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Stable Computation of High Order
Gauss Quadrature Rules Using Discretization
for Measures in Radiation Transfer

Martin J. Gander* and Alan H. Karp'

Abstract

The solution of the radiation transfer equation for the Earth’s at-
mosphere needs to account for the reflectivity of the ground. When
using the spherical harmonics method, the solution for this term in-
volves an integral with a particular measure that presents numerical
challenges. We are interested in computing a high order Gauss quadra-
ture rule for this measure. We show that the two classical algorithms
to compute the desired Gauss quadrature rule, namely the Stieltjes
algorithm and the method using moments are unstable in this case.
In their place, we present a numerically stable method to compute
Gauss quadrature rules of arbitrary high order. The key idea is to
discretize the measure in the integral before computing the recurrence
coefficients of the orthogonal polynomials which lead to the quadra-
ture rule. For discrete measures, one can use a numerically stable
orthogonal reduction method to compute the recurrence coefficients.
Refining the discretization we arrive at the nodes and weights of the
Gauss quadrature rule for the continuous case in a stable fashion. This
technique is completely general and can be applied to other measures
whenever high order Gauss quadrature rules are needed.

1 Introduction

The standard problem in radiation transport is illustrated in Figure
1. We have a homogeneous, plane parallel layer with internal sources,
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Figure 1: Basic problem of radiation transport.

unidirectional radiation normally incident on the top, and a diffusely
reflecting lower boundary. As an example you can think of the earth
atmosphere. The sunlight would be the incident radiation on top,
thermal radiation would correspond to internal sources and the earth’s
surface the diffuse boundary underneath. We model the radiation
transport in the z dimension only. For convenience we define two new
variables: first 7 := kz where the constant x equals the sum of the
scattering and absorption coefficients per unit distance; in our example
the scattering and absorption would be caused by tiny particles in the
atmosphere. Secondly p := cos(f), the cosine of the zenith angle.
The specific intensity I(7, ) is defined as the amount of radiation
moving in a particular direction y at a point 7 in space. The governing
equation for I(r,p) is

dI 1
p—=1- g/ P, p)I (7,1 )dp" + S, (1.1)
dr 2./

where w is the fraction of the radiation that is scattered on each inter-
action, P(u,p') describes how the radiation changes direction when it
is scattered, and S represents all internal sources. To get an under-
standing for equation (1.1) we look at a special case: Suppose there
are no sources, S = 0, and the radiation is not scattered in the in-
terior, w = 0. Then the equation for the specific intensity simplifies
to

ar 1

dr
with the exponential solution I(7, ) = Ce™/*. For each direction u we
have to determine the constant C using the given boundary conditions.



We distinguish two cases:

1. If 0 < p < 1 the equation describes radiation coming from above,
because in that case —5 < 6 < 5. So the top boundary condition
is used to determine C'. Since the incident radiation on top is
normal, the only non-zero solution is obtained for 0 = 0 < p = 1,
and the specific intensity decays exponentially from the top to
the bottom boundary in the direction ;4 = 1 and is zero in all
the other directions.

2. If =1 < p < 0 the equation describes radiation coming from
the diffusely reflecting boundary at the bottom. So we need
the bottom boundary condition to determine C'. This bound-
ary condition has to be computed using the incident radiation
from the top. For each value of u we get how much of the nor-
mally incident radiation is scattered into that direction at the
bottom boundary. Using this value we get for each direction p
an exponentially decaying solution.

If there is some scattering, w # 0, equation (1.1) is more complicated,
since now each direction is coupled to all the other directions by the
integral. The whole system has to be solved simultaneously for all
directions u.

Chandrasekhar [3] proposed replacing the integral in equation (1.1)
with a quadrature sum and solving the resulting system of equations
for the specific intensity at a number of discrete ordinates, the Discrete
Ordinates Method.

A different method to solve equation (1.1) is the spherical har-
monics method which was proposed by Jeans [9] long before Chan-
drasekhar’s Discrete Ordinates Method. It has a number of compu-
tational advantages and is the spectral analogue of the Discrete Or-
dinates Method. The key idea is to expand the intensity I(7,x) and
the kernel P(u,p’) in orthogonal polynomials such that the integral
in equation (1.1) is replaced by an orthogonality condition. Write

I(r, 1) = Y fi(7) Pi(p), (1.2)
k=0

and as shown in Chandrasekhar [3]

P(p, i) =Y BePe(p)Pi(i), (1.3)
k=0

where the f; are known quantities that depend on the type of scat-
tering particle and Py () is the k-th Legendre polynomial that satis-
fies the standard recurrence relations and orthogonality condition [1].
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Substituting equations (1.2) and (1.3) into equation (1.1) and using
the recurrence relation of Py(u) involving the derivative [9] gives us
the system of ordinary differential equations

kE+1 dfk+1 k dfkfl ( wﬁk .
2k+1 dr 2k +1 dr 2k +1

1> [ = Sk, (1.4)

where s; is the expansion coefficient of the internal sources.

There are two kinds of boundary conditions that are normally
treated separately: the uni-directional solar illumination and the ground
reflectivity. We are interested in the latter. In each case, we compute
a pseudo-source that represents the effect of one scattering of the ra-
diation from the boundary condition.

We assume that the ground reflects the incoming radiation with
some angular distribution hA(u). The corresponding source term is
shown in [4] to be

—Ryf L. TO—T
Skg(T) = Tif . © 0= 1h (1) Py (1) dp, (1.5)

where R, is the reflectivity of the ground. Specular reflection, h(u) =
d(; — o), is usually treated separately. We will assume that h(u)
is piecewise continuous. The numerical evaluation of the integral in
equation (1.5),

5106 = [ eI Pelu), (1.6)

where ¢ := 19 — 7, is the subject of this paper.

2 Earlier Work

If h(p) is a constant, h(p) = H, we can use the exponential integral [1]

© .1
E;(c) ::/1 e cxgdu (2.1)

to integrate (1.6). Let ay be the coefficients of the polynomial Py (),
k .
Pi(p) =Y ajd.
=0

Inserting this expression into Sg(c) and using the exponential integral
(2.1) we obtain

k
Sk(c) = H - a;Eja(c), (2.2)
j=0
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Unfortunately, the coefficients a; of P, (u) vary widely in magnitude
and differ in sign making the summation numerically unstable. Table
1 shows how the positive and negative components in the sum balance
each other and lead to cancellation.

k positive part negative part

o | 0.31593286828701e+00 | -0.32273434246716e4-00
10 | 1.06529837121543e+01 | -1.06537713711572e+01
25 | 1.60087271890534e4-06 | -1.60087271891255e4-06
50 | 2.14468963201455e+15 | -2.14468963201455e+15

Table 1: Positive and negative values in the sum (2.2) summed separately
reveal cancellation

Dave [5] used Simpson’s rule between the zeros of Py (u) and Karp,
Greenstadt and Fillmore [10] used a 50-point Gauss quadrature to
evaluate this integral. While for both approaches the absolute accu-
racy is good and the methods are efficient, neither of these approaches
is mathematically elegant.

More than a decade passed with no further publications in this area
until Settle [11] derived a 5-term recurrence relation that is valid when
h(p) = pu", where r > —1 is a real number. Hence, any reflectivity of
this form can be computed. The backward recurrence of

0 = (2k+3)(k—1)(k—r—2)Sk o
—c(2k — 1)(2k + 3)Sk—1
+(2k + 1)(2k% + 2k — 3 — 1) Sk (2.3)
+c(2k — 1)(2k + 3)Sk41
+(k+2)(k+7+3)(2k —1)Sk42
is only mildly unstable, allowing the evaluation of the integral for this
class of reflectivity coefficients.

3 Gauss Quadrature Rule

Our approach is to note that the integral can be viewed as integrating
a polynomial over a finite interval with the non-negative measure

w(p) = e~ h(u) > 0, (3.1)

since the angular distribution A(u) is in general non-negative '. It
is always possible to derive Gauss quadrature rules for non-negative

'If a certain model requires h(u) to attain negative values as well, one would exclude
h(p) from the measure and integrate it together with Py (u) when the quadrature rule is
applied.



measures [6]. The nodes and weights can be obtained from the poly-
nomials which are orthogonal on the finite interval under the given
measure w ().

It is well known that the orthogonal polynomials 7 (i) satisfy a
three term recurrence relation

Tr+1(z) = (2 — ag)m(z) — Bemp—1(z), k=0,1,...
(3.2)
mo(z) =1, m1(z) =0

and from the recurrence coefficients o and (5 the Golub-Welsch al-
gorithm [8] computes in a stable fashion the nodes and weights of the
desired Gauss quadrature rule. It is thus essential to be able to com-
pute the recurrence coefficients oy and [ in the recurrence relation
(3.2) to compute a Gauss quadrature rule for a given measure w(u)

[7].

3.1 Continuous Measures

There are two classical methods to compute the recurrence coefficients
o and () for continuous measures w(u): the Stieltjes algorithm and
the method of moments.

The Stieltjes algorithm uses the fact that the recurrence coeflicients
ay and [ can be expressed in terms of the orthogonal polynomials
(3.2) and the related inner product

b
(f.g) = / £ ()g()w (). (3.3)

The relations are
o = T k20

Bo = (m0,m0), PBr = ((7%77”“) k> 0.

Th—1,Tk—1)’

(3.4)

To compute the orthogonal polynomials the following iterative proce-
dure can be used: compute ag and By using the known initial poly-
nomial 7y = 1. Then use the recurrence relation for the polynomials
(3.2) to compute 7. With m; we can compute oy, 51 using (3.4) and
so on. This procedure can however exhibit instabilities for measures
w(p) arising in applications. We will show in Section 4 that we can
only obtain low order quadrature rules with the Stieltjes algorithm in
our application.

The second method, the method of moments, uses the fact that
the first n recursion coefficients oy and S, £ = 0,1,...,n — 1 are
uniquely determined by the first 2n moments my, £k =0,1,...,2n—1
of the given measure w(u),

b
my, = / pFw(p)dp.
a
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Formulas are known which express «;, and S, in terms of Hankel deter-
minants in these moments. Unfortunately this algorithm is unstable
as well for the measures in our application, as will be shown in Section
4. In fact, we were not able to compute Gauss quadrature rules of the
order required in our application using the classical two methods.

3.2 Discrete Measures

For discrete measures
n
w(p) =Y wi(p — ps)
i=1

there is a third method to compute the orthogonal polynomials which
is based on an observation by Boley and Golub [2], that the tridiagonal
matrix containing the desired recurrence coefficients

| \/% O -
VB a0 VP
Jp = \/E ap
anl
L 0 Bn—1  op-1 |

is orthogonally similar to the matrix

1 Jwr o Jws .. Jwg
VW1 M1
Ay = | VW2 H2 ,

\/w_n Hn
where w; are the values of the discrete measure at the nodes u;. Hence
the desired entries of the matrix J,, can be obtained by applying Givens
rotations or Householder reflections to the matrix A,,. This process is
by its definition numerically stable.

Thus for cases where the two classical methods for continuous mea-
sures fail and it is impossible to compute the needed Gauss quadrature
rule, we propose to benefit from the stability of the discrete algorithm
to obtain the desired recurrence coefficients. We discretize the measure
w(p) and compute a sequence of approximations to the inner product
(3.3) by a sum using a suitable quadrature scheme Q*, i = 1,2,...,

b : Ni . o
(f,9) = / Fwgw(p)dp = Q'(f-9) =Y f(uj)g(us)wj, Nit1 > Ni.
a j=1
(3.5)



Then we compute the recurrence coefficients o?fc and B}C of the discrete
measure w’ in a stable fashion using the Boley-Golub algorithm. The
obtained recurrence coefficients are an approximation of the recurrence
coefficients of the continuous measure,

ap R ag, PR P

By refining the discretization of the measure using higher and higher
order quadrature schemes (¢ as i increases in (3.5), we can compute
an approximation to the recurrence coefficients a; and S up to a
required accuracy. Furthermore there is no need to implement this
discretization procedure: the procedure 'mcdis’ from the ORTHPOL
package by Gautschi [7] which was designed to compute quadrature
rules for measures with continuous and discrete parts uses discretiza-
tion to achieve its goal. Applied to a measure with continuous part
only it performs precisely the calculations we need. The stability of
these calculations when every other method fails for continuous mea-
sures is in our opinion a new result. Indeed we were not able to find
this result when we searched for a way to compute the high order
Gauss quadrature rules in our application described in the following
section.

4 Numerical Experiments

We perform numerical experiments with the methods described in the
previous section on the integral of radiation transfer (1.6). We illus-
trate in the following how the two classical algorithms fail to compute
the desired Gauss quadrature rule whereas the discretization proce-
dure succeeds. We choose as a first example

h(p) :==1 and ¢ :=3/2 (4.1)

Using the Stieltjes algorithm we can directly compute the recur-
rence coefficients oy and Sy with the iterative algorithm given in Sec-
tion 3.1. However this process becomes very quickly unstable as k
increases. Table 2 shows the results of this algorithm which required
60 digits of accuracy in Maple and several hours computing time on a
workstation to obtain 14 correct digits for £ = 50.

Table 3 shows the results of the Stieltjes algorithm with standard
double precision for the example measure (4.1) and compares the re-
sults with the accurate results obtained by Maple in Table 2. Clearly
the algorithm becomes unstable and there are only one resp. no signifi-
cant digits left for £ = 10. Thus the high order Gauss quadrature rules
needed in our application can not be obtained with this algorithm.



o exact

Bk exact

O 1O Ul W~ O

—_
o ©

77618166448162
.65768094525413
.61907537016101
.59820380841666
.58473406996687
7516985728672
.56795457810211
.56227743900237
.55766990937508
.55384032530538
.55059662985707

.073100786538480
.026905634469467
.034688131374812
.039286039184924
.042328606983553
.044518321400496
.046185049938023
.047505066032515
.048581848115053
.049480524061563
.050244336338481

Ot = W o
o O O O

.53318631545529
.52572641062310
.52142039580247
.51856195909407

.054385798780231
.056182700835241
.057226424055389
.057922028958190

Table 2: Coefficients aj and [ computed with the the Stieltjes algorithm
and 60 digits accuracy in Maple.

k i double precision err oy, [ double precision err S
0 .77618166448164  1.le-14 .073100786538480  8.4e-16
1 .65768094525488  T.4e-13  .026905634469455 1.2e-14
2 .61907537016421  3.2e-12  .034688131374769 4.2e-14
3 .59820380936326  9.4e-10  .039286039151921  3.3e-11
4 .58473407735886  7.3e-09  .042328606683491  3.0e-10
5  .57517005348101  1.9e-07 .044518309567765 1.1e-08
6  .56795473056972  1.5e-07 .046185091997963  4.2e-08
7 .56230484613302  2.7e-05 .047502893642560 2.1e-06
8  .55788886824010  2.1e-04 .048560599223896  2.1e-05
9  .55735849056603  3.5e-03  .049247351793347  2.3e-04
10  .56153846153846  1.0e-02 .049056603773584 1.1e-03

Table 3: Coefficients oy and [, with standard double precision using the
Stieltjes algorithm and the absolute error.



ay, double precision err ay [ double precision err S
77618166448162  1.1e-16  .073100786538480 0.0
.65768094525413  1.1e-16  .026905634469466  5.8e-17
.61907537016083  1.7e-13  .034688131374815  2.8e-15
.59820380840887  7.7e-12  .039286039185180  2.5e-13
.58473406966937  2.9e-10  .042328606993016  9.4e-12
57516984500899  1.2e-08  .044518321810482  4.0e-10
.56795409444963  4.8e-07  .046185066228693  1.6e-08
.56225946568115  1.7e-05  .047505737782324  6.7e-07
.55751834547536  1.5e-04  .048599725384848  1.7e-05
.58382382821813  2.9e-02  .049051912565198  4.2e-04

© 00 ~J O Ul W N~ O

Table 4: Coefficients aj and f; with standard double precision using the
method of moments compared with the accurate values from Maple.

To use the method of moments, we note that for the constant
reflectivity, the moments

1 1
my :2/0 ukdw(u)zfo ke iy,

can be obtained explicitly using the exponential integral (2.1). Thus
the method of moments would be ideal in this case to compute the
recurrence coefficients o4 and S;. However the method becomes un-
stable as well as k increases. We show the results obtained using the
method of moments for the example measure (4.1) in Table 4. Again
there are only one resp. two significant digits left for k¥ = 9 and thus
we can not compute the Gauss quadrature rules we need in our appli-
cation.

Using however the discrete algorithm, we are able to compute the
recurrence coefficients to full accuracy. Table 5 shows for the example
weight (4.1) that the computation is numerically stable. To compute
accurate results with the Stieltjes procedure for £ = 50 we needed 60
digits of accuracy in Maple and several hours of computation, whereas
the discretization procedure achieves the same accuracy with standard
double precision in a few seconds. Figure 2 shows that even for large
values of k there is no instability in the computation of the recurrence
coefficients ay and fi. For such large £ we were not able to perform
the computations in Maple and thus the discretization method was
the only approach which allowed us to compute the desired Gauss
quadrature rule.

To test the robustness of the discretization method, we applied the

10



k a4 double precision «4 exact i double precision [; exact
0 .77618166448162 6.6e-16  .073100786538480  4.1e-17
1 .65768094525413 5.5e-16  .026905634469467  1.0e-17
2 .61907537016101 6.6e-16  .034688131374812  3.4e-17
3 .59820380841666 0.0 .039286039184924  5.5e-17
4 .58473406996687 3.3e-16  .042328606983553  1.5e-16
5
6
7
8

7516985728672 2.2e-16  .044518321400496  4.1e-17
.56795457810211 6.6e-16  .046185049938023  1.3e-16
.56227743900237 2.2e-16  .047505066032515  1.le-16
.55766990937508 4.4e-16  .048581848115054  1.8e-16

9  .55384032530538 4.4e-16  .049480524061563  6.9e-17
10 .55059662985706 1.1e-15  .050244336338481  1.0e-16
20 .53318631545529 3.3e-16  .054385798780232  1.0e-16
30 .52572641062310 6.6e-16  .056182700835242  7.6e-17
40 .52142039580247 7.7e-16  .057226424055389  9.0e-17
50  .51856195909408 6.6e-16  .057922028958190  2.0e-17

Table 5: Coefficients oy and [, with standard double precision using the
discretization method compared with the accurate values from Maple.

o
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I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200
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0

Figure 2: Coefficients oy, and [ of the three term recurrence relation for the
example measure (4.1).
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algorithm to the following set of test measures from our application:
wy (1) 2pie"/H
ifpu<a

(W) = !
W2lk) = rlae*l/“ otherwise

wn) = e
wy(p) = 2sin®(2mp)e” 2/

Note that the last three measures can not be integrated using the five
term recurrence by Settle [11], since the corresponding reflectivity can
not be represented in the required form. The discretization method
computes again the recurrence coefficients in a stable fashion, as one
can see in Figure 3 whereas with standard double precision, the Stielt-
jes algorithm lost all accuracy after 6 steps for w; and after 8 steps
for the other measures. We used again 60 digits of accuracy in Maple
to check our calculations, but we were only able to verify the accu-
racy of the discretization procedure for moderate values of k since the
calculations became infeasible for k large.

Having the coefficients for the recurrence relation of the orthogonal
polynomials with respect to our measure, the Golub-Welsch algorithm
[8] computes in a stable fashion the nodes and weights for a Gauss
Quadrature rule which is exact for polynomials up to order 2n — 1.

We have used the nodes and weights to evaluate the integral for
c¢=3/2, h(r) = 1 and k up to 199. The absolute accuracy is good, but
as k increases, the value of the integral decreases causing the relative
accuracy to suffer. Beyond £ = 100 the value of the integral is less
than 107'2, and only few significant digits are left, as one can see
in table 6. Fortunately, the computed intensity is insensitive to such

Degree of the Gauss Quadrature Maple with high
Polynomial precision arithmetic

20 -1.238295799049847e-05 | -1.238295799049653e-05
40 2.269755760984558e-07 | 2.269755759420927e-07
60 -6.058218490188644e-09 | -6.058218535653499¢-09
80 -6.269748923528706e-10 | -6.269748390677194e-10
100 1.327424746795755e-10 | 1.327425275730553e-10
120 5.190009477008340e-12 | 5.190243346208851e-12
150 1.587570576573345e-12 | 1.587741096646863e-12
199 -2.350507619488032e-14 not feasible

Table 6: Integration using a Gauss Rule with 100 nodes
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Figure 3: Coefficients ay and [ of the three term recurrence relation, from
top left to bottom right for the measures wy, wy with a = 1/2 and ws with
b=1 and wy.

small contributions.

5 Conclusions

We have shown how to derive Gauss quadrature rules for an integral
important in radiation transport. To overcome the numerical insta-
bilities of the traditional Stieltjes algorithm and the method using
moments we discretized the measure and applied the numerically sta-
ble orthogonal reduction method. By refining the discretization, we
are able to compute high order quadrature rules for this particular
integral.

Our approach makes no use of the form of the measure. Hence the
method of discretization is a numerically stable tool for computing
Gauss quadrature rules of high order for non-negative measures in
general.
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