical limit of the dynamical KZ equation is the

meromorphic differential equation (1.2). Along the way, we show that the (quantum)
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Stokes matrices relating the fusion operators of g constructed in [78] have as classical
limit the Stokes matrices map g∗ → G∗ constructed in [16]. In a similar way,
we show that the semiclassical limit of the differential twist(s) constructed in [78]
is the connection map(s) g∗ → G studied in [85]. We give an interpretation of
the appearance of Poisson geometry in the study of Stokes phenomenon from the
perspective of quantization of Lie bialgebras.
• We prove that the dependence of quantum Stokes matrices on regular elements

A0 ∈ treg is described by a differential equation (a quantum isomonodromic deforma-
tion equation). Hamiltonian description of isomonodromic deformation equations
[55][18] is then proven to be the classical limit of this equation.

2 Stokes phenomena and Poisson–Lie groups

2.1 G–valued Stokes phenomena
Let G be a complex, reductive group, H ⊂ G a maximal torus, and h ⊂ g the Lie
algebras of H and G respectively. Let Φ ⊂ h∗ be the root system of g relative to h,
and hreg = h \ ⋃α∈Φ Kerα the set of regular elements in h.

Let P be the holomorphically trivial, principal G–bundle on P1, and consider the
meromorphic connection on P given by

∇ = d−
(
A0

z2 + B

z

)
dz. (5.1)

where A0, B ∈ g. We assume henceforth that A0 ∈ hreg. The Stokes rays of the
connection ∇ are the rays R>0 · α(A0) ⊂ C∗, α ∈ Φ. The Stokes sectors are the open
regions of C∗ bounded by them. A ray r is called admissible if it is not a Stokes ray.

To each admissible ray r, there is a canonical fundamental solution Υr of ∇ with
prescribed asymptotics in the half–plane

Hr =
{
ueιφ|u ∈ r, φ ∈ (−π/2, π/2)

}
Specifically, the following result is proved in [14] for G = GLn(C), in [18] for G
reductive, and in [22] for an arbitrary affine algebraic group.1 Denote by [B] the
projection of B onto h corresponding to the root space decomposition g = h

⊕
α∈Φ gα.

Theorem 2.1. Let r = Reιθ be an admissible ray. Then, there is a unique holomor-
phic function Hr : Hr → G such that

1We use the formulation of [22], which does not rely on formal power series solutions.
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1. Hr tends to 1 as z → 0 in any closed sector of Hr of the form

| arg(z · e−ιθ)| ≤ π

2 − δ, δ > 0

2. for any determination of log(z), the function

Υr = Hr · e−A0/z · z[B]

satisfies ∇Υr = 0.

The canonical solutions Υr are locally constant with respect to the choice of r,
so long as r does not cross a Stokes ray. Indeed, if r, r′ are two admissible rays such
that r 6= −r′, the corresponding solutions are related by Υr′ = Υr · S on Hr ∩Hr′ ,
where S is an element of G. The asymptotic behaviour of Υr,Υr′ implies that

z[B] · e−A0/z · S · eA0/z · z−[B] → 1 as z → 0 in Hr ∩Hr′ (5.2)

and the result is a consequence of the following [18].

Proposition 2.2. If S ∈ G is such that (5.2) holds, then S = exp(X), where X lies
in the nilpotent subalgebra ⊕

α∈Φ:
α(A0)∈Σ(r,r′)

gα ⊂ g

where Σ(r, r′) ⊂ C∗ is the closed convex sector bounded by r and r′.

It follows in particular that Υr only depends on the Stokes sector Σ containing r,
and will henceforth be denoted by ΥΣ.

2.2 Stokes matrices and linearisation of G∗

Fix a Stokes sector Σ with boundary rays `, `′, listed in counterclockwise order, and
choose the determination of log(z) with a cut along `. The Stokes matrices of ∇
relative to Σ are the elements S± of G determined by

ΥΣ = Υ−Σ · S+ and Υ−Σ · e−2πι[B] = ΥΣ · S−

where the first (resp. second) identity is understood to hold in −Σ (resp. Σ) after
ΥΣ (resp. Υ−Σ) has been analytically continued counterclockwise.

The Stokes sector Σ determines a partition of the root system of g as follows. Let
L+ (resp. L−) be the collection of Stokes rays which one crosses when going from Σ
to −Σ in the counterclockwise (resp. clockwise) direction. Then Φ = Φ+tΦ−, where

Φ± = {α ∈ Φ|α(A0) ∈ `, ` ∈ L±} = −Φ∓
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It follows from Proposition 2.2 that the Stokes matrices S+, S− lie in N+, N− respec-
tively, where N± ⊂ G are the unipotent subgroups with Lie algebra n± = ⊕

α∈Φ± gα.
Let B± = N± o H ⊂ G be the opposite Borel subgroups with Lie algebras

b± = n± o h. Consider the Stokes map S : g∗ → B− ×H B+ given by B →
(e−ιπ[B] · S−1

− , eιπ[B] · S+). Endow g∗ with its standard Kirillov–Kostant–Souriau
Poisson structure given by

{f, g}(x) = 〈[df, dg](x), x〉

where df(x), dg(x) ∈ T ∗xg∗ = g are the differentials of f, g and [·, ·] is the Lie bracket
on g. Endow G∗ = B− ×H B+ with the dual Poisson Lie structure (see e.g. Chapter
2 or Chapter 4).

The following remarkable result is due to Boalch [16, 18].

Theorem 2.3. The Stokes map is a local analytic Poisson isomorphism.

In particular, S gives a Ginzburg-Weinstein linearisation of the Poisson-Lie
structure on G∗.

2.3 Quasi–triangular Poisson–Lie groups
Let (p, r) be a finite–dimensional quasitriangular Lie bialgebra over a field k of
characteristic zero. Thus, p is a Lie algebra, r ∈ p⊗ p satisfies the classical Yang–
Baxter equations (CYBE)

[r12, r23 + r13] + [r13, r23] = 0

and is such that t = r + r21 is p–invariant. In particular, p is a Lie bialgebra,
with cobracket δ : p → p ∧ p given by δ(x) = [x ⊗ 1 + 1 ⊗ x, r]. Assume that r is
non–degenerate, that is that the map ∨ : p∗ → p, λ∨ = λ⊗ id(t) is a bijection.

Let p∗ be the dual Lie bialgebra to p, and P, P ∗ the formal Poisson–Lie groups
with Lie algebras p, p∗. By definition, a formal map p∗ → L, where L = exp(l) is a
formal group, is a map of the form ex, where x ∈ k[[p∗]]+ ⊗ l is a formal l–valued
function on p∗ such that x(0) = 0.

Enriquez–Etingof–Marshall obtained a linearisation of P ∗ from any formal map
g : p∗ → P satisfying the differential equation

(g−1dg)12 − (g−1dg)21 + Ad(g⊗2)−1r0 + id⊗2⊗λ [(g−1dg)13, (g−1dg)23] = rAM (5.3)

as an identity of maps p∗ → ∧2p. Here, the derivative g−1dg is thought of as a map

p∗ 3 λ→ Homk(Tλp∗, T1P ) = p⊗ p
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given by g−1dg(λ) = ∑
i g
−1∂eig(λ)⊗ ei, where {ei}, {ei} are dual bases of p∗, p, r0 is

the antisymmetrisation 1
2(r − r21), and rAM : p∗ → ∧2p is the Alekseev–Meinrenken

dynamical r–matrix given by

rAM(λ) = id⊗ϕ(adλ∨)(t)

where ϕ(z) = −1/z + 1/2 coth(z/2).
To state the main result of [32], note that the CYBE imply that the maps

`, ρ : p∗ → p given by

`(λ) = λ⊗ id(r) and ρ(λ) = − id⊗λ(r)

are Lie algebra homomorphisms. We denote the corresponding morphisms of formal
groups P ∗ → P by L,R respectively. Since (`− ρ)λ = λ⊗ id(t), the non–degeneracy
of r implies that the map P ∗ → P , g∗ → L(g∗) ·R(g∗)−1 is an isomorphism of formal
manifolds.

Theorem 2.4 ([32]). Let g : p∗ → P be a formal map satisfying the partial differential
equation (5.3). If r is non–degenerate, the map g∗ : p∗ → P ∗ uniquely defined by

g(λ) · eλ∨ · g(λ)−1 = L(g∗(λ)) ·R(g∗(λ))−1

is a formal isomorphism of Poisson manifolds

2.4 Connection matrices and dynamical gauge transforma-
tions

Retain the notation of 2.1–2.2. In particular, G is a complex, reductive group and
∇ the connection 5.1 determined by A0, B ∈ g, with A0 ∈ hreg. ∇ is said to be
non–resonant at z = ∞ if the eigenvalues of ad(B) are not positive integers. The
following is well–know (see, e.g., [81] for G = GLn(C)).

Lemma 2.5. If ∇ is non–resonant, there is a unique holomorphic function H∞ :
P1 \ {0} → G such that H∞(∞) = 1 and, for any determination of log(z), the
function Υ∞ = H∞ · zB is a solution of ∇Υ∞ = 0.

For any Stokes sector Σ of ∇, define the connection matrix CΣ ∈ G by

Υ∞ = ΥΣ · CΣ

where the identity is understood to hold in Hr, and the underlying determination of
log(z) is chosen with a cut on the clockwise most edge of Σ. The connection matrix
CΣ is related to the Stokes factors S± by the following monodromy relation.
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Lemma 2.6. The following holds

CΣ · e2πιB · C−1
Σ = S− · e2πι[B] · S+

Proof. By definition of S±, the monodromy of ΥΣ around a positive loop γ0 around
0 based at a point z0 ∈ Σ is the right–hand side of the stated identity. On the other
hand, the monodromy of Υ∞ around γ0 is e2πιB. Since ΥΣ = Υ∞ · C−1

Σ , the former
monodromy is conjugate to the latter by CΣ.

Let gnr ⊂ g be the dense open subset consisting of elements B such that the
eigenvalues of ad(B) do not contain positive integer multiples of 2πι. Consider
the map C : gnr → G given by mapping B to the connection matrix of ∇ =
d− (A0/z

2 +B/2πιz). Identify g ∼= g∗ and let g∗nr ⊂ g∗ the subset corresponding to
gnr.

Theorem 2.7 ([85]). The map C : g∗nr → G satisfies the partial differential equation
(5.3), together with the initial condition C(0) = 1.

Combining Theorems 2.7 and 2.4 gives rise to a Poisson map g∗nr → G∗, B →
(b−, b+), where b± ∈ B± are uniquely determined by C(B) · eB · C(B)−1 = b−1

− · b+.
By the monodromy relation of Lemma 2.6, this implies that b− = e−[B]/2 · S−1

− and
b+ = e[B]/2 · S+. This gives another proof of Boalch’s theorem 2.3.

3 Stokes phenomena and quantum groups
This section is an exposition of [78]. Throughout the paper, h, ~ are two formal
parameters related by ~ = 2πιh.

3.1 Filtered algebras

Let A = ⋃
n≥0An be a filtered C–algebra over C with A0 = C. Given a sequence

o = {ok}k∈N of non–negative integers, define A[[~]]o ⊂ A[[~]] by

A[[~]]o = {
∑
k≥0

ak~k| ak ∈ Aok}

Note that:

1. A[[~]]o is a (closed) C[[~]]–submodule of A[[~]] if o is increasing.2

2A[[~]]o is then the ~–adic completion of the Rees algebra of A corresponding to the filtration
Ao0 ⊂ Ao1 ⊂ · · ·
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2. A[[~]]o is a subalgebra of A[[~]] if o is subadditive, that is such that ok +ol ≤ ok+l
for any k, l ∈ N. This implies in particular that o is increasing, and that o0 = 0.

If the subspaces Ak ⊂ A are finite–dimensional, so are the quotients

A[[~]]o/(~p+1A[[~]] ∩ A[[~]]o) ∼= Ao0 ⊕ ~Ao1 ⊕ · · · ⊕ ~pAop
Assuming this, we shall say that a map F : X → A[[~]]o, whereX is a topological space
(resp. a smooth or complex manifold), is continuous (resp. smooth or holomorphic)
if each of its truncations Fp : X → A[[~]]o/(~p+1A[[~]] ∩ A[[~]]o) are.

We shall mainly be interested in the case A = Ug⊗n endowed with the standard
order filtration given by deg(x(i)) = 1 for x ∈ g, where

x(i) = 1⊗(i−1) ⊗ x⊗ 1⊗(n−i)

The sequence o will be chosen subadditive, and such that o1 ≥ 2 in order for
~Ωij, ~∆(n)(Kα) ∈ A[[~]]o. Note that g ∩ Ug[[~]]o = {0} since o0 = 0, but that the
adjoint action of g on Ug⊗n induces one on by derivations on Ug⊗n[[~]]o. Note also
that Ug[[~]]o is not a Hopf algebra, since ∆ : Ug[[~]]o → Ug⊗2[[~]]o ) (Ug[[~]]o)⊗2.

Let A be a C[[~]]–module and consider the natural map ı : A → lim
←−
A/~nA. Recall

that A is separated if ı is injective, and complete if it is surjective. By definition, A
is topologically free if it is separated, complete and torsion–free.

Consider now the map

ı : EndC[[~]](A)→ lim
←−

EndC[[~]](A/~nA)

Lemma 3.1. Assume that A is separated. Then,

1. ı is injective.

2. If A is complete, ı is surjective.

Proof. (1) If T ∈ EndC[[~]] is such that ıT = 0, then T (A) ⊂ ⋂n ~nA = 0. (2) Let
{Tn} ∈ limn EndC[[~]](A/~nA). For any a ∈ A, the sequence {Tna} lies in limnA/~nA
and is therefore the image of a unique element a′ ∈ A. The assignment a→ Ta = a′

is easily seen to define an element of EndC[[~]](A) which projects to each of the Tn.

Corollary 3.2. If A is topologically free, the map ı : EndC[[~]](A)→ lim
←−

EndC[[~]](A/~nA)
is an isomorphism.
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3.2 The dynamical KZ equations
In what follows, we set A = Ug⊗2[[~]]o and E = EndC[[~]](A). The DKZ connection is
the E–valued connection on C given by

∇DKZ =
(
d−

(
hΩ
z

+ adµ(1)
)
dz

)

3.3 Fundamental solution at z = 0
Proposition 3.3. [78]

1. For any µ ∈ h, there is a unique holomorphic function H0 : C→ A such that
H0(0, µ) = 1 and, for any determination of log(z), the E–valued function

Υ0(z, µ) = ez adµ(1) ·H0(z, µ) · zhΩ

satisfies ∇DKZΥ0 = 0.

2. H0 and Υ0 are holomorphic functions of µ, and Υ0 satisfiesdh − h
2
∑
α∈Φ+

dα

α
∆(Kα)− z ad(dµ(1))

Υ0 = Υ0

dh − h
2
∑
α∈Φ+

dα

α
∆(Kα)


3.4 Fundamental solutions at z =∞
Let H± = {z ∈ C| Im(z) ≷ 0}.

Theorem 3.4. [78]

1. For any µ ∈ hRreg, there are unique holomorphic functions H± : H± → A such
that H±(z, µ) tends to 1 as z →∞ in any sector of the form | arg(z)| ∈ (δ, π−δ),
δ > 0 and, for any determination of log(z), the E–valued function

Υ±(z, µ) = H±(z, µ) · zhΩ0 · ez adµ(1)

satisfies ∇DKZΥ± = 0.

2. H± and Υ± are smooth functions of µ, and Υ± satisfiesdh − h
2
∑
α∈Φ+

dα

α
∆(Kα)− z ad(dµ(1))

Υ± = Υ±

dh − h
2
∑
α∈Φ+

dα

α
(Kα(1) +Kα(2))


80



3.5 Z2–equivariance
Let U ⊂ C be a subset. For any function F : U → A (resp. F : U → E), define
F∨ : −U → A (resp. F∨ : −U → E) by F∨(z) = F (−z)21 (resp. F∨(z) =
(1 2) · F (−z) · (1 2)). If F is a local solution of the dynamical KZ equations with
values in Ah (resp. Eh), then so is F∨.

Lemma 3.5. The following holds

1. For z ∈ H±,
Υ∨0 (z) = Υ0(z) · e∓πιhΩ

2. For z ∈ H∓,
Υ∨±(z) = Υ∓(z) · e±πιhΩ0

Proof. (1) The uniqueness of the holomorphic part H0 of Υ0 implies that H∨0 = H0.
It follows that Υ∨0 (z) = H0(z) · (−z)hΩ = Υ0(z) · e∓ιπhΩ0 since log(−z) = log(z)∓ ιπ,
depending on whether Im z ≷ 0. (2) follows similarly from the fact that H∨± = H∓
on H∓.

3.6 Differential twist
Fix henceforth the standard determination of log(z) with a cut along the negative
real axis, and let Υ0,Υ± be the corresponding fundamental solutions of the dynamical
KZ equations given in 3.3 and 3.4 respectively. We shall consider Υ0 and Υ± as
(single–valued) holomorphic functions on C \ R≤0.

Let C ⊂ hRreg be the fundamental Weyl chamber.

Definition 3.6. [78] The differential twist is the holomorphic function J± : C →
Ug⊗2[[~]]o defined by

J± = Υ0(z)−1 ·Υ±(z)
where z ∈ C \ R≤0.

Theorem 3.7. [78]

1. J± kills the KZ associator ΦKZ ∈ Ug⊗3[[~]]o, that is

ΦKZ ·∆⊗ id(J±) · J± ⊗ 1 = id⊗∆(J±) · 1⊗ J±

2. Modulo ~2,

J± = 1⊗2 + ~
2

∓Ω− + 1
πι

∑
α∈Φ+

(Ωα + Ω−α) (logα + γ)

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where Ωα = xα ⊗ x−α, Ω± = ∑
α∈Φ+ Ω±α, and γ = limn(∑n

k=1 1/k − log(n)) is
the Euler–Mascheroni constant.
In particular, the antisymmetrisation of J± is equal to

±~
4 (Ω+ − Ω−) = ±~

2
∑
α∈Φ+

xα ∧ x−α (5.4)

3. J± satisfies

dJ± = h
2
∑
α∈Φ+

dα

α

(
∆(Kα)J± − J±(Kα(1) +Kα(2))

)
Proposition 3.8. The following holds

J− = RKZ · J21
+ · (R0

KZ)−1

where RKZ = e~Ω/2 and R0
KZ = e~Ω0/2.

Proof. By definition, J21
+ = (Υ∨0 )−1 ·Υ∨+, where the right–hand side is evaluated for

Im z < 0. By Lemma 3.5, this is equal to e−πιhΩ ·Υ−1
0 ·Υ− · eπιhΩ0 .

3.7 Quantisation of (g, r)
Let

r = Ω+ + 1
2Ω0 =

∑
α∈Φ+

xα ⊗ x−α + 1
2Ω0

be the Drinfeld–Sklyanin r–matrix corresponding to the triangular decomposition
g = n+ ⊕ h⊕ n−, and (g, r) the corresponding quasitriangular Lie bialgebra.

Set RKZ = e~Ω/2, and let
(Ug[[~]],∆0, RKZ,ΦKZ)

be the quasitriangular quasi–Hopf algebra structure on Ug underlying the monodromy
of the KZ equations [27], where ∆0 is the standard cocommutative coproduct on Ug.
The differential twist J± allows to twist this structure, and yields a quasitriangular
Hopf algebra (Ug[[~]],∆±, R±), where3

∆±(x) = J−1
± ·∆0(x) · J± and R± = (J−1

± )21 ·RKZ · J±
3Note that ∆± and R± depend on the additional choice of µ ∈ C. Specifically, if µ0, µ1 ∈ C,

p : [0, 1]→ C is a path with p(0) = µ0, p(1) = µ1, and ap ∈ Ug[[~]]0 is the holonomy of the Casimir
connection along p, then

∆±(x)(µ1) = a⊗2
p ·∆±(a−1

p xap)(µ0) · (a⊗2
p )−1 and R±(µ1) = a⊗2

p ·R±(µ0) · (a⊗2
p )−1

In particular, the quasitriangular Hopf algebras corresponding to different values of µ ∈ C are all
isomorphic.

82



Theorem 3.9.

1. (Ug[[~]],∆+, R+) is a quantisation of (g, r).

2. (Ug[[~]],∆−, R−) is a quantisation of (g, r21).

3. Each of (Ug[[~]],∆±, R±) is isomorphic to the Drinfeld–Jimbo quantum group
corresponding to g.

Proof. (1)–(2) By (5.4), the coefficient of ~ in R± is 1
2(Ω ± Ω+ ∓ Ω−), which is

equal to r for R+ and r21 for R−.
(3) This follows, for example, from Drinfeld’s uniqueness of the quantisation of

(g, r) [24] given that the Chevalley involution of g clearly lifts to (Ug[[~]],∆±, R±).

Remark 3.10. It follows from (4) of Theorem 3.7 that

R− = R0
KZ ·R21

+ · (R0
KZ)−1 (5.5)

4 The R–matrix as a quantum Stokes matrix

4.1 Quantum Stokes matrices
Recall that H± = {z ∈ C| Im(z) ≷ 0}. Define the quantum Stokes matrices
S~± ∈ Ug⊗2[[~]]o by

Υ+ = Υ− · S~+ and Υ− · e~Ω0 = Υ+ · S~−

where the first identity is understood to hold in H− after Υ+ has been continued
across the ray R≥0, and the second in H+ after Υ− has been continued across R≤0.
Here we use S~± to distinguish from the classical Stokes matrices S±.

Proposition 4.1. The following holds

1. S~− = e−ιπhΩ0 · S21
~+ · eιπhΩ0.

2. J−1
+ · e2πιhΩ · J+ = S−1

~+ · e2πιhΩ0 · S−1
~−

3. As functions of µ ∈ C, the quantum Stokes matrices S~± satisfy

dhS~± = h
2
∑
α∈Φ+

dα

α

[
Kα(1) +Kα(2), S~±

]
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Proof. (1) Let f be a holomorphic function on H±, and denote by P±(f) the
analytic continuation of f to H∓ across the half–axis R≷0. By Lemma 3.5, and the
definition of S~−,

P−(Υ∨+) = P−(Υ−) · eιπhΩ0 = Υ+ · S~− · e−ιπhΩ0

On the other hand, if ı : C→ C is the inversion z → −z,

P−(Υ∨+) = (1 2) · P−(Υ+ ◦ ı) · (1 2) = (1 2) · P+(Υ+) ◦ ı · (1 2)
= (1 2) ·Υ− ◦ ı · S~+ · (1 2) = Υ∨− · S21

~+

= Υ+ · e−ιπhΩ0 · S21
~+

where the last identity uses Lemma 3.5.
(2) By construction, the monodromy of the fundamental solution Υ0 around a

positively oriented loop γ0 around 0 is e2πιhΩ. Let now γ∞ be a clockwise loop around
∞ based at x0 ∈ H+. Since such a loop crosses the negative real axis before the
positive one, the monodromy of Υ+ around γ+ is S−1

~+ · e2πιhΩ0 · S−1
~− . The result now

follows from the fact that γ∞ is homotopic to γ0, and Υ+ = Υ0 · J+.
(3) follows from the PDE satisfies by Υ0 and Υ±.

4.2 The R–matrix as a quantum Stokes matrix
Now we state a surprising relation between the quantum Stokes phenomenon and the
Yang-Baxter equation, which says that the quantum Stokes matrix, after correction
by formal monodromy, gives rise to quantum R-matrices (solution of Yang-Baxter
equations).

Theorem 4.2. The following holds

R+ = eπιhΩ0 · S−1
− and R− = eπιhΩ0 · S−1

+

Proof. By definition of S+, Υ+ = Υ− · S+, when both Υ± are considered as
single–valued functions on C \ R≤0. On the other hand, by definition of J±,

Υ+ = Υ0 · J+ = Υ− · J−1
− · J+

Using Proposition 3.8 therefore yields

S+ = eιπhΩ0 · (J−1
+ )21 · e−ιπhΩ · J+ = eιπhΩ0 · (R−1

+ )21

where the last equality uses the fact that RKZ = exp(πιhΩ) = R21
KZ. The first stated

identity now follows from (1) of Proposition 4.1. The second one follows from the
first and (5.5).
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5 Semiclassical limits
In this section, we prove that the remarkable result in [16] can be viewed as the
classical limit of the construction in [78]. Thus the quantization problem (quantization
of Poisson Lie groups to Quantum groups) can be studied in the frame of the
deformation of certain irregular Riemann-Hilbert problem (meromorphic ODE).

5.1 The algebra U

Set U = Ug[[~]] and, for any n ≥ 1, U⊗n = U⊗̂ · · · ⊗̂U = Ug⊗n[[~]], where ⊗̂ is the
completed tensor product of C[[~]]–modules. Let η : C[[~]]→ U and ε : U→ C[[~]] be
the unit and counit of U. U splits as Ker(ε)⊕ C[[~]] · 1, with projection onto the first
summand given by π = id−η ◦ ε. Let ∆(n) : U → U⊗n be the iterated coproduct
recursively defined by ∆(0) = ε, ∆(1) = id, and ∆(n) = ∆⊗ id⊗(n−2) ◦∆(n−1) for n ≥ 2.

Define U′ ⊂ U by [24, 48]

U′ = {x ∈ U| π⊗n ◦∆(n)(x) ∈ ~nU⊗n, n ≥ 1}

The following is well–known

Lemma 5.1.

1. U′ = U(~g[[~]]). That is, x = ∑
n≥0 ~nxn, xn ∈ Ug, lies in U′ is, and only if the

filtration order of xn in Ug is less than or equal to n.

2. U′ is a flat deformation of the completed symmetric algebra Ŝg = ∏
n≥0 S

ng.

Proof. (1) follows from the easily proved formula

π⊗n ◦∆(n)(x1 · · ·xk) =
∑

I1t···tIn={1,...,k}
|Ii|6=0

xI1 ⊗ · · · ⊗ xIn

where x1, . . . , xk ∈ g and, for any I = {i1, . . . , im}, with i1 < · · · < im, xI =
xi1 · · · xim .

(2) follows from (1) and the fact that any topologically free C[[~]]–module rA is a
flat deformation of rA/~rA.

5.2 Semiclassical limit
If A ∈ U⊗n⊗̂U′, the semiclassical limit of A, denoted by scl (A) is the image of A in

U⊗n⊗̂U′/~(U⊗n⊗̂U′) = Ug⊗n ⊗ Ŝg
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Given that Ŝg = C[[g∗]], we will regard scl (A) as formal function on g∗ with values
in Ug⊗n.

Note that the subalgebras Ug⊗n[[~]]o ⊂ U⊗n defined in 3.1 is contained in U⊗(n−1)⊗
U′. In particular, the semiclassical limit of an element of Ug⊗n[[~]]o is well–defined.

5.3 Semiclassical limit of the DKZ equations
Proposition 5.2.

1. Let Υ be a solution of the dynamical KZ equations with values in Ug⊗2[[~]]o ⊂
U⊗ U′. Then, F = scl (Υ) is a solution of

dF

dz
=
(
B

z
+ adµ

)
F

where B : g∗ → g is the linear isomorphism given by λ→ λ⊗ id(Ω), thought
of as a formal function g∗ → Ug

2. If Υ0 = H0 · zhΩ is the canonical solution of the DKZ equations given by
Proposition 3.3, then F0 = scl (Υ0) is of the form h0 · zB, where h0 is an entire
function of z such that h0(0) = 1.

3. If Υ± = H± · zhΩ0 · ez adµ(1) is the canonical solution of the DKZ equations given
by Proposition 3.3, then F± = scl (Υ±) is of the form h± · z[B] · ez adµ where
h± is a holomorphic function on H± such that H± → 1 as z → ∞ in any
closed sector of the form | arg(z)| ∈ [δ, π − δ], δ > 0, and [B] : g∗ → h is the
composition of B with the projection g→ h.

Proof. (1) follows from the fact that, under the identification U⊗̂U′/~(U⊗̂U′) =
Ug⊗ C[[g∗]], scl (hΩ) corresponds to the identification g∗ → g.

(2)–(3) are direct consequences of (1).

5.4 Semiclassical limit of the differential twist
Let J± = Υ−1

0 ·Υ± be the differential twist defined in 3.6.

Theorem 5.3.

1. The semiclassical limit C = scl (J−1
± ) is the connection matrix map C : g∗ → G

defined in 2.4 after the change of variable z → 1/z.

2. C satisfies the EEM partial differential equation (5.3).
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Proof. (1) Follows from Proposition 5.2 and the uniqueness of canonical solutions
of the connection (5.1). (2) follows from the fact that, by Theorem 3.7, J± kills the
KZ associator and Lemma 3.4 of [32] according to which the semiclassical limit of
any (admissible) associator killing ΦKZ gives rise to a solution of (5.3).

5.5 Semiclassical limit of the quantum Stokes matrices
The following result is a direct consequence of Proposition 5.2.
Theorem 5.4. The semiclassical limit of the Stokes matrices S~± of the dynamical
KZ equation are the Stokes matrices S± of the connection (5.1), thought of as
functions g∗ → B±.

It follows that the Stokes map g∗ → G∗ associated to the connection (5.1) is a
Poisson map. See e.g. Section 3.2.2 in [32]. Thus we obtain an interpretation of the
appearance of Poisson Lie groups in Stokes phenomenon from a new perspective.

6 Quantum and classical isomonodromy equations

6.1 Gauge action on quantum Stokes matrices
Let U ′0 := Ker(ε) ∩ U(g)J~K◦ and let V := {u~ ∈ ~−1U ′0 ⊂ U(g)J~K} | u~ = O(~)} be
the Lie subalgebra for the commutator. The reduction module ~ of the Lie algebra
V is V/~V = (Ŝ(g)>1, {−,−}).

Let A0 ∈ C ⊂ hRreg, and S~± be the associated quantum Stokes matrices defined as
before. Given any u~ ∈ V and u ∈ Ŝ(g) its reduction module ~, the gauge action of
u~ ∈ V on the quantum Stokes matrices is given by eu~ ∗S~± := (eu~)⊗2S~±(eu~)⊗2−1,
and its infinitesimal action is given by

δu~(S~±) = [u(1)
~ + u

(2)
~ , S~±] (5.6)

The reduction modulo ~ of this action can be described as follows: let S± ∈
exp(g)⊗̂Ŝ(g) (Stokes matrices) be the semiclassical limit of S~±. The Lie algebra
(Ŝ(g), {·, ·}) acts on S± ∈ exp(g)⊗̂Ŝ(g) by δu(S±) = {1⊗ u, S±}.

Thus if we view S± ∈ exp(g)⊗̂Ŝ(g) as a map, the infinitesimal action of u on
S± ∈ Map0(g∗, G) is given by

δu(S±)(x) = (S±)∗(Hu(x)), (5.7)
where u ∈ Ŝ(g) and Hu is the Hamiltonian vector field on g∗ generated by u, i.e.,
Hu = {u, ·}.
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6.2 Isomonodromic deformation equation.
By Theorem 4.1 as functions of µ ∈ C, the quantum Stokes matrices S~± satisfy

dhS~± = h
2
∑
α∈Φ+

dα

α

[
Kα(1) +Kα(2), S~±

]
. (5.8)

Let ω~ := ~
2
∑
α∈Φ+ Kα

dα
α
∈ U(g)J~K⊗Ω1(C). Then one checks that ω~ ∈ V ⊗Ω1(C).

The above equation is an infinitesimal gauge equation on S± under the action of ω~.
("time-dependent or C ⊂ hRreg-dependent" gauge action).

Let ω ∈ Ω1(C)⊗ Ŝ(g) be the reduction module ~ of the Casimir operator ω~ (to be
more precise, ω is a one-form on C whose coefficients are quadratic polynomials on g∗,
and by definition, under the PBW isomorphism, ω coincides with 1

2
∑
α∈Φ+ Kα

dα
α
.). By

taking the Hamiltonian vector field generated by Ŝ(g), we define Hω ∈ Ω1(C)⊗X(g∗).
Then it follows from the disscussion above, in particular equation (5.7), the reduction
module ~ of equation (5.8) gives rise to

dhS±(x) + (S±)∗(Hω(x)) = 0, ∀x ∈ g∗. (5.9)

Here S± is a map from C × g∗ → G, and Hω ∈ Ω1(C)⊗ X(g∗).
This gives the isomonodromic deformation equation [55][18] as follows. Choose

At ∈ C a one parameter family. Assume xt ∈ g∗ is an isomonodromic flow, i.e., xt is
such that the Stokes matrices sAt±(xt) of the connection ∇t = d− (At

z2 + xt
z

) is fixed.
Taking the derivative with respect to t, we get

dSAt±(x0)
dt

|t=0 + S±(ẋ) = 0.

where ẋ := dxt
dt
|t=0. From the arbitrarity of the one parameter family At in C, we

have the isomonodromic equation becomes dhS±(x) + S±(dhx) = 0. Comparing this
with equation (5.9), we obtain

(S±)∗(dhx) = (S±)∗(Hω(x)).

We eventually obtain
Theorem 6.1. [18] The isomonodromic deformation equation takes the form dhx =
Hω(x).

This is a time-dependent Hamiltonian description of the isomonodromic deforma-
tion. Recall that by the definition of ω, under the PBW isomorphism, ω (one-form on
C whose coefficients are quadratic polynomials on g∗) coincides with 1

2
∑
α∈Φ+ Kα

dα
α
.

The symplectic nature of the isomonodromic deformation equation is interpreted
from the perspective of the gauge action of Casimir operator on quantum Stokes
matrices.

88



Chapter 6

Generalized classical dynamical
Yang-Baxter equations and moduli
spaces of flat connections on
surfaces

Xiaomeng Xu

Abstract:In this paper, we explain how generalized dynamical r-matrices can
be obtained by (quasi-)Poisson reduction. New examples of Poisson structures,
Poisson G-spaces and Poisson groupoid actions naturally appear in this setting. As
an application, we use a generalized dynamical r-matrix, induced by the gauge fixing
procedure, to give a new finite dimensional description of the Atiyah-Bott symplectic
structure on the moduli space of flat connections on a surface. Using this, we find a
Poisson groupoid symmetry of the moduli space.

1 Introduction
The classical Yang-Baxter equation (CYBE) plays a key role in the theory of integrable
systems. A geometric interpretation of CYBE was given by Drinfeld and gave rise
to the theory of Poisson-Lie groups. The classical dynamical Yang-Baxter equation
(CDYBE) is a differential equation analogue to CYBE and introduced by Felder
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in [40] as the consistency condition for the differential Knizhnik-Zamolodchikov-
Bernard equations for correlation functions in conformal field theory on tori. It
was shown by Etingof and Varchenko [37] that dynamical r-matrices correspond to
Poisson-Lie groupoids (a notion introduced by Weinstein [82]) in much the same
way as r-matrices correspond to Poisson-Lie groups. In the meantime, the classical
dynamical Yang-Baxter equation is proven to be closely connected with the theory
of homogeneous Poisson spaces [26], Dirac structures and Lie bialgebroids [67], see
[65], [62] and references therein. Inspired by the study of Lie bialgebroids, the notion
of generalized classical dynamical Yang-Baxter equations was introduced by Liu and
Xu [62] in which the base manifold underlying the CDYBE can be a general Poisson
manifold. Despite its importance, this subject suffered from the lack of examples for
a long time.

Since Atiyah and Bott introduced canonical symplectic structures on the moduli
spaces of flat connections on Riemann surface in [10], a lot of attention has been paid
to the moduli spaces by mathematicians and physicists due to their rich mathematical
structures and their links with a variety of topics. From the physics perspective, a
major motivation for their study is their role in Chern-Simons theory. An independent
mathematical motivation for investing moduli spaces of flat connections arises from
Poisson geometry. The Atiyah-Bott symplectic structure on the moduli of flat G-
connections over oriented surface Σ admits several finite dimensional descriptions.
The first such description appears in Goldman’s study of symplectic structures on
character varieties Hom(π1(Σ), G)/G, see [50]. Another possibility is to obtain the
moduli space of flat G-connections on a surface Σg,n of genus g with n punctures
by (quasi-)Poisson reduction from an enlarged ambient Gn+2g. In the Fock-Rosly’s
approach [47], the Poisson structure on Gn+2g is described using a classical r-matrix.
In the Alekseev-Malkin-Meinrenken’s theory of Lie group valued moment maps [2],
the moduli space is obtained by a reduction of a canonical quasi-Poisson tensor on
Gn+2g.

These two subjects of dynamical Yang-Baxter equations and moduli spaces of flat
connections appear to be very different. However, some recent works indicate the
possible connection between them. From the viewpoint of Hamiltonian formalism,
the moduli spaces of flat connections can be viewed as constrained Hamiltonian
systems. Dirac gauge fixing for the moduli space of flat ISO(2, 1)-connections on
a Riemann surface has been shown to give rise to generalized classical dynamical
r-matrices in [72]. On the other hand, gauge fixing in the Poisson-Lie context has
been shown to give rise to classical dynamical r-matrices in some cases [39].

In this paper, we deepen the connection between these two subjects by giving a
systematic investigation of the theory of generalized classical dynamical r-matrices.
We explain how generalized dynamical r-matrices can be obtained by (quasi-)Poisson
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reduction. Furthermore, we show that new examples of Poisson structures, Poisson
G-spaces and Poisson groupoid actions naturally appear in this setting. As a
result, associated to a classical dynamical r-matrix, there is naturally a Poisson
manifold carrying simultaneously a Hamiltonian action and a Poisson action, whose
Hamiltonian reduction gives a homogeneous Poisson space. After that, we take
the canonical quasi-Poisson manifold G~G as an example and concretely analyze
the dynamical r-matrices arising from the quasi-Poisson reduction of G ~ G. We
also introduce the notion of gauge transformations for generalized dynamical r-
matrices. As an application, we use a dynamical r-matrix, induced by the gauge
fixing procedure, to give a new finite dimensional description of the symplectic
structure on the moduli space. Using this, we find a Poisson groupoid symmetry of
the moduli space. We end up with two examples, one of them was previously studied
by Meusburger-Schönfeld in the framework of the ISO(2, 1)-Chern-Simons theory of
(2 + 1)-dimensional gravity.

Our paper is structured as follows. In section 2, we recall the definition of
generalized classical dynamical Yang-Baxter equations and present some examples.
After that, we give new examples of generalized dynamical r-matrices from (quasi-
)Poisson reduction. We show that new Poisson structures, Poisson G-spaces and
Poisson groupoid actions naturally appear in this setting. Moduli space dynamical
r-matrices and gauge transformations for generalized dynamical r-matrices are
introduced. In section 3, we use a generalized dynamical r-matrix induced by the
gauge fixing procedure to give a new finite dimensional description of the Atiyah-Bott
symplectic structure on the moduli space of flat connections on surfaces.

Acknowledgements
I give my warmest thanks to Anton Alekseev for his encouragement as well as
inspiring discussions and insightful suggestions. I want to thank Jianghua Lu for her
helpful discussions and interest in this paper. This work is supported by the grant
ERC project MODFLAT and the NCCR SwissMap of the Swiss National Science
Foundation.

2 Generalized classical dynamical Yang-Baxter equa-
tions

First we fix some notations. Let M be a manifold, then a Poisson bivector π on
M gives rise to a Lie algebroid structure on T ∗M , denoted by (T ∗M,π), where the
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anchor map is π] : T ∗M → TM and the Lie bracket is

[α, β] = Lπ]α − Lπ]β − d(π(α, β)), ∀α, β ∈ Ω1(M). (6.1)

Let G be a Lie group with g = Lie(G). Let {ei}i=1,..,n be a basis of g. Given a
tensor θ = ∑

Xi ⊗ ei ∈ Γ(TM ⊗ g), a smooth map r : M → g ∧ g and a linear map
δ : g→ g ∧ g, we define the following operations

δθ =
∑

Xi ⊗ δei, [r, θ] =
∑

Xi ⊗ [r, ei], (6.2)
[θ, θ] =

∑
[Xi, Xj]⊗ ei ∧ ej, θ ∧ θ =

∑
Xi ∧Xj ⊗ [ei, ej]. (6.3)

We denote by θ] : T ∗M → M × g the morphism associated with θ ∈ Γ(TM ⊗ g).
With these preparatory notations, we can now give the following definition.

Definition 2.1. [62] For a Poisson manifold (M,π) and a Lie algebra g, assume that
there exists a tensor θ ∈ Γ(TM ⊗ g) such that θ] : (T ∗M,π)→ g is a Lie algebroid
morphism. A function r ∈ C∞(M,∧2g) is called a dynamical r-matrix coupled with
the Poisson manifold (M,π) via θ if

1
2[θ, θ] = [r, θ]− π](dr), (6.4)

and the generalized DYBE is satisfied:

Alt(θ]dr) + 1
2[r, r] = Ω, (6.5)

where Alt(θ]dr(x)) is the skew-symmetrization of θ]dr(x) ∈ g⊗ g⊗ g for all x ∈M ,
and Ω ∈ (∧3g)g is an invariant element and regarded as a constant section of
∧3(M × g).

We call r a triangular dynamical r-matrix coupled withM via θ if the correspond-
ing Ω = 0 in (6.5). Throughout this paper, we will also use the triple ((M,π), θ, r)
to denote a generalized dynamical r-matrix.

Example 2.2. Let η be a Lie subalgebra of g and M = η∗ with the natural linear
Poisson structure. Let θ] : T ∗η∗ → g be the natural projection: (ξ, v) → v, for all
(ξ, v) ∈ η∗ × η. We can write θ = ∑k

i=1
∂
∂xi
⊗ ei in a basis {e1, ..., ek} of η and a

dual basis {x1, ..., xk} of η∗. One checks that θ] is a Lie algebroid morphism, and
[θ, θ] = 0. Therefore, the condition 1

2 [θ, θ] = [r, θ]− π∗(dr) reduces to [r, θ] = π∗(dr),
which says that the map r : η∗ → g ∧ g is η-equivariant. In this case, equation
Alt(θ]dr)+ 1

2 [r, r] = Ω ∈ (∧3g)g becomes the classical dynamical Yang-Baxter equation
and a solution r is a classical dynamical r-matrix [40].
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Similarly, we introduce a notion of the generalized Poisson-Lie dynamical Yang-
Baxter equation.

Definition 2.3. For a Poisson manifold (M,π) and a Lie bialgebra (g, δ), assume
that there exists a tensor θ ∈ Γ(TM ⊗ g) such that θ] : (T ∗M,π) → g is a Lie
algebroid morphism. A function r ∈ C∞(M,∧2g) is called a Poisson-Lie dynamical
r-matrix coupled with the Poisson manifold (M,π) via θ if

(a) δθ + 1
2 [θ, θ] = [r, θ]− π](dr),

(b) the generalized Poisson-Lie DYBE is satisfied:

Alt(θ]dr) + 1
2[r, r] + δr = Ω ∈ (∧3g)g. (6.6)

Example 2.4. Let G be a Poisson-Lie group and (G∗, π) the simply connected dual
Poisson-Lie group. Let g = Lie(G) and g∗ = Lie(G∗). To consider the generalized
dynamical r-matrices on (G∗, π), we take a natural section θ of TG∗ ⊗ g, which is
induced by the isomorphism T ∗G∗ → G∗ × g. Then one checks that θ] : T ∗G∗ → g is
a Lie algebroid morphism. A direct calculation shows that equation (a) and (b) in
Definition 2.3 reduces to

dressLa (r) + [a⊗ 1 + 1⊗ a, r] = 0,

[r, r] + Alt(dLr) + Alt((δ ⊗ id)(r)) = Ω,

for r : G∗ → g ∧ g and any a ∈ g, where dressLa denotes the left dressing vector field
generated by a and dLr(g) := ei⊗ d

dt
|t=0r(e−teig) for each g ∈ G∗ and an orthonormal

basis {ei} of g. Thus a map r : G∗ → g ∧ g is a generalized dynamical r-matrix
coupled with G∗ via θ if and only if r is a Poisson-Lie dynamical r-matrix [31].

2.1 Generalized classical dynamical r-matrices from (quasi-
)Poisson reduction

In this subsection, we explain that generalized classical dynamical r-matrices naturally
appear in the theory of (quasi-)Poisson reduction. First, let us recall the definition
of quasi-Poisson G-manifolds.

We assume that (g, 〈·, ·〉) is a quadratic Lie algebra, φ is the Cartan 3-tensor. In
terms of an orthogonal basis {ea} of g, φ ∈ ∧3g is given by

φ = 1
12fabcea ∧ eb ∧ ec, (6.7)
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where fabc = 〈ea, [eb, ec]〉 are the structure constants of g. Given a G-manifold M ,
the Lie algebra homomorphism ρ : g→ TM can be extended to an equivariant map,

ρ : ∧•g→ ∧•TM,

preserving wedge products and Schouten brackets.

Definition 2.5. [6] A quasi-Poisson manifold is a G-manifold M , equipped with an
invariant bivector field π ∈ Γ(∧2TM) such that

[π, π] = ρ(φ). (6.8)

Example 2.6. Let G be a Lie group and {ea}a∈I be an orthogonal basis of its Lie
algebra g. Define a bivector field on G by πG = 1

2
∑
a∈I Ra ∧ La, where Ra and La

are right and left invariant vectors generated by ea. Then (G, πG) is a quasi-Poisson
G-manifold, where G acts on itself by conjugation.

Generally, the G-invariant functions on a quasi-Poisson manifold (M,π) form a
Poisson algebra under the binary bracket induced by π. Thus we obtain a Poisson
algebra on C∞(M)G. Given M a G-manifold with G acting locally freely and
ρ : g→ TM the corresponding infinitesimal action, we will use the same symbol ρ
to denote the following natural extension map:

ρ : ∧•(TM ⊕ g)→ ∧•TM. (6.9)

Throughout this paper, we denote the skew-symmetrization of any section A ∈
Γ(∧•(TM)⊗∧•g) by Â ∈ Γ(∧•(TM ⊕ g)). Thus, if θ = f ia(x) ∂

∂xi
⊗ ea ∈ Γ(TM ⊗ g)

in local coordinates {xi} of U and a basis {ea} of g, we have θ̂ = f ia(x) ∂
∂xi
∧ ea.

Theorem 2.7. Let U ⊂M be a cross-section of the G action and πM be a bivector
field on M . Then there exists a unique triple (πU , θ, r), where πU ∈ Γ(∧2TU),
θ ∈ Γ(TU ⊗ g) and r : U → g ∧ g such that

πM |U = πU − ρ(θ̂)|U + ρ(r)|U . (6.10)

Moreover,
(a) if πM is a G-invariant Poisson tensor on M , then (U, πU) is a Poisson

manifold and r is a triangular dynamical r-matrix coupled with U via θ.
(b) if πM is a quasi-Poisson tensor on M , then (U, πU ) is a Poisson manifold and

r is a dynamical r-matrix coupled with U via θ with respect to the Cartan 3-tensor,
i.e., Ω = −1

2φ in the generalized CDYBE.
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Proof. Because G acts locally freely and U is a cross-section, for any x ∈ U there is
a canonical splitting TxM = TxU ⊕ ρx(g) of the sequence

0→ g→ TxM → TxU → 0.

Thus, there exists unique πU ∈ Γ(∧2TU), θ ∈ Γ(TU ⊗g) and r : U → g∧g such that

πM |U = πU − ρ(θ̂)|U + ρ(r)|U ,

where πU is tangent to U .
If πM is a G-invariant Poisson tensor or quasi-Poisson tensor, it induces a Poisson

bracket {·, ·} on U . From the expression (6.10) and the fact ρ(e)f ′ = 0 for any e ∈ g
and f ′ ∈ C∞(M)G, we have that {f, g} = πU(df, dg) for any f, g ∈ C∞(U). This is
to say (U, πU ) is a Poisson manifold. The remaining thing is to check that the triple
(πU , θ, r) satisfies the required compatibility condition and the generalized CDYBE.
This can be seen from the proofs of Theorem 2.8 and Theorem 2.12.

Theorem 2.7 suggests the following construction which generalizes the construction
for ordinary classical dynamical r-matrices in [84]. Given a manifold M , M × G
carries natural right and left G-actions defined respectively by (x, p) · g = (x, pg)
and g · (x, p) = (x, gp) for all x ∈ M , p, g ∈ G. Let ρL denote the infinitesimal left
G-actions. Then we have

Theorem 2.8. Let (M,πM) be a Poisson manifold and θ ∈ Γ(TM ⊗ g). Then any
smooth function r : M → g ∧ g induces a left G-invariant bivector πr on M × G
which is given by

πr = πM + ρL(θ̂) + ρL(r), (6.11)

and
(a) πr is a Poisson tensor iff r is a triangular generalized dynamical r-matrix.
(b) πr is a quasi-Poisson tensor iff r is a generalized dynamical r-matrix with

respect to the Cartan 3-tensor.

Proof. Note that the vector field on M ×G has a natural bigrading: elements in
TM have degree (1, 0) while elements in TG have degree (0, 1). It is simple to see
that [πM , πM ] is of degree (3, 0), [πM , ρL(θ̂)] is of degree (2, 1), [πM , ρL(r)] is of degree
(1, 2) and [ρL(r), ρL(r)] is of degree (0, 3). On the other hand, [ρL(θ̂), ρL(r)] consists
of elements of degree (1, 2) and of (0, 3) and [ρL(θ̂), ρL(θ̂)] consists of elements of
degree (2, 1) and of (1, 2). For any S ∈ ∧3(TM ⊕ TG), let S = ∑

0≤i,j≤3 S
(i,j) be
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its decomposition with respect to this bigrading. The following equations can be
verified by a direct computation:

[ρL(θ̂), ρL(θ̂)](1,2) = ρL( ̂[θ, θ]), [ρL(θ̂), ρL(θ̂)](2,1) = 2ρL(θ̂ ∧ θ), (6.12)
[ρL(θ̂), ρL(r)](0,3) = ρL(Alt(θ∗dr)), [πM , ρL(r)] = ρL(π]M(dr)), (6.13)
[ρL(θ̂), ρL(r)](1,2) = −ρL( ̂[r, θ]), [πM , ρL(θ̂)] = ρL(dπM θ) (6.14)

where the operations [θ, θ], θ ∧ θ and [r, θ] for θ ∈ Γ(TM ⊗ g) and r ∈ C∞(M,∧2g)
are defined as (6.2) and (6.3). Eventually, by using the facts [ρL(r), ρL(r)] = ρL([r, r])
and [πM , πM ] = 0 we have

[πr, πr] = [πM + ρL(θ̂) + ρL(r), πM + ρL(θ̂) + ρL(r)]
= [ρL(θ̂), ρL(θ̂)] + 2[πM , ρL(θ̂)] + 2[ρL(θ̂), ρL(r)] + 2[πM , ρL(r)] + [ρL(r), ρL(r)]

= 2ρL(Alt(θ∗dr) + 1
2[r, r]) + 2ρL( ̂[θ, θ]− ̂[r, θ] + π̂∗(dr)) + 2ρL(θ̂ ∧ θ + dπM θ).

Note that the map θ] : T ∗M → g is a Lie algebroid morphism if and only if

θ̂ ∧ θ + dπM θ = 0.

Therefore we have that [πr, πr] = 0 iff r is a triangular generalized dynamical r-matrix
and [πr, πr] = ρR(φ) iff r is a generalized dynamical r-matrix w.r.t Ω = −1

2φ.

Similarly, we have the following theorem.

Theorem 2.9. Let (N, πN) be a quasi-Poisson G-space and ρ : g → TN be the
infinitesimal action. Then for any generalized dynamical r-matrix coupled with
(M,πM) via θ with respect to Ω = −1

2φ,

π := πM + πN + ρ(θ̂) + ρ(r) (6.15)

is a Poisson tensor on M ×N .

Proof. We need to prove [π, π] = 0. Note that [ρ(r), πN ] = [ρ(θ̂), πN ] = 0 because of
the invariance of πN . Thus we have

[π, π] = [πM + πN + ρ(θ̂) + ρ(r), πM + πN + ρ(θ̂) + ρ(r)]
= [πM , πM ] + [πN , πN ] + ρ([r, r]) + 2[ρ(θ̂), ρ(r)] + 2[πM , ρ(θ̂)] + 2[πM , r]

= [πN , πN ] + 2ρ(Alt(θ∗dr) + 1
2[r, r])

= ρ(φ)− ρ(φ) = 0.
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This finishes the proof.

Now we discuss the relation between generalized dynamical r-matrices and the
reduction of the fusion product of two quasi-Poisson manifolds. Let M , N be two
G-manifolds and ρM , ρN be the corresponding infinitesimal G action. We define a
bivector field on M ×N by

Φ =
∑
a∈I

ρM(ea) ∧ ρN(ea),

where {ea}a∈I is an orthogonal basis of g.

Proposition 2.10. [6] If (M,πM) and (N, πN) are two quasi-Poisson G-manifolds,
then πM +πN−Φ gives a quasi-Poisson structure on M×N for the diagonal G-action.
This quasi-Poisson manifold, denoted by M ~N , is called the fusion product of M
and N .

Example 2.11. Let (G, πG) be the quasi-Poisson G-manifold given in Example 2.6.
By doing the fusion product with itself, we get a quasi-Poisson manifold D(G) :=
G~G. Let Ri

a and Lia denote the right and left invariant vector fields on the i-th
copy of G×G generated by ea, then the quasi-Poisson tensor takes the form:

πG2 = 1
2
∑
a

(R1
a ∧ L1

a +R2
a ∧ L2

a + (L1
a −R1

a) ∧ (L2
a −R2

a)). (6.16)

Let (M,πM) and (N, πN) be two quasi-Poisson G-manifolds. We assume G acts
locally freely on M . Let U ⊂M be any cross-section. By Theorem 2.7, associated to
U , there is a triple (πU , θ, r) such that r is a generalized dynamical r-matrix coupled
with (U, πU) via θ. On the other hand, U ×N is a cross-section of the diagonal G
action on M ×N . So it inherits a Poisson structure πred by the reduction from the
quasi-Poisson structure on M ~N .

Theorem 2.12. The Poisson tensor πred on U ×N takes the form of

πred = πU + ρN(θ̂) + ρN(r) + πN . (6.17)

Before giving a proof, we show the following lemma which says that on the
reduction level, fusion product and direct product give rise to the same Poisson
structure.

Lemma 2.13. Let M and N be two quasi-Poisson G-manifolds. Then for any
diagonal G-invariant functions f, g ∈ C∞(M × N)G, Φ(df, dg) = 0. Moreover,
πM + πN induces a Poisson algebra structure on C∞(M ×N)G which is the same as
the Poisson algebra on C∞(M ~N)G.

97



Proof. Note that Φ = ∑
ρM(ea) ∧ ρN(ea), and (ρM(ea) + ρN(ea))f = 0 for all

f ∈ C∞(M ×N)G. So Φ = −∑ ρN(ea) ∧ ρN(ea) = 0 when restricts to G-invariant
functions.

Proof of Theorem 2.12 For any f, g ∈ C∞(U × N), let f ′, g′ ∈ C∞(M × N)G
be the diagonal G-invariant extension of f , g respectively. Then by Lemma 2.13,
πred(df, dg) = (πM + πN)(df ′, dg′)|U×N . Following Theorem 2.7, we have

πM |U = πU − ρM(θ̂)|U + ρM(r)|U .

Together with the fact that (ρM(ea) + ρN(ea))F = 0 for any F ∈ C∞(M ×N)G, we
get

(πM + πN)(df ′, dg′)|U×N = (πU + ρN(θ̂) + ρN(r) + πN)(df ′, dg′)|U×N .

Note that πU + ρN(θ̂) + ρN(r) + πN is tangent to U × N and f ′|U = f , g′|U = g.
Therefore,

(πU + ρN(θ̂) + ρN(r) + πN)(df ′, dg′)|U×N = (πU + ρN(θ̂) + ρN(r) + πN)(df, dg).

This is to say πred = πU + ρN(θ̂) + ρN(r) + πN .

2.2 Classical dynamical r-matrices and Poisson G-spaces
Let G be a complex semisimple Lie group with Lie(G) = g, κ ∈ (S2g)g the element
corresponding to the Killing form on g and Λ = 1

2κ+ r0 any classical quasi-triangular
r-matrix with skew-symmetric part r0. Let ρR and ρL denote respectively the
infinitesimal actions of the right and left translations. We have

πG := ρL(r0)− ρR(r0) (6.18)

defines a Lie Poisson structure on G.
Let H be a Lie subgroup of G with h = Lie(H) and r = 1

2κ + Ar : h∗ → g ⊗ g
a classical dynamical r-matrix with the skew-symmetric part Ar, i.e., r is an H-
equivariant map and satisfies the classical dynamical Yang-Baxter equation

Alt(θ](dAr)) + 1
2[Ar, Ar] = 1

4[κ12, κ23] = −1
2φ, (6.19)

where φ is the Cartan 3-tensor, θ = ∂
∂xi
∧ei for a basis {ei} of h and the corresponding

coordinates {xi} on h∗.
On the other hand, we can think of r0 as a dynamical r-matrix over a point.

Therefore, similar to Theorem 2.9, we have

98



Proposition 2.14. Associated to the dynamical r-matrix Ar, there is a Poisson
structure πr on h∗ ×G defined by

πr = πKKS + ρL(θ) + ρL(Ar)− ρR(r0), (6.20)

where πKKS is the Kirillov-Kostant-Souriau (KKS) Poisson structure on h∗.

Proof. Note that the Schouten brackets [π
KKS

, ρR(r0)], [ρL(θ), ρR(r0)] and [ρL(Ar), ρR(r0)]
are zero, and [ρR(r0), ρR(r0)] = −ρR[r0, r0] = ρR(φ) = ρL(φ). A straightforward
calculation shows that [πr, πr] = 0.

Now let us consider the H action on h∗ ×G given by

h · (x, g) = (Ad∗hx, gh), ∀h ∈ H, x ∈ h∗, g ∈ G. (6.21)

Proposition 2.15. The Poisson tensor πr on h∗ ×G is H-invariant.

Proof. In the expression of the Poisson tensor πr on h∗ ×G, the components π
KKS

,
ρL(θ) and ρR(r0) are obviously H-invariant. Therefore, πr is H-invariant as long as
ρL(Ar) is H-invariant which can be seen from the fact that the map Ar : h∗ → g ∧ g
is H-equivariant.

Recall that an action of the Poisson-Lie group (G, πG) on a Poisson manifold M
is said to be Poisson if the action map G×M →M is a Poisson map, where G×M
is equipped with the product Poisson structure. In our case, h∗×G carries a natural
left G-action, i.e.,

g1 · (x, g2) = (x, g1g2), ∀x ∈ h∗, g1, g2 ∈ G. (6.22)

Proposition 2.16. (h∗ ×G, πr) is a Poisson (G, πG)-space with respect to the left
G-action.

Proof. By definition, G× (h∗ ×G)→ h∗ ×G is a Poisson map if and only if for all
g1 ∈ G and a = (x, g2) ∈ h∗ ×G,

πr(g1 · a) = g1∗(πr(a)) + a∗πG(g1), (6.23)

where a in the last term denotes the map a : G→ h∗ ×G, a(g1) := (x, g1g2), for any
g1 ∈ G. Equation (6.23) can be obtained by the following calculation

πr(g1 · a) = πr(x, g1g2)
= π

KKS
(x, g1g2) + Lg1g2θ(x) + Lg1g2Ar(x)−Rg1g2r0

= Lg1(π
KKS

(x, g2) + θ(x, g2)) + Lg1(Lg2Ar(x)−Rg2r0) +Rg2(Lg1r0 −Rg1r0)
= g1∗(πr(a)) + a∗(πG(g1)), (6.24)
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where Rg(Lg) denotes the right(left) translation from the identity element to g.

By Poisson reduction, the H-invariant Poisson tensor πr on h∗ × G induces a
Poisson structure πs on (h∗×G)/H = G×H h∗. Since the G-action and the H-action
on h∗×G commute, (h∗×G)/H carries an induced left G action, G× (h∗×G)/H →
(h∗ ×G)/H. Furthermore, we have

Theorem 2.17. ((h∗ ×G)/H, πs) is a Poisson (G, πG)-space.

The above theorem is a consequence of the following general proposition.

Proposition 2.18. Let (M,πM ) be a Poisson (G, πG)-space. Suppose a Lie group H
acts freely on M , commuting with the G action, such that πM is H-invariant. Then
the reduced Poisson manifold (M/H, πred) is a Poisson (G, πG)-space with respect to
the induced G-action.

Proof. By definition, for any g ∈ G and a ∈ h∗ ×G, we have

πr(g · a) = g∗πr(a) + a∗(πG(g)). (6.25)

By quotienting the H action on the two sides, we see that the left action map of G
on (h∗ ×G)/H is a Poisson map.

The result in this subsection gives a geometric interpretation of Lu’s construction
of Poisson homogeneous spaces from dynamical r-matrices in [65].

2.3 Generalized dynamical r-matrices associated with con-
jugacy classes

Given a conjugacy class C in G, let us identify the tangent space TgC at g with g⊥g ,
where gg is the centralizer of g and g⊥g its complement. The operator Adg − 1 is
invertible on g⊥g . Thus we get a linear operator

Adg + 1
Adg − 1 |g

⊥
g := (Adg + 1

Adg − 1) ◦ Prg⊥g : g→ g,

where Prg⊥g is the projection of g on g⊥g . Let
∑
a∈I Ra ∧ La be a bivector field on G

(take the convention in Example 2.6). Then we have

Proposition 2.19 (Proposition 3.4, [6]). ∑a∈I Ra∧La = ∑
a,b∈I

1
2(Adg+1

Adg−1 |g
⊥
g )abXa∧Xb

as bivector fields on G, where {ea}a∈I is a basis of g and Xa = La − Ra for any
ea ∈ g.
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Let (G×G, πG2) be the quasi-Poisson G-manifold given in Example 2.11. As a
result of the above proposition, for any conjugacy classes C1, C2, πG2|C1×C2 is tangent
to C1 × C2, i.e., (C1 × C2, πG2|C1×C2) is a quasi-Poisson manifold with respect to the
diagonal conjugation G-action. Assume that the G-action is locally free on some
open subset of C1 × C2, which is ture for most interesting cases, for example when
G is semisimple and C1, C2 are generic. We will choose a cross-section and study
the associated generalized dynamical r-matrix. To do this, let T ⊂ G be a maximal
torus. Let p ∈ C1 ∩ T and Gp the centralizer of p with gp = Lie(Gp). For any
some open subset of C2 where the conjugation Gp-action is locally free, we then
choose a cross-section U ⊂ C2. Thus {p} × U is a cross-section of the G-action on
C1 × C2. Following Theorem 2.7, associated to the choice of {p} × U , there is a
dynamical r-matrix (πp×U , θ, r). To write it down explicitly, we introduce a function
H ∈ C∞(U,End(g)) as follows. For each point x ∈ U , let g′x be the subspace of g
defined by

g′x = {e ∈ g | d
dt
|
t=0

Adexp(te)x ∈ TxU}.

Because U is a cross-section of the conjugation Gp action, we have a decomposition
g = gp⊕g′x. Then we defineHx ∈ End(g) to be the projection of g on g′x. Furthermore,
associated to each ea ∈ g, we define a function H(ea) ∈ C∞(U, g) and a vector field
H(Xa) ∈ Γ(TU) by

H(Xa)|x := d

dt
|
t=0

Adexp(tHx(ea))x, ∀x ∈ U. (6.26)

Theorem 2.20. The generalized dynamical r-matrix (πp×U , θ, r) induced from the
reduction of the quasi-Poisson tensor πG2 on C1 × C2 takes the form

πp×U = 1
2
∑
a,b

((Adp + 1
Adp − 1 |g⊥p )ab + Adx + 1

Adx − 1 |g
⊥
x )ab)H(Xa) ∧H(Xb), (6.27)

θ = 1
2
∑
a

H(Xa)⊗ ea + 1
2(Adp + 1

Adp − 1 |g⊥p )abH(Xa)⊗H(eb) +

1
2
∑
a,b

(Adx + 1
Adx − 1 |g

⊥
x )abH(Xa)⊗ (H(eb)− eb), (6.28)

r = 1
2
∑
a

ea ∧H(ea) + 1
2(Adp + 1

Adp − 1 |g⊥p )abH(ea) ∧H(eb) +

1
2
∑
a,b

(Adx + 1
Adx − 1 |g

⊥
x )ab(ea −H(ea)) ∧ (eb −H(eb)). (6.29)

Proof. Note that for the cross-section p× U of the Gp action on C1 × C2, the triple
(πp×U , θ, r) corresponds to the decomposition of πG2 |p×U with respect to TU and the
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complement ρ(g)|U generated by the diagonal G-action, where ρ(ea) = X1
a +X2

a for
any ea ∈ g. On the other hand, from Example 2.11 and Proposition 2.19, we have at
any point (p, x) ∈ {p} × U

πG2 = 1
4
∑
a,b

(Adp + 1
Adp − 1 |g

⊥
p )abX1

a ∧X1
b + 1

4
∑
a,b

(Adx + 1
Adx − 1 |g

⊥
x )abX2

a ∧X2
b +

∑
a

X1
a ∧X2

a .(6.30)

With the help of this expression, we just need to compute the decomposition of
X i
a ∈ Γ(T (C1 × C2)|U) along the two directions TU and ρ(g)|U . After a direct

computation, we get the following decompositions:

X1
a |p×U = −H(Xa) + ρ(H(ea))|p×U , (6.31)

X2
a |p×U = H(Xa) + ρ(ea −H(ea))|p×U , (6.32)

where ρ(H(ea)) ∈ Γ(T (C1×C2)) is given by ρ(H(ea))|y,x = (X1
Hx(ea) +X2

Hx(ea))|y,x for
all (y, x) ∈ C1 × C2. To be precise, by the definition of H, ea −H(ea) ∈ C∞(U, gp)
where gp is the Lie algebra of the isotropic group Gp, so we get X1

a = X1
H(ea) when

restricts to p× U . Thus we have

−H(Xa) + ρ(H(ea))|p×U = −H(Xa) +X1
H(ea)|p×U +H(Xa) = X1

a |p×U .

A similar calculation gives the equation (6.32).
In the end, we get the expression of the triple (πp×U , θ, r) by plugging (6.31) and

(6.32) in the expression of πG2|p×U .

We refer to the generalized dynamical r-matrices associated to two conjugacy
classes in G as moduli space generalized dynamical r-matrices.

Let us take G = SU(2) for a concrete example. Let

e1 =
(

0 i
i 0

)
, e2 =

(
i 0
0 −i

)
, e3 =

(
0 1
−1 0

)

be a basis of su(2) and C ⊂ SU(2) the conjugacy class through p=
(

i 0
0 −i

)
. Then

C can be identified with the sphere S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} and an
element in C takes the form

(
ix y + iz

−y + iz −ix

)
. The diagonal matrix

(
eiβ 0
0 e−iβ

)
acts on C = S2 ∈ R3 by rotation with respect to x-axis, i.e., eiβ ◦ (x, y, z) =
(x, e2iβy, e2iβz). For this S1 action, we choose a simple cross-section

U := {(x, y, z) | − 1 < x < 1, y = 0, z > 0} ⊂ C = S2 ∈ R3.
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We parameterize U by introducing α such that x = sinα and z = cosα. Then the
isotropic subspace of g at a point α ∈ U ⊂ g is defined by

g′α = {A ∈ g | d
dt
|
t=0

etAαe−tA ∈ TαU}.

A direct calculation gives

Proposition 2.21. In terms of e1, e2, e3, g′α = Span{e1 + tanαe2, e3}.

It follows that the function H ∈ C∞(U,End(g)) is given by

H(e1) = 0, H(e2) = cotαe1 + e2, H(e3) = e3.

The corresponding vector fields on U generated by adjoint action are given by

H(X1) = 0, H(X2) = 0, H(X3) = ∂

∂α
.

Another straightforward computation shows that g⊥α = Span{tanαe1− e2, e3}, where
gα is the Lie subalgebra of the stabilizer of g at α ∈ U . However, we have

(Adα + 1)e3 = (Adα + 1)(tanαe1 − e2) = 0.

It indicates that (Adα+1
Adα−1 |g

⊥
α ) : g⊥α → g⊥α is a zero transformation. Eventually, by

Theorem 2.20, the dynamical r-matrix associated to the local section p × U of
(C × C)/G takes the form of

r = tanαe1 ∧ e2, θ = ∂

∂α
⊗ e3. (6.33)

2.4 Gauge transformations of generalized classical dynami-
cal r-matrices

Let G be a Lie group and Θ = g−1dg the Cartan one form. Let r : U → g ∧ g
be a generalized dynamical r-matrix coupled with a Poisson manifold (U, πU) via
θ ∈ Γ(TU ⊗ g) w.r.t some Ω.

Definition 2.22. We define the gauge transformation of a smooth map σ : U → G
on (πU , θ, r) by

rσ := Adσ ⊗ Adσ(r + ̂〈σ∗Θ, θ〉+ 〈πU , σ∗Θ ∧ σ∗Θ〉), (6.34)
θσ := Adσ(θ + 〈πU , σ∗Θ〉), (6.35)

where 〈·, ·〉 is the natural pairing between forms and (muti)vector fields, and ̂〈σ∗Θ, θ〉 :
U → g ∧ g is the skew-symmetrization of 〈σ∗Θ, θ〉.
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Proposition 2.23. rσ is a generalized classical dynamical r-matrix coupled with U
via θσ with respect to Ω.

Proof. Following Theorem 2.8, given the dynamical r-matrix (πU , θ, r), we can
construct a right invariant bivector π := πU + ρL(θ̂) + ρL(r) on U × G such that
[π, π] = −2ρ(Ω). We denote the graph of the map σ : U → G by U ′ ⊂ U × G.
Then π is a right G-invariant bivector fields and U ′ is a cross-section of the right G
action. Following the argument in Theorem 2.7, associated to π and U ′ there exists a
dynamical r-matrix (πU ′ , θU ′ , rU ′) w.r.t Ω. Let us take the isomorphism F : U → U ′;
F (x) = (x, σ(x)) ∈ U ′ for any x ∈ U . A straightforward calculation shows that

F∗πU = πU ′ , F
∗θ]U ′ = θσ] and rU ′ ◦ F = rσ.

It means that if we identify U ′ with U by F , the triple (πU ′ , θU ′ , rU ′) becomes
(πU , θσ, rσ). It finishes the proof.

The geometric meaning of gauge transformations of generalized dynamical r-matrices
is illuminated in the proof of Proposition 2.23. Another interpretation is as fol-
lows. Let (M,πM) be a (quasi-)Poisson G-manifold and (πU , θ, r) be a dynamical
r-matrix with respect to Ω. Given a gauge transformation σ : U → G, we define a
diffeomorphism from U ×M to itself by

σ · (x, p) = (x, σ(x) · p), ∀p ∈ G. (6.36)

Proposition 2.24. Following Theorem 2.12, let (U ×M,πr) and (U ×M,πrσ) be
the Poisson manifolds associated to (πU , θ, r) and (πU , θσ, rσ) respectively. Then we
have

{F ◦ σ,G ◦ σ}r = {F,G}rσ ◦ σ,
for any F,G ∈ C∞(U ×G).

2.5 Generalized classical dynamical r-matrices and Poisson
groupoids

In this subsection, we discuss the geometric interpretation of the generalized CDYB
equation. Recall that in [37], Etingof and Varchenko found a geometric interpretation
of the CDYB equation that generalizes Drinfeld’s interpretation of the CYB equation
in terms of Poisson-Lie groups. Namely, they constructed a so called dynamical
Poisson-Lie groupoid structure on the direct product manifold η∗ ×G× η∗, where
η is a Lie subalgebra of g. The CYBE can be viewed as the special case of the
generalized CYBE (see Example 2.2). An observation here is that η∗ × G × η∗ is
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the Lie groupoid integrating the Lie algebroid Tη∗ ⊕ g. Furthermore, the Poisson
structure on η∗ ×G× η∗ induces a Lie bialgebroid structure on Tη∗ ⊕ g. Similarly,
in the case of the generalized dynamical r-matrix, we have the following theorem.
Let M be a manifold, g be a Lie algebra and (TM ⊕ g, [·, ·]L) be a Lie algebroid with
the anchor map given by the projection to TM , the bracket given by

[X + A, Y +B]L = [X, Y ] + LXB − LYA+ [A,B]g, (6.37)

for all X, Y ∈ Γ(TM) and A,B ∈ Γ(M × g).

Theorem 2.25 (Theorem 4.5, [62]). A solution r of the generalized DYBE coupled
with (M,π) via θ induces a coboundary Lie bialgebroid structure (TM ⊕ g, d∗) where
the differential d∗ : Γ(∧•(TM ⊕ g)) → Γ(∧•+1(TM ⊕ g)) corresponding to the Lie
algebroid structure on T ∗M ⊕ g∗ is of the form

d∗ = [πM + θ̂ + r, ·]L,

where [·, ·]L is the Schouten bracket on ∧•(TM ⊕ g).

Similarly, a solution of the generalized Poisson-Lie DYBE coupled with (M,πM)
via θ gives a Lie bialgebroid (TM⊕g, d∗), where the differential d∗ = δ+[πM + θ̂+r, ·].
According to the theory of integration of Lie bialgebroids in [67], we have

Corollary 2.26. Associated to a generalized classical dynamical r-matrix coupled
with (M,π) via θ, there is a Poisson groupoid structure on G = M ×G×M whose
tangent Lie bialgebroid is (TM ⊕ g, d∗).

Thus the Poisson groupoid M ×G×M gives a geometric interpretation of the
generalized DYBE that generalizes Drinfeld’s interpretation of the CYBE in terms
of Poisson-Lie groups.

A smooth manifold M is called G-space for a Lie groupoid (G ⇒ P, s, t) if there
are two smooth maps, the moment map and the action map, J : M → P and

α : G ×J M = {(x,m) ∈ G ×M | t(x) = J(m)} →M

such that, writing α(x,m) = x ·m, for all compatible x, y ∈ G and m ∈M ,

(i) J(x ·m) = s(x);

(ii) (x · y) ·m = x · (y ·m);

(iii) J(m) ·m = m.
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Now suppose that M is a G-space. The action of G on M is a Poisson action if
its graph {(x,m, x ·m) | t(x) = J(m)} is a coisotropic submanifold of G ×M ×M
[82]. Then M is called a Poisson G-space.

Associated to a dynamical r-matrix r coupled with (M,πM) via θ with respect
to the Cartan 3-tensor and a quasi-Poisson G-space N , we have a Poisson groupoid
G = M ×G×M (Corollary 2.26) and a Poisson manifold (M ×N, π = πM + ρN (θ̂) +
ρN (r)+πN ) (by Theorem 2.9). Furthermore, there is a natural action of the groupoid
G ⇒M on M ×N ,

(x, g, y) · (y, p) = (x, g · p)

for all x, y ∈M , g ∈ G and p ∈ N . This is a Lie groupoid action with respect to the
moment map J : M ×N →M given by the natural projection. An observation here
is that this action is a Poisson action.

Theorem 2.27. The G-space (M ×N, π) is a Poisson G-space.

To prove this theorem, we need the following results.

Lemma 2.28 (Theorem 3.3, [53]). Let G be a Poisson groupoid with its tangent Lie
bialgebroid (A,A∗). Then a Poisson manifold (M,π) is a Poisson G−space if and
only if the vector bundle morphism from T ∗M to A∗, the dual of the infinitesimal
action map, is a Lie algebroid morphism.

Lemma 2.29 (Theorem 3.1, [53]). Let A∗ be a Lie algebroid over P, and (M,π) a
Poisson manifold. Then, for the cotangent Lie algebroid T ∗M induced by the Poisson
structure, a vector bundle morphism Φ : T ∗M → A∗ over J : M → P is a Lie
algebroid morphism if and only if the following two conditions hold:

(i) HJ∗f = −Φ∗(d∗f), ∀f ∈ C∞(P );

(ii) LΦ∗(X)π = −Φ∗(d∗S), ∀S ∈ Γ(A),

where HJ∗f denotes the Hamiltonian vector field on M , which is defined by Hgh =
π(dg, dh) for all g, h ∈ C∞(M). The differential d∗ comes from the Lie algebroid
structure on A∗.

Proof of Theorem 2.27 In our case, the Poisson manifold is (M × N, π =
πM+ρN (θ̂)+ρN (r)+πN ) and the Lie bialgebroid is (TM⊕g, d∗ = [πM+θ̂+r, ·]). So by
Lemma 2.28 and Lemma 2.29, we just need to prove HJ∗f = −F (d∗f), ∀f ∈ C∞(M)
and LF (S)πM = −F (d∗S), ∀S ∈ Γ(TM ⊗ g), where the bundle map F : TM ⊕ g→
T (M ×N) is the infinitesimal action of M ×G×M on M ×N , explicitly given by
F (X + e) = X + ρ(e) for X ∈ Γ(TM) and e ∈ g.
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(1) Following the expression of the Poisson tensor π on M ×N given in Theorem
2.9, we have that for all f ∈ C∞(M),

HJ∗f = π∗M(df) + ρ(θ∗(df)),

where J : M ×N → M is the natural projection map. On the other hand, by the
definition of the differential d∗,

d∗f = [πM , f ] + [θ̂, f ] + [r, f ].

Note that [r, f ] = 0, F ([πM , f ]) = [πM , f ], and F ([θ̂, f ]) = F (−θ∗(df)) = −ρ(θ∗(df)).
Therefore,

HJ∗f = −[πM + ρ(θ̂) + ρ(r), f ] = −F (d∗f).
(2) Set S = X + e ∈ Γ(TM ⊕ g), then

d∗S = [πM + θ̂ + r,X + e] = [πM + θ̂ + r,X] + [πM + θ̂ + r, e].

By the definition of F : ∧∗(TM ⊕ g)→ T (M ×N), we see that the map F and the
Schouten-bracket [·, ·]L on ∧∗(TM ⊗ g) commute. As a result,

F ([πM + θ̂ + r,X]) = [F (πM) + F (θ̂) + F (r), F (X)] = [π,X].

Similarly,

F ([πM + θ̂ + r, e]) = [F (πM) + F (θ̂) + F (r), F (e)] = [π, ρ(e)].

Eventually, we get −F (d∗S) = LF (S)π. This finishes the proof.

3 Generalized dynamical r-matrices and moduli
spaces of flat connections on surfaces

3.1 Poisson and quasi-Poisson structures on the moduli spaces
of flat connections on surfaces

In [10], Atiyah and Bott introduced canonical symplectic structures on the moduli
spaces of flat G-connections on oriented surfaces. A convenient finite dimensional
description of these moduli spaces is as follows. Let Σg,n be an oriented surface
of genus g with n punctures and {Ci}i=1,...,n a set of conjugacy classes of G. Then
the moduli space of flat G-connections on Σg,n is given by the character variety,
i.e., the space of group homomorphisms h : π1(Σg,n)→ G that map the homotopy
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equivalence class of a loop around the i-th puncture to the associated conjugacy class
Ci ⊂ G. Two such group homomorphisms describe gauge-equivalent connections if
and only if they are related by conjugation with an element of G. This implies that
the moduli space of flat G-connections on Σg,n is given by

XG,C(Σg,n) = HomC1,...,Cn(π1(Σg,n, G))/G = {h ∈ Hom(π1(Σg,n), G) | h(mi) ∈ Ci}/G,

where G acts by conjugation, C denotes the choice of the set of conjugacy classes,
and mi ∈ π1(Σg,n) corresponds to the loop around i-th puncture. By characterising
the group homomorphisms in terms of the images of the generators of π1(Sg,n), it is
the set

{(M1, ...,Mn, A1, B1, ..., Ag, Bg) ∈ Gn+2g|Mi ∈ Ci, [Bg, Ag]···[B1, A1]·Mn···M1 = 1}/G,

where the quotient is taken with respect to the diagonal action of G on Gn+2g. The
smooth part of this space carries a natural symplectic structure [50]. In the Fock-
Rosly approach [47], an explicit description of the symplectic structure is obtained
by Poisson reduction of a Poisson structure on the enlarged ambient space Gn+2g. To
write down the Poisson tensor on this enlarged space, let us introduce two natural
operators ∇R, ∇L ∈ Γ(TG⊗ g∗) which are given for all A ∈ g, p ∈ G by

〈∇R, A〉f(p) := d

dt
|t=0f(pe−tA), (6.38)

〈∇L, A〉f(p) := d

dt
|t=0f(etAp). (6.39)

Then we define 2(n+ 2g) covariant differential operators in the following way:

∇2i−1 = ∇Mi
R , ∇2i = ∇Mi

L for i = 1, ..., n;
∇n+4i−3 = ∇Ai

R , ∇n+4i−1 = ∇Ai
L for i = 1, ..., g; (6.40)

∇n+4i−2 = ∇Bi
R , ∇n+4i−1 = ∇Bi

L for i = 1, ..., g.

Definition 3.1. Let G be a Lie group with Lie algebra g. For any r ∈ g ⊗ g, the
corresponding the Fock-Rosly bivector Bn,g

r ∈ Γ(∧2(TGn+2g)) is defined by

Bn,g
r (df, dh) := 1

2
∑
i

〈r,∇if ∧∇ih〉+
∑
i<j

〈r,∇if ∧∇jh〉. (6.41)

Theorem 3.2. [47] Let g be a Lie algebra with a non-degenerate Ad-invariant
symmetric bilinear form. If r ∈ g ⊗ g is a solution of the classical Yang-Baxter
equation

[r12, r13] + [r12, r23] + [r13, r23] = 0, (6.42)
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then Bn,g
r defines a Poisson structure on Gn+2g. Furthermore, when the symmetric

part κ of r dual to the bilinear form on g, this Poisson structure induces the canonical
symplectic structure on the moduli space of flat G-connections on Σg,n.

From the expression of Bn,g
r , we see that the Poisson bracket of two functions on

Gn+2g depends only on the symmetric component of r if one of the two functions is
invariant under the diagonal action of G on Gn+2g. Thus we can use the symmetric
part κ of r and reduction procedure to describe the Poisson structure on the quotient
space Gn+2g/G. Notice that the bivector Bg,n

κ given in (6.41) is the part of Bg,n
r

which only depends on κ. It turns out that Bg,n
κ coincides with the quasi-Poisson

bivector on the fusion product G ~ ... ~ G ~ D(G) ~ ... ~ D(G) (n copies of G
and g coies of D(G), where G and D(G) are the quasi-Poisson manifolds given
in Example 2.6 and 2.11 respectively. If we restrict to a set of conjugacy classes
{Ci}i=1,...,n, then it gives a way to describe the standard symplectic structure on
XG,C(Σn,g) = {h ∈ Hom(π1(Σg,n, G)|h(mi) ∈ Ci}/G by using quasi-Poisson geometry.

Theorem 3.3. [6] Consider the quasi-Poisson manifold

Pg,n = C1 ~ ...~ Cn ~D(G)~ ...~D(G),

where C1,...,Cn are conjugacy classes of G. Then the quasi-Poisson reductions of Pg,n
are isomorphic to the moduli spaces of flat G-connections on Σg,n with the Atiyah-Bott
symplectic form.

3.2 GCDYB equations and moduli spaces of flat connec-
tions on surfaces

In this subsection, we will combine the discussion in previous sections and give our
main result which describes the canonical symplectic structure on the moduli spaces
of flat connections on surfaces by using generalized dynamical r-matrices.

Following Theorem 3.3, the symplectic structure on XG,C(Σg,n) is given by the
reduction of the quasi-Poisson structure Bg,n

κ on Pg,n with respect to the simultaneous
conjugation action of G.

Reduction with respect to two punctures
We assume that there are at least two punctures on the surface Σg,n, ie., n ≥ 2.

If we choose a local cross-section of the G action on XG,C(Σg,n), then the reduced
Poisson structure on this section is viewed to be a local model of the Poisson structure
on XG,C(Σg,n). We proceed the reduction in a “minimal” way, i.e., imposing gauge
fixing conditions on the first two punctures as follows. First, we think of Pg,n as the
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fusion product of (C1 × C2, πG2) and (Pg,n−2, B
g,n−2
κ ), i.e., Pg,n = (C1 ~ C2)~ Pg,n−2,

where Pg,n−2 := C3~...~Cn~D(G)~...~D(G). Then let U be any local cross-section
of the diagonal conjugation action of G on C1×C2 and (πU , θ, r) the associated moduli
space generalized dynamical r-matrix. Finally, we have that U × Pg,n−2 is a local
cross-section of the G action on XG,C(Σg,n), and by Theorem 2.9, the reduced Poisson
structure on it is given by

πred = πU + ρ(θ̂) + ρ(r) +Bg,n−2
κ ,

where ρ : g→ Pg,n−2 is the infinitesimal action generated by simultaneous conjugation
G action. Furthermore, a simple comparison shows that ρ(r) = Bg,n−2

r as bivector
fields on U × Pg,n−2, where Bg,n−2

r is the Fock-Rosly bivector field associated to
r : U → g ∧ g given by (6.41) (depending on a parameter space U). As a result,
ρ(r) +Bg,n−2

κ = Bg,n−2
r+κ , where r and κ can be seen as skew-symmetric and symmetric

parts of an entire function r + k ∈ C∞(U, g⊗ g). Eventually, we obtain

Theorem 3.4. The quasi-Poisson structure Bg,n
κ on Pg,n induces a Poisson bracket

on U × C3...× Cn ×G2g, which is isomorphic to the Atiyah-Bott symplectic structure
and takes the following form:

(1) For f, g ∈ C∞(C3...× Cn ×G2g).

{f, g} = Bn−2,g
r+κ (df, dg) (6.43)

(2) For f ∈ C∞(C3...× Cn ×G2g) and φ, ϕ ∈ C∞(U):

{f, φ} = ρ(θ̂)(df, dφ) (6.44)
{φ, ϕ} = πU(dφ, dϕ), (6.45)

Note that the original Fock-Rosly bivector field Bn,g
r on Gn+2g is associated to a

classical r-matrix. Here we introduce a dynamical version of the Fock-Rosyly bivector
field which is related to a dynamical r-matrix, and use it to give a new description of
the Atiyah-Bott symplectic structure on the moduli space XG,C(Σg,n). One immediate
consequence of this viewpoint is the following proposition due to Theorem 2.27. It
indicates a Poisson groupoid symmetry of the moduli space XG,C(Σg,n).

Proposition 3.5. Let G = U ×G×U be the Poisson Lie groupoid associated to the
moduli space dynamical r-matrix (πU , r, θ), then (U × C3...× Cn ×G2g, {·, ·}) carries
a natural Poisson G action.

Gauge fixing and classical dynamical r-matrices in ISO(2, 1)-Chern-
Simons theory.
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In [72], Meusburger and Schönfeld obtained classical dynamical r-matrices by
considering gauge fixing in ISO(2, 1)-Chern-Simons theory. Now, we interpret these
classical dynamical r-matrices as moduli space dynamical r-matrices corresponding
to the special case G = ISO(2, 1).

First, let us give the required notations. We denote by e0 = (1, 0, 0), e1 = (0, 1, 0),
e2 = (0, 0, 1) the standard basis of R3. By εabc we denote the totally skew-symmetric
tensor in three dimensions with the convention ε012 = 1. The indices of εabc are
raised with the three-dimensional Minkowski metric η = diag(1,−1,−1).

The Poincaré group in 3-D is the semidirect product ISO(2, 1) = SO+(2, 1) nR3

of the proper orthochronous Lorentz group SO+(2, 1) and the translation group R3.
The elements of ISO(2, 1) are parameterized as

(u, a) = (u, 0) · (1,−j) = (u,−Ad(u)j) with u ∈ SO+(2, 1), j, a ∈ R3.

The corresponding coordinate functions {ja}a=0,1,2 are given by

ja : ISO(2, 1)→ R, (u,−Ad(u)q)→ qa.

Let {Ja}a=0,1,2 be a basis of so(2, 1) such that the Lie bracket takes the form
[Ja, Jb] = ε c

ab Jc. Hence a basis of the Lie algebra iso(2, 1) is given by {Ja}a=0,1,2
together with a basis {Pa}a=0,1,2 of the abelian Lie algebra R3.

The moduli space of flat G-connections XG,C(Σg,n) can be viewed as a constrained
system in the sense of Dirac [23]. In this spirit, the moduli space is obtained from
Pn,g = C1 × ...Cn ×D(G)× ...×D(G) by imposing a group-valued constraint that
arises from the defining relation of the fundamental group π1(Σg,n). In the case of
G = ISO(2, 1), the group-valued constraint is a set of six first constraints in the Dirac
gauge fixing formalism for the Fock-Rosly Poisson tensor on Pn,g. The associated
gauge transformations which they generate via the Poisson bracket are given by the
diagonal action of ISO(2, 1) on ISO(2, 1)n+2g.

A choice of gauge fixing conditions for the constraints is investigated in [72].
These gauge fixing conditions implement the quotient by ISO(2, 1) and restrict the
first two components of all points (M1, ..., Bg) ∈ Σ = C−1(0) in such a way that M1,
M2 are determined uniquely by two real parameters ψ and α given in terms of the
components of the product M2 ·M1 = (u12,−Ad(u12)j12) as

ψ = f(Tr(u12)), α = g(Tr(u12))Tr(ja12Ja · u12) + h(Tr(u12)), (6.46)

where f, g ∈ C∞(R) are arbitrary diffeomorphisms and h ∈ C∞(R). This allows us
to identify the constraint surface Σ = C−1(0) with a subset of R2 × ISO(2, 1)n−2+2g,
where the R2 is parameterized by (ψ, α) and ISO(2, 1)n−2+2g by (M3, ..., Bg).
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Let us pose the Dirac gauge fixing constraints in such form. By Theorem 4.5 in
[72], there exist maps

qψ, qα, qδ, m : R2 → R3, V : R→ Mat(3,R)

such that the associated Dirac bracket is given in terms of them. On the other hand,
the Dirac gauge fixing is equivalent to choose a cross-section of the ISO(2, 1) action
on C1 × C2, which is the locus of the constraint functions. Therefore by Theorem
3.4, associated to this cross-section, there is a moduli space dynamical r-matrix. It
interprets the origin of the dynamical r-matrices found in [72], which are given in
our framework by the following propostion.

Proposition 3.6. The moduli space dynamical classical r-matrix (π, θ, r) corre-
sponding to the Dirac gauge fixing procedure is given by

π = 0, θ = qaα
∂

∂α
⊗ Ja + qaψ

∂

∂ψ
⊗ Pa + qaδ

∂

∂α
⊗ Pa, (6.47)

r = −V bc(ψ)(Pb ⊗ J c − J c ⊗ Pb) + εbcdmd(ψ, α)Pb ⊗ Pc. (6.48)

Moreover, the induced Poisson bracket takes the following form:
for any f, g ∈ C∞(ISO(2, 1)n−2+2g),

{α, ψ} = 0, {α, f} = ρ(θ̂)(dα, df), {f, g} = Bn−2,g
r+κ (df, dg) (6.49)

where κ = Pa ⊗ Ja.

Given a map σ : R2 → ISO(2, 1), let us consider the smooth map

Φσ : R2 × ISO(2, 1)n−2+2g → R2 × ISO(2, 1)n−2+2g,

(ψ, α,M3, ..., Bg) 7→ (ψ, α,AdσM3, ...,AdσBg).

As a consequence of Proposition 2.24, we have

Corollary 3.7. Let {·, ·} be the bracket given in (6.49) with respect to (θ, r). Then
for all F,G ∈ C∞(R2 × ISO(2, 1)n−2+2g),

{F ◦ Φσ, G ◦ Φσ} = {F,G}σ ◦ Φσ, (6.50)

where {·, ·}σD is the bracket given in (6.43) with respect to (θσ, rσ), the gauge trans-
formation of σ : R2 → ISO(2, 1) on (θ, r).
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Particularly, the map σ = (g,−Ad(g)t) satisfying ∂αg = ∂2
αt = 0 is called

dynamical Poincaré transformation in [72]. Dynamical r-matrices from different
gauge fixing conditions subject to extra conditions given in [72] are related by
dynamical Poincaré transformations.

A standard set of dynamical r-matrices from the Dirac gauge fixing in ISO(2, 1)-
Chern-Simons theory is given explicitly in [72]. This set of solutions corresponds to
special gauge fixing condition which is motivated by its direct physical interpretation
in the application to the Chern-Simons formulation of (2 + 1)-gravity.
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