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Résumé

La thèse porte sur le développement de méthodes numériques performantes
pour la résolution de problèmes de multiflots où plusieurs entités (messages en
télécommunications, marchandises ou usagers en transport) entrent en compé-
tition pour l’utilisation d’un réseau à capacité limitée. Pour chaque arc du
réseau, le flot qu’il supporte engendre un coût d’utilisation. Ce coût dépend
de la somme de messages, usagers ou marchandises circulant sur cet arc. Le
but est alors de trouver une solution minimisant la somme des coûts sur
l’ensemble des arcs. Les multiflots forment une classe de problèmes importante
en recherche opérationnelle. Leur principal défi est la taille des modèles
associés aux problèmes rencontrés dans la pratique. Les travaux réalisés dans
la cadre de la thèse améliorent les résultats publiés dans la littérature de
manière systématique et significative. Ils permettent également de traiter
des problèmes dont la taille dépasse de beaucoup ceux rencontrés dans la
littérature.

La contribution de la thèse porte principalement sur le développement et
la spécialisation d’une mèthode de résolution efficace, ACCPM, et sur la mise
en oeuvre d’une stratégie d’ensemble actif permettant de réduire considérable-
ment la taille des problèmes traités.

La méthode ACCPM (Analytic Center Cutting Plane Method) permet de
résoudre des problèmes d’optimisation convexes non-diffrentiables en utilisant
les concepts de plans coupants et de points intérieurs. Les problèmes couverts
par ACCPM sont très généraux et nos expriences révèlent que la méthode
est très performante dans son ensemble. La méthode a été spécialisée afin
de prendre en compte certaines caractéristiques propres aux problèmes de
multiflots: une partie du problème Lagrangien dual différentiable. Ces modifi-
cations ont permis d’accélérer significativement les temps de résolution.

La mise en place d’une stratgie d’ensemble actif a également pris une place
importante dans l’amélioration des performances de la méthode de résolution.
Cette stratégie est motivée par l’observation suivante: dans la plupart des
problèmes de transports ou de télécommunications, le nombre d’arcs saturés
à l’optimum représente seulement une petite fraction du nombre total d’arcs
(10% en général, parfois beaucoup moins). Par conséquent, il est possible de
déduire la valeur des variables associées à ces arcs. Si l’ensemble des arcs non
saturés à l’optimum était connu à l’avance, il serait alors possible de considérer



un problème équivalent réduit à l’ensemble des arcs saturés. Cet ensemble est
appelé ensemble actif, d’oú le nom de la stratégie. Cette réduction rendrait la
résolution plus facile. Malheureusement, en pratique, cet ensemble d’arcs n’est
pas connu à l’avance. Nous avons donc développé une technique permettant
d’estimer l’ensemble actif dynamiquement durant la résolution du problème.



Abstract

The main focus of my PhD research is the implementation of efficient
numerical methods to solve the multicommodity flow problems (MCF). MCF
mainly arises in the areas of transportation and telecommunications. It consists
of routing multiple commodities from a set of supply nodes to a set of demand
nodes on a same underlying network. The cost associated with a routing is
the sum of costs on the individual arcs. The cost on an individual arc is
itself a linear or a nonlinear function of the sum of the commodity flows on
that arc. MCF is a challenging optimization problem in operation research
domain because of the huge size of instances. It appears that the new proposed
approach always improves the results published in the literature in the linear
and nonlinear case and makes it possible to solve huge problems.

The main contribution of the thesis is the modification and the specialization
of the Analytic Center Cutting Plane Method (ACCPM) and the implementation
of an active set strategy that permits to considerably reduce the dimension of
the problem.

ACCPM conveniently designates an approach to solve a class of convex
nondifferentiable optimization problems. It combines two powerfull optimization
techniques : cutting plane methods and interior point algorithms. In the
Lagrangian relaxation of the MCF, we point out that the Lagrangian dual
objective function has two main components: a piece-wise linear one and
smooth one that is the negative Fenchel conjugate of the congestion function.
The latter is smooth and can often be computed in closed form. ACCPM has
then been specialized to handle explicitly the available smooth component.
The new approach considerably improves the performance of the former im-
plementation of ACCPM and makes it possible to solve all the instances.

The implementation of an active set strategy is also proposed to speed up
the solution method. This is motivated in linear MCF by our observation that
on practical problems, the number of congested arcs in an optimal solution
is a small fraction of the total number of arcs in the graph. Consequently,
the Lagrangian dual variables associated with these arcs must be null at
the optimum. If this (large) set of null optimal dual variables were known
in advance, one could perform a partial Lagrangian relaxation restricted to
the saturated arcs. This would considerably reduce the dimension of the
Lagrangian dual and make it much easier to solve. In practice, the set of



saturated arcs at the optimum is not known. Thus we implemented an active
set strategy which dynamically estimates this set during the solution method.
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Chapter 1

Introduction

Contents
1.1 Context of the research . . . . . . . . . . . . . . . . . 7

1.2 Contributions of the thesis . . . . . . . . . . . . . . . 8

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . 10

1.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Context of the research

The multicommodity flow problem, in short MCF, is classical in operations
research and its numerical solution is a challenging issue (some of real instances
have hundreds of millions of variables and hundreds of millions of constraints).
Many real-life applications may be formalized under the form of a MCF. It
arises in transportation, telecommunication, production, distribution planning,
scheduling and management problems. It consists of routing a set of commodities
through a given graph from some origins to some destinations at a minimum
cost. The most popular application of MCF is the traffic assignment problem.
In this problem, the commodities are drivers or vehicles and the graph represents
a transportation network with routes, intersections, cities, etc. Here, the goal
may be to minimize either the travel time of each driver or the overall travel
time in the network.
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1. Introduction

MCF is considered important enough in the field of optimization to have
generated much research on specialized algorithms both in linear programming
and in nonlinear optimization. Many primal and dual methods have been
proposed in the abundant MCF literature. The most popular primal approaches
are either direct [4] or based on Dantzig-Wolfe decomposition [39] in the linear
case and, in the nonlinear case, Frank-Wolfe [50] or Simplicial decompositions
[69, 120] are more appropriate. Lagrangian relaxation is the most common
dual method used in both cases. It yields a Lagrangian dual problem of
much smaller dimension which is convex unconstrained but nondifferentiable.
Most methods used to solve the Lagrangian dual problem can be classified as
cutting plane methods. We can mention Kelley’s cutting plane method [73],
the bundle method [88], the subgradient method or the analytic center cutting
plane method [58], in short ACCPM. In the present dissertation, we revisit
ACCPM to improve its performances on multicommodity flow problems.

ACCPM conveniently designates an approach to handle a class of convex
optimization problems in which the information pertaining to the function
to be minimized and/or to the feasible set takes the form of a linear outer
approximation revealed by an oracle. By oracle, we mean a black-box scheme
that returns appropriate information on the problem at so-called query points.
In convex unconstrained optimization, this information takes the form of a
linear support for the epigraph set of the function to be minimized. This class
of problems is known as “Nondifferentiable Convex Optimization”.

1.2 Contributions of the thesis

The main contributions of the thesis are described below.

First, we point out that the Lagrangian dual objective function of MCF
has two main components: a piece-wise linear one and one that is the negative
Fenchel conjugate of the congestion function. The latter is smooth and can
often be computed in closed form. In a traditional approach with ACCPM
[60], the two components are approximated by cutting planes. The intersection
of these half-spaces defines a localization set whose analytic center becomes
the point where to refine both approximations. Here, we use in the definition
of the localization set a direct representation of the epigraph of the smooth
component as a fixed constraint. Then we introduce the concept of second
order oracle to designate a black box that returns appropriate information for
the smooth component. The ACCPM structure has permitted the insertion of

8



Contributions of the thesis

such a nonlinear component in the method that is not immediate and evident
in others. The scheme is described in [14, 12]

A second main contribution of the thesis is the implementation of an active
set strategy to speed up the solution method. This is motivated in linear MCF
by our observation that on practical problems, the number of congested arcs
in an optimal solution is a small fraction of the total number of arcs in the
graph. In other words, for a large majority of arcs, the total flow in the
optimal solution is strictly less than the installed capacity. Consequently,
the Lagrangian dual variables associated with these arcs must be null at
the optimum. If this (large) set of null optimal dual variables were known
in advance, one could perform a partial Lagrangian relaxation restricted to
the saturated arcs. This would considerably reduce the dimension of the
Lagrangian dual and make it much easier to solve. In practice, the set of
saturated arcs at the optimum is not known. Thus we implement an active
set strategy which dynamically estimates this set. This strategy has been
implemented on the linear MCF with success. The results are reported in
[13].

We then propose an approximation scheme to extend the idea of active
set strategy to the nonlinear MCF. The approximation scheme replaces the
nonlinear function near the origin by a linear function. This scheme is motivated
by the fact that no Lagrangian dual variables need to be introduced in connection
with arcs with a linear cost function. This results in a reduction of the
dimension of the Lagrangian dual space and an easier computation of analytic
centers. Moreover, when the approximation error is small enough, the optimal
solution for the approximated problem is also optimal to the original one. The
combination of the approximation scheme and the active set strategy has been
successfully implemented for the nonlinear MCF and the results are published
in [14].

The present dissertation also proposes a large review of the different MCF
formulations found in the literature, particularly in traffic applications. It also
reviews and describes shortly the main solution methods used to solve MCF
instances.

Finally, an important part time of the thesis has been devoted to the
implementation of ACCPM and its extensions [11]. ACCPM has been developed
in collaboration with the logilab team, i.e., C. Beltran, O. du Merle, C.
Tadonki and J.P. Vial. We can mention as extensions, a proximal term to
make the localization set compact, a column elimination strategy to reduce
the pool of cutting planes, a strategy to handle inaccurate cutting planes, or
a ball constraint that could permit an extension of ACCPM to nonconvex

9



1. Introduction

optimization.

1.3 Outline of the thesis

The thesis is organized into three main parts.
The first part is devoted to MCF. Chapter 2 introduces the general of

formulation of MCF handled in the thesis and gives some examples of real-
life applications. Chapter 3 focuses on a particular application of MCF,
the traffic assignment problem. We review its different formulations and the
main objective functions used in the literature to model the travel times.
We introduce the compound travel time functions that are relevant in the
approximation scheme. In Chapter 4, we describe shortly the main solution
methods used in the literature to solve MCF problems.

The field of the second part focuses on our solution method. Chapter 5
introduces the Lagrangian relaxation of the MCF problem. We point out the
two main components of the Lagrangian dual objective. In this chapter, we
introduce the active set strategy and the approximation scheme. In Chapter
6, we present the analytic center cutting plane method and its enhancements
used to solve the Lagrangian dual problem.

The last part includes two chapters in which we apply ACCPM and the
active set strategy on MCF instances. Chapter 7 is devoted to the linear
MCF while in Chapter 8, we solve nonlinear MCF. In these chapters, we
benchmark our solution method with the most efficient methods used in the
literature.

1.4 Notations

For the sake of easier reading, we summarize the main notations used in the
present dissertation. In Table 1.1, we report the MCF notations while Table
1.2 gives the notations used in ACCPM.

10



Notations

Notation Description

x Vector of individual flows.
y Vector of total arc flows.
c Vector of arc capacities.
d Vector of demands.
r Vector of linear costs.
g̃ (Delay or congestion) function of the total flow y.
g Upper extension function of g.
t̃t Travel time function of the total flow y.
tt Upper extension travel time function of tt.
δ Demand function.
N Node-arc incidence matrix defining the graph G.
N Set of nodes.
A Set of arcs.
K Set of commodities.
X Set of feasible flows x.
Y Set of feasible total flows y.

Table 1.1: Notations for MCF.

Notation Description

f Objective function.
f1 Nonsmooth objective function.
f2 Smooth objective function.
z Epigraph variable associated to the epigraph of f1.
ζ Epigraph variable associated to the epigraph of f2.
A Matrix of subgradients of f1.
E Binary matrix for cutting planes.
Γ Vector of right-and-side coefficients in cutting planes.
θ̄ Upper bound for the objective.
θ Lower bound for the objective.
L Localization set.

Table 1.2: Notations for ACCPM.

11
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Chapter 2

The multicommodity flow
problem

Contents
2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Applications . . . . . . . . . . . . . . . . . . . . . . . 20

The multicommodity flow problem (MCF) yields formulation of optimization
problems that arise in industrial applications such as transportation, telecommunications
and logistics. MCF is characterized by a set of commodities to be routed
through a network at a minimum cost. In practice, commodities may represent
messages in telecommunications, vehicles in transportation or product goods
in logistics. Each commodity has to be transported from one or several origin
nodes to one or several destination nodes. The cost is a convex or nonconvex
function of commodity flows and the individual flows are constrained to be of
integer or continuous values. In this thesis the focus is on the continuous and
convex case. In this chapter, we introduce the general MCF formulation and
we give some examples of immediate and indirect applications.

2.1 Formulation

Given a network represented by a directed graph G(N ,A), where N is the
set of nodes and A denotes the set of arcs, MCF consists of routing different

15



2. The multicommodity flow problem

commodities through this network. We denote the number of arcs na, the
number of nodes nn and the number of commodities nc. Each commodity has
to be shipped from a set of supply nodes to a set of demand nodes. Let K
be the set of commodities, the demand vector dκ for commodity κ ∈ K is a
vector with nn components constructed as follows:

• dκ
i < 0, if i is supply node,

• dκ
i > 0, if i is demand node,

• dκ
i = 0, otherwise.

In the simpler case, each commodity has only one source node and one destination
node.

Let us introduce the following notations for the flow variables. We denote
xκ

a the flow of commodity κ on the arc a ∈ A, xκ = {xκ
a}a∈A the flow vector

for commodity κ and x = {x1, . . . , xκ} the flow vector for all commodities.
The demand constraints are defined by

Nκxκ = dκ, ∀κ ∈ K, (2.1)

where Nκ is a subnetwork matrix for commodity κ. In general, we have
Nκ = N, ∀κ ∈ K, where N is the node-arc incidence matrix defining the
graph G. The flow of commodity κ may be bounded from above individually
by the capacity vector cκ, so that

xκ
a ≤ cκ

a, ∀a ∈ A,∀κ ∈ K. (2.2)

When flows are not constrained individually on the arcs, we set the capacity
values to +∞. We define the set of feasible flows X such that

X = {x ≥ 0 | (2.1) and (2.2) hold}. (2.3)

The total flow vector, denoted y, is the sum of all commodity flows given by

ya =
∑
κ∈K

xκ
a, ∀a ∈ A. (2.4)

Remark 1. The constraint matrix has a special network structure. The
matrices of constraints (2.1)-(2.2) are block angular while constraints (2.4)
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are coupling constraints. The structure is displayed on

N1 · · · 0
...

. . .
...

0 · · · Nκ

I · · · 0
...

. . .
...

0 · · · I
I · · · I




x1

x2

...
xκ

 =



d1

...
dκ

c1

...
cκ

y


. (2.5)

In view of the above structure, the feasible set (2.3) can be rewriten such as

X =
∏
κ∈K

X κ,

where
X κ = {xκ ≥ 0 | Nκxκ = dκ and xκ

a ≤ cκ
a, ∀a ∈ A}. (2.6)

Most solution methods in the literature exploit this special structure of the
constraints. They decompose the problem in as many subproblems as the
number of commodities, either by linearization of the objective function or by
relaxation of the coupling constraints. The main issue is then the coordination
of the subproblems. See Chapter 4 for more details.

Any feasible routing solution generates a cost on each arc. The nature of
the cost function is specified in Definition 1 and Assumption 1.

Definition 1. Let x ∈ X be a feasible flow and y a total flow such that (2.4)
holds. The cost on an arc is assumed to be the sum of a linear function of
individual commodity flows and a function of the total flow, denoted g̃. The
total cost for the solution (x,y) is given by

g̃(y) + rT x,

where r = {r1, . . . , rκ} is a positive cost vector. We denote rκ = {rκ
a}a∈A the

cost vector for commodity κ.

Assumption 1. The function g̃ of the total flow y is assumed to be convex,
monotone increasing and separable such that

g̃(y) =
∑
a∈A

g̃a(ya),
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2. The multicommodity flow problem

where
g̃a : Ca → R+, ∀a ∈ A,

with
Ca = [0, ca], or Ca = [0, ca[.

We denote by ca the mutual capacity on arc a, and c denotes the vector of
mutual capacity.

Let us now introduced a relevant definition to formalize the MCF problem.

Definition 2. Let g̃a be a cost function on arc a defined on Ca. We denote
by ga : R+ → R+ ∪ {+∞} the upper extension function of g̃a such that

ga(ya) =

{
g̃a(ya), if ya ∈ Ca,

+∞, otherwise.

We defined g(y) =
∑
a∈A

ga(ya), the sum of the upper extension functions.

In view of the above definitions, the MCF can be formulated as the following
optimization problem

min
{
g(y) + rT x | y = Mx, x ∈ X

}
, (2.7)

where the matrix M collects individual flows on the arcs of the network.
We assume that problem (2.7) has an optimal, thus finite, solution value.
Problem (2.7) is called the linear multicommodity flow problem when the cost
function g̃ is linear and the nonlinear multicommodity flow problem when g̃
is nonlinear. Note that if g̃a(ya) ≡ 0, ∀a, the function g represents mutual
capacity constraints without generating any contribution to the total cost.

Remark 2. As function g is monotone increasing, the constraints y = Mx
may be replaced by inequality constraints. Then (2.7) is equivalent to

min
{
g(y) + rT x | y ≤Mx, x ∈ X

}
. (2.8)

Remark 3. An alternative way of introducing mutual capacity in the definition
domain of g, is to handle explicit mutual capacity constraints in the model such
that

min
{
g̃(Mx) + rT x |Mx ≤ c, x ∈ X

}
. (2.9)

We easily identify problem (2.9) with (2.7).
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Let us now state some assumptions that are implicit in the definition of
(2.7).

• The commodities are homogeneous, i.e., every unit of commodity uses
one unit of arc capacity (mutual and individual).

• The flow variables x can be fractional. In some applications, the flows
must be integer. This type of problem is named integer multicommodity
flow problem. As pointed out earlier, this thesis does not deal with this
type of problem.

Main classes of MCF

The literature on the multicommodity flow problem is abundant. In practice,
there exists a wide variety of applications that lead to many variants of MCF.
We distinguish two main categories of problems derived from the general
formulation (2.7). This classification of MCF is not absolute but most problems
fall into one of these categories. (See [44] for a slightly different classification.)
In the rest of the dissertation, it is also convenient to refer the reader to these
formulations.

The first category groups the linear MCF problems. In this case, the
commodities always compete for mutual arc capacities, since, without mutual
capacities, the problem is fully separable in commodities and can be solved
easily. Each commodity may have multiple supply nodes and demand nodes,
and generally the arc cost is a linear function dependent of each commodity
flow. The linear MCF can be formulated as follows:

min rT x (2.10a)∑
κ∈K

xκ
a ≤ ca, ∀a ∈ A, (2.10b)

Nκxκ = dκ, ∀κ ∈ K, (2.10c)

0 ≤ xκ
a ≤ cκ

a, ∀a ∈ A,∀κ ∈ K. (2.10d)

We easily identify (2.10) with (2.7) if we remember that in (2.7) the mutual
capacity constraints are handled in the objective function g. Finding the best
route for a single commodity (independently of the other commodities) is then
a transshipment problem, in which the number of commodities is usually small
to very small with respect to the number of nodes.
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2. The multicommodity flow problem

In the second category, the arc cost is given by a nonlinear function of
total arc flows and each commodity must be shipped from a single origin to
a single destination. The commodity flows may be constrained by mutual
and/or individual arc capacities. The potential number of commodities may
be as large as the square of the number of nodes, a huge number on large
networks. But, without individual capacities on the arcs, finding the best
route for a single commodity (independently of the other commodities) is a
single commodity flow problem. The formulation of problems in this category
is given by

min g(y) (2.11a)

ya =
∑
κ∈K

xκ
a, ∀a ∈ A, (2.11b)

Nκxκ = dκ, ∀κ ∈ K, (2.11c)

0 ≤ xκ
a ≤ cκ

a, ∀a ∈ A,∀κ ∈ K. (2.11d)

The mutual capacity is managed in the domain definition of the objective
function. In the following, we will also use the more compact formulation for
(2.11)

min {g(y) | y ∈ Y} , (2.12)

where Y is the set of feasible total flows

Y = {y =
∑
κ∈K

xκ | x ∈ X}. (2.13)

Remark 4. When each commodity must be shipped from a single origin to a
single destination and the arc cost is a linear function of the total arc flow,
the problem can be classified in both categories. In formulation (2.10), mutual
capacities are explicitly defined in the model, while in (2.11), they are included
in the objective function. In that situation, finding the best route for a single
commodity is a simple shortest path problem (when there are no individual
capacities).

2.2 Applications

The multicommodity flow problem arises in a wide variety of important applications.
Many transportation, communication, logistic or manufacturing problems can
be formulated directly or indirectly as MCF. In this section, we present applications
of multicommodity flow problem (MCF) in order to make unaccustomed readers
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more familiar with this class of optimization problems. We also desire to
point out the importance of MCF in real-life optimization problems. In the
previous section, we have introduced mathematical formulations of MCF. Each
MCF is characterized by a graph representation and commodity demands to
be transported through that graph. Here, we show how different practical
problems can be transformed in MCF. The main point is to identify the
working graph and its attributes, i.e., arc capacities and arc costs. While
the graph representation is direct and evident in routing problems, it is not
well-established and often needs transformations in planing and scheduling
applications.

2.2.1 Routing and transportation

Many applications consist of routing multiple commodities such as products,
messages or drivers. We distinguish two classes of commodities in order to
describe two important situations. Either, commodities to be transported are
physically different (different manufactured products), or, there is a single
kind of commodity (messages or vehicles) but each one is differentiated by a
given origin-destination pair of nodes. We give few examples below.

Traffic assignment problem

The most popular application of MCF is the traffic assignment problem [15,
32, 38, 82, 83, 103].

To cope with the problem of traffic congestion, more and more vehicles will
be equipped with route guidance systems. Using digital maps, these systems
propose a route for each driver from its origin to its destination that have
been preliminarily indicated by the drivers. The positions of each drivers are
known thanks to a Global Positioning System (GPS) and the route proposals
depend on the current traffic congestion. In that case, the traffic problem
consists in a purely dynamic model for traffic, where vehicles travel through
the transportation network with progressing time.

The main drawback in designing a realistic dynamic model is the difficulty
to measure the travel time spent to through an arc. It depends on the number
of drivers on that arc at each time period. For this reason, most traffic models
leave the time component and consider static flow (constant flow). This
approach is quite realistic to describe traffic in rush-hour. In that situation,
flow variations between different origins and destinations are reduced over a
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2. The multicommodity flow problem

long period of time. They are also negligible compared to the travel time due
to congestion.

In view of the static model, the traffic assignment problem may be easily
formalized as a MCF. The graph represents the transportation network in
which nodes are cities or intersections and arcs are route sections. There is a
single type of commodity, i.e., vehicles or drivers, and the demands represent
numbers of drivers to be routed from their origins to their destinations. In
general, the problem is to compute routes for drivers in order to reduce their
travel times and avoid congestion on the arcs. The flow of each route section
is often upper limited. Chapter 3 is devoted to an extensive presentation and
discussion of the traffic assignment problem.

Telecommunication routing problem

The telecommunication routing problem [92, 107] consists of routing messages
through a telecommunication network at a minimum cost. The problem is
similar to traffic assignment, but in the network, the nodes are origin and
destination stations for messages and the arcs represent transmission lines.
The demands are the quantity of messages to be routed from an origin to
a destination station. Finally, each transmission line1 has a fixed mutual
capacity. Note that in this application, there is only one kind of commodity
and no individual capacity on the arcs.

We now give another important problem in telecommunication in which
MCF has a central place, the bandwidth allocation in communication network
[19, 91, 56]. It consists of assigning capacity expansions in a telecommunication
network that make the routing of message demands possible. The objective
is to minimize the capacity investment and the cost dues to the routing of
messages. Many approaches used to solve this problem yields a subproblem
which is a standard MCF and the efficiency of such approaches depends
directly on the ability to solve the subproblem.

Other routing problems

• Computer network problem [62]
In this class of applications, nodes represent storage devices, terminals or
computer systems, arcs are transmission lines, and commodities represent
computer data. The computer network problem proposes to rout data

1The capacity of a transmission line is determined by the node transmitters.
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Figure 2.1: Scheduling airplane problem as MCF.

between storage devices, terminals and computers at a minimum cost
over mutual capacity constraints1.

We may also mention the bandwidth allocation problem in computer
network [53] that has been described in the context of telecommunications.

• Distribution problem [55]
The distribution problem consists of distributing with trucks or railcars
multiple products from plants to retailers using warehouses or railheads.
The commodities represent different physical products, and capacity
constraints are defined for plants, the warehouses, railheads, and shipping
routes.

2.2.2 Scheduling applications

Scheduling is another area of important applications of MCF [9, 3, 16, 8, 18].
To illustrate this class of applications, we present the airline tail assignment
problem which can be formulated as an integer MCF [3, 16]. Given a timetable
of flight departures and arrivals and a set of airplanes, the objective is to cover
the flight legs at a minimum cost assignment by the airplanes. To illustrate
this application, we give a small example on Figure 2.1 with two airplanes
and two flights. In the formulation, commodities represent airplanes. There
are three types of nodes and four types of arcs. The nodes represent airplane
origins (ap1 and ap2), departures (o1 and o2) and arrivals (d1 and d2) of flight
legs. The arcs represent :

• The first airplane employments between their origins to the flight departures,
(ap1, o1), (ap1, o2), (ap2, o1) and (ap2, o2).
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2. The multicommodity flow problem

• The airplane removals from service, (d1, t) and (d2, t).

• The flights to be covered between flight departure and flight arrival
nodes, (o1, d1) and (o2, d2).

• Positioning flights between two operatives flights, (d1, o2). Here, flight 1
is chronologically before flight 2.

Each arc has a corresponding cost and a unit capacity. Lower bounds on flows
are added on certain arcs to ensure that each flight leg is covered by at least
one airplane. Note that in this problem, we are interested in 0-1 solutions and
thus falls out of the scope of this thesis. Nevertheless, fractional solutions can
provide useful bounds for the optimal integer solution. Fractional solutions
may also be used in a branch-and bound scheme to compute integer solutions.

2.2.3 Warehousing of seasonal products

The problem of warehousing of seasonal products presented here has been
adapted from [4]. A company manufactures several seasonal products with
demands varying monthly. The company has the possibility to store a pre-
season production in a warehouse of capacity C to supplement peak-season
production. The objective is then to determine the production levels for each
months that will satisfy the demands and minimize the production and storage
costs.

This warehousing problem can be formulate as a multicommodity flow
problem defined on an appropriate network. Let first introduce the following
notations:

• dk
j denotes the demand for the products k in month j.

• ck
j denotes the production capacity of the product k for the jth month.

• rk
j denotes the production unit cost of the product k for the jth month.

• hk
j denotes the storage costs of the two products from month j to month

j + 1.

For the sake of simpler comprehension, we illustrate that problem with a
production of two products, K = {1, 2} to be scheduled for the next four
months. Figure 2.2 gives the network corresponding to the warehousing
problem. The network contains one node for each month (1,2,3 and 4) and
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Figure 2.2: Warehousing problem as MCF.

a source (s1 and s2) and sink (t1 and t2) node for each commodity. The
supply and demand of the source and sink nodes is the total demand for the
commodity over four months. Only one commodity flows on each of these
arcs. We associate a cost rk

j and a capacity ck
j with arc (sk, j). Similarly,

the sink node tk has four incoming arcs; sink arc (j, tk) has a zero cost and a
capacity dk

j . the remaining arcs are of the form (j, j + 1) for j = 1, 2, 3. The
flow on these arcs represents the units stored from period j to period j + 1.
Each of these storage arcs has a capacity C and a unit cost hk

j for commodity
k. The two commodities share the capacity of this arc.

It is easy to see that each feasible flow in the network is a feasible production
and storage schedule for the two products. By optimizing the multicommodity
flow, we find the optimum of the warehousing problem.

2.2.4 Optimal deployment of resources

The problem of optimal deployment of resources presented here has been
adapted from [4]. Resulting from a natural disaster, a humane organization
needs to transport various types of rescue equipments or resources, such as
medicine or food, at various locations. The resources are available in different
warehouses. Due to technological constraints, it is not possible to satisfy all
the demands. Then the organization wants to satisfy the surviving demands
minimizing its transportation costs and the ”number” of unfulfilled demands.

This problem can be formulated as a multicommodity flow problem. Let
us introduce the following notations:
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• dk
j denotes the demand for the resource k at location j.

• ak
i denotes the amount of resource k available at warehouse i.

• rk
ij denotes the transportation cost of one unit of resource k from warehouse

i to location j.

• ci represents the maximum quantity of all resources that can be transported
from warehouse i.

• αk
j denotes the unit cost of unfulfilled demand of resource k at location

j.

For the sake of simplicity, we present a simple situation with three warehouses,
two locations and two resources. Figure 2.3 shows the corresponding network.
It contains one node for each warehouse (w1,w2,w3), one node per location (l1
and l2) and a source node (s). The node W is added to handle unfulfilled
demand. The demands of location node lj for resource k is dk

j . The supply
of the source node for each resource is the sum of all demands. In that
formulation, all resources flow on the arcs. We associate on arcs (s, wi) an
individual capacity ak

i for resource k and a global capacity ci corresponding
to capacities of warehouse i. The associated cost is null. On arcs (wi, lj), the
flow is not constrained and the cost is resource dependent. For resource k we
associate the transportation cost rk

ij. Finally, the remaining arcs deal with the
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unfulfilled demands with infinity capacities. The arc (s, W ) has a zero cost
while the cost αk

j on arc (W, lj) depends on the resource.
It is easy to see that any feasible flow in the network is a feasible deployment

of resources. Then the optimal deployment is computed by optimization of
the multicommodity flow.
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The traffic assignment problem
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This chapter focuses on a particular application of multicommodity flow
problem (MCF), i.e., the traffic assignment problem (TAP). TAP is an important
transportation application which consists in determining the routes of drivers
on a transportation network given their origins and their destinations. In 1952,
Wardrop [121] introduced two principles of transportation network utilization
leading to the two most commonly used performance criteria. In [35], Dafermos
and Sparrow coined the terms user optimum and system optimum to distinguish
the two principles. Previously, they have been discussed in similar terms by
Knight [80] and Pigou [106].

The first principle, or user optimum, expresses that the drivers select their
routes independently and the travel times of all used routes are less or equal
than those which would be experienced by a single driver on any unused route.
The user-optimum is also referred in the literature to as a traffic network
equilibrium. The second principle, or system optimum, reflects a societal
viewpoint. The drivers selects their routes to minimizes the total travel time
in the overall network.
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In this chapter, we present the different network optimization problems
associated with these principles. We also discuss the main differences between
them. The last section is dedicated to the analytic form of travel time functions.
Since there is no theoretical rules to evaluate the route travel times, many
functions have been proposed in the literature. Here, we review the more
popular ones used in general routing network context and finally propose
alternative functions.

3.1 Problem definition

In the traffic assignment problem (TAP), each commodity (or driver) is characterized
by an unique pair of origin and destination nodes. For the sake of simplicity,
we consider that commodities compete for capacity on the same underlying
network. Recall that N is the node-arc incidence matrix and x represents the
flow vector. We define the feasible set of flows as

X = {x ≥ 0 | Nxκ = dκ, κ ∈ K}. (3.1)

In this formulation, the capacity constraint on the arc is global and not
commodity specific. The vector dκ has only two non-zero components : −δκ at
the origin and δκ at the destination of the commodity. Thus δκ is the demand
for commodity κ and δ will denote the vector of all demands. We refer the
reader to Chapter 2 for general notations.

The problem we consider here is not the more general one in traffic. More
realistic, but also more complex models, involve a variety of transportation
modes (see [95]).

3.1.1 Travel time function

Given a feasible flow x ∈ X , we can evaluate the flow performance for each
driver by observing the travel time spent for covering the distance from its
origin to its destination. This travel time is the sum of the travel times of
the used arcs. It is communally assumed that the arc travel time is a direct
function of the total flow on that arc. A large flow leads to a high travel time.
We recall that the total flow vector y is such that

ya =
∑
κ∈K

xκ
a, ∀a ∈ A. (3.2)
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Assumption 2. Let x ∈ X be a feasible flow and y be the total flow vector
given by (3.2). The arc travel time t̃ta is a positive, convex and non-decreasing
function of the flow on the arc a. The function t̃ta(ya) is defined on the interval
Ca = [0, ca] or Ca = [0, ca[, where ca is an upper bound for the total flow ya.

Assumption 2 implies that the total travel time function is separable.
There is no clear argument on the analytic form of the travel time function.
The literature proposes many different ones. We review the more popular
ones in Section 3.3. Finally, we notice tta the upper extension function of t̃ta
defined by

tta =

{
t̃ta, if ya ∈ Ca,

+∞, if otherwise.

When there is no mutual capacity on a given arc, we get ca = +∞ and the
two functions t̃ta and tta are equivalent.

Remark 5. Our assumption that the travel time is a function of the flow may
be subject of controversies. In [97], Nesterov suggests that it is more realistic
to lead the travel time with the number of drivers present on the arc, i.e., the
density. We will discuss this approach in Section 3.3.

3.1.2 Path-flow reformulation

Up to now, we have described MCF problems with arc flows. We propose
to reformulate demand constraints and travel times using path flows between
each OD pairs instead of arc flows. This formulation, known as path-flow
formulation, is useful in the following.

Let us denote π a path (or a route) on the graph from some origin to some
destination. A path is conveniently represented by a Boolean vector on the set
of arcs, with πa = 1 if and only if the path goes through the arc a. For each
commodity κ ∈ K, we denote {πj}j∈Jκ the set of paths from the supply node
to the demand node and δκ the demand value. Finally, the flow on path πj is
denoted ξκ

j . Using the above notations, the demand constraints in path-flow
formulation are defined by ∑

j∈Jκ

ξκ
j = δκ, ∀κ ∈ K, (3.3)

and the total flow on the arcs is

ya =
∑
κ∈K

∑
j∈Jκ

ξκ
j πa

j , ∀a ∈ A. (3.4)
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A commodity κ routed on a path j ∈ Jκ generates the travel cost

cκ
j =

∑
a∈A

tta(ya)π
a
j . (3.5)

In a path-flow formulation, the demand constraints (3.3) have a simpler structure
than in the arc-flow. There is only one demand constraint for each commodity.
Unfortunately, the number of variables is huge even on small networks. Besides,
it growths exponentially with the size of the network making that definition
impractical.

3.1.3 Fixed and elastic demand

Most of the time the demands δκ are assumed to be fixed and known. In some
applications, this assumption must be relaxed to account the fact that long
travel times adversely affect the demand. In other words, the demands are
elastic, which we formalize in the following assumption.

Assumption 3. The demand δκ for commodity κ only depends on the shortest
travel time from the supply node to the demand node. The demand function
δκ(s), where s is travel time along the shortest path and

δκ : R+ → R+, κ ∈ K,

is continuously differentiable, non-negative, upper bounded, and strictly decreasing.

The particular case of a constant function corresponds to an inelastic
demand, i.e., fixed demand.

These assumptions on the demand function are standard [71]. For the
sake of simpler notation, we note in the following the set of feasible flows X (δ)
when the demand is elastic.

3.2 Traffic assignment models

In this section, we present different TAP formulations as optimization problems
based on the performance criteria stated by Wardrop’s principles [121]. Let
us recall these principles.

• First principle: The journey times of all used routes are less or equal
than those which would be experienced by a single vehicle on any unused
route.
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• Second principle: The average journey time is minimal.

The first principle leads to user optimum models and the second one gives
system optimum models. In the last part of this section, we show differences
between the two approaches.

3.2.1 User optimum models

The Wardrop first principle is also known as user equilibrium. In that situation,
the users are considered selfish. They select their own route unilaterally, in
their own self-interest. The selfish behavior may result in a stable state, named
user equilibrium. The basic idea is that, at equilibrium, no user can get a
quicker travel time by changing unilaterally his route. In other words, each
user pursues individually to minimize his/her own travel time. An equilibrium
is characterized by the following equilibrium conditions. For all commodity
κ ∈ K and all paths j ∈ Jκ, we have

ξκ
j > 0 ⇒ cκ

j = min
p∈Jκ

cκ
p , (3.6a)

ξκ
j = 0 ⇒ cκ

j ≥ min
p∈Jκ

cκ
p . (3.6b)

The fixed demand model

Let us consider here TAP with inelastic demands δκ for each commodity
κ ∈ K. In 1956, Beckmann et al. [17] were the first to formulate Wardrop’s
first principle mathematically, in the case of separable cost functions. They
established the equivalence between these equilibrium conditions and the KKT
conditions of a convex mathematical programming problem. Then, Dafermos
[32] formulates this program under the assumptions that the travel time
function tt is integrable and its Jacobian is positive semidefinite for all feasible
flows. Let us introduce the definition:

Definition 3. Let t̃ta(ya) be an integrable travel time function on the arc
a ∈ A satisfying Assumption 2 and tta(ya) be its upper extension function.
The associated delay or congestion function is given by

ga(ya) =

∫ ya

0

tta(x)dx.

We note
g(y) =

∑
a∈A

ga(ya).
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Then the equilibrium conditions (3.6) are equivalent to solving the optimization
problem:

min
x,y

{
g(y) | y =

∑
κ∈K

xκ, x ∈ X

}
. (3.7)

However, the integration assumption is too restrictive in some applications. In
the case of non-integrable functions, the partial derivatives become asymmetric
and the problem is known as the asymmetric traffic assignment problem.
Wardrop’s first principle can be formulated therefore as a variational inequality
problem [33, 116]. Theorem 1 shows that the solution of a variational inequality
problem satisfies the equilibrium conditions (3.6).

Theorem 1. (Theorem 4.5 of [95])
A vector y∗ is an equilibrium pattern if and only if it satisfies the variational
inequality problem

tt(y∗).(y − y∗) ≥ 0, ∀y ∈ Y , (3.8)

where
Y = {y =

∑
κ∈K

xκ | x ∈ X}.

Under the assumption of continuity for function tt the equilibrium pattern
y∗ exists [95]. Variational inequality formulation (3.8) allows to consider traffic
assignment problems with more general extensions such that link interactions,
multiple classes of users or multiples modes of transportation. User optimum
can be also formulated as a nonlinear complementarity problem [1, 2] or as a
nonconvex mathematical programming problem [64].

The model with elastic demand

In that part, we consider that the demand δκ on the OD-pair (i, j) is elastic and
only depends on the shortest travel time from the origin i to the destination
j (see Assumption 3). The model developed here is due to Dafermos [34].

Definition 4. Let δκ be the demand functions for commodity κ ∈ K satisfying
Assumption 3. The demand disutility function for the commodity κ is

hκ(δκ) = −
∫ δκ

0

ωκ(s)ds, (3.9)

where ωκ(s) = δ−1
κ (s) is the inverse function of δκ. We note

h(δ) =
∑
κ∈K

hκ(δκ).
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Our assumptions imply that the demand disutility function is convex and
differentiable by Definition 4. Then, in the case of separable and integrable
travel time functions, the equilibrium conditions (3.6) can be obtain as the
solution of the optimization problem (see [103]):

min
x,y,δ

{
g(y) + h(δ) | y =

∑
κ∈K

xκ, x ∈ X (δ)

}
. (3.10)

As for the fixed demand situation, Wardrop’s first principle can be obtained
by solving a variational inequality problem; see Theorem 2.

Theorem 2. (Theorem 4.1 of [95])
A vector (y∗, δ∗) is an equilibrium pattern if and only if it satisfies the variational
inequality problem

tt(y∗).(y − y∗)− ω(δ∗).(δ − δ∗) ≥ 0, ∀(y, δ) ∈ Y . (3.11)

where

Y = {(y, δ) | y =
∑
κ∈K

xκ, x ∈ X (δ)}.

Recent studies [104, 105] focus in a more general traffic equilibrium framework,
where demand function is possibly non-separable or non-invertible.

3.2.2 System optimum models

The Wardrop second principle corresponds to a situation in which the total
travel time of the system is minimized. The users select their routes from a
societal point of view. This Wardrop principle is known as system optimum.
Under the assumption that the travel time function is separable, monotone,
and convex, system optimum can also be formulated as a convex mathematical
programming problem defined by

min
x,y

{∑
a∈A

tta(ya)ya | y =
∑
κ∈K

xκ, x ∈ X

}
. (3.12)

In problem (3.12), demands δκ for each commodity κ ∈ K are fixed and
known. Let ωκ(s) = δ−1

κ (s) be the inverse function of the elastic demand
function δκ as in the previous part. Then, under the assumption that ω is a
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concave function, system optimum with elastic demands is the solution of the
optimization problem:

min
x,y,δ

{∑
a∈A

tta(ya)ya −
∑
κ∈K

ωκ(δκ)δκ | y =
∑
κ∈K

xκ, x ∈ X (δ)

}
. (3.13)

The literature related to system optimum is not as extensive as for the user
optimum, partly because the second principle may lead to solutions that are
unfair to some users. We discuss of such a behavior in the next paragraph.

3.2.3 User vs. system optima

Le us now discuss relations between user optimum and system optimum. It
is well-known that the two notions are not equivalent. A user equilibrium
satisfies all the users but it does not necessarily minimize the total travel time
through the network. In the system optimum, unacceptable long paths may
be assigned to drivers in order to use shorter paths for many other drivers.

Braess’s paradox

This situation is illustrated by the so-called Braess paradox [23]. In that
paper, the author presents a simple example in which adding an arc in the
network yields worse users travel times at user optimum.

Let a problem be characterized by the network defined on Figure 3.1
with the arc set A = {a, b, c, d} and node set N = {1, 2, 3, 4}. There is
one commodity to be routed from node 1 to destination node 4 with a fixed
demand of 6. Two paths are available for routing the commodity, j1 = (a, c)
and j2 = (b, d). The travel time functions are defined such that:

tti(yi) = 10yi, i = {a, d},
tti(yi) = yi + 50, i = {b, c}.

It is easy to verify that user and system optimum are obtained when affecting
3 units on path j1 and 3 units on path j2 such that:

y∗i = 3, i = {a, b, c, d}.

The associated path travel times are

c∗j1 = c∗j2 = 83.
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Figure 3.1: The Braess network example.

Assume now that a new arc e from node 2 to node 3 is added in the network
(see Figure 3.1). The travel time function of this new arc is tte(ye) = 10 + ye.
That results in a new available path j3 = (a, e, d). There is now three available
paths. It is easy to verify that the system optimum solution does not change.
Since switching from path j1 to new path j3, a commodity may reduce its
travel time to 81, the last solution is not more an equilibrium. The user
equilibrium pattern is obtained when routing 2 units of flows on each path
such that:

y∗i = 2, i = {b, c, e}, and y∗i = 4, i = {a, d},

with path travel times
c∗j1 = c∗j2 = c∗j3 = 92.

Then, adding a new arc in the network leads to a worse user equilibrium travel
time but it can not increase the system optimum solution. This small example
confirms that user optimum and system optimum are not equivalent.

Price of anarchy

The price of anarchy, a notion introduced in [108], measures the user optimum
inefficiency in term of total travel time. In other words, it measures how bad
is user selfish with respect to the system optimum solution? The price of
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anarchy is the coefficient defined such as

Price of anarchy =
Total travel time at user equilibrium

Total travel time in system optimum
.

Recent works have evaluated the price of anarchy. In [109], the authors showed
that for uncapacitated problem the total travel time associated to the user
optimum is at most two times the minimum travel time. This ratio falls to
4/3 for linear travel time functions. The main result is due to Roughgarden.
In [108], he proved in the case of nondecreasing and differentiable travel time
functions that the worse-case of user optimum inefficiency is independent of
the network topology. For any travel time function tt, the total travel time
produced by user optimum is at most α(tt) time the system optimum in an
uncapacitated network. The parameter α(tt) is only function dependent. In
[31], the authors extended the above result for capacitated networks and more
general travel time functions. They proved that the coefficient α found for
uncapacitated network is the same with capacity constraints. The parameter
α is also capacity independent.

Constrained system optimum

In that subsection, we present an approach introduced in [70] which deals with
both notions, user and system optima. The authors propose to compute the
system optimum in which user constraints are added. Additive constraints
guarantees that user travel times of the system optimum are not so far from
user travel times obtained with the user optimum model.

Assume that normal lengths τκ
j are given for each possible path j ∈ Jκ and

for all commodity κ ∈ K. Generally, normal lengths are chosen to be the user
optimum travel times. They are computed in advance and are fixed in the
model. Then the approach proposes that longest paths with respect to the
normal lengths are declared unfair and are excluded from the feasible set of
paths. Let φ > 1 be a tolerance factor, the feasible set of paths for commodity
κ, J̄κ ⊂ Jκ, is defined as

J̄κ = {j ∈ Jκ | τκ
j < φτκ},

where
τκ = min

i∈Jκ

τκ
i .

Combining system optimum model (3.12) and the above definition, the
constrained system optimum, called CSOφ, is the solution of the optimization

38



Travel time and delay functions

problem:

min
∑
a∈A

tta(ya)ya (3.14a)∑
j∈J̄κ

ξκ
j = δκ, ∀κ ∈ K, (3.14b)

∑
κ∈K

∑
j∈J̄κ

ξκ
j πa

j = ya, ∀a ∈ A. (3.14c)

Note that in that formulation, the summation is taken in j over the set J̄κ ⊂ Jκ

In [70], the authors show that solving (3.14) ensures total travel times of
constrained and unconstrained system optimum to be still close. Moreover,
the proposed approach improves the fairness of user travel times compared to
the unconstrained system optimum travel times. The main drawback is that
when applying decomposition methods, the subproblems are NP-hard. In that
situation, the subproblem is a sum of constrained shortest path problems.

3.3 Travel time and delay functions

In this section, we present the main travel time and delay functions used in
routing applications and more precisely in transportation and telecommunication
problems. Since it does not exist a standard way of expressing the travel
time in function of the flow, the analytic form of such functions is usually
a subject of dispute. Nevertheless, the Kleinrock function and the BPR
(Bureau of Public Roads) function appear to be widely used, respectively, in
telecommunications and transportation. Many classes of functions have also
been suggested by Branston in [24]. In the last subsection, we discuss some
observations that lead to alternative travel time functions, called compound
functions. For the sake of simpler notation, we write in the rest of the section
g for ga, tt for tta, y for ya, c for ca, etc.

3.3.1 Linear delay function

Linear delay functions including upper bound on flow are probably the simplest
and the mostly used function in classical MCF, see [13, 49, 84, 93]. The travel
time is a constant given by

tt(y) = t, y ∈ [0, c], (3.15)
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where constant t ≥ 0. The associated delay function is the linear function

g(y) = ty, y ∈ [0, c]. (3.16)

We identify two special cases of linear functions:

• The uncapacitated linear function. In that situation, we have c =
+∞ and the traffic assignment problem yields to a sum of independent
shortest path problems.

• The indicator function where t = 0. This function is useful to compute
feasible flows with respect to capacity links.

3.3.2 Kleinrock function

The most frequently used function in the telecommunication domain, see
[22, 60, 79, 102], is the Kleinrock function [79]. This function has a vertical
asymptote when approaching the arc capacity. Other asymptotic travel time
functions are presented in [36, 37]. The travel time on an arc is computed
with

tt(y) =
c

(c− y)2
, y ∈ [0, c[, (3.17)

where c is the capacity on the arc. The function has a vertical asymptote at
y = c. The associated delay function is

g(y) =
y

c− y
, y ∈ [0, c[. (3.18)

Kleinrock travel time and congestion functions are plotted on Figure 3.2.
This kind of functions includes implicitly capacities in the objective function.

It seems to be a useful alternative to adding explicit capacity constraints in
the problem formulation. The vertical asymptote also prevents arcs to be
saturated and generally leads to a better spread of the flows in the network.
Nevertheless in some applications, cost functions with a vertical asymptote
lead to unrealistic high travel times when flow approaches the capacity. Furthermore,
as mentioned in [83], vertical asymptotes are known to induce numerical
difficulties on many optimization schemes.

3.3.3 BPR function

Most of travel time functions used in transportation problems are polynomial
functions. The wildly used one, see [15, 28, 38, 83], is the standard function
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Figure 3.2: Kleinrock travel time and delay functions.

introduced by the U. S. Bureau of Public Roads [68], known as BPR function.
Its simplicity is certainly the main reason of its success. For each arc, the
travel time is provided by

tt(y) = r

(
1 + α

(y

c

)β
)

, y ∈ [0, +∞[. (3.19)

The associated delay function is

g(y) = ry

(
1 +

α

β + 1

(y

c

)β
)

, y ∈ [0, +∞[. (3.20)

We plot the BPR travel time and delay functions on Figure 3.3. In general,
the parameter α is small and β > 1 does not exceed 5. When the flow y
is less than c, the second term under the parenthesis in (3.19) is negligible.
Thus g(y) ≈ ry: the parameter r is called free-flow travel time and it can be
interpreted as a fixed travel time on a congestion-free arc. For larger values
of y the nonlinear contribution to congestion increases. The threshold value
c for the flow y is usually named the practical capacity of the arc, beyond
which congestion becomes effective. The standard values, suggested in [114],
are α = 0.15 and β = 4. In [43], the authors propose to set α = 1 and β = 10.
They validate the study with results of operational models that test freeway
and arterial sections. Other studies propose to set α = 0.2 or α = 0.05 and
β = 10. In some applications, the parameters α and β are arc-dependent.

The main drawback of the BPR function is associated to high values of
β. In that situation travel time is generally overestimated when flow is below
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Figure 3.3: BPR travel time and delay functions.

the capacity. On the other hand, when flow exceeds capacity, high values of β
may slow down the convergence to user equilibrium of solution methods and
cause numerical difficulties.

The other weakness of the BPR function is that improbable high flows
may be assigned on the arcs of the network. In practice this assumption seems
unrealistic. We are going to explain the reasons later in a next subsection. In
[83], the authors propose to limit the definition domain of the flow introducing
explicitly capacity constraints in the model. The upper bounds on the flows
are constructed such that y ≤ Kc, where K > 0 is a capacity constant.

3.3.4 Conical function

To provide credible alternative to BPR functions, conical travel time functions
were introduced in [117]. They were developed and calibrated with information
directly based on real transportation applications. The arc travel time is given
by

tt(y) = t0

(
2 +

√
α2(1− y/c)2 + β2 − α(1− y/c)− β

)
, y ∈ [0, +∞[,

with

β =
2α− 2

2α− 1
.

In that formulation, α is a parameter for congestion effect; c represents the
critical flow and t0 is the free flow time. The delay function associated
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to the conical travel time function has the following complicated analytical
expression.

g(y) = t0y(2− α− β)− ct0
2α

[
α(1− y

c
)

√
α2(1− y

c
)2 + β2

+β2 ln

(
α(1− y

c
) +

√
α2(1− y

c
)2 + β2

)]
+

t0αy2

2c
+ ct, y ∈ [0, +∞[.

We plot on Figure 3.4 the functions tt(y) and g(y).
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Figure 3.4: Conical functions.

This conical function has the advantage to partly overcome drawbacks of
the BPR function. When flow is below the capacity, conical function is very
similar to BPR function. Otherwise when flow exceeds capacity, travel time
can not become too high. That makes solution methods easier to convergence
to the user equilibrium. Nevertheless, this function always yields a travel time
at capacity of twice the free travel time — something which may not always
be desirable.

3.3.5 Davidson’s function

Davidson’s function has been first introduced in [40]. Then, calibrations and
improvements of the proposed function have been elaborated in [5, 41, 119].
The travel time function is based on queuing theory and has the form

tt(y) = t0

(
1 + JD

y/c

1− y/c

)
, y ∈ [0, c[, (3.21)
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where t0 represents the zero-flow travel time; c is the capacity; and JD is a
delay parameter (or 1 − JD is a quality of service parameter). The analytic
expression of g is given by

g(y) = t0y − t0yJD − t0cJD ln(c− y) + ct, y ∈ [0, c[.

The above functions are plotted in Figure 3.5.
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Figure 3.5: Davidson’s functions.

As for the Kleinrock function, this model may return infinite travel time
when flow approaches the capacity. That may be unrealistic in practical
applications.

3.3.6 Discussion on travel time functions

In this subsection, we discuss some observations that may lead to alternative
travel time functions. We partly use observations made by Nesterov in [97].

Compound travel time functions

In the literature, most travel time functions are calibrated to limit or neutralize
the influence of a low flow on the computed travel time. Assuming that a small
flow on a route is induced by small number of drivers on that route, it seems
quite natural to assign the free travel time for all drivers on that route. In
that situation the route is non-congested. Then an alternative relevant way
to describe this property is to model travel time with a compound travel time
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function. This function computes travel time such that

tt(y) = max(t0, γt̃t(y)), (3.22)

where t0 is the free flow time, γ is a parameter and t̃t is a given travel time
function. We assume that t0 > γt̃t(0). Let yc be the intersection between t0
and γt̃t(y), the route remains non-congested for flow below yc. The associated
delay function has the form

g(y) = max(t0y, γg̃(y) + ct), (3.23)

where g̃ is the delay function associated to the travel time function t̃t and ct is a
constant ensuring that the switching point in the equation (3.22) is the same as
in (3.23). Let us provide in Table 3.1 some examples of compound travel time
functions. We also give the associated compound congestion functions. Note

Travel time function Congestion function

Kleinrock case max
“
t0, γ

c
(c−y)2

”
max

“
t0y, γ y

c−y
+ ct

”
BPR case max

“
t0, γr

“
1 + α

`
y
c

´β
””

max
“
t0y, γry

“
1 + α

β+1

`
y
c

´β
”

+ ct
”

Table 3.1: Compound functions.

that it is also possible to develop the approach of compound functions from
a delay function viewpoint. Considering that delay function has to be linear
to a given threshold of flow, we first define compound congestion function as
g(y) = max (t0y, γg̃(y)). Then we deduce the travel time function. The two
above approaches are mostly similar.

A new approach

The assumption that the travel time is a function of the flow may be subject
of controversies. Here, we describe an alternative approach for travel time
function proposed by Nesterov [97]. Let us first report observations which
link flow, speed and travel time. See [97] for a slightly different viewpoint.
Generally a highly congested route induces a low flow. That results in a very
large travel time. On the other hand, when a flow on a route is large, the
speed is typically large and the resulted travel time is then small. These two
intuitions refute the assumption that travel time is an increasing function of
the flow. Moreover a low flow is due typically either to a high density of
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drivers on the route (i.e., congested route) or to a very low density. Thus it
seems more relevant to link speed, flow and density using the fundamental
Little law,

flow = speed× density. (3.24)

Let rewrite (3.24) such that

travel time = density/flow. (3.25)

In view of the above equation, travel time is an increasing function of the
flow only if a flow augmentation is compensated by a sufficient expansion of
density. Assuming that route density is bounded above, that is realistic, then
it is quite natural to affect an explicit capacity on flow. In [97], Nesterov
mentions that possible augmentation of density is too limited to model in a
relevant way travel time with only flow information. He proposes to model
travel time with the model

tt(d) = max(t0, d/c), (3.26)

where t0 is the free flow time and c represents the flow capacity on the arc.
The variable d is the number of drivers present on the arc. Note that (3.26)
is density dependent, the flow interferes only with its capacity. Thus it seems
difficult to handle conservation of flows in a mathematical problem using this
model. The author provides new theory based on stable traffic equilibria
which is strongly related to Wardrop’s first principle. Moreover he shows
that instead of using explicit travel time functions, equilibrium is reachable
only by introducing in the model lower bounds on travel times and upper
bounds on flows. These results are surprising but quite promising (Finding
bounds on flows and travel times seems easier than calibrating any travel time
functions). Finally, this approach points out that it is more realistic to reach
user equilibrium using linear travel time functions instead of using nonlinear
ones.

3.4 Summary

In this chapter, we have presented two formulations of TAP, the user and
system optima. The user optimum models a selfish behavior of drivers while
the system optimum reflects a societal point of view. We also mentioned that
the demand may be elastic and thus depends on the amount of drivers on the
network. Finally, in the last section we gave the main travel time functions
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used in the literature. In this thesis, we focus our numerical experiments on
the user optimum with different travel time functions. We study the linear
case and the Kleinrock function and the BPR function in the nonlinear case.
In Chapter 5, we propose a approximation scheme that uses compound travel
time functions.
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Solution Methods
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In the last decades, MCF have experienced impressive progresses in the
solution methods. With a wide variety of applications and possibly huge size
of the problems found in practice, MCF has been a motivating and challenging
field for many researchers. Many approaches have been proposed in the
literature to solve linear and/or nonlinear MCF. To be efficient, most solution
methods exploit the special underlying network structure of the constraints.
Direct methods adapt linear programming codes. Others decompose the
problem using either linearization techniques or relaxation schemes. In this
section, we shortly describe the underlying ideas of the main methods. We
classify them in two categories: the primal and the dual methods. The first
ones, that are described in the first section, solve the primal formulation of
the problem directly, while the second ones work on the dual and appear in
the second section. We refer the reader to [4, 102, 103] for other surveys on
methods.
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4.1 Primal solution approaches

In this section, we present shortly the main primal solution methods used in
the literature. The most popular primal approaches are either direct or based
on Dantzig-Wolfe decomposition in the linear case and, in the nonlinear case
Frank-Wolfe or Simplicial decompositions are more appropriate.

4.1.1 Direct methods

Direct approaches consist in solving mainly the linear multicommodity flow
problem with a linear programming code exploiting the special underlying
block-network structure of the constraint matrix (2.5). Few methods have
been extended to the nonlinear case. We shortly mention two main direct
approaches.

The basis partitioning method, presented in [4], uses the spanning tree
interpretation of any linear programing basis. Performing appropriate changes
of variables, the programing basis for the MCF can be transformed in a special
structure. This structure contains one basis for each commodity and a small
basis for coupling constraints. Then the basis partitioning method is divided
in two steps. It first uses general linear programing to compute the simplex
multipliers corresponding to the coupling constraints. This computation only
requires the inverse of a small basis. In the second step, a substitution
procedure leads to find simplex multipliers for independent single commodity
flow problems. Using special network simplex approach, this computation
appears to be very efficient. In [29], a nonlinear primal partitioning, named
PPRN, is adapted for nonlinear MCF. See [63, 74, 45] for other experiments
with primal partitioning techniques.

We note that since the Simplex method needs to compute the inverse of
the basis corresponding to the coupling constraints, the basis partitioning
method is very efficient when the number of coupling constraints is small
(see [4]). In the case of large number of coupling constraints, enhancements
have been proposed by Castro and Nabona [29] and Mamer and McBride
[93] using formulation (2.10) in which coupling constraints represent capacity
constraints. The authors exploit the following observation. When the number
of capacity constraints is large, the number of saturated arcs is mostly small
at the optimum. As the unsaturated capacity constraints are not relevant in
the solution, one may remove these constraints from the model. It results
in solving a much smaller dimension problem. Unfortunately, that set of
arcs is unknown. Strategies have then been developed to estimate the set of
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unsaturated arcs during the process and to efficiently change the dimension
of the working inverse from one pivot to the next. In [94], McBride observes
a reduction from 17% to 70% of the size of the working inverse on several
instances. In Chapter 5, we develop a similar strategy, called active set
strategy, in a cutting plane framework.

Interior point methodology is an alternative direct approach to the simplex
method. Specialized interior point methods also exploit the special structure of
the problem to solve efficiently the linear system of equations at each iteration
of the process. Most solution methods [6, 25, 107] use the preconditioned
conjugate gradient solver, (which is originally appropriate for solving the single
commodity flow problem). Castro [25] has implemented this technique making
his interior point method competitive. Nevertheless, in [26], Castro shows
that Simplex based solvers outperform specialized interior-point methods for
medium and large scale instances. In that paper, the author solves problems
in which commodities have multiple origin nodes and destination nodes. In
[27], Catro extends this approach for solving nonlinear MCF with convex and
separable quadratic objective functions. Finally in [111], Schultz and Meyer
use a barrier function in a interior point framework to decompose the problem.

4.1.2 Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition (DW) [39] is a price directive scheme used to
solve linear programs whose constraints are partitioned in two blocks. DW
decomposition is also described as a column generation scheme. It replaces by
variables the subset of constraints containing the majority of constraints. To
be advantageous this set of constraints must have a particular structure that
makes the linear program subject to these constraints easy to solve. Consider
the linear MCF formulation (2.10),

min
x

{
rT x |Mx ≤ c, x ∈ X

}
. (4.1)

Let {Xi}i∈I be all the extreme points of the convex set X . It is well-known that
any point of X can be obtained by forming a convex combination of extreme
points and that the number of extreme points is finite. Then, assuming that
the set of extreme points is explicitly given, problem (4.1) is equivalent to the
Dantzig-Wolfe master program

min
λ

{
rT
∑
i∈I

λiXi |M(
∑
i∈I

λiXi) ≤ c,
∑
i∈I

λi = 1, λ > 0

}
. (4.2)
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Since we assign a variable to each extreme point and since the number of
extreme points may be huge, problem (4.2) has too many variables to be solved
directly. The key idea of Dantzig-Wolfe algorithm is to generate extreme
points, or columns, as needed and to apply a revised Simplex algorithm to the
restricted master program

min
λ

{
rT
∑
i∈Ik

λiXi |M(
∑
i∈Ik

λiXi) ≤ c,
∑
i∈Ik

λi = 1, λ > 0

}
. (4.3)

The set {Xi}i∈Ik
is assumed to be a small subset of the extreme points of

X generated at the kth iterate. Assuming that (4.3) is feasible, we denote
uk and zk the optimal dual variables in (4.3) associated to the constraints
M(
∑

i∈Ik
λiXi) ≤ c and

∑
i∈Ik

λi = 1, respectively. If the reduced costs σi of
variables λi defined by

σi = rT Xi + uT
k MXi − zk, ∀i ∈ I,

are all positive, the optimal solution of the restricted problem (4.3) is also
the optimal solution for the full master (4.2). Otherwise the columns with
negative reduced costs are added in the restricted master problem. It is easy
to show that finding the column with the minimum reduced cost consists of
solving the linear Dantzig-Wolfe subproblem

min
x

{
(r + MT uk)

T x− zk | x ∈ X
}

. (4.4)

Obviously, Dantzig-Wolfe decomposition is appropriate only if subproblem
(4.4) is easy to solve. In the linear MCF case, the matrix of constraints X is
block angular. Solving (4.4) leads either to a sum of transshipment problems
or to a sum of shortest path problems in the simplest case.

The Dantzig-Wolfe decomposition algorithm can be summarized as follows.
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Algorithm 1: Dantzig-Wolfe decomposition

1. Find an initial set of extreme points, or columns, {Xi}i∈I0 .

2. Solve the restricted master problem (4.3) and obtain the optimal
dual variables uk and zk.

3. Solve the Dantzig-Wolfe subproblem (4.4). Pick a column Xk with
minimum reduced cost.

• If the minimum reduced cost σk ≥ 0, then stop.

• Else update the subset {Xi}i∈Ik+1
= {Xi}i∈Ik

∪Xk and go to
step 2.

Note that it is necessary to initialize the set of extreme points I0 that makes
the restricted master problem (4.3) feasible. When I0 is not given a priori, a
Phase I procedure is required. We call I0 the feasible initial set. Considering
the general formulation problem

min
{
cT x | Ax = b, x ≥ 0

}
,

the standard Phase I procedure introduces artificial variables s in the problem
and solves the linear program

min
{
eT (s+ + s−) | Ax + s+ − s− = b, x ≥ 0, s+ ≥ 0, s− ≥ 0

}
, (4.5)

where e is an one vector. Assuming that the original problem is feasible, then
a Simplex algorithm applied to Phase I problem (4.5) will give a optimal value
of zero and then a feasible solution for the original problem.

Let us now show how we can take advantage of the block angular structure
of constraints in MCF (see Remark 1 page 16). The special network structure
provides a natural partition of the constraints. The subproblem breaks down
into several subproblems of much smaller dimension. Let us introduce the
disaggregate formulation of (4.1)

min
x

∑
κ∈K

(rκ)T xκ (4.6a)∑
κ∈K

Mκxκ ≤ c, (4.6b)

xκ ∈ Xκ, ∀κ ∈ K. (4.6c)
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Problems (4.1) and (4.6) are similar. Let {Xκ
i }i∈Iκ be the set of all the extreme

points of the convex set X κ. In view of the above definition, one may write
the restricted master program such as

min
λ>0

∑
κ∈K

(rκ)T
∑
i∈Iκ

k

λκ
i X

κ
i (4.7a)

∑
κ∈K

Mκ(
∑
i∈Iκ

k

λκ
i X

κ
i ) ≤ c, (4.7b)

∑
i∈Iκ

k

λκ
i = 1, ∀κ ∈ K. (4.7c)

This master problem has the same number of coupling constraints as the
master (4.3), but now the subproblem (4.4) is separable in nc independent
subproblems, i.e., one per commodity. Letting uk be the optimal dual variables
associated to the coupling constraints (4.7b) and zκ

k denote the optimal dual
variables of (4.7c) associated to the commodity κ, the subproblem for the
commodity κ is

min
xκ

{
(rκ + (Mκ)T uk)

T xκ − zκ
k | xκ ∈ X κ

}
. (4.8)

Depending on the definition of X κ, solving (4.8) results either in a simple
shortest path problem or in a transshipment problem.

Dantzig-Wolfe decomposition permits to solve large scale linear problems.
When phase I is completed the scheme has the important advantage to maintain
a feasible solution for the problem during the process. In [4], the authors
point out that Dantzig-Wolfe approach is efficient in terms of the number of
iterations but not necessarily in CPU time. The reason is that solving the
linear master restricted problem at each iteration turns out to be too time
consuming to make the method competitive on large instances.

Many works in the literature use the Dantzig-Wolfe decomposition to solve
linear MCF. Farvolden et al. [45] applied it to an arc-chain formulation of the
MCF. In [30], Chardaire and Lisser compared Dantzig-Wolfe decomposition
with direct approaches and also with ACCPM [58] on oriented MCF. They
concluded that using a fast simplex-based linear programming code to solve
the restricted master program is the fastest alternative on small and medium
size problems.
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4.1.3 Frank-Wolfe method

The Frank-Wolfe algorithm [50] is a linearization method for nonlinear optimization
problems with a convex objective function and linear constraints. It consists
of finding the optimum by successive linearizations of the objective function
that yield useful descent directions. To take full advantage of the procedure
the linearized problem must be easy to solve. In the MCF context, the Frank-
Wolfe method is applied to the nonlinear program (2.12), i.e.,

min {g(y) | y ∈ Y} . (4.9)

Let y0 be a feasible solution for (4.9). At the iteration k, the method linearizes
the objective function in yk and solves the direction finding subproblem

Y k = arg min
{
∇g(yk)T y | y ∈ Y

}
, (4.10)

to obtain a feasible direction (Y k−yk) at yk. Problem (4.10) is a simple linear
problem. It can be solved with a Simplex algorithm. If ∇g(yk)T (Y k−yk) ≥ 0,
then yk satisfies the optimal stopping criterion. Otherwise, the algorithm
computes the optimal step along the descent direction by solving the line
search problem

λk = arg min
{
g(yk + λ(Y k − yk)) | 0 ≤ λ ≤ 1

}
. (4.11)

The Frank-Wolfe algorithm can be stated as follows:

Algorithm 2: Frank-Wolfe algorithm

1. Find a feasible flow vector y0.

2. Solve the direction finding subproblem (4.10) and obtain a feasible
direction (Y k − yk).

3. If ∇g(yk)T (Y k − yk) ≥ 0, then stop.

4. Perform the line search problem (4.11), update
yk+1 = yk + λk(Y k − yk) and go to step 2.

The Frank-Wolfe algorithm is easy to understand and implement. Another
positive aspect of the method is the small memory storage requirement. Though
Frank-Wolfe makes big progresses in the first iterations, the method is known
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to have a slow convergence rate [103, 15]. When approaching optimality
the method tends to zigzag. Several enhancements have been proposed to
accelerate the convergence. In [123], Wolfe proposed to generate an additional
feasible direction in step 1. The PARTAN method, introduced by Shah et al.
[113], also has been proposed to avoid the zigzag behavior.

Frank-Wolfe procedure is attractive for nonlinear MCF without mutual
capacity constraints because the direction finding subproblem becomes easy.
There, it turns out to be an unconstrained linear MCF that is separable
in independent shortest path problems (or transshipment flow problems).
When applied to a problem with mutual capacity constraints, the subproblem
becomes a linear MCF with mutual capacities which is too expensive to be
solved repeatedly. In the case of objective function with a vertical asymptote,
the capacities are implicitly defined. The standard technique to cope with
functions with a vertical asymptote consists in approximating the objective
function by a function with an unbounded domain. Some variant of the Frank-
Wolfe algorithm has been applied to nonlinear MCF, e.g. [47, 51, 86]. The
convergence of the method has been improved by Weintraub et al. [122]. More
recently, Daneva and Lindberg [38] reported dramatic acceleration using a
conjugate gradient scheme. Fratta et al. [51] introduced the Flow Deviation
Method, which is similar to the Frank-Wolfe algorithm to solve communication
network problems.

4.1.4 Simplicial decomposition

The simplicial decomposition [69, 120] can be viewed as a combination of
Dantzig-Wolfe decomposition [39] and Frank-Wolfe algorithm [50] to solve
nonlinear programs. In the simplicial decomposition, extreme points, or col-
umns, are generated by solving a linear subproblem similar to the direction
finding subproblem of Frank-Wolfe. As in the Dantzig-Wolfe approach, a
master program, is defined by a restricted set of extreme points and is solved
to generate a new point.

This approach is well fitted to solve the nonlinear MCF formulation (2.12),
i.e.,

min {g(y) | y ∈ Y} , (4.12)

where Y ⊂ Rm. Suppose that in the kth iteration, a set of extreme points
(or columns) {Y i}i∈Ik

has been generated by the Frank-Wolfe subproblem
(4.10). Then the method proposes to find an optimal linear combination of
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the columns by solving the master problem

min
λ

{
g(
∑
i∈Ik

λiYi) |
∑
i∈Ik

λi = 1, λ ≥ 0

}
. (4.13)

This step can be viewed as a generalization of the line search problem in the
Frank-Wolfe algorithm. The resulting linear combination corresponds to the
new point. At that point, we then perform a standard Frank-Wolfe step (4.10)
to define a new extreme point.

The simplicial decomposition can be summarized as follows:

Algorithm 3: Simplicial decomposition

1. Find a feasible flow vector y0.

2. Solve the Frank-Wolfe subproblem (4.10) and obtain a extreme
point Y k.

3. If ∇g(yk)T (Y k − yk) ≥ 0, then stop.

4. Update the subset {Yi}i∈Ik
= {Yi}i∈Ik−1

∪ Yk. Solve the master problem
(4.13), update yk+1 =

∑
i∈Ik

λiYi and go to step 2.

According to Carathéodory’s theorem, at most m+1 columns are necessary
to represent an optimal solution of the full master problem (4.13). In practice,
this number is often too large to be useful. A stronger bound for the number
of needed extreme points is given by Hearn et al. [65] by defining a restricted
simplicial decomposition. Numerical experiments in [65, 66] demonstrated
efficiency of this restricted simplicial decomposition to solve traffic assignment
problems.

Bertsekas [20] proposed a scaled projected Newton method to find an
improved allocation in the master problem. This approach, named Projection
method, has been applied to MCF in [21, 22]. The method developed by
Bar-Gera [15] is an origin-based algorithm conceptually similar to [21]. In the
comparative study carried in [102], the projected Newton method appeared
to be one of the most efficient method on small and medium size problems.
An other projection method has been proposed by M. Schwartz et al. [112] to
solve message routing problems. Finally, Larsson et al. exploited the special
structure of the traffic assignment problem using a disaggregate version of the
simplicial decomposition [82].
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Let us just mention that, as in the case of Frank-Wolfe algorithm, the
simplicial decomposition cannot handle arc capacity constraint directly. One
must replace constraint violation by a fixed penalty function.

4.1.5 Other methods

Another approach is based on resource-directive decompositions [4, 76, 77, 75,
54]. It consists of finding an optimal allocation of the mutual capacities for
each commodity. The initialization step of the iterative method assigns the
mutual capacity for each commodity and solves the associated independent
single commodity flow problems. Then at each iteration, the resource-directive
approach uses sensitive information about each subproblem to reallocate the
mutual capacities. Subgradient method has been used in several studies [10,
67, 77, 115] to find the optimal capacity allocation. In a comparative study,
Assad [10] reports that resource-directive algorithms converge quickly for small
problem instances but are outperformed by price-directive method for larger
problems.

Combinatorial approximation algorithms have also been developed to solve
MCF. Some of the approximation algorithms may guaranty theoretical results
on computational complexity [46, 72, 87] and appear to be competitive with
other methods [61, 110].

4.2 Dual solution approaches

In this section, we present shortly the main dual solution methods found in
the literature. Lagrangian relaxation is the most common dual method used
to solve linear and nonlinear MCF. Augmented Lagrangean algorithms and
the proximal decomposition method have also been applied to MCF.

4.2.1 Lagrangian relaxation

Lagrangian relaxation may be used to solve linear or nonlinear multicommodity
flow problems. It consists of bringing the coupling constraints associated to
Lagrangian multipliers into the objective. Then the approach finds appropriate
prices, or Lagrangian multipliers, that achieve the dual optimum. The method
may be directly applied on the general formulation of the problem (2.7), i.e.,

min
x,y
{g(y) + 〈r, x〉 |Mx = y and x ∈ X} . (4.14)

58



Dual solution approaches

Let u be the dual multipliers associated to the set of constraints Mx = y,
Lagrangian relaxation yields a Lagrangian dual problem of much smaller
dimension

max
u

L(u), (4.15)

where

L(u) = min
x,y
{g(y) + 〈r, x〉+ 〈u, Mx− y〉 | x ∈ X} . (4.16)

Problems (4.15) and (4.16) are called the master problem and the subproblem,
respectively. Solving the master problem (4.15) gives a lower bound for the
primal problem (4.14). By duality theory, the lower bound of the optimal dual
solution is equal to the optimal value of (4.14). Then Lagrangian relaxation
appears to be an useful approach to find the optimal objective value for MCF
problems but does not directly provide an optimal primal solution point.

It is well-known that the Lagrangian dual (4.15) is nondifferentiable. When
the objective function g is linear, the subproblem is a sum of simple transshipment
flow problems (or shortest path problems) and the master problem may be
described by a concave piecewise linear function.

For the sake of simplicity, let us consider the linear case (2.10) where the
dual subproblem is defined by

L(u) = min
x
{〈r, x〉+ 〈u, Mx− c〉 | x ∈ X} . (4.17)

Note that problem (4.17) will only generate extreme points of X . Assuming
that {Xi}i∈I represents the set of all the extreme points of the convex set X ,
the maximization of L is then equivalent to the full master problem

max
u,z

z (4.18a)

z ≤ 〈r, Xi〉+ 〈u, MXi − c〉, i ∈ I, (4.18b)

where z is the epigraph variable associated to the epigraph of L. Theorem
3 shows that Lagrangian relaxation scheme is very similar to Dantzig-Wolfe
decomposition.

Theorem 3. The full master problem (4.18) of the Lagrangian relaxation is
equivalent to the dual of the Dantzig-Wolfe master program (4.2).

Proof. The proof is immediate just writing the dual of (4.18) or (4.2).
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We also notice that the Lagrangian subproblems correspond to the Dantzig-
Wolfe subproblems. In fact, we can view Dantzig-Wolfe decomposition as a
method for solving the Lagrangian multipliers. Since the full master problem
is impractical, methods solving the dual problem generate extreme points as
needed.

Most standard methods used for solving the Lagrangian dual problem
can be classified as cutting plane methods (CPM). Kelley’s cutting plane
method [73] is appealing because the master problem is linear, but it often
converges very slowly. Notice that this approach corresponds to the dual
of the Dantzig-Wolfe decomposition scheme [39]. The bundle method [88]
has been used in the context of linear MCF [49] to remedy this convergence
drawback. Good numerical results have been obtained with the analytic center
cutting plane method (ACCPM) [60]. In that paper, ACCPM was used in a
disaggregate mode, that is with as many objective components as the number
of commodities. Finally, we mention a subgradient method, presented in [4], to
solve (4.15). An important improvement of the method [99] has been proposed
by Nesterov. As we know, the method has not yet been applied on MCF but
it seems to be a promising approach. We review these main cutting plane
methods in Chapter 5.

When g is a nonlinear function of the total flow, it is still possible to
describe the master problem with polyhedral approximations. We observe
that the subproblem (4.16) is separable in variables x and y such as

L(u) = min
x
{〈r, x〉+ 〈u, Mx〉 | x ∈ X}+ min

y
{g(y)− 〈u, y〉} .

The first component may be described by polyhedral approximation while the
second one is smooth and can be computed in closed form. Then the dual
problem (4.15) may also be solved using cutting plane methods. In Chapter
5, we propose a different approach. We further propose to exploit the second
order information of the smooth function in a cutting plane framework, i.e.,
ACCPM. This approach will be detailed in Chapters 5 and 6.

4.2.2 Augmented Lagrangian relaxation

The augmented Lagrangian relaxation combines two schemes, the standard
Lagrangian relaxation and an exterior penalty method. A nonlinear penalty
is introduced in order to improve the dual convergence and obtain a primal
optimal solution. Let us consider the general formulation of the MCF (2.7)
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with a monotone increasing function g,

min
x,y
{g(y) + 〈r, x〉 | h(x, y) ≤ 0 and x ∈ X} , (4.19)

where h(x, y) = Mx−y, is a vector defined in Rna . Let u ≥ 0 be the vector of
Lagrangian multipliers and v > 0 be the penalty parameter, the augmented
Lagrangian dual problem is defined by

max
u≥0

Lv(u). (4.20)

The augmented Lagrangian subproblem is

Lv(u) = min
x∈X ,y

Lv(u, x, y), (4.21)

where

Lv(u, x, y) = g(y) + 〈r, x〉+
∑
a∈A

uah
+
a (xa, ya, ua, v) +

∑
a∈A

v

2
h+

a (xa, ya, ua, v)2,

and
h+

a (xa, ya, ua, v) = max{ha(xa, ya),−
ua

v
}.

A solution of the subproblem is denoted

x(u, v) = arg min
x∈X ,y

Lv(u, x, y).

To achieve convergence to the dual optimal solution, the Lagrangian multipliers
and the penalty parameter are updated iteratively. In the kth iteration, the
updating formulas are

uk+1
a = max{0, uk

a + vha(xa(ua, v), ya)}, (4.22)

and

vk+1 =


min(βvv

k, vmax), if ||h+
a (xk

a, y
k
a , u

k
a, v

k)|| >
γ||h+

a (xk+1
a , yk+1

a , uk+1
a , vk+1)||,

vk, otherwise,
(4.23)

where βv > 1 and γ are constant factors. In [81], Kort and Bertsekas proved
the convergence of the method when v0 > 0 and vk+1 ≥ vk.

The augmented Lagrangian algorithm can be stated as follows.
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Algorithm 4: Augmented Lagrangian relaxation

1. Initialize the dual variable u0 and the parameters v0, vmax, γ
and β0.

2. Solve the subproblem (4.21) and if termination criteria is satisfied
then stop.

3. Update variables and parameters with (4.22) and (4.23) and go
to step 2.

Note that, in step 2, the subproblem (4.21) is a nonlinear MCF. The
standard way to solve this problem is to apply a disaggregate simplicial decomposition
[84, 83]. In this approach, the difficulty of the subproblem to be solved at each
iteration is balanced by a better convergence of the master problem than for
the standard Lagrangian relaxation. In a recent contribution, Larsson and
Yuang [84] apply an augmented Lagrangian algorithm to solve linear MCF.
They are able to find solutions with reasonable precision on very large problem
instances. They also show that their method outperforms the Dantzig-Wolfe
decomposition approach and the combination of Lagrangian relaxation and
a bundle implementation. An augmented Lagrangian technique has been
used in [83] to solve nonlinear traffic assignment problems with link capacity
constraints.

4.2.3 Proximal Decomposition method

We conclude this review by mentioning the Proximal Decomposition method
of [92] which is a specialization of the Partial Inverse method of Singarn [118]
for separable convex problems. The main idea of the method is to represent
the coupling constraints by a product of subspaces corresponding to the copy
of primal-dual variables. The algorithm performs two steps iteratively. First,
it regularizes the objective function by adding a quadratic term which depends
on primal-dual solution of the previous iterate. Then, the method projects
the solution on the corresponding subspaces. The Proximal Decomposition
method has been applied on telecommunication routing problems [92, 102].
The method appears to be competitive with other methods but it is slow
when the number of commodities is large.
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4.3 Conclusion

We notice that it is not evident to know which solution method (direct approach
or decomposition scheme) is better suited for a particular type of problem. The
choice might depend on the size of the problem, the number of commodities,
the number of coupling constraints, the sparsity of the network matrix or the
number of used or saturated arcs in the optimal solution. In [26], Castro
also observes that there does not exist a decision rule to know in advance the
best method for each particular problems. He comments that it is still an
important work to be done in MCF.

In our work, we apply the Lagrangian relaxation scheme which has the
advantage of solving both linear and nonlinear cases of MCF problems. The
efficiency of this approach mainly depends on the cutting plane method used
to solve the dual problem, hence an important focus of the thesis.
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Chapter 5

Lagrangian relaxation and
active set strategy
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The literature proposes many different approaches to solve the multicommodity
flow problem (see Chapter 4). One of the most popular is based on price-
directive decomposition, i.e., a Lagrangian relaxation approach which turns
out to be equivalent to a column generation scheme. In the case of MCF,
column generation amounts to working on a sequence of restricted versions
of the path-flow formulation of the problem. At each iteration, the method
generates a solution for each commodity, with respect to arc lengths equal to
the current marginal value of the delay or congestion function. The method
then strives to allocate the flows on the generated paths in an optimal way.
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In this chapter, we introduce the Lagrangian relaxation of the general multicommodity
flow problem introduced in Chapter 2. We point out that the objective of the
Lagrangian dual is a sum of a nonsmooth function and a smooth one. The first
component may be described by polyhedral approximation, while the second
one can be computed in closed form. We further propose to exploit the second
order information of the smooth function to enhance efficiency of the solution
method.
Then, we focus on the compound congestion function which has the following
characteristic: it is linear near the origin. We show that there exists an optimal
partition of the Lagrangian dual variables for this kind of function and that
an active set strategy may be used to guess it. This optimal partition leads to
a reduced dual problem formulation. Finally, we introduce an approximation
scheme which replaces the nonlinear congestion function by a compound one.
We will show that this feature permits to display an active set strategy.

5.1 Lagrangian Relaxation

Let us consider the general problem

min g(y) + 〈r, x〉 (5.1a)

Mx = y, (5.1b)

x ∈ X . (5.1c)

We assume that g : Rm → R is convex, M is a m× n matrix, r is a n vector,
while X ⊂ Rn is convex.

Remark 6. We easily identify problem (5.1) with the general formulation
of MCF (2.7) introduced in Chapter 2. In multicommodity flow problems on
oriented graphs, X is defined as a set of network flow constraints (one per
commodity). The matrix M collects the flows on the individual arcs; it is thus
made of zeroes and ones.

If the dimension of x is large, as it is the case in MCF problems, it becomes
difficult to apply a direct method, even when the problem falls into the realm of
structural programming (see [98]), e.g., g is self-concordant and X is endowed
with a self-concordant barrier.

Relaxing (5.1b) yields a concave programming problem in the dual variables
u ∈ Rm associated with the constraints y = Mx. The Lagrangian dual
problem is

max
u

f(u), (5.2)
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where f is defined by

f(u) = min
y,x
{g(y) + 〈r, x〉+ 〈u, Mx− y〉 | x ∈ X}. (5.3)

By duality, this Lagrangian dual problem has the same optimal value as (5.1).
Since m � n, the transformed problem has much smaller dimension: it is
potentially solvable by a suitable convex optimization method. We review the
main ones in Section 5.3.

A quick inspection shows that (5.3) is separable in the variables y and x.
Then, (5.3) can be written as

f(u) = f1(u) + f2(u), (5.4)

where

f1(u) = min
x
{〈MT u + r, x〉 | x ∈ X},

and

f2(u) = min
y
{g(y)− 〈u, y〉}.

In view of our assumption on X , f1(u) can be routinely computed for arbitrary
values of u. Since f1 is defined as the point-wise minimum of a collection of
linear functions, f1 is concave but usually nondifferentiable. Besides, if

x(u) = argmin{〈MT u + r, x〉 | x ∈ X},

then

f1(u
′) ≥ 〈Mx(u), u′〉+ 〈x(u), r〉 = f1(u)+ 〈Mx(u), u′−u〉, ∀u′ ∈ Rm. (5.5)

This shows that Mx(u) is an anti-subgradient of f1(u) at u, that is Mx(u) ∈
−∂(-f1(u)).

Akin, the function f2(u) is the point-wise minimum of a collection of affine
functions of u. It is thus concave and one may construct an inequality similar
to (5.5). Actually, we can get more. From the definition, we observe that f2(u)
is the opposite of the Fenchel conjugate g∗(u) of g. In the cases under study,
g∗(u) can be given in closed form and it also appears to be twice continuously
differentiable. We certainly want to exploit this property when it is verified,
and devise more efficient algorithms to solve the Lagrangian dual problem.

Let us put forth two conditions of MCF that are of considerable help in
solving (5.2).
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Condition 1. The linear programming problem

min{〈c, x〉 | x ∈ X},

can be solved at low computational cost.

In other words, f1(u) can be computed routinely, without excessive burden
on the overall algorithm. In MCF, f1 is either a sum of shortest path problems
or transshipment problems.

Condition 2. The congestion function g(y) is separable, i.e., g(y) =
∑m

i=1 gi(yi).
The functions gi are nonnegative, convex, monotonically increasing and dom gi ⊂
R+. Moreover, the convex conjugate (gi)∗ can be computed in closed form.

Let us explore an immediate consequence of Condition 2. The first order
optimality conditions for problem (5.1) are

0 ∈ ∂g(y)− u, (5.6)

MT u ∈ −NX (x), (5.7)

where NX (x) is the normal cone of X at x. The right derivative g′+(y) of g at
y = 0 is well-defined. Since g is monotone increasing, condition (5.6) implies
that the constraint

u ≥ g′+(0), (5.8)

is always met at the optimum. It is nevertheless convenient to introduce this
redundant constraint in the formulation of problem (5.2).

To summarize, the Lagrangian dual problem we propose to solve is a
maximization problem subject to lower bounds on variables:

max{f(u) = f1(u) + f2(u) | u ≥ g′+(0)}. (5.9)

The standard way to solve (5.9) is to apply a cutting plane method that
describes iteratively the objective function f with polyhedral approximations.
We give some examples of such methods in Section 5.3. In Chapter 6, we
enhance a cutting plane scheme to exploit the available second order information.

Remark 7. In the constrained system optimum problem, introduced in Chapter
3 page 38, Condition 1 is not satisfied. The subproblem is a NP-hard problem,
i.e., a sum of constrained shortest path problems. In that situation, the optimization
process may not be carried to its end and the computed objective value may
be a strict lower bound for the true value f1(u). However, it is generally the
case that it produces a polyhedral approximation form that underestimates the
function f1. In Chapter 6, we propose advanced topics in ACCPM that deals
with this undesirable situation.
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5.2 Extension to elastic demand model

In this section, we extend the analysis of the above section for the traffic
assignment problem with elastic demand introduced in Chapter 3. Let us
consider the problem

min g(y) + h(δ) (5.10a)

Mx = y, (5.10b)

x ∈ X (δ). (5.10c)

Relaxing constraints (5.10b), the dual objective boils down to

f(u) = f1(u) + f2(u), (5.11)

where

f1(u) = min
x,δ
{h(δ) + 〈MT u, x〉 | x ∈ X (δ)},

and

f2(u) = min
y
{g(y)− 〈u, y〉}.

As in the previous section, the function f2 can be given in a closed form.
Let us now show that f1 may again be easily computed and described by
polyhedral approximations. This problem is equivalent to a two-stage minimization

f1(u) = min
δ

{
h(δ) + min

x
{〈MT u, x〉 | x ∈ X (δ)}

}
.

In our context, the optimal solution of the inner problem of f1 is a shortest
path problem with a flow demand δ. Indeed, the path is independent of δ;
the flow only is affected by δ. Let ξ(u) be the boolean vector associated
with that path. The optimal solution of the inner problem in f1 takes the
form 〈MT u, ξ(u)δ〉. The minimization in δ can then be performed, usually in
explicit form when h is given a functional form.

To show that f1 satisfies a subgradient inequality, let us start with the
observation that for any u′ 6= u, the shortest path property says

v′ = 〈MT u′, ξ(u′)〉 ≤ v̂ = 〈MT u′, ξ(u)〉,

and

δ(v) = arg min(h(δ) + vδ).
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Since δ > 0 and v′ ≤ v̂,

min
δ
{h(δ) + v′δ} ≤ min

δ
{h(δ) + v̂δ},

≤ h(δ(v)) + v̂δ(v),

= h(δ(v)) + vδ(v) + (v̂ − v)δ(v),

= min
δ

(h(δ) + vδ) + (v̂ − v)δ(v).

Replacing v′ and v by their values in the above inequality, one gets

min
δ
{h(δ) + 〈MT u′, ξ(u′)〉} ≤ min

δ
(h(δ) + 〈MT u, ξ(u)〉)

+(u′ − u)T Mξ(u)δ(〈MT u′, ξ(u)〉).

It follows that Mξ(u)δ(〈MT u′, ξ(u)〉) ∈ ∂f1(u) is a subgradient of f1 at u.
In the considered applications, the function h is convex and differentiable.
Therefore, the function minδ(h(δ) + vδ) achieves its minimum at

δ(v) = −(h′)−1(v).

To summarize, the approach is mostly the same as in the previous section.
It differs only in the way of describing f1 by polyhedral approximations.
In that case, the inner minimization problem f1 appears to be a two-stage
optimization.

5.3 Solution methods for solving the

Lagrangian dual problem

In this section, we describe some of standard methods for non-differentiable
convex optimization. For the sake of simpler notation, we consider in the rest
of the section the general minimization problem

min{f(u) | u ∈ U}, (5.12)

where f is convex and U ⊂ Rm is a convex set. We assume that for any point
ui ∈ U , we can construct a supporting hyperplane of the objective function,
i.e., a cutting plane, such that

f(u) ≥ f(ui) + 〈ξi, u− ui〉, ∀u ∈ U,

where ξi ∈ ∂f(ui).
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5.3.1 Kelley’s method

The cutting plane method proposed by Kelley [73] consists of building iteratively
a tangentially piecewise linear approximation of the objective function and
solving the approximate problem at each iteration. Let {ui}i≤k be a set of k
points where cutting planes have been generated. Assuming that the cutting
planes are good approximations of the objective function, the quality of the
linear piecewise approximation is improved when a new cutting plane is added
in the model. Then, the method converges when the approximation is precise
enough close to the optimal solution. The piecewise linear approximation of
the objective function f is defined by

f̂k(u) = max
i≤k
{f(ui) + 〈ξi, u− ui〉}, (5.13)

Kelley’s method is stated as follows:

Algorithm 5: Kelley’s method

1. Choose u0 ∈ U .

2. Define f̂k(u) = maxi≤k{f(ui) + 〈ξi, u− ui〉}.

3. Compute uk+1 = arg min
u∈U

f̂k(u) and go to step 2.

Although Kelley’s method is globally convergent under few assumptions,
it appears to be disastrous in some applications. In the worse case, O( 1

εm )
iterations are required to converge with an ε relative precision [96].

5.3.2 Bundle method

The bundle method, proposed by Lemaréchal [88, 89], is a dramatic improvement
of Kelley’s method. The piecewise linear approximation (5.13) is augmented
by a quadratic term such that

uk+1 = arg min
u∈U
{f̂k(u) +

1

2tk
||u− uk||2},

where tk is a parameter to be updated at each iteration. The move from uk to
uk+1 is validated if a sufficient descent of f is observed. Otherwise the current
point does not change. The bundle method is stated in Algorithm 6.
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Algorithm 6: Bundle method

1. Choose u0 ∈ U .

2. Define f̂k(u) = maxi≤k{f(ui) + 〈ξi, u− ui〉}.

3. Compute ūk+1 = arg min
u∈U
{f̂k(u) + 1

2tk
||u− uk||2},

• uk+1 = ūk+1, if a sufficient descent of f is observed.

• uk+1 = uk, otherwise.

and go to 2.

There exists different versions of the bundle method [78, 90] which differ
in the way of updating the parameter tk and evaluating a sufficient descent.
The pseudo-polynomiality convergence of the method has been proved by
Lemaréchal et al. in [90]. The scheme requires O( 1

ε2
) iterations to converge

with an ε relative precision.

5.3.3 Subgradient method

The subgradient method is a simple method minimizing the nondifferentiable
function f such that

uk+1 = uk − αkξk,

where αk > 0 is a step size. The different implementations of the subgradient
method differ in the way the step size is defined. Algorithm 7 describes the
subgradient method.

Algorithm 7: Subgradient method

1. Choose u0 ∈ U and a sequence of step size {αk}∞k=0.

2. Compute uk+1 = uk − αkξk and repeat 2.

When the step lengths {αk}∞k=0 are defined to be a divergent series such
that

lim
k→∞

αk = 0, and
∞∑

k=0

αk =∞,
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the subgradient method converges. The method required O( 1
ε2

) iterations to
converge with an ε relative precision. Recently, Nesterov [99] has proposed a
important improvement of the gradient scheme. He proved than the bound
on the number of iterations of the new scheme is O(1

ε
).

5.3.4 The analytic center cutting plane method

The analytic center cutting plane method (ACCPM), introduced by Goffin et
al. [58], combines cutting plane scheme and interior point methodology. It
defines the so-called localization set as a convex polyhedron

Lk = {(u, z) | z ≥ f(ui) + 〈ξi, u− ui〉, z ≤ θ̄},

where z is the epigraph variable of the function f and θ̄ is an upper bound
for the problem. Let s be the slack variables associated to the cutting planes,
ACCPM computes the analytic center as the point that maximizes the product
of the slack variables.

Note that if the localization set is unbounded, the analytic center does not
exist. Traditionally, box constraints on variables are added in the model to
fix this problem.

In Chapter 6, we extensively detail a constrained version of the analytic
center cutting plane method. This version is augmented with a proximal term
and handles the available second order oracle of the Lagrangian dual problem.

5.4 Congestion functions and their

conjugates

In this section, we present the analytic forms of the conjugate functions
associated to the congestion or delay functions used in MCF. Condition 2
makes valid an explicit calculation of the conjugate function g∗ of the congestion
function g

g∗(u) = max
y
{〈u, y〉 − g(y)}.

Note that the conjugate function is also separable in variables y. We have

g∗(u) =
∑
a∈A

ga∗(ua) =
∑
a∈A

max
ya

{uaya − ga(ya)}.

In the sequel we shall name -g∗ the negative conjugate. The computation for
the congestion functions introduced in a previous section is straightforward.
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Since the objective f2(u) is the opposite of the conjugate function, we give, in
the next subsections, the functional form of −ga∗, its domain and its first and
second derivatives associated to our congestion functions of interest. For the
sake of simpler notation, we write in the rest of the section g for ga, y for ya,
u for ua, etc.

5.4.1 Linear function

Let us recall the linear function:

g(y) = ty, with y ∈ [0, c]. (5.14)

The opposite of the conjugate function of (5.14) is defined by

f2(u) = −g∗(u) = c(t− u), with u ≥ 0. (5.15)

Its first and second derivatives are immediate. We plot the linear function
(5.14) and its conjugate (5.15) on Figure 5.1.

y

c

g(y)

u

−g*(u)

Figure 5.1: Linear function and its negative conjugate.

5.4.2 Kleinrock delay function

Let us write the Kleinrock delay function:

g(y) =
y

c− y
, with y ∈ [0, c[. (5.16)

76



Congestion functions and their conjugates

The opposite of the conjugate function of (5.16) is defined by

f2(u) = −g∗(u) = 1 + uc− 2
√

uc, with u ≥ 1

c
. (5.17)

The Kleinrock function (5.16) and its conjugate (5.17) are plotted on Figure
5.2. Its first and second derivatives are given by

f ′2(u) = c−
√

c

u
, and f ′′2 (u) = 0.5

√
cu−1.5.

y

c

g(y)
1/c

u

−g*(u)

Figure 5.2: Kleinrock delay function and its negative conjugate.

5.4.3 BPR congestion function

Let us first recall the BPR congestion function:

g(y) = ry

(
1 +

α

β + 1
(
y

c
)β

)
, with y ≥ 0. (5.18)

The opposite of the conjugate function of (5.18) is defined by

f2(u) = −g∗(u) =
c(u− r)

β+1
β

(αr)
1
β

β

β + 1
, with u ≥ 0. (5.19)

The BPR congestion function (5.18) and its conjugate (5.19) are plotted on
Figure 5.3. Its first and second derivatives are given by

f ′2(u) =
c

(αr)
1
β

(u− r)
1
β , and f ′′2 (u) =

c

β(αr)
1
β

(u− r)
1−β

β .
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g(y)

y

u

−g*(u)

Figure 5.3: BPR congestion function and its negative conjugate.

5.4.4 Compound congestion functions

In this work, we shall also consider a more general class of congestion functions
defined by

g(y) = max
y∈domg̃

{ty, g̃(y)}, (5.20)

where t ≥ 0 and g̃(y) satisfies Condition 2 whose domain is a closed or half-
closed interval of R+:

dom g̃ = [0, ȳ[ or dom g̃ = [0, ȳ].

The upper limit may be finite (e.g., the support function associated with the
constraint y ≤ ȳ) or infinite. The meeting point between the linear and the
nonlinear part is denoted yc which is uniquely defined by

tyc = g̃(yc).

In view of the convexity of g, we have g̃′(yc) ≥ t. We assume that g̃ is
continuously differentiable on the interior of its domain. Note that dom g =
dom g̃. We name the function (5.20) a compound congestion function.

Let us compute the negative conjugate of the compound congestion function.
Let

y(u) = arg min
y∈dom g

{g(y)− 〈u, y〉},

whenever the minimum occurs in dom g̃. Simple calculation yields

−g∗(u) =

{
(t− u)yc, with y(u) = yc, if t ≤ u < g̃′(yc),

−g̃∗(u), with y(u) = [g′]−1(u), if g̃′(yc) ≤ u ≤ g′(ȳ).
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It follows that dom g∗ ⊂ {u ≥ t}. In other words, we can add the constraint
u ≥ t in the maximization of the Lagrangian dual function.

Finally, g∗(u) is differentiable on the interior of dom g∗ ⊂ {t < u < g′(ȳ)}
and

g′∗(u) = y(u).

Figure 5.4 and Figure 5.5 display the plot of compound functions and their
negative conjugate in the case of Kleinrock and BPR functions, respectively.
Note that the linear function (5.14) is a special case of compound congestion
function without nonlinear part and with yc = c.

y

c

g(y)

yc

1/c t g’(yc)
u

−g*(u)

Figure 5.4: Compound Kleinrock function and its conjugate.

y

g(y)

y c

u

−g*(u)

t g’(yc)

Figure 5.5: Compound BPR function and its conjugate.
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5.5 Active set strategy on compound

functions

In this section, we present a strategy to reduce the space of the Lagrangian
problem when using compound congestion functions.

5.5.1 Motivations

Our interest for the class of compound congestion functions

ga(ya) = max
ya∈dom g̃a

{taya, g̃a(ya)}, a ∈ A,

which were introduced in the previous section, has been triggered by the
observation that multicommodity flow problems with linear congestion functions
and no capacity constraint are extremely easy to solve. Those problems
are separable in the commodities, and for each commodity the minimization
problem boils down to a shortest path calculation. In the case of capacity
constraints on the arcs, we observe in practice that the number of saturated
arcs at the optimum is a small fraction of the total number of arcs. In other
words, for a large majority of arcs, the total flow in the optimal solution is
strictly less than the installed capacity. Consequently, unsaturated capacity
constraints are unnecessary and the associated Lagrangian dual variables are
null at the optimum. If this (large) set of null optimal dual variables were
known in advance, one could perform a partial Lagrangian relaxation restricted
to the saturated arcs. This would considerably reduce the dimension of the
Lagrangian dual and make it much easier to solve. In practice, the set
of saturated arcs at the optimum is not known, but can be dynamically
estimated. A heuristic that dynamically estimates the sets of active and
inactive arcs has proved successful for linear MCF, [13]. It has also been
implemented within the framework of bundle method to solve the Lagrangian
dual [49] by Frangioni and Gallo and in a primal partitioning method [94] by
McBride. Both papers report significant speed-ups.

This procedure can be extended to nonlinear MCF problems with a compound
congestion since, on those arcs where ya < yc

a, the function is linear. We notice
that linear functions are a special case of compound functions in which yc

a is
the capacity. It can be further extended to standard nonlinear MCF problems
if one approximates the objective function by a compound one (see Section
5.6). In that situation, the aim of an active strategy is to take advantage of
low congestion on certain arcs.
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5.5.2 Optimal partition

Consider the first order optimality conditions for the Lagrangian dual problem
(5.2). In full generality, the condition stipulates that u ≥ ul is optimal if there
exists a nonnegative vector τ such that

τ + ∂f1(u) + ∂f2(u) 3 0, (5.21)

〈τ, u− ul〉 = 0, (5.22)

τ ≥ 0, u ≥ ul, (5.23)

where ul = g′+(0). An anti-subgradient of f1 is of the form Mx with x ∈ X ,
while for f2 one can take −y(u). Hence, (5.21) and (5.22) imply

Mx ≤ y(u),

and
(Mx)a < ya(ua) ⇒ ua = ul

a = (ga)
′
+(0). (5.24)

A similar analysis can be performed on the primal side.
Our goal is to use condition (5.24) to find a set A∗1 ⊂ A with the property

that for a optimal primal-dual pair (τ ∗, u∗)

τ ∗a > 0 and u∗a = ul
a, ∀a ∈ A∗1.

If the set A∗1 were known in advance, the variables ua, a ∈ A∗1, could be fixed
to their lower bound ul

a. The original problem (5.2) would then boil down to a
simpler problem in the variables ua, a ∈ A∗2 = A \A∗1. Note that f2a(u

l
a) = 0;

thus, the nonlinear term f2a(ua), a ∈ A∗1, can be removed from this equivalent
formulation. The above reasoning applies to any subset Ã1 ⊂ A∗1 and its
complement Ã2 ⊃ A∗2.

In view of the above partition, we define (5.2) as the partial Lagrangian
problem

max{f(u) | ua = ul
a, a ∈ A∗1; ua ≥ ul

a, a ∈ A∗2}.

5.5.3 Active set strategy

In practice, the partition is not known in advance and the proposed space
reduction technique cannot be straightforwardly implemented. An active set
strategy aims to guess the partition. Let A1 and A2 be the current estimate
of A∗1 and A∗2 with A1 ∪ A2 = A. This partition is used to work in a dual
space of reduced dimension, a powerful gimmick if the cardinality of A∗2 is
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small. How one should build these approximation sets? The danger is to have
an arc that moves from a set to its complement back and forth. We propose
heuristic rules to avoid this bad behavior.

Assumption 4. The iterative procedure has generated Mxi, i = 1, . . . k,
with xi ∈ X and it is always possible to construct flows yk that meet all the
demands.

We also recall that yc is the meeting point between the linear and the
nonlinear part. Assuming we are given a current partition of A = A1 ∪ A2

into an active set and its complement, the rules that move elements between
A1 and A2 are:

• An arc a ∈ A1 such that yk
a > yc

a is moved into the active set A2.

• An arc a ∈ A2 such that yk
a ≤ γyc

a is moved into the non active set A1.

Note that we introduce the parameter γ < 1 to increase the chances that an
arc that is made inactive at some stage will not become active later in the
process. In practice, we get γ = 0.9.

5.5.4 Literature overview

The use of an active set strategy in solving the linear multicommodity flow
problem is not new. It has been implemented within the framework of bundle
method to solve the Lagrangian dual [49] and in a primal partitioning method
[94]. Let us describe shortly these strategies.

In [49], Frangioni and Gallo have implemented a Lagrangean variables
generation strategy to work on a subset of Lagrangean multipliers, i.e., the
active set. Every 10 iterations, the Lagrangean dual problem is solved with all
variables and all inactive variables with a positive ascent direction are added
in the active set. The authors observed that usually the partition keeps stable
after few iterations. They also observed a reduction by up to a factor 5 of
CPU time spent in the computation of the master program even on smaller
instances.

In [94], McBride proposes a basis reduction heuristic to reduce the dimension
of the working inverse in the primal partitioning method EMNET. During
the process the working inverse handles only active constraints and makes
computations on each pivot faster. The active constraints are the constraints
closed to be saturated. A constraint is declared active when it becomes
saturated or close to be saturated. The first set of active constraints is
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initialized applying a resource-directive decomposition heuristic. In the experiments,
the author observed a reduction of the size of the working inverse from 17%
to 70%, and a reduction of the CPU time up to 40%.

We notice that in these implementations, there is no strategy to remove a
dual variable or a constraint from the active set to the inactive set. In other
words, it is not possible to reduce dynamically the working space.

5.6 Approximation scheme

To exploit the active set strategy on nonlinear objective functions, we propose
an approximation scheme that replaces the original nonlinear congestion function
g̃a by a compound one ga. Performing this approximation leads to the situation
described in the previous section and makes the application of the active set
strategy possible. Note that the approximation error is easily controlled by
an appropriate choice of the meeting point yc

a in (5.20). The approximation
error tends to zero when ta ↓ (g̃a)

′
+(0). In Section 5.4, we gave the formula

for the negative conjugate of the compound congestion function. We can also
use this expression to compute the maximal error on the dual side.

Assume that the nonlinear function g̃ is approximate such that

ga(ya) = max
ya∈dom g̃a

{taya, g̃a(ya)}, (5.25)

where ta ≥ g̃a
′
+(0). The linear and the nonlinear parts meet at yc

a. The error
function induced by the linear approximation

ea(ya) = taya − g̃a(ya), ya ∈ [0, yc
a].

Let ŷa ∈ [0, yc
a] be the point that maximizes the error ea. Let A∗1 be the set of

inactive arcs at the optimum. The error due to the approximation is bounded
by
∑

a∈A∗
1
ea(ŷa). We want that this error to be lower than εg̃∗, where ε is

the relative optimality gap and g̃∗ is the unknown optimal objective value.
Furthermore we impose that ea(ŷa) = µ be the same for all a ∈ A∗1. We
estimate µ by

µ =
ε̂g̃∗

|A∗1|
, with ε̂ < ε. (5.26)

Then, we compute ta such that ea(ŷa) = µ. Unfortunately g̃∗ and |A∗1| must
be estimated. In the experiments, we take the parameter ε̂ = 10−6 and |A∗1| =
n/2. The value of g̃∗ is chosen empirically depending on the class of problems.
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In the experiments, we approximate the Kleinrock delay function and
the BPR congestion function by compound functions and use an active set
strategy. The algorithm generates an ε-optimal primal-dual solution (y∗, u∗)
for the compound function. The primal-dual pair can also be used to measure
the relative optimality gap with the original functions g̃ and g̃∗. This gap
depends on the quality of the approximation by the compound function and
thus may be larger than ε.

5.7 Concluding remarks

In this chapter, we have pointed out that the Lagrangian dual problem is a
sum of two functions. The first one is smooth and can be given in closed
form. The second function is nonsmooth and may be described by polyhedral
approximations. In the next chapter, we shall propose an ACCPM implementation
which exploits the second order information of the smooth function.

In the second part of the chapter, we have presented an active set strategy
to reduce the dual working space when using compound congestion functions.
In practice, this strategy appears to be significantly efficient (see chapters on
experiments).

Finally, we have proposed a approximation scheme motivated by compound
functions in order to apply active set strategy on nonlinear functions. The
present study suggests that possible further improvements could be achieved
using the approximation/active set approach with a different linearization
scheme for the cost function. Conceptually, this linearization could be performed
around points that are dynamically chosen to lead more efficient approximations.
This will be the object of further researches.
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Chapter 6

Constrained analytic center
cutting plane method

Contents
6.1 Cutting plane method . . . . . . . . . . . . . . . . . . 86

6.2 Inner iterations . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Newton’s method . . . . . . . . . . . . . . . . . . . . 96

6.4 Advanced topics . . . . . . . . . . . . . . . . . . . . . 104

6.5 Implementation details . . . . . . . . . . . . . . . . . 111

In this chapter, we present the analytic center cutting plane method, in
short ACCPM, and some recent enhancements that include a proximal term
and a logarithmic barrier on the epigraph of the smooth component of the
objective function.

ACCPM is convenient to handle a class of convex optimization problems
in which the information pertaining to the function to be minimized and/or
to the feasible set takes the form of an outer linear approximation revealed by
an oracle. By oracle, we mean a black-box scheme that returns appropriate
information on the problem at so-called query points. Traditionally, the
cutting plane method builds iteratively a polyhedral approximation of the
problem, called localization set. The approximation is improved until a optimal
solution is found. A main issue is to decide where to query the oracle in order
to improve a current polyhedral approximation. ACCPM selects the analytic
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center of the interior of this localization set, that is, the point that minimizes
the logarithmic barrier function on that set, augmented with a proximal term.
This choice is efficient since it usually requires relatively few query points to
achieve an accurate approximation of an optimal solution.

The new approach also exploits the property that the objective function
may have a smooth component with second order derivatives readily available
in closed form. We use in the definition of the localization set a direct
representation of the epigraph of the smooth component as a fixed nonlinear
constraint. Then this fixed constraint is endowed with a self-concordant
augmented barrier in the computation of the analytic center. This approach
is similar to [100] but our implementation does not use the embedding into a
projective space.

The chapter is organized as follows. The first section describes the general
cutting plane approach. In the second section, the focus is on the computation
of the analytic centers while, in the third one, we present the Newton method
used to compute the analytic centers. Section four introduces some advance
technic implementations that make ACCPM more efficient. Finally, the last
section is devoted to implementation details.

6.1 Cutting plane method

We consider the general problem of the form

min{f(u) = f1(u) + f2(u) | u ∈ U1 ∩ U2}, (6.1)

in which Ui ⊂ Rm, i = 1, 2, f1 : Rm → R is a convex nonsmooth function
and f2 : Rm → R is a convex self-concordant function. We further assume
that U2 is endowed with a self-concordant barrier. We shall consider two main
possibilities for U2. Either U2 = Rm, or,

U2 = {u | gi(u) ≤ 0, i = 1, . . . , r}.

In general, U2 includes simple box constraints βl ≤ u ≤ βu or a ball constraint
||u− uc|| ≤ 0.

Finally, the nonsmooth function f1 often is the positively weighted sum of
p nonsmooth functions

f1(u) =

p∑
i=1

πif1i(u). (6.2)

This property can be exploited in the solution method.
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6.1.1 First and second order oracles

We assume that f1 and U1 are revealed by a first order oracle, while f2 is
accessed through a second-order oracle.

Definition 5. A first-order oracle for problem (6.1) is a black box procedure
with the following property. When queried at ū, the oracle returns 1 or 2.

1. ū 6∈ U1 and (a, γ) is such that aT u− γ ≤ 0,∀u ∈ U1 (feasibility cut). In
that case, we set f1(u) = +∞.

2. ū ∈ U1 and (a, γ) is such that aT u−γ ≤ f1(u),∀u ∈ U1 (optimality cut).

Note that, in general, parameters defining the optimality cut are such that
a ∈ ∂f1(ū) and γ = aT ū− f1(ū). But this is not necessarily so. The cut may
have no intersection with the epigraph set (i.e., may be situated strictly below
that set).

Definition 6. A second-order oracle for problem (6.1) is a black-box procedure
with the following property. When queried at ū, the oracle returns the function
value and the first and second derivatives of f2(u) at u = ū.

In Definition 5, we assume that the first order oracle returns only one
cutting plane when queried to a given point ū. This assumption is too
restrictive. The first order oracle may produce multiple feasibility or optimality
cuts. We distinguish the two main situations:

• Consider the following feasible set

U1 = {u | hi(u) ≤ 0, i = 1, . . . , k}.

It is easy to see that the query point ū can violate few constraints hi.
Thus, the oracle may compute multiple feasibility cuts, i.e., as many as
the number of violated constraints.

• Assume now that the objective function f1 is defined by (6.2). In
that situation, the first order oracle may exploit the disaggregation of
the objective function and returns p optimality cuts, i.e., one for each
component f1i. This oracle is conveniently named disaggregate oracle.
In contrast, the standard oracle which returns only one optimality cut
will be named aggregate oracle.
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6.1.2 The localization set

Let z and ζ be the epigraph variables associated, respectively, to the epigraph
of f1 and f2. The epigraph of the function f is the set defined by

{(u, z, ζ) | πT z ≥ f1(u), ζ ≥ f2(u)}.

Using this property, problem (6.1) can also be written as

min πT z + ζ (6.3a)

f1i(u)− zi ≤ 0, i = 1, . . . , p, (6.3b)

f2(u)− ζ ≤ 0, (6.3c)

u ∈ U1 ∩ U2. (6.3d)

The first order oracle is used to build a polyhedral approximation of the
epigraph of f1. Suppose the oracle has been queried at ui, i = 1, . . . , k, and
has returned n feasibility and/or optimality cuts associated with those points.
The corresponding inequalities, called cutting planes, are collected in

AT u− ET z ≤ Γ.

In that definition, the subgradients a of the function f1 form the matrix A,
the constants γ are collected in the vector Γ, while E is a binary matrix
that is constructed as follows. If the objective f1 is treated in an aggregate
mode, then E is a binary row vector. An entry one in E indicates that the z
variable is present in the cut, implying that the cut is an optimality cut. In
contrast, a zero indicates that the cut is a feasibility cut. If the objective f1 is
disaggregated into p components, E is a matrix of the form

E =


1 . . . 1 0 · · · 0 0 · · · 0

0 1 . . . 1 · · · 0
...

. . .
...

...
...

. . .
...

...
. . .

...
0 0 · · · 1 . . . 1 0 · · · 0

 .

A row i of E corresponds to a variable zi and each column corresponds to
a cut. An entry one in row i and column j indicates that the cut j is an
optimality cut for f1i(u). If column j is a null vector, then cut j is a feasibility
cut.

Let θ̄ be the best recorded value such that

θ̄ = min
i≤k
{f1(u

i) + f2(u
i)}, (6.4)
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we can defined the so-called hat cut

πT z + ζ ≤ θ̄. (6.5)

In view of the above definitions, we can define the localization set Lk as

Lk =
{
(u, z, ζ) | AT u− ET z ≤ Γ, f2(u) ≤ ζ, πT z + ζ ≤ θ̄, u ∈ U2

}
, (6.6)

which is a subset of an outer approximation of the epigraph of f that contains
all optimal pairs (u∗, f(u∗)).

Assumption 5. The set of localization Lk has a non-empty interior.

Remark 8. Assumption 5 is met if {dom f1 ∪ dom f2 ∪ U2} 6= ∅ and θ̄ ≥ θ∗.
The first condition holds in general. To enforce the second condition, we
replace θ̄ by θ̄ + ν, where ν is a small fraction of the optimality tolerance ε.

6.1.3 Bounds on the objective function

In this subsection, we introduce the upper and lower bounds for the objective
function. These bounds permits a measure of progress to optimality.

Upper bound

By duality, any feasible solution of (6.1) provides a upper bound. Taking the
values returned by the two oracles at the successive query points, we obtain
the upper bound

θ̄ = min
i≤k
{f1(u

i) + f2(u
i)}. (6.7)

Lower bound

We now explain a way to generate a lower bound. The first step in the
derivation of the lower bound consists in introducing the perturbed function
f(u) − rT u, where r is a vector to be specified later. The second step is to
replace the non-smooth function f1(u) by its current polyhedral approximation.
This is done by replacing f1(u) by πT z under the constraints AT u−ET z ≤ Γ.
We have thus the bounding inequality

f(u)− rT u ≥ min
u,z
{πT z + f2(u)− rT u | AT u− ET z ≤ Γ}.
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In view of the convexity of f2, we may write

f(u)− rT u ≥ f2(u
c)− f ′2(u

c)T uc +

min
u,z
{πT z + f ′2(u

c)u− rT u | AT u− ET z ≤ Γ},

where uc is a point of choice (e.g., an approximate analytic center). By duality
we obtain

f(u)− rT u ≥ f2(u
c)− f ′2(u

c)T uc +

min
u,z

max
x≥0
{(f ′2(uc) + Ax)T u + (π − Ex)T z − ΓT x− rT u},

= f2(u
c)− f ′2(u

c)T uc + max
x≥0
{ − ΓT x

+ min
u,z

[
(f ′2(u

c) + Ax− r)T u + (π − Ex)T z
]}

. (6.8)

If x ≥ 0 is such that
Ex = π, (6.9)

and
r = f ′2(u

c) + Ax, (6.10)

then the min operand is null and

f(u) ≥ f2(u
c)− f ′2(u

c)T uc + rT u− ΓT x.

Some methods, such as Kelley’s method, the bundle method or the subgradient
methods, are known to generate a x satisfying (6.9) and (6.10) in their process.
It is also the case for ACCPM at the end of the iterations that compute the
proximal analytic center. One may also expect r to be small. We obtain the
bound for the optimal objective function value by

f(u∗) ≥ f2(u
c)− f ′2(u

c)T uc − ΓT xc + rT u∗,

≥ f2(u
c)− f ′2(u

c)T uc − ΓT xc + rT (u∗ − uc) + rT uc,

≥ f2(u
c)− f ′2(u

c)T uc + rT uc − ΓT xc − ||r||δ. (6.11)

The last inequality follows from Cauchy-Schwartz and δ ≥ ||u∗ − uc|| is an
upper bound on the distance of the current point uc to the optimal set.
Finding a good value for δ cannot be done on theoretical grounds. It is
essentially problem dependent. In practice, we obtained good results by taking
the “empirical” value δ = 5× ||uc − ū||.
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If the variable u is constrained to be nonnegative in (6.1), we can further
improve the computation of the lower bound by taking r = −min{0, f ′2(uc) +
Axc}, where the min operand is taken component-wise. In that case, the
coefficient of u in the inner minimization is always nonnegative and (f ′2(u

c) +
Ax−r)T u = 0 at the solution of (6.8). This remark is particularly useful when
r = 0. Then we obtain the exact lower bound f2(u

c)− f ′2(u
c)T uc − ΓT xc.

Remark 9. The above analysis shows that one may expect primal feasible
solution and exact lower bound for MCF problem, when r = 0, but it does
not provide convergence theoretical proof. Nevertheless, in practice we always
observe both r = 0 after a few iterations and convergence of the lower bound
to the optimal solution.

6.1.4 Termination criterion

The standard termination criterion is a small enough relative optimality gap

(θ̄ − θ)/max(θ, 1) ≤ ε, (6.12)

where θ̄ and θ are respectively the best computed upper and lower bounds for
the objective function f . In our experiments we use ε = 10−5.

6.1.5 The algorithm

In the proposed version of ACCPM, the query point is an approximate proximal
analytic center of the localization set defined as the intersection of cutting
planes and a fixed cutting surface. For the sake of clarity, we sketch the basic
step, or outer iteration, of a generic cutting plane method.
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6. Constrained analytic center cutting plane method

Algorithm 8: Outer iteration of constrained ACCPM

1. Select a query point in the localization set (Inner iteration).

2. Send the query point to the first order oracle and get back
optimality/feasible cuts.

3. Send the query point to the second order oracle to compute the
objective function f2.

4. Update the lower and upper bounds and the localization set.

5. Test termination.

6.2 Inner iterations

It is well-known that efficient methods for non differentiable convex optimization
rely on some regularization scheme to select the query point. We discuss here
such a scheme; it is based on the concept of proximal analytic center which
is defined as the unique minimizer of a weighted logarithmic barrier for the
localization set, augmented with a proximal term.

6.2.1 Barrier for the localization set

We associate with constraints of the localization set a standard weighted
logarithmic barrier. We have

F (s̄) = −w0 log s0 −
n∑

i=1

wi log si − log σ, (6.13)

where s̄ = (s0, s, σ) > 0 is defined by

s0 = θ̄ − (πT z + ζ),

si = Γi − (AT u− ET z)i, i = {1, . . . , n},
σ = ζ − f2(u).

We also assume that the set U2 is endowed with a self-concordant barrier
H(u). In most applications the set U2 is defined by simple constraints. In this
work we consider the two main situations:
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Ball constraint This constraint restricts the points to be in a ball of radius
R centered at ur. The barrier

H(u) = − log(R2 − ||u− ur||2),

is self-concordant with self-concordant parameter ν = 1.

Box constraints The simple box constraints take the form βl ≤ u ≤ βu.
The associated barrier is

H(u) = −
m∑

i=1

(log(u− βl)i + log(βu − u)i).

6.2.2 Proximal term

The barrier function is augmented with a proximal term to yield the augmented
barrier

1

2
(u− ū)T Q(u− ū) + F (s̄) + H(u),

where Q is a positive definite matrix. In practice, we get Q = ρI. The
proximal reference point ū and the proximal coefficient ρ are arbitrary. In
practice, the initial proximal reference point ū is the first query point. Thereafter,
ū is chosen to be the query point that achieves the best recorded value θ̄, i.e.,

ū = arg min
i≤k
{f1(u

i) + f2(u
i)}.

6.2.3 Proximal analytic centers

The proximal analytic center method defines the next query point to be the
u component of the solution (u, z, ζ) to the minimization problem

min
ρ

2
||u− ū||2 − w0 log s0 −

n∑
i=1

wi log si − log σ + H(u) (6.14a)

s0 = θ̄ − (πT z + ζ) ≥ 0, (6.14b)

si = Γi − (AT u− ET z)i, i = {1, . . . , n}, (6.14c)

σ = ζ − f2(u) ≥ 0. (6.14d)

Theorem 4. Under Assumption 5, problem (6.14) achieves its minimum
value at a unique point.
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Proof. Let (u, z, ζ) belong to the interior of localization set Lk; thus s̄ =
(s0, s > 0, σ) > 0. In view of the simple inequality − log x ≥ 1− x, we have

F (s̄) ≥ −wmaxs0 −
n∑

i=1

wmaxsi − wmaxσ + 2wmax + n
n∑

i=1

wmax,

with wmax = max(w0, w1, . . . , wn, 1). Since s0 ≥ 0 and σ ≥ 0 and in view of
the convexity of f2, we have

s0 +
n∑

i=1

si + σ ≤
n∑

i=1

(s0 + si + σ),

≤ nθ̄ +
n∑

i=1

(Γi − (Ai)
T u)− nf2(u),

≤ nθ̄ +
n∑

i=1

(Γi − (Ai)
T u)− n(f2(û) + f ′2(û)T (u− û)).

Finally, by convexity of H(u), we have

ρ

2
||u− ū||2 + H(u) ≥ ρ

2
||u− ū||2 + H(û) + H ′(û)T (u− û).

It follows that the objective of (6.14) is bounded from below on its feasible
set by a strongly quadratic convex function. This bounding quadratic function
has bounded level sets. Thus, the projection of a level set of (6.14) on u, which
is contained in some level set of the bounding function, is also bounded. We
can easily show that (6.14b)–(6.14d) imply that z and ζ are also bounded from
below and above on the level set of (6.14). Therefore, problem (6.14) achieves
its minimum, and by strict convexity, this minimum is unique.

6.2.4 First order optimality conditions

The first order optimality conditions for problem (6.14) are

ρ(u− u) + Aws−1 + f ′2(u)σ−1 + H ′(u) = 0, (6.15a)

−ET ws−1 + w0π
T s−1

0 = 0, (6.15b)

w0s
−1
0 − σ−1 = 0, (6.15c)

s− Γ− ET z + AT u = 0, (6.15d)

s0 − θ̄ + πT z + ζ = 0, (6.15e)

σ − ζ + f2(u) = 0. (6.15f)
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It is possible to interpret x0 = w0s
−1
0 , xi = wis

−1
i , i = 1, . . . n, and ξ = σ−1

as “primal” variables. We then have the complementary condition xs = w
and ξσ = 1. The vector x = ws−1 is used in (6.11) to derive a lower bound
for the optimal solution.

To write the generalized analytic center problem in a more condensed
format, we introduce the variable v = (u, z, ζ) and collect all the constraints
(6.14b)-(6.14d) into h(v) ≤ 0. We find it convenient to formulate the constraints
as

h(v) + s̄ = 0, s̄ = (s0, s1, · · · , sn, σ) ≥ 0.

Finally, writing

K(u) =
1

2
(u− ū)T Q(u− ū) + H(u),

we formulate the generalized analytic center problem as

vc = (uc, zc, ζc) = arg min
v,s
{K(u) + F (s̄) | h(v) + s̄ = 0, s̄ > 0}. (6.16)

6.2.5 Damped Newton step

The algorithm that computes the analytic center is a damped Newton method
applied to (6.15). At each inner iteration, the method computes a Newton
direction (du, dz, dζ, ds, ds0, dσ). The method is described in the next section.
Since (6.15f) is nonlinear, a full Newton step does not yield a feasible point
with respect to (6.15f). Thus, we use the following empirical rule to compute
the step length αstep. Let 0 < γ < 1 be a fixed parameter and

αmax = max{α | s0 + αds0 > 0, s + αds > 0, σ + αdσ > 0, u ∈ U2},

the step length is
αstep = min(1, γαmax). (6.17)

6.2.6 The algorithm

To summarize, a basic step of the Newton iteration, or inner iteration, is
described by Algorithm 9.

Remark 10. The computation in the inner iteration uses second order derivatives
of f2. Since the derivatives change at each iteration, the inner iteration must
have access to the second order oracle. In pure cutting plane methods, the
inner iteration does not interact with the oracle.
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Algorithm 9: Inner iteration of Newton’s method

1. Send the current point to the second order oracle to compute the
objective function f2 and its first and second derivatives.

2. Compute the Newton step (du, dz, dζ, ds, ds0, dσ) by (6.23).

3. Compute a step length by (6.17) to update (u, z, ζ, s, s0, σ).

4. Test termination.

6.3 Newton’s method

In this section, we use the following notation. Given a vector s > 0, S is the
diagonal matrix whose main diagonal is s. We also use s−1 = S−1e to denote
the vector whose coordinates are the inverse of the coordinates of s. Similarly,
s−2 = S−2e.

6.3.1 Definition

The aim is to minimize G(v) = K(u) + F (−h(v)) where v = (u, z, ζ). The
method of choice is Newton’s method. Let us first briefly review the case of a
feasible Newton method. The Newton direction is

dv = −[G′′(v)]−1G′(v).

The variant of Newton’s method for computing the proximal generalized analytic
center consists in taking damped steps to preserve feasibility of u, z and ζ.
The aim is to achieve a sufficient decrease of G, until the area of quadratic
convergence is hit. From then on, the method takes full Newton steps, with no
line-search. We recall that the sufficient condition for guaranteed quadratic
convergence is

〈[G′′(v)]−1G′(v), G′(v)〉 = 〈−dv, G′(v)〉 < 1. (6.18)

The left-hand side of the inequality is a proximity measure. When the proximity
is below the unit threshold, then the point v +dv is feasible and quadratically
closer to the generalized analytic center (smaller proximity measure). The
stopping criterion is a threshold value η < 1 on the proximity. To enforce this
proximity at v + dv, it suffices that the proximity at v be less than

√
η.
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The stopping criterion (6.18) does not imply that G′(v) = 0, but most
likely G′(v) will be close to zero and G′(v + dv) even closer.

6.3.2 Infeasible start

Problem (6.16) raises the issue of feasibility. In cutting plane schemes, the
new constraints exclude the current iterate from the new localization set.
There is no direct way to retrieve feasibility if the cuts are deep. We propose
an infeasible start Newton method, which aims to achieve feasibility and
optimality simultaneously.

Let us explicit the first and second derivatives.

G′(v) = K ′(u)− ∂h

∂v
F ′(−h(v)),

G′′(v) = K ′′(u) +
∂h

∂v
F ′′(−h(v))

∂h

∂v

T

.

Using the intermediate slack variable s̄ = (s0, s, σ), we obtain for the first
optimality conditions for (6.16)

K ′(u)− ∂h

∂v
F ′(s̄) = 0,

h(v) + s̄ = 0.

In the course of the optimization process, those equations are never satisfied.
However, we assume that s̄ > 0, and we introduce the residual r and write

K ′(u)− ∂h

∂v
F ′(s̄) = rd, (6.19)

h(v) + s̄ = rp. (6.20)

The Newton direction in the (dv, ds̄) space with ds̄ = (ds0, ds, dσ) is given by

K ′′(u)du −∂h

∂v
F ′′(s̄)ds̄ = −rd, (6.21)

∂h

∂v

T

dv +ds̄ = −rp. (6.22)

6.3.3 Newton’s direction

Prior to discussing ways of solving (6.21)-(6.22), we explicit the components
in the equations (6.19) to (6.22). We have

K ′(u) =

Q(u− ū) + H ′(u) + f ′2(u)
0
0

 ,
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K ′′(u) =

Q + H ′′(u) + f ′′2 (u) 0 0
0 0 0
0 0 0

 ,

and

∂h

∂v
=

 0 A f ′2(u)
π −E 0
−1 0 1

 .

Finally we have
F ′(s̄) = w̄s̄−1,

with w̄ = (w0, w, ω), and
F ′′(s) = W̄ S̄−2.

The algorithm that computes the analytic center is a damped Newton
method applied to (6.15). To write down the formulae, we introduce the
residuals

ru = −(ρ(u− u) + Aws−1 + f ′2(u)σ−1 + H ′(u)),

rz = −(−ET ws−1 + w0π
T s−1

0 ),

rζ = −(w0s
−1
0 − σ−1),

rs = −(s− Γ− ET z + AT u),

rs0 = −(s0 − θ̄ + πT z + ζ),

rσ = −(σ − ζ + f2(u)).

Let rv = (ru, rz, rζ , rs, rs0 , rσ), the Newton direction dv = (du, dz, dζ, ds, ds0, dσ)
associated to (6.15) is given by

Ndv = rv, (6.23)

with

N =


∆ 0 0 −AΛ 0 −f ′2(u)σ−2

0 0 0 ET Λ −πw0s
−2
0 0

0 0 0 0 −w0s
−2
0 σ−2

AT −ET 0 I 0 0
0 πT 1 0 1 0

f ′2(u)T 0 −1 0 0 1

 ,

where
Λ = WS−2,

and
∆ = ρI + f2(u)′′σ−1 + H ′′(u).
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C =

m p 1

m

p

1

Figure 6.1: Structure of C when p ≤ m.

6.3.4 Solving the Newton system

After pivoting on the SE diagonal block of the matrix, we obtain the equivalent
system:

C

du
dz
dζ

=

ru + AΛrs + σ−2f ′2(u)rσ

rz − EΛrs + πw0s
−2
0 rs0

rζ + w0s
−2
0 rs0 − σ−2rσ

 , (6.24)

where

C =

 M −AΛET −σ−2f ′2(u)
−EΛAT EΛET + πw0s

−2
0 πT πw0s

−2
0

−σ−2f ′2(u)T πT w0s
−2
0 w0s

−2
0 + σ−2

 , (6.25)

and
M = ∆ + AΛAT + σ−2f ′2(u)f ′2(u)T .

In the ACCPM computations, most of the time is spent in solving (6.24)
and thus (6.23). It is then essential to exploit the structure of the problem
(6.24) to implement efficient strategies. We propose alternative ways to solve
(6.24), according to the relative dimensions n, and m of the variables, respectively,
s and u. The block structure of the matrix C in (6.24) is displayed on Figure
6.1. We distinguish the two following ways to solve (6.24).

Case 1: n ≤ m
When the number of generated cuts n is smaller than the dimension of the

problem m, we suggest pivoting on M to solve (6.24). We obtain the following
equivalent system
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(
T R
RT W

)(
dz
dζ

)
=

(
ϕz

ϕζ

)
, (6.26)

with

T = EΛET + w0s
−2
0 ππT − EΛAT M−1AΛET ,

R = w0s
−2
0 π − EΛAT M−1σ−2f ′2(u),

W = w0s
−2
0 σ−2 + σ−2 − f ′2(u)T M−1σ−2f ′2(u),

ϕz = rz − EΛrs + w0s
−2
0 rs0π + EΛAT M−1(ru + AΛrs + σ−2rσf

′
2(u)),

ϕζ = rζ + w0s
−2
0 rs0 − σ−2rσ + σ−2f ′2(u)T M−1(ru + AΛrs + σ−2rσf

′
2(u)).

To compute the inverse M−1, we use the Shermann-Morrison formula.
Indeed, the matrix

B = AΛ
1
2 +

1

2
σ−1f ′2(u),

has fewer columns than rows and we may write

M−1 = ∆−1 −∆−1B(I + BT ∆−1B)−1BT ∆−1.

The inner matrix (I + BT ∆−1B) has dimension n× n which is quite smaller
than the dimension of M .

Assuming that the inverse of ∆ is easy to compute, the complexity of
the strategy, due to the computation of BT ∆−1B in the Shermann-Morrison
formula, is O(mn2) flops. Other computations are matrix-vector products.
We will see later that the computation of ∆−1 is not expensive.

Case 1: n ≥ m
When the number of generated cuts n is large, the matrix C still has the

structure given in Figure 6.1, but the strategy proposed in the previous case
is not more advantageous. Then, we propose to solve (6.24) by factoring the
matrix directly, without any preliminary block pivot. In that situation, the
complexity, due to the computation of M , is O(m2n) flops.

Ball and box constraints

To compute efficiently the inverse of M in the Shermann-Morrison formula,
the inverse of ∆ has to be easy to perform. We recall that the matrix ∆
is the sum of two components. The first one, ρI + f2(u)′′σ−1, is a simple
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diagonal matrix, and the second one, H ′′(u), is the second derivative of the
barrier function H(u). Thus, the inversion difficulty depends directly on the
structure of H.

Let us consider first the standard box constraints βl ≤ u ≤ βu. Let

H(u) = −
m∑

i=1

log(βu − u)i −
m∑

i=1

log(u− βl)i.

The Hessian of the barrier is a diagonal matrix. The i-th entry on the diagonal
is

H ′′
ii(u) =

1

(βu − u)2
i

+
1

(u− βl)2
i

.

The barrier function associated with the ball constraints ||u − ur|| ≤ R
takes the form H(u) = − log(R2−||u−ur||2) be the associated self-concordant
barrier. Then

H ′′(u) =
4

(R2 − ||u− ur||2)2

(
R2 − ||u− ur||2

2
I + uuT

)
.

In that case, we note that H ′′(u) is the sum of a diagonal matrix and a matrix
with a rank one correction. Thus, it is worth pointing out that the inverse of
ρI + f2(u)′′σ−1 + H ′′(u) is easily computed in both cases.

6.3.5 Stopping criterion

Let g(x) be a self-concordant function with bounded level sets. Then it
is well-known [98] that the Newton method converges quadratically in the
neighborhood {

x | 〈−[g′′(x)]−1g′(x), g′(x)〉 ≤ η <
3−
√

5

2

}
, (6.27)

and that a damped Newton method converges to that neighborhood in a
number of iterations that is polynomial.

Nevertheless, since it is not essential in our solution method to compute an
exact analytic center, we use the termination criteria η = 0.99 that is looser
than (6.27). The solution is then a η-approximate analytic center.
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6.3.6 Convergence of the inner iterations

In this section, we first recall the main theoretical convergence results of
Newton’s method to compute the analytic centers in general cutting plane
frameworks. We do not provide extensions of these results to the proposed
Constrained ACCPM that includes a proximal term and a second order oracle.
Nevertheless, in the next part we show that the objective function (6.14a) to
be minimized is a self-concordant function in MCF context (see the proof in
appendix A). Thus, we can apply useful properties of self-concordant functions
to reach conclusion of convergence for the Newton method.

Convergence results for the computation of analytic centers

In [59], the authors give results of convergence for a method with linear cuts
and box constraints in the framework of feasibility problems. The analytic
center is computed as the unique solution of the minimization problem

min{−
m∑

i=1

log si | AT u + s ≤ Γ, s > 0}.

Let η be a centering parameter. The number of damped Newton steps to
generate a η-approximation analytic center is bounded by g(η)

η−log(1+η)
, with

g(η) = −(1− η)()σ1 + σ2) + log
(1 + σ2)σ2

(1− σ1)σ1

,

where

σ1 =
−(1 + η) +

√
(1− η)2 + 4

2(1− η)
,

and

σ2 =
1 + η +

√
(1− η)2 + 4

2(1− η)
.

Convergence of Newton’s method has been also analyzed, in [101], for a
homogeneous version of the analytic center cutting plane method. In this
version, the original problem is embedded in a projective space, i.e., in a cone
K, and a quadratic term is introduced to penalize query points with too large
norm. Finally, the set K is assumed to be equipped with ν-normal barrier H.
The analytic center is then the unique solution of the minimization problem

min{1
2
||u||2 + H(u)−

m∑
i=1

log〈f(ui), ui − u〉}.
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The authors show that O(1) damped Newton steps followed by O(ln ln(1/η))
full Newton steps generate a η-approximation analytic center. The damped
steps are performed to retrieve feasibility.

Minimization of self-concordant functions

Let us consider the general problem:

min{g(x) | x ∈ dom g}, (6.28)

where g is a self concordant function on dom g. Let denote

λg(x) = 〈−[g′′(x)]−1g′(x), g′(x)〉,

the local norm of the gradient g′(x). The next theorem provides a sufficient
condition to establish that a solution to (6.28) exists and is unique.

Theorem 5. (Theorem 4.1.11 of [98])
Let λg(x) < 1 for some x ∈ dom g. Then the solution x∗g of problem (6.28)
exists and is unique.

Theorem 6. (Theorem 4.1.14 of [98])
Let λg(x) < 1 for some x ∈ dom g. Then the point x+ = x − [g′′(x)]−1g′(x)
belongs to dom g. Moreover,

λg(x
+) ≤

(
λg(x)

1− λg(x)

)2

. (6.29)

Theorem 7. (Theorem 4.1.12 of [98])
Let x ∈ dom g and x+ = x− 1

1+λg(x)
[g′′(x)]−1g′(x). We have

f(x+) ≤ f(x)− ω(λg(x)).

The condition of Theorem 6 defines the region of quadratic convergence
of standard Newton’s method. By solving the inequality (6.29) we get that

this region is defined by λg(x) ≤ 3−
√

5
2

. From Theorem 7, damped Newton
steps ensure fix decreases of the function to reach this region. Thus, Newton’s
method applied to an unconstrained minimization of a self concordant function
is globally convergent and quadratically convergent in the region defined by
λg(x) ≤ 3−

√
5

2
.

Note that the previous development is relevant only with feasible starting
point. In cutting plane schemes, the new constraints may exclude the current
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6. Constrained analytic center cutting plane method

iterate from the new localization set and there is no direct way to retrieve
feasibility if the cuts are deep. Thus, convergence of the infeasible Newton
method is not straightforward. Nevertheless, in practice our method always
retrieves feasibility. Assuming such a behavior and since the objective function
is self-concordant in the multicommodity flow context (see the proof in appendix
A), we conclude that the Newton method converges to a unique solution in
the present situation.

6.4 Advanced topics

In this section, we present some advanced topics that have been implemented
into ACCPM during the thesis. Some of these topics appears to be useful to
make ACCPM more efficient on the multicommodity flow problems.

6.4.1 Acceleration techniques

It is well-known that column generation techniques are adversely affected
by the total number of generated columns. This is particularly true with
ACCPM, since the Newton iterations in the computation of the analytic
center have a complexity that is roughly proportional to the square of the
number of generated cuts. It is thus natural to try to reduce the total number
of columns by filtering identical columns or by eliminating or aggregating
irrelevant elements.

Filter cut

The first order oracle may return similar cuts during the process. Since
redundant cuts have a direct influence on the computation of the new query
point, there is no reason to eliminate them. The idea of the filter cut approach
consists in keeping only one copy of identical cuts and augmenting, in (6.14),
the weight w on the logarithmic barrier associated to this cut. Thus, the
weight wi associated to a cutting plane Γi − (AT u − ET z)i is equal to the
number of identical cuts returned by the oracle. Note that this approach has
no influence on the analytic center. It reduces the amount of required memory
and the complexity in the computation of the analytic centers.

Let us now discuss the way to detect identical cuts. One possibility is to
compare, component by component, each new cut with the pool of generated
columns in the previous iterations. When the number of columns is large, this
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comparison requires costly computation. Instead we propose to use a hash
table to assign a signature to each cut. Since identical cuts get a same value
signature, it makes the detection of redundant columns undemanding.

Column elimination

The accumulation of cuts has a strong negative effect on the computational
effort involved in interior point iterations. It seems that cuts that are far away
from the current query points are likely to be good candidates for elimination.

The selection criterion for the elimination is based on that idea that constraints
that are “far away” are not likely to be useful in the search for a solution, nor
to play a significant role in the definition of the analytic center.

The distances between the analytic center and the cutting planes are given
by the variables s. If si is much larger than the average of s, then column i
contributes little to the solution (dually, the distance si between the analytic
center and the cut is high). Such column is a good candidate for elimination.
To make the elimination test robust, we use the median of s and eliminate the
columns whose coefficient si is less than 1/κ times the median. In practice,
we choose κ = 4. We also perform the test once every τ iterations. A good
value, is τ = 20.

Column aggregation

An alternative strategy to the elimination, consists in aggregating the less
interesting cuts into one surrogate cut. The aggregation weights are the inverse
of the current slacks. At each inner iteration, one can check whether one of
the aggregated cut becomes active. If so, the culprit is expelled from the
aggregated bundle and the search for the analytic center is pursued.

The selection criterion to the aggregation is the one discussed in the
previous part (Column elimination). The idea of the column aggregation is to
represent the unimportant constraints, say J1, by a single constraint to reduce
computation. The cuts in J1 are not eliminated.

Assume (uc, zc) is the analytic center of the current localization set, and
let sc = Γ − AT uc + ET zc be the associated slack variables. For the sake of
simplicity, we assume that the analytic center is exact, so that xcsc = w. Let
J1∪J2 = {1, . . . , n} be a partition of the set of constraints between important
and unimportant constraints.

The aggregation process consists in taking a positive linear combination of
the constraints in J1. The weights are derived from the distance of the cuts
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to the current analytic center. The aggregate cut is

AT
r u− ET

r z ≤ Γr,

with
Ar = AJ1x

c
J1

= AJ1WJ1(s
c
J1

)−1,

Er = EJ1WJ1(s
c
J1

)−1,

Γr = ΓT
J1

(wJ1(s
c
J1

)−1).

6.4.2 Implementation of active set strategies

We now investigate the possibility of fixing variables to given values between
two outer iterations of ACCPM. This module is useful in the implementation
of the active set strategy introduced in the previous chapter. Let us show now
the influence of such module in the definition of the localization set and in the
computation of the analytic center.

Let J1 ∪ J2 = {1, . . . ,m} be a partition of the set of variables. Then the
cutting planes that support the function f1 can be written as

AT
J1

uJ1 + AT
J2

uJ2 − ET z ≤ Γ. (6.30)

Assuming that the optimal values of variables uJ1 ∈ U2 are known and fixed.
Then the analytic center is computed in the new localization set,

Lk =
{
(u, z, ζ) | AT

J2
uJ2 − ET z ≤ ΓJ2 , f2(u) ≤ ζ, πT z + ζ ≤ θ̄, uJ2 ∈ U2

}
,

where
ΓJ2 = Γ− AT

J1
uJ1 .

Thus the analytic center method defines the next query point to be the u
component of the solution (u, z, ζ) to the minimization problem

min
ρ

2
||uJ2 − ūJ2||2 − w0 log s0 −

n∑
i=1

wi log si − log σ + H(uJ2)

s0 = θ̄ − (πT z + ζ), (6.31a)

s = ΓJ2 − AT
J2

uJ2 + ET z, (6.31b)

σ = ζ − f2(u). (6.31c)

Note that to make this module functional, the first order oracle has to get
back to ACCPM the indexes and the values of fixed variables. In the pure
cutting plane scheme, the oracle has not this practicality.
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6.4.3 Fuzzy oracles

Following our convention, we consider, in this subsection, the case of a convex
function f(u) to be minimized without smooth component. We also assume
that the first order oracle is in an aggregate mode.

It is sometimes the case that the first order oracle for f(u) is imprecise. At
a query point uk, the oracle produces ε-subgradient defining a cutting plane
such as

f(u) ≥ fk + aT (u− uk), ∀u ∈ U, (6.32)

where
fk = f(uk)− ε.

This situation is displayed on Figure 6.2. Such a oracle usually results of a
description of a function which is the maximum of a known collection of linear
forms. Taking the maximum may be NP hard. Then, the optimization process
may not have been carried to its end and the computed objective value may
be a strict lower bound for the true value f(u).

The vector a is not a subgradient, but the set{
(u, z) | aT u + (fk − aT uk) ≤ z

}
,

contains the epigraph of f ; it is thus a valid cutting plane in a polyhedral
description of f . To emphasize the fact that the cut is not connected to a
correct value, we simply note it as

aT u− z ≤ γ,

with γ = aT uk − fk. This cut is loose, by opposition with a tight cut, that
would pass through the point (uk, f(uk)).

The information delivered by a loose cut is less accurate that the one
delivered by a tight one, but it is still a valid one. This cut can be incorporated
into the definition of the localization (6.6) without contradiction. The problem
with a loose oracle lies in the definition of a valid upper bound θ̄, a notion that
is essential in the definition of the localization set for ACCPM. Indeed, this set
is also limited by a so-called hat cut, which bounds from above the epigraph
variable by the best upper bound on f . This upper bound is computed from
the function values returned by the oracle. If the oracle returns loose cuts,
the function values may be under-estimated. The likely consequence: the
localization doesn’t contain the optimum of f as presented in Figure 6.3. The
localization set may become empty that bring ACCPM to a halt.
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Figure 6.2: Under-estimate of f .
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Figure 6.3: Localization set of f .

To analyze the possible contradictions, we assume that the first order oracle
has been queried k times at u1, . . . , uk. The oracle has returned corresponding
sequence (a1, f1), . . . , (a

k, fk), with the property that fi ≤ f(ui), i = 1, . . . , k.
Let (a1, γ1), . . . , (a

k, γk) be the sequence of cutting planes defining the current
localization set

Lk =
{
(u, z) | (ai)T u− z ≤ γi, i = 1 . . . k , z ≤ θ̄

}
, (6.33)

where
θ̄ = min

i=1...k
fi.

Since the values fi are not necessarily achieved by the true function f , we may
well observe that some cut (aj, γj) excludes a point (ui, fi):

(aj)T ui − γj > fi.
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Such an event would reveal that the f(ui) was underestimated by the oracle,
we have fi < f(ui). Clearly the objective value delivered by the oracle has to
be re-assessed. This can be done, either by changing the fi, i = 1, . . . k, or
the right-hand sides γi in the localization set 6.33. To explain the patching
procedure, we consider that (ū, f̄) is the current proximal reference point.
The second argument f̄ designates what is currently considered as the best
value for the upper bound. The upper bound f̄ has to be updated by some
technique we are going to discuss. Note that in this technique, if ū = ui for
some i, we may well have f̄ > fi, but f̄ ≤ f(ui). This last property is very
important, since it would prevent ACCPM from over-estimating the values of
f .

Assume that (ak+1, γk+1), with γk+1 = (ak+1)T uk+1 − fk+1 is the cut
introduced at uk+1. The following cases may occur:

• the previously generated cuts give that f(uk+1) > fk+1;

• the new cut gives evidence that f(ū) > f̄ .

Let us examine the two cases successively.
In the first case, there is some cut (ai, γi) such that

(ai)T uk+1 − γi > fk+1.

This case is pictured below.

ui

6

-

fi

uk+1

(ai)T uk+1 − γi

fk+1

9

Y

Figure 6.4: A former cut contradicts the recently computed value.

In that case, it may be tempting to shift the new cut upward, but we
do not know if the shifted cut will still be a separating hyperplane for the
epigraph. We certainly have (ai)T uk+1 − γi ≤ f(uk+1), but ak+1 may not
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define a separating hyperplane. Therefore, the new cut is left at its initial
position, but (ai)T uk+1 − γi may be used to update the proximal reference
point. Indeed, if

(ai)T uk+1 − γi < f̄,

then we may set

f̄ ← (ai)T uk+1 − γi and ū← uk+1.

6

-

6

-

f̄

ū

f̄

ūuk+1

fk+1

(ak+1)T ū− γk+1

~

fk+1

(ak+1)T ū− γk+1

uk+1

R

Figure 6.5: The new cut contradicts the function value at the proximal
reference point.

The second case is subdivided into the two sub-cases pictured on Figure
6.5. In the first of the two sub-cases, the following inequalities hold

f̄ < (ak+1)T ū− γk+1 < fk+1.

The proximal reference point remains ū but the upper bound f̄ is shifted
upward to (ak+1)T ū− γk+1. In the second of the two sub-cases, the following
inequalities hold

fk+1 ≤ f̄ < (ak+1)T ū− γk+1.

The point uk+1 is the new candidate for the proximal reference point and fk+1

is the upper bound value.
The above procedure ensures that the localization set never gets empty.

Note that the remedy we proposed has the effect of raising function values and
thus the recorded upper bound. This may prevent convergence if the oracle
keeps improving the function evaluation but never gets to the convergence
precision. Indeed, one cannot hope for a relative duality gap smaller than
the oracle precision. The user must take this into consideration in assessing a
target convergence level.
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6.5 Implementation details

6.5.1 ACCPM structure

Since the oracles are entirely user-defined, we do not include it in the description.
The code has two main blocks: the first one computes query points; the second
one organizes the dialog between the oracle and the query point generator.
The code also includes an important initialization block. Let us describe
these modules.

Initialization This module initializes the instance and the various parameters.

Query point generator This modules includes two submodules: the first
one creates the localization set based on the information sent by the
cut manager; the second one computes approximate proximal analytic
centers.

Manager This module keeps track of the cuts generated by the first order
oracle and of the current primal and dual coordinates of the analytic
center. It also controls the parameters that are dynamically adjusted
and computes criteria values that can be used by the user to stop the
algorithm. Finally, it acts as a filter between the oracle and the query
point generator.

6.5.2 Parameter settings in ACCPM

Few parameters of ACCPM are often critical in the applications: the weight
w0 on the logarithmic barrier associated to the epigraph cut, the proximal
reference point ū and the coefficient ρ of the proximal term.

Weight on hat cut

The localization set is bounded above by the special constraint z + ζ ≤ θ̄
in (6.6). It is easily checked that the hat cut makes a negative angle with
the cutting planes. When the number of cutting planes increases, their total
weight dominates the weight of the hat cut in (6.14). Thus, the floor cut tends
to become active at the analytic center, with the possible effect of slowing the
global convergence. To counteract this negative effect, the general strategy is
to assign to w0 a value equal to the number of generated cuts [59]. If we aim
to a low precision, say 10−3, we found that setting the weight to 50 times the
total number of optimality cuts is more efficient.
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Proximal center

The initial proximal center is the first query point. Thereafter, the proximal
center is updated to the current query point whenever the oracle returns an
objective function value that improves upon the best upper bound.

Coefficient of the proximal term

The management of the coefficient of the proximal term is more problem
dependent. This point will be commented in the experimentations.

6.5.3 Implementation code

The code is written in Matlab; it has around 700 lines of code in the query
point generator and 400 in the manager. Matlab is particularly efficient in
dealing with linear algebra. Not much gain can be expected by translating
the code into C++. However, a C version would make it easier to link ACCPM
with oracles written in C or FORTRAN or to do an embedding of ACCPM
within a larger optimization scheme (e.g., a branch and bound scheme). The
code is the result of a continuing development efforts by teams at Logilab
partly supported by Swiss NSF.
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Chapter 7

The linear multicommodity flow
problem
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In this chapter, we apply ACCPM and the active set strategy to solve
a collection of linear multicommotidy flow problems, in short LMCF, that
can be found in the open literature. We consider the two classes of LMCF
introduced in Chapter 2.

The first class of LMCF copes with a single kind of commodity and it
has been intensively studied in this thesis. The numerical results presented
here are reported from [13]. We used four categories of instances. The
first two categories, planar and grid, gather artificial problems that mimic
telecommunication networks. Some of them are very large. The third category
is made of four small to medium size telecommunication problems. The last
category includes six realistic traffic network problems; some of them are huge,
with up to 13,000 nodes, 39,000 arcs and over 2,000,000 commodities.
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For the second class of LMCF, which deals with physically different commodities,
we report the first numerical results obtained with one category of problems,
Mnetgen. Some Mnetgen instances are large network problems but the number
of commodities is usually small.

The goals of the experiments are to test ACCPM, its enhancements and
the active set strategy presented in Chapter 5. First, we test the impact
of the proximal term in the ACCPM implementation. In the second set of
experiments, we analyze the impact of column elimination while in the third
one, we focus on the active set strategy. In the forth experiment, we combine
column elimination and active set strategy to achieve the fastest computing
time. Finally, in the last part, we benchmark our solution method with other
methods used in the literature.

7.1 Models and relaxations

In this section, we present the two classes of LMCF used in the experiments.
We also recall the dual problem resulting from the Lagrangian relaxation of
the coupling constraints.

In the first class, the arc cost is given by a linear function of total arc
flows and each commodity must be shipped from a single origin to a single
destination. The commodity flows are constrained by mutual arc capacities
but not by individual ones. The formulation of this problem is given by

LMCF1 : min g(y) (7.1a)

y =
∑
κ∈K

xκ, (7.1b)

Nxκ = dκ, ∀κ ∈ K, (7.1c)

xκ ≥ 0, ∀κ ∈ K, (7.1d)

where the cost on arc a is given by

ga(ya) =

{
taya, if ya ∈ [0, ca],

+∞, otherwise.

Note that, formulation (7.1) is equivalent to the linear traffic assignment flow
problem introduced in Chapter 3.

In the second category of linear MCF problems, the commodities compete
for mutual and individual arc capacities. Each commodity has multiple supply
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nodes and demand nodes, and the arc cost is a linear function of each commodity
flow. This LMCF is formulated as follows:

LMCF2 : min g(y) + rT x (7.2a)

y =
∑
κ∈K

xκ, (7.2b)

Nxκ = dκ, ∀κ ∈ K, (7.2c)

0 ≤ xκ ≤ cκ, ∀κ ∈ K, (7.2d)

where the cost on arc a is given by

ga(ya) =

{
0, if ya ∈ [0, ca],

+∞, otherwise.

In view of Chapter 5, the Lagrangian relaxation of the coupling constraints
in both formulations, i.e., (7.1b) and (7.2b), yields the general maximization
problem

max{f1(u) + f2(u) | u ≥ g′+(0)}, (7.3)

where u is the vector of dual variables. ACCPM is then applied to solve
(7.3) and get a primal feasible solution. The subproblem f1 is a nonsmooth
minimization problem revealed by a first order oracle and f2 is a linear function
accessed through a second order oracle. We will give the explicit formulations
of f1 and f2 in the next section though the definition of the oracles.

7.2 Implementation issues

In this section, we review the main items in the implementation of our solution
method. We defined the oracles in both formulations, and the strategy updating
the proximal term in ACCPM.

7.2.1 First order oracle

The first order oracle solves the minimization problem f1 at a query point u
and get back to ACCPM the value of the objective function and a antisubgradient
of f1(u). Let us distinguish the two classes of LMCF.
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First order oracle for LMCF1

The subproblem f1 resulting from the Lagrangian relaxation of (7.1) is given
by

f1(u) = min
x>0
{〈MT u, x〉 | Nxκ = dκ, ∀κ ∈ K}. (7.4)

Problem (7.4) appears to be a sum of simple shortest path problems, one
per commodity. Then the first order oracle consists of |K| shortest path
computations, using Dijkstra’s algorithm [42]. This algorithm computes shortest
paths from a single node to all other nodes in a directed graph. To compute
the shortest paths for all commodities, we partition the commodities according
to the origin node of the demand. This defines a subset of nodes S ⊂ N .
We apply |S| times Dijkstra’s algorithm, once for each s ∈ S. For large
graphs, most of the computational time is devoted to data handling. To speed-
up computation, the algorithm is implemented with binary heap structures.
This implementation is efficient enough, but probably not compare with the
state-of-the-art. A better implementation would most likely improve the
performance of the overall algorithm, but the focus of the paper is on the
cutting plane method and not on shortest path computation.

Letting

x(u) = arg min
x>0
{〈MT u, x〉 | Nxκ = dκ, ∀κ ∈ K},

the first order oracle returns the objective value f1(u) and the antisubgradient
Mx(u).

First order oracle for LMCF2

The Lagrangian dual problem of (7.2) yields the following subproblem f1,

f1(u) = min
x>0
{〈MT u + r, x〉 | Nxκ = dκ, ∀κ ∈ K, xκ ≤ cκ, ∀κ ∈ K}. (7.5)

In this case, f1 is a sum of transshipment flow problems. At each iteration the
first order oracle solves |K| transshipment problems, one per commodity, using
the network optimizer of CPLEX 8.1. Since we solve the same transshipment
problems at each iteration with different costs on the arcs, we can start from
the previous basis. Starting with the advanced basis reduce significantly the
number of CPLEX iterations and help performance.

Letting

x(u) = arg min
x>0
{〈MT u + r, x〉 | Nxκ = dκ, ∀κ ∈ K, xκ ≤ cκ, ∀κ ∈ K},
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the first order oracle returns the objective value f1(u) and the antisubgradient
Mx(u).

7.2.2 Second order oracle

When queried to a given point u, the second order oracle returns the function
value f2(u) and its first derivative. In that situation the second derivative
is null. In LMCF1, we objective value is given by f2(u) = c(t − u) while,
in LMCF2, we have f2(u) = −cu. In both cases, the first derivative is the
constant −c.

7.2.3 Settings of the proximal coefficient in ACCPM

We used a fixed value for ρ, e.g. ρ = 10−2. For problems with high tolerance
requirement, say ε = 10−5, we need not update this value. Indeed, when
approaching the optimal solution, (6.7) keeps generating exact upper bounds.
If a lower precision is required, say 10−3, it may happen that (6.7) only
generates approximate upper bounds. Instead of iterating with the same ρ
until (6.7) delivers an exact upper bound with the required precision, we find
it convenient to use the approximate upper bound to signal closeness to the
solution. We then switch to ρ = 10−10. By lowering the impact of the proximal
term, it makes it easier for ACCPM to find a primal feasible solution, i.e., an
exact upper bound.

7.3 Test problems

In this section, we give the test problems used in the experiments for LMCF1
and LMCF2.

7.3.1 Test instances for LMCF1

We used four sets of test problems of traffic assignment to experiment our
solution method on (7.1).

The first set, the planar problems, contains 10 instances and has been
generated by Di Yuan to simulate telecommunication problems. Nodes are
randomly chosen as points in the plane, and arcs link neighbor nodes in such
a way that the resulting graph is planar. Commodities are pairs of origin and
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destination nodes, chosen at random. Arc costs are Euclidean distances, while
demands and capacities are uniformly distributed in given intervals.

The second set, the grid problems, contains 15 networks that have a grid
structure such that each node has four incoming and four outgoing arcs. Note
that the number of paths between two nodes in a grid network is usually
large. The arc costs, commodities, and demands are generated in a way similar
to that of planar networks. These two sets of problems are solved in [84].
The data can be downloaded from http://www.di.unipi.it/di/groups/

optimize/Data/MMCF.html.

The third collection of problems is composed of telecommunication problems
of various sizes. The cost functions for these problems are originally nonlinear.
To make them linear, we use different techniques depending on the type
of nonlinear cost function that was used. In the small ndo22 and ndo148

problems, the cost functions have a vertical asymptote. We use this asymptote
as a natural capacity bound. Problem 904 is based on a real telecommunication
network. It has 904 arcs and 11130 commodities and was used in the survey
paper [102].

The last collection of problems is composed of transportation problems.
The problems Sioux-Falls, Winnipeg, Barcelona are solved in [84]; there
the demands of Winnipeg and Barcelona are divided, as in [84], by 2.7 and
3 respectively, to make those problems feasible. The last three problems,
Chicago-sketch, Chicago-region and Philadelphia can be downloaded
from http://www.bgu.ac.il/∼bargera/tntp/. The data include an increasing
congestion function that is not adapted to our formulation. This function
uses capacity and “free flow time”. We use this free flow time as unit cost.
To turn those problems into linear ones we use the following strategy. For
each problem, we divide all the demands by a same coefficient. We increase
this coefficient until the problem becomes feasible with respect to the capacity
constraints. We end up using coefficients 2.5, 6 and 7 for problems Chicago-sketch,
Chicago-region and Philadelphia, respectively.

Table 7.1 (page 121) displays data on the four sets of problems. For each
problem instance, we give the number of nodes |N |, the number of arcs |A|,
the number of commodities |K|, the cost value z∗ of an optimal solution to
(7.1) with a relative optimality gap less than 10−5. Some instances are huge
(over 500 millions variables and nearly 200 millions constraints for problem
Philadelphia). The last column of Table 7.1 displays the percentage of

saturated arcs, denoted %
|A∗

1|
|A| , at the optimum. Note that the figures in the

last column are low, in particular for the real-life transportation problems.
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Test problems

Problem ID |N | |A| |K| z∗ %
|A∗

1 |
|A|

planar problems

planar30 30 150 92 4.43508× 107 9.3
planar50 50 250 267 1.22200× 108 11.6
planar80 80 440 543 1.82438× 108 24.3
planar100 100 532 1085 2.31340× 108 16.3
planar150 150 850 2239 5.48089× 108 27.5
planar300 300 1680 3584 6.89982× 108 7.4
planar500 500 2842 3525 4.81984× 108 2.0
planar800 800 4388 12756 1.16737× 108 3.0
planar1000 1000 5200 20026 3.44962× 109 9.6
planar2500 2500 12990 81430 1.26624× 1010 14.7

grid problems

grid1 25 80 50 8.27323× 105 8.7
grid2 25 80 100 1.70538× 106 25.0
grid3 100 360 50 1.52464× 106 4.2
grid4 100 360 100 3.03170× 106 8.3
grid5 225 840 100 5.04970× 106 3.7
grid6 225 840 200 1.04007× 107 13.5
grid7 400 1520 400 2.58641× 107 7.0
grid8 625 2400 500 4.17113× 107 11.8
grid9 625 2400 1000 8.26533× 107 16.3
grid10 625 2400 2000 1.64111× 108 16.3
grid11 625 2400 3000 3.29259× 108 11.0
grid12 900 3480 6000 5.77189× 108 6.2
grid13 900 3480 12000 1.15932× 109 8.0
grid14 1225 4760 16000 1.80268× 109 3.5
grid15 1225 4760 32000 3.59353× 109 4.0

Telecommunication-like problems

ndo22 14 22 23 1.88237× 103 9.0
ndo148 58 148 122 1.39500× 105 0
904 106 904 11130 1.37850× 107 9.2

Transportation problems

Sioux-Falls 24 76 528 3.20184× 105 2.6
Winnipeg 1067 2975 4345 2.94065× 107 2.0
Barcelona 1020 2522 7922 3.89400× 107 0.4
Chicago-sketch 933 2950 93513 5.49053× 106 1.0
Chicago-region 12982 39018 2297945 3.06541× 106 0.6
Philadelphia 13389 40003 1151166 1.65428× 107 0.4

Table 7.1: Test problems: optimal value with 10−5 optimality gap.
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7. The linear multicommodity flow problem

7.3.2 Test instances for LMCF2

The set of problems used in the experiments for LMCF2 is composed of
26 instances. This set has been generated by the Kennington’s Mnetgen
generator [7] and it can be retrieved from http://www.di.unipi.it/di/

groups/optimize/Data/MMCF.html. The parameters used to generate these
instances can be found in [48]. They are considered to be difficult problems.
They are also standard instances to test linear programming solvers in multicommodity
flows.

Problem ID |N | |A| |K| |U | |A∗
1 |

|U| z∗

Mnetgen problems

M64−4 64 524 4 407 0.5 192400.1
M64−8 64 532 8 425 3.7 394051.1
M64−16 64 497 16 391 10.0 1071474.9
M64−32 64 509 32 404 16.3 2146944.1
M64−64 64 511 64 405 25.9 4623138.4
M128−4 128 997 4 799 2.4 919643.1
M128−8 128 1089 8 851 6.3 1924133.8
M128−16 128 1114 16 911 13.9 4145079.4
M128−32 128 1141 32 906 19.6 9785961.1
M128−64 128 1171 64 936 30.2 19269824.2
M128−128 128 1204 128 979 39.8 40143200.8
M256−4 256 2023 4 1633 6.1 5026132.3
M256−8 256 2165 8 1764 11.7 9919483.2
M256−16 256 2308 16 1842 20.0 20692883.7
M256−32 256 2314 32 1829 27.0 45671076.0
M256−64 256 2320 64 1842 34.0 92249381.1
M256−128 256 1258 128 1870 38.8 190137259.9
M256−256 256 2204 256 1802 49.6 397882591.3
M512−4 512 4077 4 3288 9.3 21324851.1
M512−8 512 4373 8 3496 15.8 46339269.9
M512−16 512 4620 16 3669 27.0 96992237.2
M512−32 512 4646 32 3713 35 192941834.8
M512−64 512 4768 64 3853 44.1 412943158.7
M512−128 512 4786 128 3882 52.1 828013599.8
M512−256 512 4810 256 3827 58.4 1649356264.1
M512−512 512 4786 512 3820 63.3 3487588114.0

Table 7.2: Test problems.

Table 7.2 (page 122) displays data on this set of problems. For each
problem instance, we give the number of nodes |N |, the number of arcs |A|,
the number of commodities |K|, and the exact optimal solution values z∗ to
(7.2) computed with CPLEX 8.1. In this set of instances, a part of the arcs
has no mutual capacity. Then Table 7.2 also displays the number of capacity
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Numerical experiments

constraints, equivalently, the number of dual variables, denoted |U |, and the

percentage of saturated arcs, denoted %
|A∗

1|
|U | , at the optimum.

7.4 Numerical experiments

The goals of the numerical study are five-fold. First, we compare two configurations
of ACCPM in order to test the impact of the proximal term. In the first one
we use a proximal term while the second setting has no proximal term but
uses artificial bounds on the dual variables u to ensure compactness of the
localization set. In this comparison we do not use the active set strategy
or column elimination. In the second set of experiments, we analyze the
impact of column elimination while in the third one, we focus on the active
set strategy. In the forth set of experiments, we combine column elimination
and the active set strategy to achieve the fastest computing time. Finally,
in the last experiments, we benchmark our solution method with the most
efficient methods used in the literature.

For all results using ACCPM, the tables give the number of outer iterations,
denoted Outer, the number of Newton’s iterations, or inner iterations, denoted
Inner, the computational time in seconds, CPU, and the percentage of CPU
time, denoted %Or, spent to compute the subproblem, i.e., the shortest path
problems or the transshipment problems. When the active set strategy is
activated, the working space of ACCPM is reduced to the active arcs only.
Thus, we also give the percentage of arcs in the active set, % |A1|

|A| , and the

percentage of saturated arcs, %
|A∗

1|
|A| , at the end of the solution process.

The ACCPM code we use has been developed in Matlab at the Logilab
laboratory, while the shortest path algorithm is written in C. The tests were
performed on a PC (Pentium IV, 2.8 GHz, 2 Gb of RAM) under Linux
operating system.

7.4.1 Impact of the proximal term

In this subsection, we experiment the impact of the proximal term without
using the active set strategy or column elimination. We compare ACCPM
using a proximal term and ACCPM with boxes on variables. In the later
case, we just set the proximal parameter to zero and introduce instead upper
bounds on the variables to enforce compactness in the initial phase. In our
experiments, the default upper bounds are chosen to be quite large, say 106,
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7. The linear multicommodity flow problem

to be inactive at the optimum. The results are displayed in Table 7.3 (page
124) for LMCF1 and in Table 7.4 (page 125) for LMCF2.

ACCPM with a proximal term ACCPM with boxes
Problem ID Outer Inner CPU %Or Outer Inner CPU %Or

planar30 59 176 0.7 21 59 189 0.8 18
planar50 109 266 1.9 20 106 286 2.1 18
planar80 281 617 20.5 9 277 645 19.8 9
planar100 263 593 20.4 9 265 638 19.4 10
planar150 688 1439 330.0 2 700 1544 339.6 2
planar300 374 909 122.2 2 384 988 129.6 2
planar500 229 744 88.7 21 231 799 88.6 21
planar800 415 1182 557.2 16 419 1270 553.9 17
planar1000 1303 2817 7846.7 12 1314 2995 7896.8 12
planar2500 - - - - - - - -

grid1 35 114 0.3 26 36 120 0.4 17
grid2 73 222 0.8 30 77 251 1.0 26
grid3 65 239 1.2 21 66 261 1.5 18
grid4 99 319 2.4 21 97 326 2.5 19
grid5 121 414 7.3 21 120 420 7.6 20
grid6 315 770 45.1 11 313 815 45.3 11
grid7 308 827 80.0 16 317 901 87.0 15
grid8 686 1601 893.9 8 691 1686 812.0 8
grid9 942 2082 1793.8 6 942 2159 1798.1 6
grid10 946 2096 1885.1 6 947 2173 1842.6 6
grid11 648 1515 715.1 10 647 1565 702.3 11
grid12 509 1341 658.5 18 507 1397 644.8 18
grid13 673 1629 1226.8 12 679 1728 1214.4 12
grid14 462 1363 843.6 22 469 1450 845.4 22
grid15 520 1450 1055.1 20 522 1529 1045.6 20

ndo22 18 59 0.1 12 18 62 0.1 12
ndo148 17 82 0.2 20 17 83 0.3 18
904 269 640 33.2 12 271 671 34.7 12

Sioux-Falls 30 95 0.3 24 32 117 0.4 19
Winnipeg 224 592 81.2 18 258 942 120.8 14
Barcelona 157 421 35.9 23 156 457 37.8 22
Chicago-sketch 180 493 79.2 47 182 523 83.6 45
Chicago-region - - - - - - - -
Philadelphia - - - - - - - -

Table 7.3: Impact of the proximal term.

In Table 7.3 (page 124), all problems, but three, are solved with a relative
gap of 10−5. None of the two configurations can solve planar2500, Chicago-region
and Philadelphia, partly because too many cuts in the localization set jammed
the memory space. Table 7.3 shows that the results are quite similar with
boxes on variables and with a proximal term. The number of basic steps and
the computational times are more or less the same. For this class of problems,
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the two methods appear to be equivalent.

ACCPM with a proximal term ACCPM with boxes
Problem ID Outer Inner CPU %Or Outer Inner CPU %Or

M64−4 52 126 0.8 5 61 178 1.4 4
M64−8 80 195 1.7 6 94 260 2.7 6
M64−16 137 322 4.4 8 176 432 7.9 7
M64−32 225 483 12.5 7 279 634 21.4 7
M64−64 214 486 12.8 17 482 1010 77.0 8
M128−4 96 227 3.4 5 152 348 10.2 4
M128−8 154 350 10.0 5 199 484 17.3 6
M128−16 320 703 51.3 5 448 992 112.9 4
M128−32 305 689 50.2 8 788 1647 466.5 4
M128−64 289 659 51.0 18 1185 2486 1542.0 4
M128−128 264 607 54.2 33 1241 2547 1822.1 6
M256−4 267 582 58.2 3 339 788 102.3 3
M256−8 424 936 182.4 3 673 1486 556.0 2
M256−16 421 962 201.2 4 1155 2451 2359.4 2
M256−32 403 922 190.2 8 - - - -
M256−64 378 845 176.8 15 - - - -
M256−128 345 774 172.7 26 - - - -
M256−256 325 749 192.1 41 - - - -
M512−4 593 1278 789.0 2 835 1903 1940.5 2
M512−8 588 1279 838.4 2 1471 3110 8216.8 2
M512−16 556 1232 786.9 4 - - - -
M512−32 528 1198 751.4 6 - - - -
M512−64 485 1099 714.3 11 - - - -
M512−128 434 983 620.3 20 - - - -
M512−256 404 917 649.6 35 - - - -
M512−512 375 889 813.7 53 - - - -

Table 7.4: Impact of the proximal term

Table 7.4 (page 125) gives results for LMCF2. In that set of experiments,
we stopped the process after 1500 outer iterations. We observe that ACCPM
using a proximal term outperforms ACCPM with boxes. The proximal term
makes ACCPM possible to solve all the instances with 10−5 relative optimality
in less than 1500 iterations.

As the proximal term gives better results than boxes on LMCF2, we
will use it in all further experiments. It is also easier to manipulate the
unique parameter ρ than implementing individual strategies to move the upper
bounds on the variables.
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7. The linear multicommodity flow problem

7.4.2 Impact of column elimination

In this subsection, ACCPM solves the sets of problems using column elimination.
We report the results in Tables 7.5 and 7.6 (pages 126 and 127). Column Nb
cuts displays the number of remaining cuts at the end of the process while
the last column CPU Ratio gives the improvement ratio of the CPU time of
ACCPM without using column elimination strategy (see Tables 7.3 and 7.4,
pages 124 and 125), and with column elimination strategy.

Problem ID Nb cuts Outer Inner CPU %Or CPU ratio

planar30 40 63 142 0.7 18 1.0
planar50 68 104 224 1.8 27 1.1
planar80 145 274 593 14.5 19 1.4
planar100 105 338 705 14.2 23 1.4
planar150 314 814 1641 136.9 16 2.4
planar300 171 383 803 80.7 25 1.5
planar500 103 221 495 59.4 37 1.5
planar800 188 388 845 281.3 39 2.0
planar1000 645 1058 2148 2861.4 20 2.7
planar2500∗ 1628 2156 4349 47355.8 18 -

grid1 31 35 97 0.3 18 1.0
grid2 46 60 132 0.6 19 1.3
grid3 47 63 193 1.2 17 1.0
grid4 60 93 249 2.0 18 1.2
grid5 81 123 364 6.1 20 1.2
grid6 164 308 683 28.5 21 1.6
grid7 182 312 749 55.2 23 1.4
grid8 385 706 1526 503.8 16 1.8
grid9 538 959 2008 1039.6 15 1.7
grid10 532 969 2022 1043.8 16 1.8
grid11 350 663 1453 434.6 22 1.6
grid12 280 520 1258 436.2 30 1.5
grid13 362 687 1575 773.5 25 1.6
grid14 231 478 1296 539.7 39 1.6
grid15 275 537 1367 696.9 36 1.5

ndo22 18 18 59 0.1 12 1.0
ndo148 17 17 82 0.2 20 1.0
904 119 254 533 19.1 21 1.7

Sioux-Falls 24 30 93 0.3 23 1.0
Winnipeg 118 227 613 54.5 25 1.5
Barcelona 105 156 438 28.9 27 1.2
Chicago-sketch 108 178 491 55.1 41 1.4
Chicago-region 460 1376 3030 44117.3 64 -
Philadelphia 326 885 1859 22937.2 66 -

∗ Problem solved with a relative optimality gap of 10−4.

Table 7.5: Impact of column elimination.
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Problem ID Nb cuts Outer Inner CPU %Or CPU ratio

M64−4 38 52 126 0.8 5 1.0
M64−8 62 80 195 1.5 7 1.1
M64−16 93 136 326 3.4 8 1.3
M64−32 95 226 510 7.8 13 1.6
M64−64 123 211 490 8.4 27 1.5
M128−4 76 96 228 3.3 5 1.0
M128−8 73 156 357 8.1 5 1.2
M128−16 150 316 702 25.3 12 2.0
M128−32 144 308 712 26.9 15 1.9
M128−64 117 284 710 30.7 29 1.7
M128−128 158 272 640 40.1 45 1.4
M256−4 131 274 601 38.8 3 1.5
M256−8 186 418 958 89.2 5 2.0
M256−16 181 417 979 94.2 8 2.1
M256−32 165 411 1039 104.4 14 1.8
M256−64 134 387 948 101.5 25 1.7
M256−128 147 349 830 108.5 41 1.6
M256−256 185 322 761 134.5 57 1.4
M512−4 248 581 1322 331.2 2 2.4
M512−8 241 575 1283 323.2 4 2.6
M512−16 195 548 1273 316.9 8 2.5
M512−32 183 553 1334 342.1 13 2.2
M512−64 196 536 1498 414.2 20 1.7
M512−128 172 454 1089 344.8 38 1.8
M512−256 147 406 971 377.0 59 1.7
M512−512 165 371 894 544.3 75 1.5

Table 7.6: Impact of column elimination

In both tables, all problems are solved with a relative optimality gap of
10−5, except planar2500 in Table 7.5 that is solved with a 10−4 precision.
We observe a speed-up on all problems, with an average value 1.5. Since
the number of outer iterations is about the same, the speed-up is due to a
reduction of the computation time in ACCPM. It is apparent in comparing
the proportion of time spent in the oracle (column 5 in Tables 7.3 and 7.4 and
column 6 in Tables 7.5 and 7.6 ).

7.4.3 Impact of active set strategy

In this subsection, ACCPM solves the linear multicommodity flow problems
with the active set strategy. Tables 7.7 and 7.8 (pages 128 and 129) shows
the results with a relative optimality gap of 10−5. planar2500 in table 7.7 is
solved with a relative gap of 1.2× 10−5. In the last column of the tables, we
give the improvement ratio of the CPU time of ACCPM without using active
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7. The linear multicommodity flow problem

set strategy (see Tables 7.3 and 7.4), and with the active set strategy (see
Tables 7.7 and 7.8 ).

Problem ID % |A1|
|A| %

|A∗
1 |

|A| Outer Inner CPU %Or CPU ratio

planar30 12.7 9.3 46 154 0.5 24 1.5
planar50 13.2 11.6 99 258 1.1 32 1.7
planar80 25.7 24.3 279 656 7.4 24 2.8
planar100 17.5 16.3 260 626 5.9 31 3.5
planar150 29.0 27.5 716 1597 93.8 8 3.5
planar300 9.1 7.4 343 835 15.4 18 7.9
planar500 2.6 2.0 140 359 12.8 87 6.9
planar800 3.6 3.0 317 786 81.7 85 6.8
planar1000 10.4 9.6 1249 2860 1244.9 36 6.3
planar2500∗ 15.8 14.7 2643 7160 34022.2 21 -

grid1 12.5 8.7 24 83 0.2 25 1.4
grid2 32.5 25.0 61 202 0.7 30 1.2
grid3 5.0 4.2 37 104 0.3 46 3.8
grid4 10.3 8.3 79 213 1.0 39 2.4
grid5 6.0 3.7 90 256 1.9 60 3.9
grid6 20.6 13.5 294 731 13.3 35 3.4
grid7 9.3 7.0 264 704 19.1 58 4.2
grid8 13.2 11.8 623 1465 155.5 37 5.1
grid9 18.1 16.3 907 2158 413.6 25 4.3
grid10 18.0 16.3 919 2209 432.7 26 4.4
grid11 12.2 11.0 569 1391 140.3 46 5.1
grid12 7.4 6.2 394 979 121.4 74 5.4
grid13 9.6 8.0 558 1333 209.4 59 5.9
grid14 4.4 3.5 310 767 139.8 89 6.0
grid15 4.9 4.0 364 902 173.7 86 6.1

ndo22 9.0 9.0 11 49 0.1 11 1.5
ndo148 1.7 0.0 2 13 0.01 35 14.6
904 13.1 9.2 321 984 15.9 30 2.1

Sioux-Falls 7.9 2.6 13 56 0.1 33 3.2
Winnipeg 2.9 2.0 158 393 12.8 83 6.3
Barcelona 0.5 0.4 35 111 2.1 86 17.0
Chicago-sketch 1.2 1.0 60 195 13.0 95 6.1
Chicago-region 1.1 0.6 683 1961 14684.2 98 -
Philadelphia 0.6 0.4 193 529 3125.2 99 -

∗ Problem solved with a relative optimality gap of 1.2× 10−5.

Table 7.7: Impact of active set strategy.

Tables 7.7 and 7.8 (pages 128 and 129) show that the active set strategy
reduces the CPU time with a factor around 1.5 to 8 on most problems. The
reduction is achieved in the computation of the analytic center. Indeed, the
complexity of an inner iteration is roughly proportional to the square of the
dimension of the working space. As shown in the second column of Tables 7.7
and 7.8, the dimension of the working space —measured by |A1| at the end of
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Problem ID % |A1|
|U| %

|A∗
1 |

|U| Outer Inner CPU %Or CPU ratio

M64−4 4 0.5 17 62 0.2 14 4.0
M64−8 11 3.7 74 215 1.2 14 1.4
M64−16 19 10.0 132 342 2.8 16 1.6
M64−32 28 16.3 146 368 4.4 18 2.8
M64−64 41 25.9 148 368 5.7 31 2.2
M128−4 9 2.4 67 185 1.4 10 2.4
M128−8 16 6.3 149 347 5.8 9 1.7
M128−16 26 13.9 183 457 11.8 13 4.3
M128−32 36 19.6 274 847 35.0 12 1.4
M128−64 46 30.2 204 512 22.7 29 2.2
M128−128 51 39.8 200 507 30.7 44 1.8
M256−4 17 6.1 201 484 18.1 8 3.2
M256−8 27 11.7 260 641 40.0 8 4.6
M256−16 37 20.0 307 799 73.7 9 2.7
M256−32 44 27.0 285 712 72.5 15 2.6
M256−64 50 34.0 265 644 74.3 25 2.4
M256−128 56 38.8 261 646 94.8 37 1.8
M256−256 62 49.6 255 644 119.7 51 1.6
M512−4 23 9.3 357 840 140.8 5 5.6
M512−8 34 15.8 428 996 261.2 5 3.2
M512−16 44 27.0 431 1023 326.8 7 2.4
M512−32 52 35.0 44 1083 402.5 10 1.9
M512−64 60 44.1 406 954 400.6 16 1.8
M512−128 64 52.1 393 1021 488.3 24 1.3
M512−256 71 58.4 366 860 512.8 43 1.3
M512−512 76 63.3 342 844 696.4 61 1.2

Table 7.8: Impact of active set strategy

the iterations— is often a small fraction of the total number of arcs. It is also
interesting to note that the active set strategy leads to a satisfactory estimate
of the set of saturated arcs at the optimum. Tables 7.7 and 7.8 show that the
percentage of arcs in the active set and the percentage of saturated arcs are
very close. Last but not least, the active set strategy has a favorable, though
nonintuitive, influence on the total number of outer iterations.

7.4.4 Impact of active set strategy with column
elimination

In this set of experiments, we combine column elimination and the active set
strategy. The results are displayed on Tables 7.9 and 7.10 (pages 130 and
131). Column Nb cuts displays the number of remaining cuts at the end of
the process. The last two columns of each table display CPU ratios. The next
to the last column gives the ratio between the CPU times in Table 7.7 and
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7. The linear multicommodity flow problem

Table 7.9 for LMCF1 and in Table 7.8 and 7.10 for LMCF2. The last column
does a similar comparison between Tables 7.3 and 7.4 and Tables 7.9 and 7.10,
respectively. As expected, column elimination is efficient, not only because it
decreases the time spent in computing analytic center, but also because it
often permits a reduction of the total number of outer iterations. This last
observation is rather surprising.

Problem ID Nb cuts Outer Inner CPU %Or CPU ratios

planar30 30 48 150 0.4 29 1.1 1.7
planar50 61 97 252 1.1 32 1.0 1.8
planar80 144 283 703 6.5 28 1.1 3.1
planar100 110 257 641 5.2 34 1.1 3.9
planar150 296 820 1893 64.5 13 1.5 5.1
planar300 199 325 721 9.7 27 1.6 12.6
planar500 76 118 258 10.5 90 1.2 8.5
planar800 168 252 545 60.7 91 1.3 9.2
planar1000 628 890 1904 572.6 55 2.2 13.7
planar2500 2089 3009 7546 29457.3 28 - -

grid1 24 24 83 0.2 25 1.0 1.4
grid2 41 52 164 0.6 31 1.2 1.5
grid3 32 32 88 0.3 39 1.0 3.7
grid4 47 66 175 0.7 46 1.4 3.3
grid5 58 75 194 1.6 58 1.2 4.5
grid6 165 239 607 8.3 46 1.6 5.4
grid7 159 228 582 13.7 70 1.4 5.8
grid8 374 528 1248 97.5 50 1.6 8.1
grid9 518 720 1680 212.8 38 1.9 8.4
grid10 499 722 1654 215.6 41 2.0 8.7
grid11 329 458 1094 84.9 62 1.7 8.4
grid12 232 329 803 88.9 84 1.4 7.4
grid13 343 460 1086 136.8 74 1.5 9.0
grid14 171 252 623 107.0 94 1.3 7.9
grid15 206 294 708 131.7 91 1.3 8.0

ndo22 11 11 49 0.1 11 1.0 1.5
ndo148 2 2 13 0.01 35 1.0 14.6
904 171 311 819 12.2 38 1.3 2.7

Sioux-Falls 2.6 13 56 0.1 33 1.0 3.2
Winnipeg 93 143 372 11.1 87 1.2 7.3
Barcelona 35 35 111 2.1 86 1.0 17.0
Chicago-sketch 44 65 170 12.9 96 1.0 6.1
Chicago-region 524 742 2080 15012.1 99 1.0 -
Philadelphia 127 192 525 3092.3 99 1.0 -

Table 7.9: Impact of active set strategy and column elimination.
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Problem ID Nb cuts Outer Inner CPU %Or CPU ratios

M64−4 17 17 62 0.2 21 1.0 4.0
M64−8 53 72 208 1.1 13 1.1 1.5
M64−16 85 133 350 2.6 16 1.1 1.7
M64−32 100 154 383 3.7 25 1.2 3.4
M64−64 110 156 391 4.9 35 1.2 2.6
M128−4 51 72 196 1.4 10 1.0 2.4
M128−8 107 151 348 5.0 12 1.2 2.0
M128−16 96 188 484 9.0 17 1.3 5.7
M128−32 127 200 502 12.4 23 2.8 4.0
M128−64 156 230 631 22.1 34 1.0 2.3
M128−128 124 204 514 25.2 54 1.2 2.2
M256−4 131 204 500 13.7 9 1.3 4.2
M256−8 155 258 640 26.2 11 1.5 7.0
M256−16 169 334 973 50.5 14 1.5 4.0
M256−32 144 308 815 45.1 25 1.6 4.2
M256−64 166 277 682 54.9 36 1.3 3.2
M256−128 144 263 674 68.9 51 1.4 2.5
M256−256 127 254 674 93.9 6 1.3 2.0
M512−4 209 374 865 88.6 7 1.6 8.9
M512−8 191 424 1025 121.0 9 2.2 6.9
M512−16 280 453 1112 188.4 1 1.7 4.2
M512−32 200 440 1124 183.2 20 2.2 4.1
M512−64 199 401 975 198.3 30 2.0 3.6
M512−128 217 399 985 263.6 43 1.8 2.4
M512−256 178 365 906 340.6 64 1.5 1.9
M512−512 146 321 882 487.4 78 1.4 1.7

Table 7.10: Impact of active set strategy and column elimination

7.4.5 Comparisons with other methods for LMCF1

In this subsection, we compare ACCPM with methods used in [84]. In [84],
Larsson and Yuan propose an augmented Lagrangian algorithm (ALA) to
generate feasible solutions with a reasonable precision. They compare their
algorithm with a bundle method to find a ”near optimal solution”. They also
provide a comparative study between four codes to generate solution with
high precision. Their compare CPLEX 5.0, a specialized partitioning code
(PPRN), the Dantzig-Wolfe decomposition and a bundle method. We refer
the reader to Chapter 4 for a short description of these methods.

Since implementing, fine-tuning and testing these methods need a well
knowledge of each method, we found more appropriate and more consistent to
use the results of [84]. Then, we directly report their original computational
times in the following tables to Benchmark ACCPM.

Since the machines are different (a Pentium IV, 2.8 GHz with 2 Gb of
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7. The linear multicommodity flow problem

RAM and a Sun ULTRASparc with 200 MHz processor and 2 GB of physical
RAM), we used an artifact to estimate the speed ratio. We solved a large set
of problems on the Pentium IV and on a Sun ULTRASparc with 500 MHz
processor, the only Sun ULTRASparc we have at our disposal. We found a
ratio of 4 between the Pentium IV and the Sun ULTRASparc 500, and we
propose a 2.5 ratio between the two SUN’s. Finally, we retain a factor of 10
between our machine and the one used in [84].

ACCPM vs. augmented Lagrangian relaxation

In this set of experiments, we compare ACCPM to ALA. In [84], the authors
introduce the concept of “near optimal solution” to designate feasible solutions
with a relative optimality gap around 10−3 (actually, ranging from 6.10−4 to
6.10−3). Their solution method consists in running twice their algorithm, a
first pass to compute a lower bound and a second pass to compute an upper
bound. The total CPU time that is reported in Table 7.11 (page 133), is the
sum of the two CPU times. To make a valid comparison, we aimed to results
with a similar precision. Since the precision is moderate, we had to resort to
the strategy defined in Section 7.2.

Table 7.11 (page 133) displays the comparative results on the instances
used in [84]. The last column gives a CPU ratio between the CPU times of
ACCPM and the CPU times of ALA reported in [84]. This CPU ratio includes
the speed ratio between the two computers. Of course, those ratios are just
indicative.

Table 7.11 shows that ALA is more efficient on the smaller instances1

while the reverse holds for the larger ones2. In view of the active set strategy
discussed in the subsection (7.4.3), we propose the following explanation for
the behavior of ACCPM on small problems. Note that the percentage of
time spent in the oracle vs. the master program steadily increases with the
problem dimension. This suggests a possible computing overhead in ACCPM.
Indeed, ACCPM is written in Matlab, while the oracle is implemented in
C. Moreover, ACCPM is a general purpose code that is designed to handle
a very large variety of problems. Consequently, the code contains a lot of
structures that are costly to manipulate. However, on the large instances, the
linear algebra operations dominate and Matlab is very efficient in performing
them. An implementation of ACCPM in C would presumably improve the
performance, essentially on the smaller instances.

1Problems smaller than planar150 and grid9 and also Sioux-Falls.
2Problems larger than planar150 and grid9 and Winnipeg and Barcelona.
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ACCPM ALA Ratio

Problem ID % |A1|
|A| Outer Inner CPU %Or Gap CPU Gap CPU

planar30 11.3 35 178 0.4 21 0.0014 0.18 0.002 0.04
planar50 12.8 52 304 0.9 21 0.0023 1.28 0.0032 0.15
planar80 25.9 101 487 2.6 25 0.0045 12.25 0.0019 0.47
planar100 17.8 82 396 1.8 32 0.0026 12.51 0.0021 0.69
planar150 30 187 925 13.4 14 0.0044 61.80 0.0026 0.46
planar300 8.8 56 280 1.5 31 0.0018 103.09 0.0016 7
planar500 2.3 27 116 3.5 87 0.0010 211.22 0.0017 8.5
planar800 3.5 41 184 9.8 92 0.0014 1572.33 0.0017 16
planar1000 11.1 108 450 45.2 85 0.0021 3097.22 0.0018 6.8
planar2500 15.6 229 896 707.0 87 0.0018 34123.14 0.0013 4.8

grid1 11.1 17 104 0.17 20 0.0007 0.040 0.0062 0.02
grid2 28.7 26 161 0.42 21 0.0015 0.12 0.0060 0.03
grid3 4.4 12 63 0.17 29 0.0010 0.44 0.0022 0.26
grid4 9.2 23 106 0.35 34 0.0012 0.23 0.0029 0.07
grid5 6 20 115 3.8 7 0.0009 1.31 0.0012 0.03
grid6 15.6 35 190 1.1 51 0.0016 2.28 0.0023 0.2
grid7 11.9 23 151 1.4 70 0.0014 8.10 0.0016 0.6
grid8 17.2 42 219 4.9 78 0.0017 19.94 0.0020 0.4
grid9 19.5 50 261 7.4 76 0.0016 52.17 0.0023 0.7
grid10 22.9 48 233 7.3 80 0.0017 104.41 0.0022 1.4
grid11 16.7 34 189 4.7 82 0.0015 262.54 0.0014 5.6
grid12 13 22 140 5.6 90 0.0014 248.57 0.0019 4.4
grid13 15.6 26 157 6.5 89 0.0014 948.26 0.0019 14.7
grid14 7.8 16 102 6.7 95 0.0012 1284.79 0.0016 19
grid15 8.5 21 136 9.0 95 0.0012 2835.03 0.0014 31.2

Sioux-Falls 7.9 8 33 0.1 23 0.0023 0.47 0.0043 0.5
Winnipeg 3.4 65 203 5.2 84 0.00055 239.20 0.00061 4.6
Barcelona 1.6 30 85 1.9 82 0.00034 283.64 0.00057 15

Table 7.11: ACCPM vs. ALA.

Table 7.12 (page 134) displays the results for the other instances that are
not considered in [84]. We solve them with a precision of 10−3. For the
two larger problems (Chicago-region and Philadelphia) we also give the
results to obtain the first primal feasible solution without any condition on
the relative gap. The reader will observe that our solution method produces
a feasible solution for the larger problems in a very short time and with a
reasonable relative optimality gap (around 10−2). The computing time to
gain one digit of accuracy is important. Yet, the overall time with a 10−3

relative precision is moderate.
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Problem ID % |A1|
|A| Outer Inner CPU %Or Gap

ndo22 9 7 22 0.06 12 10−3

ndo148 - 2 13 0.01 40 10−9

904 14.5 248 721 10.6 35 10−3

Chicago-sketch 1.2 12 50 2.6 96 10−3

Chicago-region 2.9 12 274 213.8 99 0.026
Chicago-region 2.3 111 463 2239.8 99 10−3

Philadelphia 1.2 8 145 112.5 99 0.012
Philadelphia 1.1 40 203 619.4 99 10−3

Table 7.12: ACCPM.

ACCPM vs. bundle method

In this set of experiments, we make a comparison between ACCPM and the
bundle method of [49] to compute a ”near optimal solution” (as described in
the previous experiment). Details of the bundle implementation are presented
in [49]. In Table 7.13 (page 135), we report from [84] the results with the
bundle method to reach the lower bound computed with ALA previously. For
the sake of easier comparison, we report also from Table 7.11 the CPU times
of ALA and ACCPM. The next to the last column gives a CPU ratio between
the CPU times of ACCPM and the CPU times the bundle method. The last
one is the CPU ratio between ACCPM and ALA reported from Table 7.11.
These CPU ratios include the speed ratio between the two computers. Of
course, those ratios are just indicative.

Table 7.13 shows that the bundle method is more efficient than ALA
and ACCPM on smaller instances while the reverse holds on larger ones.
Moreover, we note that the bundle method can not compute near optimal
solution for larger instances. We do the same conclusion as in the previous
set of experiments.

ACCPM vs. other methods

In [84], Larsson and Yuan compare four codes to compute solution with high
precision. They use the solver CPLEX 5.0, the specialized primal partitioning
method PPRN originates from [29], a Dantzig-Wole decomposition implemented
in disaggregate form, and the bundle method of [49]. We refer the reader to
[84] for more details.

We give in Table 7.14 (page 136) the original results reported in [84]. We
use a ”-” to denote that a problem could not be solved. The problems are
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Problem ID Bundle ALA ACCPM CPU ratios

planar30 0.16 0.18 0.4 0.04 0.04
planar50 0.85 1.28 0.9 0.09 0.15
planar80 22.82 12.25 2.6 0.9 0.47
planar100 99.97 12.51 1.8 5.6 0.69
planar150 392.59 61.80 13.4 2.9 0.46
planar300 321.39 103.09 1.5 21.4 7
planar500 699.12 211.22 3.5 20.0 8.5
planar800 - 1572.33 9.8 - 16
planar1000 - 3097.22 45.2 - 6.8

grid1 0.01 0.040 0.17 0.01 0.02
grid2 0.03 0.12 0.42 0.01 0.03
grid3 0.23 0.44 0.17 0.14 0.26
grid4 0.17 0.23 0.35 0.05 0.07
grid5 1.00 1.31 3.8 0.03 0.03
grid6 2.79 2.28 1.1 0.2 0.2
grid7 11.23 8.10 1.4 0.8 0.6
grid8 33.10 19.94 4.9 0.7 0.4
grid9 131.27 52.17 7.4 1.8 0.7
grid10 649.46 104.41 7.3 8.9 1.4
grid11 1897.87 262.54 4.7 40.4 5.6
grid12 2448.13 248.57 5.6 43.7 4.4
grid13 - 948.26 6.5 - 14.7
grid14 - 1284.79 6.7 - 19
grid15 - 2835.03 9.0 - 31.2

Sioux-Falls 1.58 0.47 0.1 1.6 0.5
Winnipeg 224.47 239.20 5.2 4.3 4.6
Barcelona 495.96 283.64 1.9 26.1 15

Table 7.13: ACCPM vs. Bundle.

solved by the bundle method with 10−6 relative gap. In the last column,
we give the best results of ACCPM to compute a solution with 10−5 relative
optimality gap. The settings include column elimination and active set strategy.
In [84], the authors point out that the CPU times should not be paid too much
attention, because the codes are developed under different circumstances and
are of generality. Each code can be fine-tuned to produce improved CPU times
for a specific set of instances. We also recall that the speed ratio between their
machine and our machine is around 10.

As we can see, the bundle method and the Dantzig-Wolfe decomposition
outperform the solver CPLEX and the specialized primal partitioning code
PPRN. The huge size of the problems seems disastrous for direct methods.
We conclude that ACCPM is very competitive with these efficient methods.
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Problem ID Cplex 5.0 PPRN Dantzig-Wolfe Bundle ACCPM

planar30 2.71 4.90 0.10 0.26 0.4
planar50 75.97 236.66 0.77 2.45 1.1
planar80 5933.37 5952.27 9.29 67.67 6.5
planar100 30339.58 35013.75 20.7 196.97 5.2
planar150 946217.32 519993.41 192.48 1670.38 64.5
planar300 - - 539.51 3824.19 9.7
planar500 - - 1914.29 12968.20 10.5
planar800 - - 47626.18 - 60.7
planar1000 - - 142001.47 - 572.6

grid1 0.23 0.86 0.03 0.03 0.2
grid2 2.17 5.69 0.10 0.26 0.6
grid3 8.81 23.74 0.23 0.59 0.3
grid4 22.54 69.49 0.22 1.06 0.7
grid5 258.18 589.75 1.31 5.77 1.6
grid6 1433.91 3335.61 3.28 15.63 8.3
grid7 34515.28 42092.32 18.12 141.26 13.7
grid8 439702.66 325189.66 233.66 707.61 97.5
grid9 - - 919.15 2598.50 212.8
grid10 - - 1838.89 6438.61 215.6
grid11 - - 4080.45 19207.20 84.9
grid12 - - 6964.85 45339.80 88.9
grid13 - - 33614.82 - 136.8
grid14 - - 75640.48 - 107.0
grid15 - - 281797.86 - 131.7

Sioux-Falls 74.45 179.40 0.40 2.77 0.1
Winnipeg - - 995.30 1828.82 11.1
Barcelona - - 79.85 523.86 2.1

Table 7.14: Computing times of some optimization code.

7.4.6 Comparisons with CPLEX for LMCF2

In that experiment, we compare ACCPM with CPLEX 8.1 which is considered
in [26] as the most efficient method to solve the Mnetgen instances. In [26],
Castro compares his interior point method (IPM) with CPLEX 6.5 on the
Mnetgen instances. He observes than CPLEX outperforms IPM which is
specialized for multicommodity flow problems. Here we use CPLEX 8.1 with
dual solver and network options. We report in Table 7.15 (page 137) the CPU
times obtained with CPLEX 8.1 and ACCPM using active set strategy and
column elimination.

Table 7.15 shows that CPLEX is more efficient when the number of commodity
is small. As the number of commodity is correlated with the number of
saturated arcs at the optimum in this set of instances, we conclude that
ACCPM is more efficient and competitive for problems that seems difficult.
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Problem ID Cplex 8.1 ACCPM CPU ratio

M64−4 0.02 0.2 0.1
M64−8 0.04 1.1 0.02
M64−16 0.17 2.6 0.07
M64−32 0.72 3.7 0.2
M64−64 5.42 4.9 1.1
M128−4 0.06 1.4 0.04
M128−8 0.16 5.0 0.03
M128−16 0.8 9.0 0.09
M128−32 8.32 12.4 0.7
M128−64 42.13 22.1 1.9
M128−128 89.26 25.2 3.5
M256−4 0.16 13.7 0.01
M256−8 0.60 26.2 0.02
M256−16 4.41 50.5 0.09
M256−32 20.08 45.1 0.4
M256−64 66.50 54.9 1.2
M256−128 89.85 68.9 1.3
M256−256 131.43 93.9 1.4
M512−4 0.43 88.6 0.005
M512−8 1.72 121.0 0.01
M512−16 7.04 188.4 0.04
M512−32 54.22 183.2 0.3
M512−64 78.54 198.3 0.4
M512−128 140.06 263.6 0.5
M512−256 180.95 340.6 0.5
M512−512 413.10 487.4 0.8

Table 7.15: ACCPM vs. CPLEX 8.1

7.5 Conclusion

In the present chapter, we use ACCPM to solve two classes of linear multicommodity
flow problems. The main new feature is the use of an active set strategy: it cuts
down computational times by a factor from 2 to 14 and permits to solve the
three larger instances that could not be solved previously. We also experiment
two enhancements of ACCPM, the proximal term and the column elimination
strategy, that make the method more efficient.

In the last experiments, we benchmark ACCPM with the most efficient
methods used in the literature to solve the two classes of problems. First,
we test the ability of our method to produce fast “near optimal solutions” to
LMCF1 in the sense of [84]. In that paper, the authors compare an augmented
Lagrangian algorithm (ALA) with a bundle method. We compared our results
to theirs and observed an acceleration factor with ALA from 2 to 31 on the
large problem instances. The factor is from 2 to 43 with the bundle method.
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7. The linear multicommodity flow problem

We also observe that price-directive methods (Dantzig-Wolfe, bundle method
and ACCPM) outperform direct methods (CPLEX and Primal partitioning
method) to produce high precision solution to LMCF1. ACCPM appears to
be very competitive.

Finally, we compare ACCPM to CPLEX to compute solutions to LMCF2
with high precision. Since the experiments has been performed only on one
set of instances, it seems difficult to generalized our observations. Other
experiments on other sets of instances (PDS, Canad, JLF, Dimacs2pprn, BHV
instances) would be required. Nevertheless, we observe that our method is
competitive with CPLEX on larger problems.
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Chapter 8

The nonlinear traffic assignment
problem
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In this chapter, we use ACCPM to solve nonlinear multicommodity flow
problems, in short NLMCF. We carry the experiments with two objective
functions: the Kleinrock congestion function used in telecommunications and
the BPR delay function used in transportation.

The numerical results presented in this chapter are reported from [14]. We
used four categories of instances. The first two categories, planar and grid,
gather artificial problems that mimic telecommunication networks. Some of
them are very large. The third category is made of four small to medium size
telecommunication problems. The last category includes six realistic traffic
network problems; some of them are huge, with up to 13,000 nodes, 39,000
arcs and over 2,000,000 commodities. Each set of instances is solved with both
objective functions.
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8. The nonlinear traffic assignment problem

The goal of the experiments is to test ACCPM and its enhancements. The
main feature is the implementation of a nonlinear cutting surface to handle the
available second order information of the smooth objective function. We also
perform the approximation scheme to apply the idea of the active set strategy
on NLMCF. First, we test the impact of using a nonlinear cutting surface in
the definition of the localization set. In the second set of experiments, we
analyze the impact of the column elimination strategy. The third experiment
focuses on the approximation scheme and the active set strategy. We observe
that this approach is efficient only with the BPR function. Then we combine
column elimination and active set strategy to achieve the fastest computing
time with BPR. Finally, we benchmark our method with others used in the
literature.

8.1 Models and relaxations

In the experiments, we consider the nonlinear traffic assignment problem
introduced in Chapter 3. This problem is defined such as

min g(y) (8.1a)

y =
∑
κ∈K

xκ, (8.1b)

Nxκ = dκ, ∀κ ∈ K, (8.1c)

xκ ≥ 0, ∀κ ∈ K, (8.1d)

where g is either the Kleinrock congestion function or the BPR delay function.
Let us recall such functions. On the arc a, the Kleinrock function has the form

ga(ya) =
ya

ca − ya

,

and the BPR function is defined by

ga(ya) = raya

(
1 +

α

β + 1

(
ya

ca

)β
)

.

The relaxation of constraints (8.1b) yields the Lagrangian dual problem

max{f1(u) + f2(u) | u ≥ g′+(0)},

where u is the vector of dual variables. As shown in Chapters 5 and 6, the
subproblem f1 is a nonsmooth minimization problem revealed by a first order
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Implementation issues

oracle and f2 is a smooth function accessed through a second order oracle. We
will give the definition of f1 and f2 for the two considered objective functions
in the next section through the description of the oracles.

8.2 Implementation issues

In this section, we review the main items in the implementation of our solution
method. We defined the oracles in both formulations and the strategy updating
the proximal term in ACCPM.

8.2.1 First order oracle

The first order oracle solves the minimization problem f1 at a query point u
and get back to ACCPM the value of the objective function and a antisubgradient
of f1(u). The Kleinrock and the BPR functions lead to the same definition of
f1 given by

f1(u) = min
x>0
{〈MT u, x〉 | Nxκ = dκ, ∀κ ∈ K}. (8.2)

The first order oracle consists of |K| shortest path computations, using
Dijkstra’s algorithm [42]. This algorithm computes shortest paths from a
single node to all other nodes in a directed graph. To compute the shortest
paths for all commodities, we partition the commodities according to the
origin node of the demand. This defines a subset of nodes S ⊂ N . We
apply |S| times Dijkstra’s algorithm, once for each s ∈ S. For large graphs,
most of the computational time is devoted to data handling. To speed-
up computation, the algorithm is implemented with binary heap structures.
This implementation is efficient enough, but probably not compare with the
state-of-the-art. A better implementation would most likely improve the
performance of the overall algorithm, but the focus of the paper is on the
cutting plane method and not on shortest path computation.

Letting

x(u) = arg min
x>0
{〈MT u, x〉 | Nxκ = dκ, ∀κ ∈ K},

the first order oracle returns the objective value f1(u) and the antisubgradient
Mx(u).
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8. The nonlinear traffic assignment problem

8.2.2 Second order oracle

At each iteration of the solution method, the second order oracle returns to
ACCPM the function value and the first and second derivatives of f2 at a
given point point. The definition of f2 is dependent of the primal objective
function. See Section 5.4 (page 75) for a complete definition of f2 associated
to the Kleinrock congestion function and the BPR delay function.

8.2.3 Setting of the proximal coefficient in ACCPM

The initial value for the proximal coefficient ρ is 1. The rule to update this
parameter is the following. When the method do not improve the upper bound
θ̄ during few iterations, it may happen that the weight of the generated cuts is
to large pushing the query point to far from the proximal reference point. To
fix this behavior, we increase the impact of the proximal term multiplying ρ
by 10 to ensure the new query point to remain closest from the best recorded
value. It thus makes it easier for ACCPM to find a best dual solution, i.e., a
best upper bound.

8.3 Test problems

We used four sets of test problems. The first set, the planar problems,
contains 10 instances that have been generated by Di Yuan to simulate telecommunication
problems. Nodes are randomly chosen as points in the plane, and arcs link
neighbor nodes in such a way that the resulting graph is planar. Commodities
are pairs of origin and destination nodes, chosen at random. Demands and
capacities are uniformly distributed in given intervals.

The second set, the grid problems, contains 15 networks that have a grid
structure such that each node has four incoming and four outgoing arcs. Note
that the number of paths between two nodes in a grid network is usually
large. Commodities, and demands are generated in a way similar to that of
planar networks. These two sets of problems are used to solve the linear
multicommodity flow problem in [13, 84]. The data include arc capacities
and linear costs and can be downloaded from http://www.di.unipi.it/di/

groups/optimize/Data/MMCF.html. We use directly these arc capacities in
the definition of the Kleinrock function. To solve (8.1) with BPR function, we
use the capacity as practical capacity and the linear cost as free-flow travel
time. As suggested in [114], we use the parameter values α = 0.15 and β = 4.
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Test problems

Problem ID |N | |A| |K| z∗Kleinrock z∗BPR

planar problems

planar30 30 150 92 40.5668 4.44549× 107

planar50 50 250 267 109.478 1.21236× 108

planar80 80 440 543 232.321 1.81906× 108

planar100 100 532 1085 226.299 2.29114× 108

planar300 300 1680 3584 329.120 6.90748× 108

planar500 500 2842 3525 196.394 4.83309× 109

planar800 800 4388 12756 354.008 1.16952× 109

planar1000 1000 5200 20026 1250.92 3.41859× 109

planar2500 2500 12990 81430 3289.05 1.23827 ×1010

grid problems

grid1 25 80 50 66.4002 8.33599× 105

grid2 25 80 100 194.512 1.72689× 106

grid3 100 360 50 84.5618 1.53241× 106

grid4 100 360 100 171.331 3.05543× 106

grid5 225 840 100 236.699 5.07921× 106

grid6 225 840 200 652.877 1.05075× 107

grid7 400 1520 400 776.566 2.60669× 107

grid8 625 2400 500 1542.15 4.21240× 107

grid9 625 2400 1000 2199.83 8.36394× 107

grid10 625 2400 2000 2212.89 1.66084× 108

grid11 625 2400 3000 1502.75 3.32475× 108

grid12 900 3480 6000 1478.93 5.81488× 108

grid13 900 3480 12000 1760.53 1.16933× 109

grid14 1225 4760 16000 1414.39 1.81297× 109

grid15 1225 4760 32000 1544.15 3.61568× 109

Telecommunication-like problems

ndo22 14 22 23 11.5631 1.87110× 103

ndo148 58 148 122 151.926 1.40233× 105

904 106 904 11130 33.4931 1.29197× 107

Transportation problems

Sioux-Falls 24 76 528 600.679 4.23133× 106

Winnipeg 1067 2975 4345 1527.41 8.25673× 105

Barcelona 1020 2522 7922 845.872 1.23277× 106

Chicago-sketch 933 2950 93513 615.883 1.67484× 107

Chicago-region 12982 39018 2297945 3290.55 2.58457× 107

Philadelphia 13389 40003 1151166 2558.01 1.27810× 108

Table 8.1: Test problems.
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The third collection of problems is composed of telecommunication problems
of various sizes. The small problems ndo22 and ndo148 are two practical
problems solved in [52, 60]. Problem 904 is based on a real telecommunication
network and was used in the survey paper [102]. This problem set is adapted
to solve (8.1) with Kleinrock function. To solve (8.1) with BPR function, we
use the capacity as practical capacity and also use it as free-flow travel time.
We choose the parameter values α = 0.15 and β = 4.

The last collection of problems is composed of six realistic transportation
problems used in [13, 15, 38, 83]. Some of them are huge, with up to 13,000
nodes, 39,000 arcs and over 2,000,000 commodities. The data are adapted
for the BPR function. They include free-flow travel time, practical capacity
and the tuning parameters α and β. These problems, can be downloaded from
http://www.bgu.ac.il/∼bargera/tntp/. To solve (8.1) with Kleinrock function
we use practical capacity as capacity and to turn these problems feasible
with respect to the capacity, which is handled by the objective function, the
demands are reduced as in [13, 83].

Table 8.1 (page 143) displays data on the four sets of problems. For each
problem instance, we give the number of nodes |N |, the number of arcs |A|,
the number of commodities |K|, the optimal solution values to (8.1) z∗Kleinrock

for the Kleinrock function and z∗BPR for the BPR function, with a relative
optimality gap less than 10−5.

8.4 Numerical experiments

The main goal of our empirical study is to test the efficiency i) of using a
nonlinear cutting surface, ii) of column elimination, iii) of active set strategy
and iv) of column elimination and active set strategy jointly. We also use
published results to benchmark the new algorithm.

We carry the experiments with the two congestion functions: the Kleinrock
delay function and the BPR congestion function. For each solution strategy,
we attempt to solve all problem instances contained in Table 8.1 with a 10−5

relative optimality gap. To benchmark the results with our best solution
strategy, we use, for telecommunications problems (Kleinrock function), the
results with the Projection Method reported in [102] and, for transportation
problems (BPR function) several implementations of Frank-Wolfe algorithm
reported in [38].

For all results using ACCPM, the tables give the number of outer iterations,
denoted Outer, the number of Newton’s iteration, or inner iterations, denoted
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Inner, the computational time in seconds CPU and the percentage of CPU
time, denoted %Or, spent to compute the shortest path problems. When the
active set strategy is activated, the working space of ACCPM is reduced to
the active arcs only. Thus, we give the percentage of arcs in the active set,
%|A2|, at the end of the solution process. We display also the error, denoted
Error, leaded from the approximation with respect to the optimal solution of
the original problem. Finally, when the elimination column is activated we
display the number of remaining cuts, Nb cuts, at the end of the process.

The ACCPM code we use has been developed in Matlab, while the shortest
path algorithm is written in C. The tests were performed on a PC (Pentium
IV, 2.8 GHz, 2 Gb of RAM) under Linux operating system.

8.4.1 Impact of using a nonlinear cutting surface

In this subsection, we experiment the impact of the second order information
in the solution method solving all the instances. We compare ACCPM using
a second order oracle and ACCPM in which the smooth function is handled
implicitly by the first order oracle as in the traditional approach.

The results are reported in Table 8.2 (page 146) for the Kleinrock function
and in Table 8.3 (page 147) for the BPR function. In the two cases, we observe
that the new approach outperforms the classical ACCPM. The larger problems
are not solved by the classical ACCPM, partly because too many cuts in the
localization set jammed the memory space.

8.4.2 Impact of column elimination

In this subsection, ACCPM solves the sets of problems using the column
elimination. We report the results in Table 8.4 (page 148) for the Kleinrock
function and in Table 8.5 (page 149) for the BPR function. The last column
CPU Ratio displays the improvement ratio of the CPU time of ACCPM
without column elimination (see Table 8.2 and 8.3), and with column elimination.
We observe that column elimination speed-up the CPU time on all problems,
with an average value 1.5. Since the number of outer iterations is about the
same, the speed-up is due to a reduction of the computation time in ACCPM.
It is apparent in comparing the proportion of time spent in the oracle.
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ACCPM with cutting surface ACCPM without cutting surface
Problem ID Outer Inner CPU %Or Outer Inner CPU %Or

planar30 93 197 1.1 22 832 1664 59.2 17
planar50 134 279 2.8 20 1234 2468 253.5 14
planar80 182 383 8.1 16 1965 3930 1381.3 11
planar100 187 392 10.2 17 2342 4684 2593.5 10
planar300 175 367 29.5 24 - - - -
planar500 127 324 32.2 37 - - - -
planar800 182 429 110.5 40 - - - -
planar1000 381 869 568.1 26 - - - -
planar2500 543 1224 3471.7 45 - - - -

grid1 52 118 0.4 24 462 924 11.5 21
grid2 93 212 1.0 25 456 912 11.4 21
grid3 138 341 4.1 15 1713 3426 798.4 12
grid4 167 344 5.7 17 1613 3226 710.2 12
grid5 204 474 18.5 17 3409 6818 11005.7 8
grid6 333 686 55.9 14 3326 6652 10457.4 8
grid7 410 811 155.4 15 - - - -
grid8 845 1783 1416.8 10 - - - -
grid9 582 1269 576.9 15 - - - -
grid10 432 964 300.6 20 - - - -
grid11 261 581 106.4 29 - - - -
grid12 201 409 106.7 41 - - - -
grid13 222 454 128.7 39 - - - -
grid14 204 414 173.2 48 - - - -
grid15 203 414 172.8 48 - - - -

ndo22 12 86 0.2 7 173 346 1.5 27
ndo148 70 361 1.3 7 737 1474 45.7 17
904 135 294 10.4 27 - - - -

Sioux-falls 140 345 1.7 24 533 1410 13.0 15
Winnipeg 338 988 215.0 14 - - - -
Barcelona 253 678 101.1 15 - - - -
Chicago-sketch 145 370 48.6 41 - - - -
Chicago-region 190 500 8621.9 94 - - - -
Philadelphia 279 822 13094.4 89 - - - -

Table 8.2: Impact of the cutting surface (Kleinrock delay function).
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ACCPM with cutting surface ACCPM without cutting surface
Problem ID Outer Inner CPU %Or Outer Inner CPU %Or

planar30 56 256 1.2 25 202 502 5.7 15
planar50 96 422 3.4 15 328 775 21.8 11
planar80 159 665 13.0 12 651 1400 165.0 7
planar100 101 423 6.5 16 629 1341 172.3 8
planar300 98 358 18.3 21 1101 2398 1980.2 6
planar500 42 164 10.0 37 986 2261 2548.9 7
planar800 88 299 51.1 43 2155 4513 32792.7 5
planar1000 192 552 209.6 37 - - - -
planar2500 364 1744 3099.2 38 - - - -

grid1 24 108 0.4 26 148 329 1.8 30
grid2 49 202 0.8 25 238 557 3.5 27
grid3 31 121 0.7 23 259 586 13.4 16
grid4 57 216 1.7 22 386 859 35.3 10
grid5 60 199 3.5 23 557 1230 174.2 7
grid6 125 385 11.5 16 918 1931 660.0 6
grid7 102 307 15.1 22 1111 2405 1872.9 5
grid8 158 422 49.5 23 1982 4119 13010.7 3
grid9 211 597 97.3 22 2379 4923 22202.1 3
grid10 207 586 94.8 24 2404 4965 22925.9 3
grid11 138 413 47.9 31 1966 4082 12873.5 4
grid12 107 323 52.7 46 2002 4369 20391.3 4
grid13 117 340 59.1 44 2300 4785 28038.6 4
grid14 84 274 61.9 56 1995 4179 26729.3 5
grid15 93 293 70.2 55 1588 4011 17449.6 4

ndo22 4 35 0.1 0 75 287 0.8 23
ndo148 6 45 0.2 0 171 390 3.6 24
904 93 316 8.4 19 802 1729 470.2 6

Sioux-falls 80 411 2.0 19 366 1057 10.1 20
Winnipeg 81 298 16.3 36 1307 2783 3352.8 8
Barcelona 56 245 10.4 29 925 2040 1493.7 8
Chicago-sketch 72 265 20.4 48 1828 4075 11891.0 5
Chicago-region 332 1502 10606.5 64 - - - -
Philadelphia 287 1250 7469.9 63 - - - -

Table 8.3: Impact of the cutting surface (BPR congestion function).
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Problem ID Nb cuts Outer Inner CPU %Or ratio

planar30 54 114 293 1.1 26 1.0
planar50 67 164 385 2.2 27 1.3
planar80 126 239 544 6.5 24 1.2
planar100 95 208 481 6.0 24 1.7
planar300 104 205 484 22.2 32 1.3
planar500 75 129 319 24.1 47 1.3
planar800 99 179 447 77.1 54 1.4
planar1000 207 369 836 303.6 43 1.9
planar2500 339 567 1292 2398.5 64 1.5

grid1 45 59 194 0.5 27 0.8
grid2 55 108 242 0.8 46 1.0
grid3 71 121 307 2.3 22 1.8
grid4 71 188 394 3.1 31 1.8
grid5 137 203 472 12.0 21 1.5
grid6 113 389 828 24.3 26 2.3
grid7 244 471 1024 90.9 22 1.7
grid8 311 876 1845 384.0 21 3.7
grid9 344 646 1397 305.5 24 1.9
grid10 274 474 1039 199.8 29 1.5
grid11 228 270 599 96.6 32 1.1
grid12 189 212 431 107.2 43 1.0
grid13 207 234 478 125.8 41 1.0
grid14 183 212 430 166.5 51 1.0
grid15 181 205 418 161.5 52 1.1

ndo22 12 12 86 0.2 7 1.0
ndo148 47 73 176 0.8 25 1.6
904 85 138 300 7.6 27 1.4

Sioux-falls 73 144 353 1.6 25 1.1
Winnipeg 202 384 1155 135.3 19 1.6
Barcelona 182 261 732 71.2 19 1.4
Chicago-sketch 77 130 340 30.1 53 1.6
Chicago-region 92 194 597 8672.1 95 1.0
Philadelphia 109 290 826 13021.8 93 1.0

Table 8.4: Impact of column elimination (Kleinrock delay function).
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Problem ID Nb cuts Outer Inner CPU %Or ratio

planar30 26 57 276 1.2 21 1.0
planar50 34 95 418 2.9 23 1.2
planar80 39 167 611 6.7 21 1.9
planar100 25 99 383 4.3 23 1.5
planar300 42 98 345 12.6 33 1.5
planar500 24 40 156 8.6 44 1.2
planar800 36 76 250 34.2 56 1.5
planar1000 72 177 519 135.1 51 1.5
planar2500 120 346 1350 1657.9 66 1.9

grid1 15 24 105 0.4 33 1.0
grid2 27 52 194 0.8 33 1.0
grid3 20 30 114 0.7 27 1.0
grid4 20 55 194 1.5 28 1.1
grid5 30 61 194 2.4 9 1.5
grid6 39 139 380 6.8 24 1.7
grid7 34 100 283 9.2 32 1.6
grid8 51 166 441 30.6 35 1.6
grid9 57 217 578 46.4 40 2.1
grid10 52 206 560 45.6 44 2.1
grid11 39 144 398 30.0 48 1.6
grid12 35 100 287 34.5 60 1.5
grid13 37 122 346 44.2 60 1.3
grid14 28 88 270 53.1 67 1.2
grid15 33 99 293 59.9 68 1.2

ndo22 4 4 35 0.1 0 1.0
ndo148 6 6 45 0.2 0 1.0
904 37 100 311 6.2 27 1.4

Sioux-falls 28 83 346 1.4 30 1.4
Winnipeg 36 76 259 10.6 47 1.5
Barcelona 20 55 231 7.9 38 1.3
Chicago-sketch 36 84 272 18.3 57 1.1
Chicago-region 124 342 1327 8224.8 85 1.2
Philadelphia 95 254 1031 4962.5 83 1.5

Table 8.5: Impact of column elimination (BPR congestion function).
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8.4.3 Impact of the active set strategy

In this subsection, we experiment the combination of the approximation scheme
and the active strategy to solve (8.1) with the Kleinrock and BPR functions.
This strategy turns out to be efficient only with the BPR function, but not
with the Kleinrock function. The very steep slope of Kleinrock close its
asymptote leads to a larger spread of the flows on the arcs. All arcs turn
out to be moderately congested and the compound function does not provide
a satisfactory approximation. Table 8.6 (page 151) gives the computational
results using the active set strategy on the approximate BPR function. The
last column, shows the improvement ratio of CPU time of ACCPM without
active set strategy (see Table 8.3), and with the active set strategy. The value
of g∗ in (5.26) is empirical. We get g∗ = 108 for telecommunication instances
(planar, grid and telecommunications-like problems) and g∗ = 107 for traffic
networks.

Table 8.6 (page 151) shows that active set strategy speed-up the CPU
time on all problems (excepted the smaller ones) until 8.4. This speed-up is
partly due to the large number of inactive arcs in the optimal solution. The
number of dual variables handled by ACCPM is usually lower than 60%. A
second explanation is the reduction of the total number of outer iteration
around 10%. Removing the inactive arcs from the Lagrangian relaxation
seems to make ACCPM easier the converge. The important point is that
the quality of the optimal solution is not affected by the approximation, i.e.,
the computed optimal solution for the approximate problem is also a optimal
solution with 10−5 optimality gap for the original problem. For three instances,
the approximation doesn’t ensure a 10−5 optimality gap but it is also traduced
by a larger decrease of number of outer iterations, of size of the active set, and
obviously of CPU time. This observation shows the difficulties to guaranty a
given optimality gap in a static approximation scheme.

8.4.4 Impact of active set strategy with column
elimination

In this set of experiments, we combine both column elimination and the active
set strategy. Obviously, since active set strategy is not efficient with Kleinrock
function, we solve only (8.1) with the BPR congestion function. The settings
of the active set strategy and the column elimination are those used in the
previous subsections. The results are displayed on Table 8.7 (page 152) . In
the last column of the table, we give the improvement ratio of the CPU time
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Problem ID Error %|A2| Outer Inner CPU %Or ratio

planar30 < 10−5 53 58 299 1.2 36 1.0
planar50 < 10−5 63 99 473 2.9 33 1.2
planar80 < 10−5 62 154 803 9.4 24 1.4
planar100 < 10−5 60 97 536 4.9 29 1.3
planar300 < 10−5 44 82 399 9.2 38 2.0
planar500 < 10−5 26 38 216 5.8 62 1.7
planar800 < 10−5 26 77 383 29.6 68 1.7
planar1000 < 10−5 40 168 775 132.2 54 1.6
planar2500 < 10−5 43 323 1996 2063.3 51 1.5

grid1 < 10−5 86 25 118 0.4 32 1.0
grid2 < 10−5 99 49 210 0.8 31 1.0
grid3 < 10−5 40 25 122 0.6 33 1.1
grid4 < 10−5 50 52 222 1.7 34 1.0
grid5 < 10−5 47 50 224 2.3 37 1.5
grid6 < 10−5 63 107 400 8.6 31 1.3
grid7 < 10−5 52 76 312 8.8 39 1.7
grid8 < 10−5 54 113 437 26.1 38 1.9
grid9 < 10−5 64 178 612 60.8 34 1.6
grid10 < 10−5 66 195 661 74.5 34 1.3
grid11 < 10−5 61 139 475 41.9 43 1.1
grid12 < 10−5 51 87 330 34.6 59 1.5
grid13 < 10−5 57 113 448 53.4 51 1.1
grid14 < 10−5 44 78 323 47.2 69 1.3
grid15 < 10−5 49 88 346 56.9 66 1.2

ndo22 < 10−5 50 5 46 0.1 -10 1.0
ndo148 < 10−5 75 6 49 0.2 17 1.0
904 < 10−5 32 93 358 5.1 42 1.6

Sioux-falls < 10−5 100 69 336 1.7 30 1.2
Winnipeg 1.3× 10−5 33 48 246 6.8 49 2.4
Barcelona < 10−5 24 37 241 3.8 51 2.7
Chicago-sketch < 10−5 52 65 262 16.9 56 1.2
Chicago-region 5× 10−4 34 55 698 1261.3 87 8.4
Philadelphia 5× 10−5 54 97 1234 2157.9 74 3.5

Table 8.6: Impact of the active set strategy (BPR congestion function).
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of ACCPM without using the two options (see Table 8.3), and with using
them. As expected, column elimination reduces the computational time. As
in subsection 8.4.2, it decreases the time spent in computing the analytic
centers.

Problem ID Error %|A2| Nb cuts Outer Inner CPU %Or ratio

planar30 < 10−5 53 26 58 315 1.2 30 1.0
planar50 < 10−5 63 26 92 475 2.9 31 1.2
planar80 < 10−5 63 42 196 896 7.6 33 1.7
planar100 < 10−5 60 36 98 506 4.2 32 1.5
planar300 < 10−5 44 35 96 434 9.4 50 1.9
planar500 < 10−5 26 16 34 196 5.1 70 2.0
planar800 < 10−5 27 31 78 363 27.1 77 1.9
planar1000 < 10−5 20 78 177 815 113.6 64 1.9
planar2500 < 10−5 43 118 354 1898 1540.0 73 2.0

grid1 < 10−5 86 16 25 117 0.4 34 1.0
grid2 < 10−5 97 21 56 229 0.8 31 1.0
grid3 < 10−5 40 18 26 125 0.7 33 1.0
grid4 < 10−5 50 27 51 197 1.4 40 1.2
grid5 < 10−5 47 22 45 207 1.9 39 1.8
grid6 < 10−5 63 47 115 384 6.4 41 1.8
grid7 < 10−5 52 37 73 290 6.7 47 2.3
grid8 < 10−5 54 45 116 413 19.1 50 2.6
grid9 < 10−5 64 45 177 680 39.0 48 2.5
grid10 < 10−5 67 42 188 605 40.9 55 2.3
grid11 < 10−5 61 44 139 455 28.4 59 1.7
grid12 < 10−5 51 32 89 321 29.4 70 1.8
grid13 < 10−5 57 35 112 418 38.9 64 1.5
grid14 < 10−5 44 33 74 324 40.8 75 1.5
grid15 < 10−5 49 35 84 328 47.4 75 1.5

ndo22 < 10−5 50 5 5 46 0.1 -12 1.0
ndo148 < 10−5 75 6 6 49 0.1 23 2.0
904 < 10−5 32 37 114 358 3.5 55 2.4

Sioux-falls < 10−5 100 31 93 413 1.5 40 1.3
Winnipeg 1.4× 10−5 33 21 47 251 5.7 51 2.9
Barcelona < 10−5 24 18 35 213 3.1 54 3.3
Chicago-sketch < 10−5 52 29 68 269 15.1 64 1.3
Chicago-region 5× 10−4 34 22 55 681 1229.5 89 8.6
Philadelphia 5× 10−5 54 41 99 1185 2004.0 81 3.7

Table 8.7: Active set strategy and column elimination (BPR congestion
function).
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8.4.5 Comparisons with other methods

In this subsection, we compare ACCPM with a Projection Method on telecommunications
problems using the Kleinrock delay function. We also compare ACCPM with
several implementations of Frank-Wolfe algorithm on transportation problems
with the BPR congestion function.

ACCPM vs. the Projection Method

In this experiment, we compare the results of our solution method ACCPM
using column elimination with the results of the Projection Method (PM)
reported in [102]. As in [102], we solve problem 904 with a varying load factor
to generate different demands. Table 8.8 (page 153) gives the load factors we
use and the corresponding optimal value with a 10−5 relative optimality gap.

Problem ID Load factor z∗Kleinrock

904 1 33.4931
904(1.5) 1.5 52.2678
904(2) 2 72.6437
904(2.5) 2.5 94.8839
904(3) 3 119.305

Table 8.8: Test problems.

In [102], the authors compare a previous version of ACCPM implemented
in [60] with the Flow Deviation Method [85], the Projection Method [22],
and the Proximal Decomposition Method [92]. In this comparative study, the
Projection Method (PM) appears to be the most efficient method to solve the
904 instances. We use the figures reported in [102] for PM and ACCPM 1.

The computational tests in [102] are performed on an IBM RISC/System
6000. We report the original computing times in Tables 8.9 (page 154) and
8.10 (page 154). In order to compare these results with those we obtain with
the new version of ACCPM on a Pentium IV, we have performed benchmark
computations according to BYTEmark2. We found a ratio 14. We use this

1The ACCPM version [60] works on a disaggregated form of the objective function. It
exploits the sparsity in the master problem to cope with the very large number of generated
cuts. In the disaggregated approach, the oracle generates as many cuts as the number of
commodities at each outer iteration. In the case of problem 904, this means 11130 cuts.

2BYTE Magazine’s BYTEmark benchmark program (release 2) available at
http://www.byte.com/bmark/bmark.htm.
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value to compare the speeds of the algorithms in the two columns entitled
ratio in Tables 8.9 and 8.10. These ratios are just indicative.

ACCPM previous ACCPM∗

Problem ID Nb cuts Outer Inner CPU %Or Outer CPU ratio

904 85 138 300 7.6 27 14 3233 30.4
904(1.5) 105 150 314 9.8 24 14 3441 25.0
904(2) 109 172 357 11.8 24 14 3186 19.3
904(2.5) 107 189 398 13.9 24 13 3276 16.8
904(3) 101 192 415 12.6 24 13 3544 20.1

∗ Tests performed in [102] on an IBM RISC/System 6000 machine.

Table 8.9: ACCPM and Previous ACCPM.

ACCPM PM∗

Problem ID Nb cuts Outer Inner CPU %Or Outer CPU ratio

904 85 138 300 7.6 27 579 380 3.6
904(1.5) 105 150 314 9.8 24 663 434 3.2
904(2) 109 172 357 11.8 24 688 471 2.8
904(2.5) 107 189 398 13.9 24 741 558 2.9
904(3) 101 192 415 12.6 24 691 501 2.8

∗ Tests performed in [102] on an IBM RISC/System 6000 machine.

Table 8.10: ACCPM and PM.

Tables 8.9 and 8.10 shows that the new ACCPM using column elimination
outperforms the previous version of ACCPM and improves the computational
time of the Projection Method with a ratio 3.

ACCPM vs. Frank-Wolfe algorithm

In this experiment, we compare ACCPM with the results obtained in [38] with
different versions of Frank-Wolfe algorithm: a classical Frank-Wolfe method
(FW), a conjugate direction Frank-Wolfe method (CFW) and a bi-conjugate
Frank-Wolfe method (BFW). These methods outperform the Frank-Wolfe
method implemented in [15]. We solve the same set of transportation problems
as in [38], with BPR function with a 10−4 relative gap.

Since we have not at our disposal the machine used in [38], we cannot
compare the computational times. To get an idea of performance, we focus
on the number of iterations to solve the problems. In this experiment, we do
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not use the active set strategy to have perfect control on the precision of the
optimal solution.

Problem ID ACCPM BFW CFW FW

Sioux-falls 44 124 357 1869
Winnipeg 39 163 243 838
Barcelona 31 41 34 51
Chicago-sketch 27 21 17 24
Chicago-region 115 43 53 126

Table 8.11: ACCPM vs. Frank-Wolfe.

The results displayed on Table 8.11 (page 155) show that ACCPM is
competitive with the implementations of Frank-Wolfe algorithm in term of
number of iterations, except for the last instance. ACCPM is more efficient
on the smaller instances.

8.5 Conclusion

In this chapter, we experimented two important modifications of the analytic
center cutting plane method to solve nonlinear multicommodity flow problems:
a cutting surface to handle the smooth component of the Lagrangian dual
objective and an approximation scheme for the nonsmooth component of that
objective. The approximation scheme is coupled with an active set strategy
that leads to an expression of the Lagrangian dual in a space of smaller
dimension. The new approach considerably improves the performance of the
former implementation of ACCPM. It compares favorably with the known
most efficient methods.

The present results suggests that possible further improvements could
be achieved using the approximation/active set approach with a different
linearization scheme for the cost function. Conceptually, this linearization
could be performed around points that are dynamically chosen to lead more
efficient approximations. This will be the object of further researches.
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Contents
9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 157

9.2 Future directions . . . . . . . . . . . . . . . . . . . . . 158

9.1 Summary

The goal of the thesis is to solve large scale multicommodity flow problems
(MCF). A new version of the analytic center cutting plane method (ACCPM)
is used to solve the Lagrangian dual problem. In the present dissertation, we
propose important features that considerably improve the performances of the
solution method on linear and nonlinear MCF.

In Chapter 5, we introduce an active set strategy to reduce the dual
working space. It exploits the following observation. In the linear case, many
capacity constraints are not saturated at the optimum. This results in null
dual variables at the optimum. The active set strategy proposes to estimate
the set of null variables during the process. It cuts down the computational
times by a factor from 2 to 14 and makes ACCPM possible to solve the largest
instances of linear MCF.

This strategy is extended to nonlinear functions with a linear part near the
origin, i.e, the compound functions. In Chapter 5, we implement a approximation
scheme that replaces nonlinear functions by compound ones. It makes then
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possible to use the active set strategy. The combination of the approximation
scheme and the active set strategy turns out to be efficient with the BPR
delay function but not with the Kleinrock congestion function. It speeds up
the computational time until 8.4 with BPR functions.

The other important feature, presented in Chapter 6, is the implementation
in ACCPM of a nonlinear cutting surface to exploit the second order information
of the smooth component of the Lagrangian dual objective. This scheme
is applied on the nonlinear MCF whose the Lagrangian dual is the sum
of a nonlinear smooth function and a nonsmooth one. The new approach
considerably improves the performance of the former implementation of ACCPM
and makes it possible to solve all the instances.

In all the experiments, the combination of a proximal term and the column
elimination strategy induces an improvement of the computational times. The
proximal term is an alternative of introducing boxes on dual variables to
ensure compactness of the localization set in ACCPM. The column elimination
permits to reduce the number of cutting planes in ACCPM and makes the
computation of the analytic centers less costly.

In Chapters 7 and 8, we compare our solution method with others used
in literature. It compares favorably with the known most efficient methods
as well on linear MCF as in nonlinear MCF. In the linear case, we compare
ACCPM with direct approaches, i.e, CPLEX and primal partitioning method,
and with price-directive methods, i.e, Dantzig-Wolfe decomposition and augmented
Lagrangian and bundle methods. In the nonlinear case, we make a comparison
with a Frank-Wolfe algorithm and with a Projection method that is a variant
of the simplicial decomposition. We conclude that our solution method is very
competitive with these methods.

9.2 Future directions

Let us review some directions for future research.
For the sake of completeness, we would like to study more intensively

the class of linear MCF in which the commodities have multiple origins and
multiple destinations. In Chapter 7, we experimented our solution method on
only one set of these instances. In literature, there are many other sets of such
problems, i.e, PDS, Canad, JLF, Dimacs2pprn and BHV instances. In general,
these instances are more compact and direct methods seem more appropriate
than price-directive approaches. We cannot expect too much progress on the
class of problems.
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The second extension of the thesis would be to study the traffic assignment
with elastic demands. The thesis introduced the way to solve this problem and
it would be interesting to observe the behavior of ACCPM. We may expect
nice results.

Then, the present study suggests that possible further improvements could
be achieved using the approximation/active set approach with a different
linearization scheme for the cost function. Conceptually, this linearization
could be performed around points that are dynamically chosen to lead more
efficient approximations. We may expect that other approximations would be
efficient with all objective functions and not only with the BPR function.

Finally, we believe that the method can be accelerated by exploiting the
fact that the objective is the sum of independent components. In previous
studies on the nonlinear multicommodity flow problem [60, 102], the implementation
exploited the fact that the function f is the sum of |K| independent functions.
It associates with each one of them an epigraph variable and optimality cuts.
A much richer information is thus transferred to the master program that
enables convergence in very few outer iterations (often less than 15 on large
problems). In the meantime, the computation time of the analytic centers
dramatically increases. As a result, 95% of the time is spent in the master
program that computes analytic centers [60, 102]. In the present dissertation,
the proportion is just reverse: we observe that 95% of the time is spent in
solving shortest path problems for the larger problem instances. If we could
achieve a better balance between the two components of the algorithm, we
would improve performance.
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A Self-concordant analysis

In this chapter, we show that the objective function of (6.14) is a self-concordant
function when f2 is connected to our multicommodity flow context.

A.1 Properties of self-concordant function

Let us first recall the definition of a self concordant function.

Definition 7. (Definition 4.1.1 of [98])
f is a self-concordant function on C with the constant Mf ≥ 0 if the inequality

|〈f ′′′(x)[h]h, h〉| ≤Mf ||h||3f ′′(x), (A.1)

holds for any x ∈ C and h ∈ Rm.

Let us mention several simple examples of self-concordant functions [98]
which are relevant in our situation:

• The linear function f(x) = ax + b, x ∈ Rm, is self-concordant on Rm

with Mf = 0.

• The convex quadratic function f(x) = b + 〈a, x〉 + 1
2
〈Ax, x〉, x ∈ Rm,

where A is a diagonal semi positive definite matrix, is a self-concordant
function on Rm with parameter Mf = 0.

• The logarithmic function f(x) = − ln x, x ∈ R+, is a self-concordant
function with Mf = 2.

We now introduce some elementary properties and a useful result on self-
concordant functions.

Theorem 8. (Theorem 4.1.1 of [98])
Let f and g be self-concordant functions with parameters Mf and Mg. The
function αf(x) + βg(x) is self-concordant on the intersection of the domains

of f and g, with parameter max(
Mf√

α
, Mg√

β
).
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A. Self-concordant analysis

Theorem 9. (Theorem 4.1.2 of [98])
Let A(x) = Ax+ b be a linear operator. Assume that f(x) is a self-concordant
function with parameters Mf . Then the function Φ(x) = f(A(x)) is also a
self-concordant function with parameter Mf .

Lemma 1. (Lemma 3.2 of [57])
Let g be a convex function defined on C and suppose that there exists a constant
γ such that

〈g′′′(x)[h]h, h〉 ≤ 3γ〈g′′(x)h, h〉

√√√√ m∑
i=1

h2
i

x2
i

, ∀x ∈ C and h ∈ Rm. (A.2)

We have that

f(x) = − log(ζ − g(x))−
m∑

i=1

log xi, (A.3)

is self-concordant on C with parameter

Mf = max(1,
γ + 1 + 1/γ√
3 + 4/γ + 2/γ2

). (A.4)

A.2 Self-concordant results

Let us rewrite the objective function of (6.14),

G(u, z, ζ) =
ρ

2
||u− ū||2 − w0 log s0 −

n∑
i=1

wi log si − log σ + H(u), (A.5)

with
s0 = θ̄ − (πT z + ζ),

si = Γi − (AT u− ET z)i, i = {1, . . . , n},
σ = ζ − f2(u).

From Theorem 8 and Theorem 9, it is easy to show that

ρ

2
||u− ū||2 − w0 log s0 −

n∑
i=1

wi log si,

is self-concordant. Then self-concordance of G is directly related to the self-
concordance of

− log σ + H(u).
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Recall that the above function is defined by the smooth objective function f2

and its feasible set U2, the global self-concordance of G is problem dependent.
Thus, we propose to show that G is a self concordant function in the case of
smooth functions f2 connected to the multicommodity flow context. We focus
on the three main cases:

• f2 is a linear function.

• f2 is the Frenchel conjugate of the Kleinrock function.

• f2 is the Frenchel conjugate of the BPR function.

Theorem 10. Consider the linear function f(x) =
m∑

i=1

cixi, with ci > 0 and

xi > 0, for all i = 1, . . . ,m, we have that the function

g(x, ζ) = − log(ζ − f(x))−
m∑

i=1

log(xi),

is a self-concordant function with constant Mf = 2.

Proof. Easy proof.

Theorem 11. Let f(x) =
m∑

i=1

(1+cixi−2
√

cixi), with ci > 0 and xi ∈ [ 1
ci

, +∞[,

for all i = 1, . . . ,m, be the Frenchel conjugate of the Kleinrock function. Then
the function

g(x, ζ) = − log(ζ − f(x))−
m∑

i=1

log(xi −
1

ci

),

is a self-concordant function.

Proof. Let us start with the negative conjugate of Kleinrock function.

3γD2f(v)[h, h]
√∑n

i=1
h2

i

v2
i

D3f(v)[h, h, h]
=
−3

2
γ
∑n

i=1 h2
i

√
ci(vi + 1

ci
)−

3
2

√∑n
i=1

h2
i

v2
i

3
4

∑n
i=1 h3

i

√
ci(vi + 1

ci
)−

5
2

,
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A. Self-concordant analysis

from the standard inequality
n∑

i=1

x2
i ≥ 1

n
(

n∑
i=1

|xi|)2, we have

3γD2f(v)[h, h]
√∑n

i=1
h2

i

v2
i

D3f(v)[h, h, h]
≥
−3

2
γ
∑n

i=1 h2
i

√
ci(vi + 1

ci
)−

3
2

1√
n

∑n
i=1 hiv

−1
i

3
4

∑n
i=1 h3

i

√
ci(vi + 1

ci
)−

5
2

,

≥
− 3

2
√

n
γ
∑n

i=1 h3
i

√
ci(vi + 1

ci
)−

3
2 v−1

i

3
4

∑n
i=1 h3

i

√
ci(vi + 1

ci
)−

5
2

,

=
− 3

2
√

n
γ
∑n

i=1 h3
i

√
ci(vi + 1

ci
)−

5
2 (vi + 1)v−1

i

3
4

∑n
i=1 h3

i

√
ci(vi + 1

ci
)−

5
2

,

≥
− 3

2
√

n
γ
∑n

i=1 h3
i

√
ci(vi + 1

ci
)−

5
2

3
4

∑n
i=1 h3

i

√
ci(vi + 1

ci
)−

5
2

,

≥ − 2γ√
n

.

From Lemma 1, we have that

g(x, ζ) = − log(ζ − f(x))−
m∑

i=1

log(xi −
1

ci

),

is a self-concordant function with constant

Mf = max(1,
−
√

n
2√

3− 2/(−
√

n
2

)
).

Theorem 12. Let f(x) =
m∑

i=1

( ci(xi−ri)
β+1

β

(αri)
1
β

β
β+1

), with ci > 0 and xi > 0, for

all i = 1, . . . ,m, be the Frenchel conjugate of the BPR function. Then the
function

g(x, ζ) = − log(ζ − f(x))−
m∑

i=1

log(xi),

is a self-concordant function.

Proof. We now prove the same result for the negative conjugate of BPR
function.
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3γD2f(v)[h, h]
√∑n

i=1
h2

i

v2
i

D3f(v)[h, h, h]
=

3γ
∑n

i=1 h2
i siv

1−β
β

i

√∑n
i=1

h2
i

v2
i∑n

i=1 h3
i

1−β
β

siv
(1−2β)/β
i

,

where si = ci/β(tiα)
1
β , ∀i = 1 . . . n. From the standard inequality

n∑
i=1

x2
i ≥

1
n
(

n∑
i=1

|xi|)2, we have

3γD2f(v)[h, h]
√∑n

i=1
h2

i

v2
i

D3f(v)[h, h, h]
≥

3γ
∑n

i=1 h2
i siv

1−β
β

i
1√
n

∑n
i=1 hiv

−1
i

1−β
β

∑n
i=1 h3

i siv
(1−2β)/β
i

,

≥
3√
n
γ
∑n

i=1 h3
i siv

(1−2β)/β
i

1−β
β

∑n
i=1 h3

i siv
(1−2β)/β
i

,

≥ 3(1− β)γ

β
√

n
.

From Lemma 1, we have that

g(x, ζ) = − log(ζ − f(x))−
m∑

i=1

log(xi),

is a self-concordant function with constant

Mf = max(1,

β
√

n
3(1−β)√

3− 2/ β
√

n
3(1−β)

).

Then the objective function (6.14a) is self-concordant in our multicommodity
flow context. This property can be exploited to solve the minimization problem
(6.14).
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