
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article scientifique Article 2004                                     Accepted version Open Access

This is an author manuscript post-peer-reviewing (accepted version) of the original publication. The layout of 

the published version may differ .

Dark energy from backreaction

Rasanen, Syksy

How to cite

RASANEN, Syksy. Dark energy from backreaction. In: Journal of cosmology and astroparticle physics, 

2004, vol. 02, n° 003, p. 21. doi: 10.1088/1475-7516/2004/02/003

This publication URL: https://archive-ouverte.unige.ch/unige:2555

Publication DOI: 10.1088/1475-7516/2004/02/003

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:2555
https://doi.org/10.1088/1475-7516/2004/02/003


ar
X

iv
:a

st
ro

-p
h/

03
11

25
7v

3 
 2

9 
Ja

n 
20

04

Dark energy from backreaction

Syksy Räsänen
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E-mail: syksy.rasanen@iki.fi

Abstract.

We consider the effect of inhomogeneities on the expansion of the Einstein-de Sitter

universe. We find that the backreaction of linear scalar metric perturbations results

in apparent dark energy with a mixture of equations of state between 0 and –4/3. We

discuss the possibility that backreaction could account for present-day acceleration.

PACS numbers: 04.40.Nr, 95.35.+d, 98.80.-k

1. Introduction

The concordance model. Perhaps the most surprising observation in recent cosmology

is that the expansion of the universe seems to be accelerating. This all the more

puzzling since the acceleration has apparently started in the recent past, at a redshift of

probably less than one. These conclusions are based on data from the cosmic microwave

background, large scale structure and supernovae [1, 2, 3, 4, 5, 6]. Though the only

significant direct evidence for acceleration comes from the supernova observations, data

from different sources seem to fit together. There is also some evidence for acceleration

from correlation of the CMB with large scale structure [7, 8, 9].

The preferred framework for interpreting the observations is the ‘concordance

model’ in which the universe is spatially flat, and cold dark matter and baryons

contribute Ωm ≈ 1/3 to the energy density and vacuum energy contributes the rest,

ΩΛ ≈ 2/3.

Most alternatives to the ‘concordance model’ replace the cosmological constant with

some more complicated component with negative pressure, called ‘dark energy’. Indeed,

the relation Ωde ≈ 2 Ωcdm suggests a connection between dark energy and dark matter,

and motivates the construction of models of unified, or coupled, dark matter and dark

energy [10, 11, 12, 13, 14, 15, 16].

However, the conclusion that some component with negative pressure is needed at

all is prior-dependent [17, 18]: the possibility that a model with no exotic ingredients

could fit the data as well is not excluded. As a notable example, a model with Ωm = 0.88

and neutrino energy density Ων = 0.12 can fit the CMB and large scale structure

data even better than the ‘concordance model’, though it does not fit the data from

http://arXiv.org/abs/astro-ph/0311257v3
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supernovae [18]. The neutrino component is needed, since in spatially flat models with

Ωm = 1 the density perturbation amplitude σ8 seems to be generically too high.

There are two main motivations for looking for alternatives. First, the ‘concordance

model’ does not fit all of the data very well. In particular, the prediction for the

amplitudes of the quadrupole and octopole of the CMB is too high‡. The probability

of getting the observed CMB amplitudes depends on the method of evaluation, but it

seems that in about 95% of its realisations, the ‘concordance model’ does not reproduce

the observed CMB spectrum [22, 23]. Another phrasing is that the model is ruled out

at about 2σ level. (In [21] the discrepancy was evaluated to be much lower, about 70%,

or 1σ.) The second motivation is not observational but theoretical.

The coincidence problem. The most unattractive feature of the ‘concordance model’ is

the coincidence problem: why has the acceleration started in the recent past? Or, to

phrase it differently, why has the energy density of dark energy become comparable to

the energy density of matter only recently? There are three possible answers to this

question.

The first possibility is that this is just a coincidence. If the theory of quantum

gravity determines the unique value of vacuum energy, perhaps this simply happens to be

of the order of the matter energy density today. Since (ρm)1/4 ≈ 10−3eV ≈ (TeV)2/M ,

where M is the (reduced) Planck mass, this may not be unreasonable [24]. This is also

the scale of neutrino mass splittings, so there might be a relation [25].

The second possibility is that there is an anthropic reason. If various vacua with

different vacuum energies are realised in different parts of the universe, then the value

of vacuum energy in the part of the universe we observe is naturally so low as not to

prevent the formation of galaxies [26]. Also, it will naturally not be so negative as to

cause the universe to collapse very early. This argumentation provides only a window

of values, and one then needs to have some principle or a specific model to end up with

the value apparently observed today, or at least to narrow the window sufficiently [27].

The third possibility is that there is a dynamical reason for the acceleration to have

started recently. If so, then this is presumably related to the dynamics observed in

the recent universe (in principle the dark energy component can of course have its own

dynamics, only weakly related to those of the visible universe). The important events in

recent cosmic history, meaning within the latest few thousand redshifts, are transition

from radiation to matter domination at around z = 3500, radiation-matter decoupling

at around z = 1088 and the growth of structure and related phenomena at around z

∼ 10 and below.

Models where the dark energy component is sensitive to the transition from

radiation to matter domination have been constructed [28]. In these models the

contribution of the dark energy tracks the radiation density during the radiation

dominated era, and starts to rise after the transition to the matter dominated era.

‡ The low multipoles are susceptible to contamination from the Galaxy, but this is thought to be under

control [19, 20, 21, 22].
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However, one still generically has to explain why the dark energy component has started

to dominate at a redshift of at most a few, and not earlier or later. Since the matter-

radiation equality and the start of the acceleration are far away both in time and in

redshift, one could naturally have the dark energy dominate much earlier or much later.

As for the radiation-matter decoupling, it is nearer to the start of the acceleration

than radiation-matter equality, but does not seem provide a promising trigger

mechanism.

Structure formation occurs around the same redshift as the acceleration starts,

and so the possibility that the acceleration is related to the growth of inhomogeneities

in the universe seems natural. One way to implement this is to use the growth of

inhomogeneities as a trigger for a dark energy component [13]. However, one can

also look at the effect of the growth of structure itself, rather than introducing new

fundamental physics that is sensitive to structure formation (outside the fitting problem

to be discussed, this has been suggested in [11]).

The fitting problem. The cosmological observations leading to the conclusion that there

is a dark energy component have been interpreted in the context of a homogeneous and

isotropic model for the universe. The reasoning is that since the universe appears to be

homogeneous and isotropic on large scales§, taking the metric and the energy-momentum

tensor to be isotropic and homogeneous should be a good approximation.

In the usual approach, one first takes the average of the metric and the energy-

momentum tensor, and then plugs these averaged quantities into the Einstein equation.

Observables such as the expansion rate are then calculated from this equation.

Physically, the correct thing to do is to plug the full inhomogeneous metric and

energy-momentum tensor into the Einstein equation, and then take the average. Also,

observables should be expressed directly in terms of the inhomogeneous metric and

sources and then averaged.

Since the Einstein equation is non-linear, the equations for the quantities which

have been averaged before plugging them in (that is, the usual Friedmann-Robertson-

Walker equations) will in general not be the same as the average of the equations for the

inhomogeneous quantities. We may equivalently say that the averaged quantities do not

satisfy the Einstein equation. This is the fitting problem discussed in [30]. When one fits

the parameters of a Friedmann-Robertson-Walker model to observational data, is one

fitting the right model? The difference between the equations for the quantities averaged

beforehand and the average of the equations for the real inhomogeneous quantities is

also known as backreaction.

The fitting problem has been approached from two directions. One may try to solve

the full problem to obtain the equations satisfied by the averaged quantities, without

assuming a given background [31, 32, 33, 34, 35, 36]. A more modest approach is to

§ Though it has been argued that the homogeneity has in fact not been established, on the basis that

the standard statistical tools used to measure deviation from homogeneity assume homogeneity on large

scales [29].
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assume a homogeneous and isotropic background and study the effect of perturbations

on this background [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53].

(A brief overview of some of the averaging procedures that have been used is given in

[54].) Sometimes the term backreaction is used to refer only to the second, more limited,

approach.

The mathematical problem of obtaining the average metric and the equations

satisfied by the average quantities has not been solved, though some progress has been

made [33, 34]. The issue of the metric is particularly complicated, since in order to

integrate a tensor one has to parallel transport its components with respect to some

background, but this background is precisely what one is trying to determine. From a

physical point of view one might expect that when deviations from homogeneity and

isotropy are small, the homogeneous and isotropic metric should be a good description.

However, the study of backreaction on inflationary backgrounds has shown that even

this is not necessarily true, since the large number of perturbative modes can compensate

for their small amplitude [40, 41, 46, 47, 48, 49, 50, 51, 52, 53].

We will take the more modest approach. We assume that there is a given

homogeneous and isotropic background with perturbations on it and that both satisfy

the Einstein equation. We will then study the effect of these perturbations on the local

expansion rate and see how it differs from the background expansion rate.

The most straightforward way to consider the impact of perturbations is to expand

the equations in a perturbative series and solve them in a consistent manner. For

cosmological perturbations this is an involved task. The second order solutions that

are known [52, 55, 56] have been built order by order, assuming that the equations for

higher order terms have no impact on the equations for lower order terms, so they are

not fully consistent second order calculations.

We will not solve the second order equations, but will simply assume the background

and the perturbations to be given by first order perturbation theory. Obviously, if the

impact of the perturbations on the background turns out to be large, this is no longer

a good approximation, and a consistent second order calculation would be needed.

In section 2 we calculate the local expansion rate for an observer in a perturbed

FRW universe. We evaluate this for the Einstein-de Sitter case and take the average.

We find a non-vanishing correction to the expansion rate from the perturbations. In

section 3 we discuss the relation to dark energy and summarise our results.

2. The backreaction calculation

2.1. The local expansion rate

The metric and the Einstein equation. We are interested in the expansion rate

measured by a comoving observer. We will expand this observable in terms of the

perturbations around homogeneity and isotropy, and take the average. Our approach

closely follows that of [50].
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We take the homogeneous and isotropic background spacetime to be spatially flat.

We take the source to be a single fluid with no anisotropic stress, and we will not

consider vector or tensor perturbations. To first order in perturbations, the metric can

then be written as [57]

ds2 = −(1 + 2Φ(t, x))dt2 + (1 − 2Φ(t, x)) a(t)2dx
2 . (1)

The perturbation Φ coincides with a gauge-invariant quantity in first order

perturbation theory, and is identified as the gravitational potential in the Newtonian

limit. We choose the background scale factor to be normalised to unity today, a(t0) = 1.

An overdot will be used to denote derivative with respect to the time t. Note that

because of the perturbations, t is not the proper time measured by a comoving observer,

and one has to be careful to recast the time-dependence of observables in terms of the

proper time, as emphasised in [50].

The Einstein equation reads

Gµν =
1

M2
Tµν =

1

M2
((ρ + p)uµuν + pgµν) , (2)

where M = 1/
√

8πGN is the (reduced) Planck mass, ρ and p are the energy density

and pressure of matter, respectively, and uµ is the velocity of the matter fluid, with

uµu
µ = −1.

The expansion rate. The observable of interest, the expansion rate measured by an

observer comoving with the matter fluid, is given by

θ(t, x) = uµ
;µ , (3)

where ; stands for the covariant derivative.

In order to evaluate θ for a typical comoving observer, we will expand to second

order in Φ and take the average. For this purpose, let us look at the 0i-component of

(2):

G0i =
1

M2
(ρ + p)u0ui =

1

3
(4Gµνu

µuν + Gµνg
µν)u0ui , (4)

where we have used the Einstein equation (2) again. Writing Gµν in terms of the metric,

we have an iterative equation from which uµ can be solved to any desired order in Φ.

Given the initial condition that for the background spacetime uµ = (1, 0), we get to

second order

u0 ≃ 1 − Φ +
3

2
Φ2 +

1

2

1

a2Ḣ2
∂i(Φ̇ + HΦ)∂i(Φ̇ + HΦ)

ui ≃
1

a2Ḣ
∂i(Φ̇ + HΦ) +

1

a2Ḣ
(Φ̇∂iΦ + 5Φ∂iΦ̇ + HΦ∂iΦ)

+
1

a2Ḣ2
∂i(Φ̇ + HΦ)

(

Φ̈ + HΦ̇ +
1

a2
∇2Φ

)

, (5)

where H = ȧ/a is the background expansion rate.

It is noteworthy that uµ contains terms with more than two derivatives (specifically

spatial derivatives). This perhaps surprising feature can be understood from (4) as
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follows. Let us assume that ui contains exactly one spatial derivative (a non-zero ui

must have at least one spatial derivative to give the index). Then the right-hand side

of (4) contains products of Gij and three powers of ui, which in general contain five

spatial derivatives (and do not cancel). But this makes the equation inconsistent, since

the left-hand side only contains terms with at most two derivatives. Obviously, the

conclusion also holds for two, or any other finite number of, spatial derivatives in ui:

the only possibilities for the number of derivatives in uµ that are consistent with (4) are

zero and infinite. So, the number of derivatives in an iterative solution for uµ depends

on the power of Φ at which the iteration is stopped. Since the derivative terms arise

by combining components of Gµν algebraically, there are no terms with more than two

derivatives, either spatial or temporal, acting on a given Φ. Therefore the maximum

number of derivatives at order ΦN is 2N .

Plugging the expression (5) for uµ into (3) we have, to second order,

θ ≃ 3H − 3(Φ̇ + HΦ) − 3ΦΦ̇ +
9

2
HΦ2 +

3

2

H

a2Ḣ2
∂i(Φ̇ + HΦ)∂i(Φ̇ + HΦ)

−2
1

a2Ḣ
∂i(Φ̇ + HΦ)∂iΦ + ∂t

(

1

2

1

a2Ḣ2
∂i(Φ̇ + HΦ)∂i(Φ̇ + HΦ)

)

+ ∂iu
i , (6)

where the total gradient ∂iu
i has not been written explicitly. Since uµ contains (at

second order) terms with four derivatives, θ contains terms with five derivatives. The

next to last term has two spatial and three temporal derivatives and the last term, ∂iu
i,

has a contribution with two spatial and three temporal derivatives and a contribution

with four spatial derivatives and one temporal derivative.

The proper time. In order to find the physical expansion rate, we should recast (6)

in terms of the proper time τ of a comoving observer. The derivative in the direction

orthogonal to the hypersurface defined by the velocity uµ is ∂τ = uµ∂µ. From the

condition ∂ττ = 1 we obtain, using (5), an iterative equation for τ . Given the initial

condition that for the background spacetime τ = t, we get to second order

τ ≃ t +

∫ t

dt′
(

Φ −
1

2
Φ2 −

1

2

1

a2Ḣ2
∂i(Φ̇ + HΦ)∂i(Φ̇ + HΦ)

−
1

a2Ḣ
∂i(Φ̇ + HΦ)

∫ t′

dt′′∂iΦ
)

. (7)

If we neglected the gradient terms, we would get (to all orders in Φ) τ =
∫

dt
√

|g00|,

in agreement with [50], where gradients were dropped.

From (5), (6) and (7) we can calculate the expansion rate in terms of the proper

time. For general functions a and Φ the expression is cumbersome and not very

illuminating. However, for the Einstein-de Sitter universe things simplify considerably.

The Einstein-de Sitter universe. As discussed earlier, we take a and Φ from the first

order formalism and calculate θ to second order with these expressions. If the effect of
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the perturbations on θ is large, then this approach has reached its limit of validity, and

a consistent second order calculation would be needed.

The matter is taken to be pure cold dark matter, Ωcdm = 1. When relevant, we

will mention what effect a realistic baryon content of Ωb = 0.05 [5, 58] would have; at

our level of approximation, the difference is minimal. The perturbations are taken to be

purely adiabatic, Gaussian (with zero mean), and to have a scale-invariant spectrum,

n = 1. We will also consider only the growing mode of the perturbations.

The background expansion rate is given by the FRW solution for pressureless

matter, so a = (t/t0)
2/3 and H = 2/(3t). We take the value of H today to be H0 = h

100 km/s/Mpc, with h = 0.7; our results are not sensitive to the precise value of h. For

a = (t/t0)
2/3, the local expansion rate is, from (5), (6) and (7),

θ ≃ 3Hτ − 3(Φ̇ + HΦ) + 3H
1

t

∫

dtΦ − 3ΦΦ̇ +
9

2
HΦ2 − 3H

(

1

t

∫

dtΦ

)2

−
3

2
H

1

t

∫

dtΦ2 +
2

3

1

a2H3
∂i(Φ̇ + HΦ)∂i(Φ̇ + HΦ)

+
4

3

1

(aH)2
∂i(Φ̇ + HΦ)∂iΦ +

2

9
∂t

(

1

(aH)2H2
∂i(Φ̇ + HΦ)∂i(Φ̇ + HΦ)

)

−
2

3
H

1

t

∫

dt
1

(aH)2H2
∂i(Φ̇ + HΦ)∂i(Φ̇ + HΦ)

+2H
1

t

∫ t

dt′

(

1

(aH)2
∂i(Φ̇ + HΦ)

∫ t′

dt′′∂iΦ

)

+ ∂iu
i , (8)

where we have defined Hτ = 2/(3τ), and ∂iu
i has again not been written explicitly. The

terms after 3Hτ are the backreaction contribution.

2.2. The average expansion rate

Taking the average. To evaluate the backreaction, we should take the average of (8)

over the hypersurface of constant τ . The backreaction has been expressed in terms of

the background coordinates t and xi. We have to rewrite it in terms of the proper time

τ and spatial coordinates orthogonal to τ , denoted by yi. We also have to take into

account the integration measure on the hypersurface of constant τ . After a somewhat

lengthy calculation, we get

< θ >≃ 3Hτ − ∂τ < 3Φ + 2φ +
2

3

1

(aτHτ )2
∇2Φ >0

−
1

2
∂t

(

< 3Φ + 2φ +
2

3

1

(aH)2
∇2Φ >0

)2

+2
1

H
∂2

t < φΦ >0 +14∂t < φΦ >0 +∂t < φ2 >0 −
3

2
∂t < Φ2 >0

+
3

2
H

1

t

∫

dtt∂t < Φ2 >0 −
4

9

1

H
∂2

t

(

1

(aH)2
< ∂iφ∂iΦ >0

)

−
24

9
∂t

(

1

(aH)2
< ∂iφ∂iΦ >0

)

+
2

3
∂t

(

1

(aH)2
< ∂iΦ∂iΦ >0

)
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+
2

9
∂t

(

1

(aH)2H2
< ∂i(Φ̇ + HΦ)∂i(Φ̇ + HΦ) >0

)

+2H
1

t

∫

dtt∂t

(

1

(aH)2
< ∂iΦ∂iΦ >0

)

+
2

3
H

1

t

∫

dtt∂t

(

1

(aH)2H2
< ∂i(Φ̇ + HΦ)∂i(Φ̇ + HΦ) >0

)

+
2

9

1

(aH)2
< ∂i

[

8Φ̇∂iΦ − 6Φ∂iΦ̇ + 15HΦ∂iΦ + 2
1

H
Φ̇∂iΦ̇

+2
1

H2
Φ̈∂i(Φ̇ + HΦ) + 2

1

H
φ∂iΦ̈ + 10φ∂iΦ̇ − 4Hφ∂iΦ

]

>0

+
4

9
∂t

(

1

(aH)4
< ∂i

[

∇2Φ∂iΦ
]

>0

)

, (9)

where we have defined φ = t−1
∫

dtΦ and aτ = (τ/t0)
2/3. (Note that when Φ̇ = 0, we

have φ = Φ.) Here the arguments of Φ and its derivatives are understood to be (τ, y)

rather than (t, x), and < A >0 denotes (
∫

d3y)−1
∫

d3yA(τ, y). Since the calculation is

only to second order, we have substituted t for τ in the terms with two powers of Φ.

The backreaction terms can be divided into three groups: linear terms, quadratic

terms which are not total gradients and quadratic terms which are total gradients (and

therefore reduce to boundary terms). It is noteworthy that all terms apart from the

first total gradient term are total time derivatives of dimensionless expectation values:

for example, there are no terms of the form H(aH)−2 < ∂iΦ∂iΦ >0.

The linear terms. It might seem that the average of the linear backreaction terms

must be zero since the perturbations are assumed to be Gaussian (with zero mean).

However, we have not specified the hypersurface with respect to which this holds. Are

the perturbations Gaussian with respect to the (unphysical) hypersurface of constant t

of the background spacetime, or with respect to the (physically meaningful) perturbed

hypersurface of constant τ? Obviously, if the perturbations are distributed according to

Gaussian statistics on the background spacetime, they are not Gaussian with respect to

the perturbed spacetime, and vice versa.

The situation is ambiguous because this question only arises at second order, and

we are plugging in perturbations from first order perturbation theory. The issue would

probably have to be resolved by a consistent second order calculation. Note that this

non-Gaussianity related to the choice of hypersurface is distinct from the intrinsic non-

Gaussianity of second order perturbations found in [55, 56].

It seems more physically meaningful to take the perturbations to be Gaussian with

respect to the hypersurface of constant τ . However, we keep in the simple approximation

of using first order results for the perturbations, and take them to be Gaussian with

respect to the background. Then the linear terms, and the squares of linear terms, in

(9) vanish. Under another assumption about the statistics, this may not be true.
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The quadratic non-total gradient terms. In the Einstein-de Sitter universe, the non-

decaying mode of Φ is constant in time, Φ̇ = 0, in first order perturbation theory. The

expansion rate (8) then simplifies to

θ ≃ 3Hτ +
118

45

1

a2H
∂iΦ∂iΦ + ∂iu

i . (10)

It is noteworthy that all non-gradient correction terms have disappeared: only

gradients contribute to the backreaction, in agreement with [50]. The average expansion

rate (9) simplifies to (neglecting the linear terms and their squares),

< θ >≃ 3Hτ

(

1 −
22

135

1

(aH)2
< ∂iΦ∂iΦ >0 +

22

27

1

(aH)2
< ∂i(Φ∂iΦ) >0

+
8

27

1

(aH)4
< ∂i

(

∇2Φ∂iΦ
)

>0

)

. (11)

Postponing discussion of the total gradient terms, let us evaluate the first correction

term:

1

(aH)2
< ∂iΦ∂iΦ >0 =

1

(aH)2

∫

∞

0

dk

k
k2∆2

Φ(k)

≈
9

4

(aH)4

(aH)2

∫

∞

0

dk

k
k−2∆2

δ(k, a)

=
9

4

1

(aH)2

∫

∞

0

dk

k
A2k2T (k)2

≈ 8 · 10−5a , (12)

where ∆2
Φ and ∆2

δ are the power spectra of the metric and density perturbations,

respectively, and we have used Φk ≈ −3(aH)2δk/(2k2) (the low-k part of the spectrum

where this is not a good approximation gives negligible contribution). The density power

spectrum is taken to be ∆2
δ(k, a) = A2k4T (k)2/(aH)4, where A = 1.9 · 10−5 and T (k) is

the CDM transfer function, for which we use the BBKS fitting formula [59]. Taking into

account a baryon contribution of Ωb = 0.05 with the shape parameter Γ = h exp(−Ωb)

[60] would only change the prefactor from 8 to 7 in (12).

The magnitude of the effect can be understood as follows. Due to the transfer

function, the main contribution comes from around keq, so a rough estimate is

H−2
0 < k2Φ2 >∼ (keq/H0)

2 < Φ2 >∼ (150)2(2 · 10−5)2 ∼ 10−5. Note that the

backreaction is enhanced by the large factor (keq/H0)
2 and so could be large even

with Φ much below unity.

Taking into account the numerical factor from (11), we get −1 ·10−5 for the relative

correction. The negative sign may seem surprising, since from (10) it might appear that

the backreaction definitely increases the expansion rate. This is true when evaluated

over the background surface of constant t, but taking into account the perturbations

in the hypersurface changes the sign. To appreciate the importance of the choice of

hypersurface, it may be helpful to note that evaluating the expansion rate 3Hτ over

the background hypersurface of constant t gives an apparent backreaction contribution.

The choice of hypersurface has been discussed in [50, 53].
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The backreaction seems to increase proportional to the scale factor a, and would

seem to be more important in the future, eventually dominating the expansion rate.

However, this is not true, because the linear regime of perturbations does not extend to

infinitely small scales, due to the process of structure formation. We will take this into

account by introducing a time-dependent cut-off, denoted by kL, at the scale at which

the mean square of the density perturbations becomes unity, σ2 = 1‖. The end of the

linear regime of density perturbations is today at around kL = 0.1 Mpc−1. Putting a

cut-off in the integral (12) at this kL only changes the prefactor from 8 to 2 (at this

level of accuracy, the baryons make no difference). However, since we are cutting the

perturbations off at some time-dependent scale in momentum space, the perturbations

in position space are no longer time-independent. Therefore, the simple result (11)

applies only before the formation of bound structures, that is, before σ2 = 1 on any

scale.

Note that we are applying the cut-off to the perturbations themselves, not to the

integration range. This seems to be more physically correct for the high-k cut-off (though

not for the horizon cut-off, were we to introduce one). If we applied the cut-off to the

integration range instead, we would have Φ̇ = 0 and the simple result (11) would still

hold¶. The treatment of the onset of non-linearity will be discussed in more detail in

section 3.

For a realistic transfer function, it is not possible to calculate the full backreaction

(9) analytically in the presence of a time-dependent cut-off in momentum space.

However, we can determine the time behaviour of the backreaction by looking at its

asymptotic behaviour.

The asymptotic future value of (9) can be found by a simple dimensional argument.

There are three scales in the problem, aH , kL and (from the transfer function) keq; the

scale factor a enters only via these scales. Therefore the non-gradient expectation values

such as < Φ2 >0 must be some function of kL/(aH) and keq/(aH), and the gradient

expectation values such as < ∂iΦ∂iΦ >0 must be (aH)2 (or (aH)2H2 in the case of

expectation values involving Φ̇ + HΦ) times some function of the same two variables.

In the future, structure formation will have proceeded so that all scales smaller

than 1/keq ≈ 30 Mpc will have gone non-linear. The CDM transfer function T (k) is

essentially unity for scales much smaller than keq, and for T (k) = 1 the condition σ2 = 1

gives kL =
√

2/A(aH) ∝ aH+. The scale keq has disappeared, and kL is proportional

to aH . It follows that the non-gradient expectation values are constant, and the gradient

ones are simply constants times (aH)2 (or (aH)2H2, as appropriate). The terms we are

considering contribute to the average expansion rate (9) only via total time derivatives

of dimensionless expectation values. Therefore, the backreaction vanishes.

‖ We should also introduce a lower cut-off at the horizon scale (aH)/2, to take into account that the

average is properly over the horizon volume and not over all space. However, for the terms considered

here, the effect of this cut-off is negligible.
¶ Note that in (9) the integration range has been assumed not to depend on time.
+ For simplicity, we are using a top hat in momentum space as the window function.
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So, the backreaction from the quadratic terms which are not total gradients behaves

as follows. Before σ2 = 1 on any scale, the backreaction is given by (12). It slows down

the expansion rate, its relative contribution rises with time and is of the order 10−5a.

When the limit σ2 = 1 is reached, two things happen. First, the integral (12) receives

a cut-off at kL, which decreases as a increases and larger scales become non-linear.

Second, time derivatives of the perturbations start contributing. The net effect is to

reduce the magnitude of the backreaction, so that it is asymptotically zero in the future.

It should be noted that for the scale-invariant spectrum that we have considered,

the limit σ2 = 1 is actually reached at all times on sufficiently small scales. Even taking

into account collisional damping and free streaming, the limit is reached quite early

for a pure adiabatic spectrum of CDM perturbations. In [61], structure formation was

estimated to start at z ≈ 40 − 60 in the case of supersymmetric CDM. For light dark

matter, the power spectrum would be more damped, and the limit would be reached

later [62].

The conclusion of asymptotically vanishing backreaction depends on the absence of

a scale other than aH : if there is another scale present, the backreaction will in general

not vanish. In particular, the backreaction will be non-zero if the power spectrum of

density perturbations is not scale-invariant. If the spectrum is given by a power-law with

a constant spectral index n, the integrand in (12) will be multiplied by (k/kP )n−1, where

kP is some constant scale. As discussed above, in the future the transfer function will

be unity for all modes in the linear regime. Then the integral (12) will be proportional

to kn−1

L
∝ (aH)n−1. Therefore, the total time derivatives in (9) will not vanish, and the

relative backreaction will be proportional to (aH)n−1 ∝ a(1−n)/2. For a red spectrum,

n < 1, the backreaction will grow and eventually dominate the expansion of the universe.

The impact on the expansion rate will be discussed in more detail in section 3.

The quadratic total gradient terms. The backreaction terms previously considered

could be readily evaluated using the standard methods of cosmological perturbation

theory. The remaining total gradient terms are more problematic. In the standard

treatment, cosmological perturbations are assumed to be periodic on some large scale,

so that one can decompose them as a Fourier series. It is assumed that the periodicity

has no impact on observables as long as the periodicity scale is large enough. However,

the average of a total gradient yields a boundary term which is of course sensitive to

boundary conditions: the periodicity forces the average of a total gradient to vanish.

(The conditions imposed by the existence of a Fourier transform are less straightforward,

but they also imply the vanishing of averages of total gradients.) There is no obvious

physical reason for the quadratic total gradient terms in (9) to vanish, so this seems to

be just a mathematical artifact.

As noted earlier, we should properly take the average over only the present

horizon, while the periodicity scale should be taken to be much larger than the horizon.

Therefore, the proper way to evaluate the total gradient terms in the standard treatment

of cosmological perturbations is to take a box much bigger than the horizon and consider



Dark energy from backreaction 12

the effect of these terms on horizon-sized subsamples of space. If the hypothesis that

the periodicity has no impact on observables (for a sufficiently large box) is correct,

then the result should be the same that we would get by evaluating the total gradient

terms with realistic boundary conditions, not imposing periodicity. Note that the time

development of the backreaction terms (and therefore the apparent equation of state,

to be discussed in section 3), is fixed by the time-development of the perturbations, so

that only the magnitude remains to be determined.

Such a calculation has been done in a different, Newtonian, backreaction formalism,

where backreaction vanishes completely for periodic boundary conditions [34]. The box

was taken to be of about the horizon size, and it was found that the backreaction can

have a substantial impact on the expansion rate on scales smaller than about 50 Mpc,

either increasing or decreasing it.

We will not here embark on such a numerical computation, but will naively estimate

the magnitude of the total gradient terms. The total gradient terms in (9) have the form

< ∂i(f∂ig) >0=< ∂if∂ig >0 + < f∇2g >0. Evaluated over all space, the two parts

cancel (in the standard treatment of perturbations). Evaluated over a volume smaller

than the box size, the cancellation will not be perfect (or the terms may even have the

same sign). We will therefore crudely estimate the magnitude of the backreaction by

looking at the parts evaluated individually over all space.

The first total gradient term in (9) contains two spatial derivatives and is thus

similar to the terms previously evaluated. When this term does not average to zero, it

is expected to modify the numerical coefficients of the previously considered gradient

terms by factors of at most order one, possibly changing their sign. It could also make

the asymptotic value of the backreaction different from zero.

The second total gradient term in (9) is qualitatively different from any others in

that it contains four spatial derivatives. Since

1

(aH)4
< ∇2Φ∇2Φ >0=

9

4
< δ2 >0≡

9

4
σ2 , (13)

the first part of the backreaction term is simply −∂tσ
2 and the second is obviously ∂tσ

2.

Before the limit σ2 = 1 is reached on any scale, the first part of the backreaction term

(relative to 3Hτ) is given by −2
3
σ2 and the second by 2

3
σ2, since σ2 ∝ a2. After the

limit σ2 = 1 is reached, we should introduce a cut-off at kL, meaning that σ2 saturates

at unity and both parts of the backreaction vanish independently, ∂tσ
2 = 0.

So, the contribution of the total gradient term with four spatial derivatives grows

like a2 until the limit σ2 = 1 is reached, at which point it drops ro zero. (The expansion

rate thus jumps discontinuously when σ2 reaches unity, due to the unrealistic sharp cut-

off at kL.) The average over all space is always zero, and so the backreaction before the

start of the formation of bound objects will lead to to slower expansion in some regions

and to faster expansion in others. A reasonable estimate of the relative contribution

to the expansion rate might be of the order 2
3
σ2 or so, though in some regions it

will be much smaller or larger. The probability distribution of magnitudes should be

properly evaluated, for example by numerical computation. Also, the conclusions here
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are sensitive to the sharp cut-off at kL. For example, clearly the physical expansion

rate will not jump discontinuously when the limit σ2 = 1 is reached, so the backreaction

could be large for at least some time afterwards.

3. Discussion

The effective dark energy. To appreciate the impact of backreaction, let us look at the

Hubble law. Let us parametrise the quadratic backreaction terms in (9) as follows:
(

1

3
< θ >

)2

≃ H2
τ (1 + λ1a

m1 + λ2a
m2)2

= H2
τ + H2

τ (2λ1a
m1 + 2λ2a

m2 + 2λ1λ2a
m1+m2 + λ2

1a
2m1 + λ2

2a
2m2) , (14)

where the subscripts 1 and 2 refer to terms with one and two powers of k2/(aH)2,

respectively. The coefficient λ1 is of the order 10−5, while λ2 may give a contribution of

order one before the limit σ2 = 1 is reached, and is expected to drop to zero afterwards.

Before the limit σ2 = 1, we have m1 = 1 and m2 = 2. After the threshold σ2 = 1 is

reached, m1 slowly approaches zero, while m2 is expected to go to zero rapidly. (The

power-law behaviour in (14) is obviously only valid piecewise.)

To someone fitting the observed expansion rate to the homogeneous and isotropic

FRW equation (θ/3)2 = ρ/(3M2) it would seem that there is a mysterious energy

component which affects the expansion rate but which is nowhere to be seen. The

apparent equation of state w of the ‘dark energy’ is easy to determine from the FRW

relations H2 ∝ a−3, ρde ∝ a−3(1+w). These give the equations of state w = −m/3,

where m is m1, m2, or one of the combinations in (14). Before structure formation, we

would have a mixture of the equations of state −1
3
,−2

3
,−1 and −4

3
. (Note that it is

perfectly natural to get an equation of state which is more negative than −1.) Today,

the equation of state would be between −2
3

and 0. The relative dark energy density

today would seem to be Ωde = 1 − 1/(1 + λ1 + λ2)
2.

What does this imply for the expansion history of the universe? Neglecting λ1 as

probably small, we are left with λ2. Early on, before σ2 = 1 on any scale, its relative

contribution is related to σ2 and rises like a2 and a4, corresponding to the mixture of

equations of state −2
3

and −4
3
. After the limit σ2 = 1 is reached, the contribution drops

to zero. This term would induce a period of acceleration if its sign is positive and its

contribution is comparable to that of dark matter, which could be the case around the

beginning of the formation of bound structures. While the period of acceleration would

drive the Hubble parameter up from the FRW Einstein-de Sitter value, this sort of an

expansion history probably could not account for the supernova data.

After λ2 goes to zero, the only backreaction comes from λ1. The contribution

from this term has probably always been negligible, but for a red spectrum it grows

in time. As discussed earlier, for a constant spectral index n the relative backreaction

will grow like a(n−1)/2 in the future, giving a combination of the equations of state

(n − 1)/6 and (n − 1)/3. Even for the quite red spectrum with n = 0.8 in [18], we
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would only get a mixture of w ≈ −0.03 and w ≈ −0.07. The backreaction would grow

very slowly and eventually cause the Einstein-de Sitter universe to collapse. (Of course,

the approximation that the perturbations behave according to first order perturbation

theory would break down before that, and a consistent second order calculation would

be needed.)

One should be careful with the Hubble law, because the square of < θ > is not the

same as the average of θ2. From (5), (7) and (8) we find (to second order) the following

relation between the average of the square and the square of the average:

< θ2 > − < θ >2= ∂τ < θ > − < ∂τθ > . (15)

The above relation has previously been found (in an exact form) in the different

backreaction formalism of [33, 34]. The physical content of (15) is that the relative

change of the integration measure on the hypersurface of constant proper time with

respect to the proper time gives the expansion rate. Denoting the integration measure

by J , we have J−1∂τJ = θ. For example, for a spatially flat FRW spacetime we have

a−3∂t(a
3) = 3H .

One should be careful to identify the observable actually measured by an experiment

and compare the theoretical average of that observable with the experimental data. For

the supernova data, it seems more correct to take the average first and then square it.

Averaging the square instead would lead to a positive (non-total gradient) contribution

of 1
9
σ2 to the square of the Hubble rate before structure formation (with the equations

of state −2
3

and −4
3
), and a correction of order one afterwards (with the equation of

state 0). Note that (15) indicates that the deduced value of ∂τθ is larger if one takes

the average first, in contrast to what happens with θ2.

As an aside, we note that with the relation J−1∂τJ = θ the average expansion rate

can be written in the simple form

< θ >=< J >−1
0 < Jθ >0= ∂τ (ln < J >0) . (16)

The form (16) is more suited to a systematic study of higher order terms than the

straightforward calculation used to arrive at (9). From (16) it seems transparent that

the backreaction is given by total time derivatives of dimensionless expectation values,

something that was not obvious earlier. This may seem to be at odds with the fact

that one of the backreaction terms in (9) did not seem to be a total time derivative.

The resolution is that any term can be written as a total time derivative simply as

< f >0=∂τ <
∫

dτf >0. Backreaction from most terms in (9) was found to vanish

asymptotically because they contained no such integrals, but this is not true for all

terms. So, while the form of (16) looks suggestive, it in fact contains no information

about whether the backreaction can be written in such a total derivative form as would

vanish asymptotically in the future.

Transition to non-linearity. The calculation has been made for perturbations in the

linear regime, and we have treated the onset of non-linearity by simply introducing a

sharp cut-off for the perturbations at a transition scale kL. A more realistic treatment of
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the transition would include a description of the perturbation modes smoothly becoming

time-dependent and breaking away from the general expansion. The effect of this on

the backreaction is not clear, but since the magnitude of Φ increases, one would expect

the backreaction to increase, and it could also change sign. Another reason to expect a

large effect is that high-k modes give the main contribution to the backreaction integrals

(12) and (13).

Backreaction from the non-linear regime has been considered in [43], in an approach

where the Einstein equation was averaged, yielding a backreaction term like (12). The

result for the backreaction from the linear regime of density perturbations was of the

same order, 10−5, but with a positive sign. The calculation was extended into the non-

linear regime of density perturbations using the relation Φk ≈ −3(aH)2δk/(2k2), with

the result that backreaction from the non-linear regime is also negligible. However, this

result is not reliable.

As discussed above and in section 2, one has to be careful to identify the correct

observable, to recast its time-dependence in terms of the physical proper time τ and to

take the average over the hypersurface of constant τ . In [43] the quantity considered

was (ȧ/a)2, which does not give the expansion rate measure by a comoving observer, as

seen from (6). Also, the time coordinate used was t and the average was taken over the

hypersurface of constant t. The sign difference between the present calculation and the

result of [43] for the linear regime arises from these factors. (As mentioned after (12),

if one took the average of (10) over the hypersurface of constant t, the contribution of

the non-total gradient terms would be positive.)

For the non-linear perturbations, there are two other important issues. First, the

linear relation between Φk and δk is not valid in the non-linear regime, even though

Φk calculated from this equation is perturbatively small (since k ≫ aH). For example,

the gravitational potential inside stabilised collapsed objects is constant, whereas the

relation Φk ∝ δk/a would give Φk ∝ a1/2 in the stable clustering approximation.

Second and more relevant, the calculation of [43] does not take into account that

very non-linear structures have broken away from the expansion. We are interested in

the locally measured expansion rate, and should not include contributions from inside

the structures whose relative motion we are considering. This is not to say that any

effect of the gravitational fields inside bound structures on the average expansion is

ruled out, simply that such effects cannot be captured by the perturbative formalism of

[43] or the present paper.

However, the effect of perturbations in the process of breaking away from the

expansion can be calculated in a perturbative framework. Such perturbations could

significantly change the results for the apparent dark energy, since their absolute value

rises by orders of magnitude in the process of breaking away. Apart from boosting the

magnitude, one would expect the growth of the perturbations to also make the equation

of state more negative.

Since the sign of the global backreaction we calculated for the linear perturbations

turned out to be negative, one might think that increased inhomogeneity in general
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globally slows down the expansion. However, this is not the case. This can be easily

seen by considering the average expansion rate (9) with the power-law behaviour Φ ∝ al,

with constant l. The contribution of the non-gradient quadratic backreaction terms in

(9) to the expansion rate is positive for all l > 0, while the contribution of the quadratic

(non-total) gradient terms turns out to be positive for l > 1
2
. This sort of power-law

behaviour is not physically relevant (except possibly piecewise in momentum space),

but it shows that increased inhomogeneity can lead to faster expansion.

The answer that the backreaction of perturbations breaking away from the general

expansion might give to the dark energy question would be simple: there appears to

be a dark energy component because the observations are fitted to a model that does

not take into account the impact of inhomogeneities on the expansion rate. This would

also naturally solve the coincidence problem: the backreaction would be small until

perturbations start becoming large.

Conclusion. The essence of the results is that there is a non-vanishing backreaction

from inhomogeneities in an Einstein-de Sitter background, and that its magnitude

is boosted by powers of k2/(aH)2 = a(k/H0)
2 compared to the naive expectation

of powers of Φ. This is in contrast to backreaction in inflationary backgrounds

[40, 41, 45, 46, 47, 48, 49, 50, 51, 52, 53], where gradients are negligible and the effect

is boosted by the large phase space of infrared terms. However, in both cases, the

backreaction can be large though the magnitude of each individual mode Φk is small.

For linear perturbations, backreaction of order (k/aH)2Φ2 was found to have

a magnitude of at most 10−5 today. Backreaction of order (k/aH)4Φ2 reduces to

a boundary term which is zero when evaluated over the whole space with periodic

boundary conditions. The magnitude over the horizon volume with realistic boundary

conditions is unknown, but could be of order one, at least before structure formation. At

second order in Φ there are no higher orders in momentum. However, at higher orders

there could be terms such as (k/aH)8Φ4 that would not reduce to boundary terms and

that would straightforwardly contribute corrections of order one.

That perturbations might be important today is perhaps not surprising. A measure

of the inhomogeneity and anisotropy of spacetime is given by the Weyl tensor. For the

metric (1), the ratio of the square of the Weyl tensor to the square of the scalar curvature

is (for a ∝ t2/3)

CαβγδC
αβγδ

R2
≃

8

9

1

(aH)4

(

∂i∂jΦ∂i∂jΦ −
1

3
∇2Φ∇2Φ

)

, (17)

which, when averaged, is essentially the integral (13), in other words σ2. That this ratio

is not small suggests that the impact of inhomogeneities can be large.

A few words about the backreaction framework are in order. If the backreaction

is sizeable, then we have clearly exceeded the range of validity of the approximation

of taking the background and the perturbations from first order perturbation theory.

What would change in a consistent second order calculation?



Dark energy from backreaction 17

First of all, first order scalar perturbations will in general give rise to second order

vector and tensor perturbations [52, 55, 63], so the metric could not be written in the

simple form (1). Second, we should check higher order terms of the type (∂iΦ∂iΦ)2 and

(∇2Φ∇2Φ)2 to verify that the truncation to second order is consistent∗.

Ignoring these complications and assuming that θ and τ would still be given by (5),

(6) and (7), the main change would be to couple the development of the perturbations

to their effect on the background expansion rate. If the backreaction led to faster

expansion, this would be expected to cause the perturbations in the linear regime to

decay, which would in turn slow down the expansion (as well as affect the apparent

equation of state). As in the ‘concordance model’, this would alleviate the problem of

too high σ8 in models with Ωm = 1, so that neutrinos might not be needed to damp the

power spectrum. The backreaction would also be expected to have an impact on the

low multipoles of the CMB. Naively, one would expect the decay of the gravitational

potential to increase the amplitude of the low multipoles just as in the ‘concordance

model’. However, without considering the second order calculation in detail, it is not

clear what the effect on the low multipoles would actually be.

As noted earlier, a consistent second order calculation would probably also answer

the question of whether the perturbations are Gaussian with respect to the physical

perturbed spacetime or the background spacetime.

It is interesting that the backreaction naturally gives the magnitudes

(keq/H0)
2Φ2H0 ∼ 10−5H0 and H0. Even the first one, though too small to explain

the apparent acceleration, is closer to H0 than what would be expected from particle

physics motivated models of dark energy. Indeed, it seems more natural for the scale of

present-day acceleration to emerge from cosmology and astrophysics rather than particle

physics. In the present perturbative backreaction framework, the impact of the pertur-

bations which are breaking away from the general expansion seems promising. These

could have a large effect on the expansion rate, with a negative apparent equation of

state, at the right time to solve the coincidence problem.
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