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Résumé

Durant la décennie écoulée, la recherche dans le domaine de la matière con-
densée a été marquée par la découverte du premier matériau bidimensionnel
– le graphène. L’importance scientifique du graphène a été aussitôt recon-
nue, comme l’atteste l’attribution du prix Nobel à Konstantin Novoselov et
Andre Geim, les scientifiques qui ont su les premiers extraire le graphène
d’un morceau de graphite. Les propriétés uniques du graphène révèlent des
phénomènes inhabituels en physique quantique, stimulant ainsi la recherche
pour découvrir d’autres matériaux bidimensionnels tels que le nitrure de bore
hexagonal (hBN), les dichalcogenides de métaux de transition, ou encore les
phosphorines parmi d’autres. Il y a deux ans, des hétérostructures artificielles
ont été assemblées comme des briques de Lego à partir de monocouches de
différents cristaux, liées par la force de Van der Waals, ce qui ouvre la voie
pour fabriquer de nouveaux matériaux avec des propriétés sur mesure. Ce
domaine est en plein développement, comme le montrent les progrès con-
sidérables accomplis en un temps très court à partir du simple graphène, et
restera grâce à l’apport des autres matériaux bidimensionnels l’un des princi-
paux sujets de recherche en matière condensée dans les années à venir.

Bien que le graphène possède nombre de propriétés remarquables, la
supraconductivité n’en fait pas spontanément partie. Il y a cependant un
immense intérêt fondamental et pratique à induire la supraconductivité dans
le graphène. L’une des premières expériences effectuée sur des dispositifs
basés sur le graphène a déjà montré que ce matériau, s’il est mis en contact
étroit avec deux électrodes supraconductrices, permet à un supercourant de
s’écouler, porté aussi bien par des électrons que par des trous. Des travaux
théoriques indiquent qu’en plus de ce supercourant induit, d’autres effets de
proximité devraient se produire dans le graphène. A cela s’ajoute que le trans-
port électrique peut être contrôlé par une tension de grille dans le graphène,
ce qui en fait une plateforme idéale pour étudier des régimes de conduction
et des phénomènes encore inexplorés dans le contexte des effets de proximité
en relation avec la supraconductivité.

Dans la première partie de cette thèse, j’ai étudié les effets de proxim-
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0. RÉSUMÉ

ité dans le graphène par des mesures de transport dans un interféromètre
d’Andreev. Je me suis concentrée sur la réentrance des oscillations de conduc-
tance d’Andreev, en utilisant la possibilité de modifier dans une large gamme
la densité de porteurs au moyen d’une tension de grille pour faire varier la
conductance des dispositifs dans l’état normal, ainsi que l’énergie de Thou-
less. J’ai ainsi pu tester une loi d’échelle qui donne l’amplitude des oscillations
en fonction de l’énergie, loi que la théorie prédit en l’absence d’interactions.
Plus précisément, le but est de savoir si une propriété définie comme le pro-
duit de l’amplitude des oscillations par la résistance dans l’état normal est une
fonction universelle de la tension normalisée par l’énergie de Thouless, ceci
indépendamment de la tension de grille. Il s’avère que cette loi est très bien
satisfaite lorsque la tension de grille est suffisamment élevée. En revanche, à
mesure que le niveau de Fermi est abaissé en direction du point de neutralité,
la loi d’échelle est de moins en moins bien satisfaite, et finalement plus du
tout adéquate. L’interprétation qui est donnée de cette observation est que la
longueur de cohérence de phase des électrons est diminuée près du point de
neutralité, ce qui empêche la propagation des corrélations supraconductrices
loin de l’interface supraconducteur/graphène. Ainsi, l’effet de proximité est
limité par les fluctuations thermiques lorsque la tension de grille est grande,
mais c’est la décohérence quantique qui le contrôle près du point de neutral-
ité.

Dans la second partie, je présente une étude spectroscopique de la manière
dont les états électroniques contribuent différemment en fonction de leur én-
ergie au courant Josephson dans une jonction SNS (supraconducteur/métal
normal/supraconducteur). Les états qui sont responsables du transport sans
dissipation sont essentiellement confinés aux énergies plus petites que le gap
supraconducteur ∆ et sont connus sous le nom d’états liés d’Andreev. Cepen-
dant, l’existence de résonances qui conduisent un supercourant à des éner-
gies E > ∆ a été prédite déjà dans le premier article théorique d’Andreev.
Contrairement aux états liés, les résonances d’Andreev ainsi que leur contri-
bution au supercourant restent inobservés. Nos expériences reposent sur des
jonctions Josephson à plusieurs contacts, dans lesquelles la contribution des
différents états au courant supraconducteur est déterminée en changeant la
distribution des électrons dans la jonction. Par le passé, les dispositifs étaient
fabriqués avec des métaux conventionnels, ce qui limitait l’étude du super-
courant à des énergies E � ∆. L’usage du graphène comme conducteur per-
met d’étendre cette étude au régime E > ∆. Aux énergies plus faibles que le
gap, la modification de la distribution électronique diminue progressivement
la contribution des états liés. Quand celle-ci est complètement supprimée,
mes mesures on montré qu’un supercourant significatif continue de s’écouler
à travers la jonction. Ce courant est dû aux résonances dont les énergies se
trouvent dans le continuum. Mes résultats démontrent donc l’importance des
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résonances d’Andreev dans le transport supraconducteur.
Pour conclure, mes résultats confirment pleinement que l’usage du graphè-

ne au lieu de métaux plus conventionnels dominés par la diffusion ouvre de
nouvelles perspectives dans l’étude des effets de proximité liés à la supra-
conductivité. Certains de ces effets, comme l’influence de la décohérence
sur l’effet de proximité et la contribution des résonances d’Andreev au super-
courant de Josephson, étaient restés inexplorés jusqu’ici.
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Chapter 1

Introduction

1.1 Superconducting proximity effect

The term superconducting proximity effect denotes physical phenomena oc-
curring in a systems which consist of a superconducting material electrically
connected to a non-superconducting one. In a sense, a normal conductor
(N) attached through a highly transparent interface to a superconductor (S)
acquires several properties typical of the superconducting state. It exhibits
magnetic screening and its density of states at the Fermi energy is suppressed.
Moreover, when a normal conductor is placed between two superconducting
electrodes, a current can flow without any applied bias. At the same time,
the presence of a normal conductor also ”acts back” on a superconductor and
affects its properties. For instance, it leads to the suppression of the criti-
cal temperature and the critical current. Microscopically, twenty years ago, it
was understood that proximity effect is essentially an interplay between phase
coherent propagation inside a normal conductor and a process that enables
transport across a N/S interface known as Andreev reflection [1]. Phase co-
herent transport and Andreev reflection will be discussed in detail in theory
chapter.

The role of phase coherence in proximity effect was initially unknown. The
appreciation of the relevance of phase coherence came after the development
of lithographic processes that enabled experimental realization of mesoscopic
structures and of cryogenic systems allowing low-temperature transport mea-
surements. With these technological advances phenomena related to phase
coherence such as weak (anti) localization, universal conductance fluctua-
tions and Aharonov-Bohm effect became experimentally visible. This pro-
vided conceptual understanding of phase coherent transport in mesoscopic
structures. Characteristics length and energy scales associated with the phase
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1. INTRODUCTION

coherent transport in a normal conductor, such as the microscopic phase co-
herence length, the Thouless length and the corresponding energy (Thouless
energy) [2], turned out to be also relevant for understanding the proximity
effect.

In the field of proximity effect, theoretical and experimental investiga-
tions revealed interesting phenomena occurring in systems with diffusive nor-
mal conductor connected to one or more superconducting electrodes through
highly transparent interfaces. We mention only the ones that are subjects of
the research carried out in this thesis, the so-called reentrance effect where
the resistance of a N/S junction exhibits a counterintuitive behavior as a func-
tion of temperature or applied bias, and Andreev interferometry, consisting in
conductance oscillations induced by the phase of the superconducting order
parameter, occurring in devices known as Andreev interferometers. Beside
these phenomena, a supercurrent can be induced inside a normal region of
S/N/S junctions due to the occurrence of Andreev reflection on both inter-
faces. This phenomena was first theoretically described by Kulik [3] who
related the appearance of supercurrent to the formation of supercurrent-
carrying states in a normal region, referred to as Andreev bound states at en-
ergies below the superconducting gap and Andreev resonances above the gap.
Reentrance effect, Andreev interferometry and transport through a S/N/S
junctions will be discussed in the next chapter.

1.2 Graphene

Since its discovery eleven years ago, graphene has resulted in considerable
scientific breakthroughs, especially in the field of condensed matter physics
[4]. One of its greatest impact is that is has led to the discovery of many other
two-dimensional materials. Molybdenum disulfide MoS2 [5, 6], a member of
a broader family of materials called transition metal dichalcogenides, and
phosphorene [7], known also as black phosphorus, are among those which
are particularly interesting for electronic devices. In recent years, stacking
different two-dimensional materials became possible which gives the oppor-
tunity to engineer new materials with desired properties through the creation
of so-called Van der Waals heterostructures [8]. With increasing number of
available 2D crystals the choice of possible Van der Waals heterostructures is
practically unlimited. The use of graphene as a building block for these het-
erostructures is just one of the examples demonstrating that even ”long” after
its discovery, graphene is still widely present in the fundamental research.

The reason why graphene is an attractive material to study in condensed
matter physics comes from its unusual electronic properties. Contrary to
conventional materials where electron motion is described by Schrödinger
equation, low-energy electrons in graphene are described by Dirac equation
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1.3 MOTIVATION

[9, 10] (relativistic version of Schrödinger equation). In the low-energy limit,
the energy dispersion in graphene is linear and electrons are considered to
be Dirac fermions as they are massless [9] and move with a constant Fermi
velocity (vF ≈ c/300 m/s2). Since the crystal lattice of graphene consists
of two inequivalent sublattices, the electron wave function has two compo-
nents, i.e. it has a spinor character commonly referred to as pseudospin (the
prefix ”pseudo” indicates that the two components of the wave function do
not arise from the true spin of the electrons). The direction of momentum
of an electron is linked to the pseudospin, which make electrons in graphene
chiral. These interesting properties lead to unusual manifestations of meso-
scopic phenomena such as an anomalous quantum Hall effect [11, 12] and a
minimum conductivity at the charge neutrality point [4], as we will discuss
in detail later. In our experiments, where we use graphene as a diffusive nor-
mal conductor, the Dirac nature of electrons is not particularly relevant, as it
does not majorly affect the superconducting proximity effect. However, we
do exploit Dirac properties of graphene in order to characterize our devices.
Electronic properties of graphene will be further discussed in theory chapter.

From the proximity effect point of view, there are several aspects of graphe-
ne that are interesting for our purposes. A common problem with conven-
tional two-dimensional electron gases is the realization of ”clean” interfaces
with a superconductor. This critical, but very essential, device-fabrication
issue can be easily avoided by using graphene which makes a good electri-
cal contact to a superconducting materials even when exposed to air. Other
important advantages are that graphene enables bipolar transport, i.e. both
electrons and holes in graphene can carry current, and that the charge carrier
density can be readily tuned over a large range by means of electrostatical
gating. Moreover, graphene crystal has very low density of structural defects
due to the strong covalent bonds between carbon atoms, which contribute to
the high mobility of charge carriers. For instance, the charge carrier mobility
in graphene exfoliated on SiO2 substrates is typically µ ∼ 104 cm2/Vs at 250
mK [9]. Due to high quality of this material, the phase coherence length of
electrons in graphene on SiO2 at 250 mK is typically in the range 2 − 5 µm
[13] making it a good choice for nano-electronic devices which are aimed for
studying phase coherent transport and superconducting proximity effect.

1.3 Motivation

Despite the fact that graphene has many remarkable properties –superconduc-
tivity is not one of them. However, there is a great fundamental and practi-
cal interest in inducing superconductivity in graphene. The first experiment
demonstrating supercurrent in graphene-based devices also showed that su-
percurrent can be carried by either electrons in the conduction band or holes

3



1. INTRODUCTION

in the valence band, depending on the gate voltage [14], as shown in Fig 1.1.

Figure 1.1: (Left panel) Atomic force microscope image of a single-layer graphene de-
vice between two superconducting electrodes. (Right panel) Bipolar supercurrent and
finite supercurrent at the Dirac point are illustrated with a color plot of dV/dI(VG, I).
Yellow represents zero (the supercurrent region); dV/dI increases as the color evolves
to orange to dark red. The arrow at VD indicates the position of the so-called Dirac
point. Figure adapted from [14].

Apart from induced supercurrent in graphene contacted by two closely
spaced superconducting electrodes, theoretical investigations indicate that
proximity effect phenomena such as reentrance effect and Andreev interfer-
ometry –the ones we introduced in the first section– should occur in graphene-
based systems as well [15]. Together with these indications our work was also
motivated by the question if the possibility to gate-tune the normal transport
in graphene can lead to new findings in the field of superconducting proximity
effect.

Part of this thesis presents a study of transport in S/N/S junctions with
graphene as a diffusive normal conductor to probe the nature of the states re-
sponsible for the flow of supercurrent. Our study relies on a method originally
suggested by van Wees et. al [16], who theoretically explored how the mod-
ulation of occupation of Andreev bound states affects supercurrent in the bal-
listic regime (the same was done later for a diffusive SNS junction by Volkov
[17]). Experimentally, the control of supercurrent through the occupation
of supercurrent-carrying states was first implemented and demonstrated by
Morpurgo et al. [18], where the control of supercurrent was achieved using
a diffusive S/N/S junction connected through its central part to the so-called
”control line”, i.e. a normal wire whose ends were attached to additional
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1.4 OUTLINE

reservoirs. This control line served to heat the electrons in the S/N/S jnc-
tion by passing current which effectively increased electron temperature and,
consequently, led to the suppression of the critical current of the junction. A
similar experiment was performed later by Baselmans et al. [19], who found
a way to revert supercurrent by generating a specific non-equilibrium distri-
bution in S/N/S junctions through the application of a control voltage bias
(as previously demonstrated in experiments by Pothier et al. [20]). Figure
1.2 shows layout of the device used in this experiment and the dependence of
the supercurrent on the control voltage exhibiting suppression and reversal of
direction.

Figure 1.2: (Left panel) Schematics of the multi-terminal S/N/S junctions used in the
work of Baselmans et al. [19]. (Right panel) Critical current of the S/N/S junction as
a function of the control voltage exhibiting reversal of a sign. Figures adapted from
[19].

1.4 Outline

In the previous sections we have introduced the general context and main
motivation for our study of proximity effect using a new platform –graphene.
Here we discuss in more details the content of the individual chapters of
thesis.

5



1. INTRODUCTION

In chapter 2, we discuss the fundamental concepts which are essential
for understanding of electron transport in graphene/superconductor devices.
Section §2.1 discusses the electronic properties of graphene mostly focus-
ing on the unusual electron transport in the low-energy regime. Impor-
tant concepts related to phase coherent transport, namely, ensemble-average
and sample-specific quantum interference effects, are explained in section
§2.2. After briefly introducing superconductivity (section §2.3), we describe
in more details the process that enables electron transport across N/S inter-
faces –Andreev reflection (section §2.4). Subsequently, we describe the mani-
festations of proximity effect in dissipative transport relevant for this thesis in
section §2.5. This chapter finishes with a discussion of superconducting and
dissipative transport in S/N/S junctions.

Chapter 3 focuses on the fabrication of nano-electronic devices that were
used to carry out the transport measurements reported in this thesis. In sec-
tion §3.1, we describe the experimental realization of our samples and explain
in more details some of the fabrication steps such as electron beam lithogra-
phy and metal deposition. In the following section we discuss graphene de-
position and characterization. Graphene flakes in our devices are produced
through mechanical exfoliation and their thickness is defined with the help
of an optical microscope, which provides a simple and non-invasive method
based on optical contrast. Since our devices are used to study superconduct-
ing proximity effect, we also discuss in detail the quality of the superconduct-
ing film (section §3.4) and of the graphene/superconductor interface (section
§3.5), which are essential for our work.

Chapter 4 describes an experiment that we performed to investigate how
the tuning of microscopic decoherence affects superconducting proximity ef-
fect. To this end, we carried out transport measurements through graphene
Andreev interferometers exhibiting the reentrance effect. Our results show
that at high gate voltage the energy dependence of the Andreev conductance
oscillations exhibits a scaling behavior in agreement with theoretical expec-
tations. This agreement breaks down close to the charge neutrality point
as electron dephasing limits the propagation of superconducting correlations
away from the superconductor/graphene interface. Our work shows that
graphene provides a useful experimental platform to address the interplay
between electron decoherence and superconductivity, and to observe unex-
plored regimes in proximity effect.

In chapter 5, we study how electronic states at different energy contribute
to the supercurrent in superconductor-graphene-superconductor Josephson
junctions. Our experiment relies on supercurrent spectroscopy method used
in the work of Baselmans et al. [19]. Our analysis shows that the evolution of
the critical current of our junction is consistent with a "two-step" distribution,
which implies that our results provide spectroscopic information about the

6
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supercurrent carrying density of states. We find that when the contribution
to the supercurrent of Andreev bound states is entirely suppressed there is a
finite critical current still present in the junction. This remaining supercurrent
is carried by Andreev resonances at energies above the gap, whose role in
S/N/S Josephson junctions was predicted long ago by Kulik [3] but it has not
been confirmed until now.

1.5 Bibliography

[1] A. F. Andreev. The thermal conductivity of the intermediate state in
superconductors. JETP, 46:1823, 1964.

[2] D. J. Thouless. Maximum metallic resistance in thin wires. Phys. Rev.
Lett., 39:1167–1169, 1977.

[3] I. O. Kulik. Macroscopic quantization and the proximity effect in s-n-s
junctions. JETP, 30:1745, 1970.

[4] A. K. Geim and K. S. Novoselov. The rise of graphene. Nat Mater,
6(3):183–191, 2007.

[5] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis.
Single-layer MoS2 transistors. Nat Nano, 6(3):147–150, 2011.

[6] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and M. S.
Strano. Electronics and optoelectronics of two-dimensional transition
metal dichalcogenides. Nat Nano, 7:699–712, 2012.

[7] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen and Y.
Zhang. Black phosphorus field-effect transistors. Nat Nano, 9:372–377,
2014.

[8] A. K. Geim and I. V. Grigorieva. Van der Waals heterostructures. Nature,
499:419–425, 2013.

[9] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.
Dubonos, I. V. Grigorieva and A. A. Firsov. Electric field effect in atomi-
cally thin carbon films. Science, 306(5696):666–669, 2004.

[10] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K.
Geim. The electronic properties of graphene. Rev. Mod. Phys., 81:109–
162, 2009.

[11] Y. Zhang, Y.-W. Tan, H. L. Stormer and P. Kim. Experimental observa-
tion of the quantum Hall effect and Berry’s phase in graphene. Nature,
438(7065):201–204, 2005.

7



1. INTRODUCTION

[12] K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal/’ko, M. I. Katsnel-
son, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim. Unconventional
quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat
Phys, 2(3):177–180, 2006.

[13] F. Miao et al. Phase-coherent transport in graphene quantum billiards.
Science,317:1530–1533, 2007.

[14] H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vander-
sypen and A. F. Morpurgo. Bipolar supercurrent in graphene. Nature,
446(7131):56–59, 2007.

[15] A. Ossipov et al. Reentrance effect in a graphene n-p-n junction coupled
to a superconductor. Phys. Rev. B, 75:241401, 2007.

[16] B. J. van Wees, K.-M. H. Lenssen, and C. J. P. M. Harmans. Trans-
mission formalism for supercurrent flow in multiprobe superconductor-
semiconductor-superconductor devices. Phys. Rev. B, 44:470–473, Jul
1991.

[17] A. F. Volkov. New phenomena in Josephson SINIS junctions. Phys. Rev.
Lett., 74:4730–4733, 1995.

[18] A. F. Morpurgo, T. M. Klapwijk, and B. J. van Wees. Hot electron tunable
supercurrent. Appl. Phys. Lett., 72(8):966–968, 1998.

[19] J. J. A. Baselmans, A. F. Morpurgo, B. J. van Wees, and T. M. Klapwijk.
Reversing the direction of the supercurrent in a controllable Josephson
junction. Nature, 397(6714):43–45, January 1999.

[20] H. Pothier, S. Guéron, Norman O. Birge, D. Esteve, and M. H. Devoret.
Energy distribution function of quasiparticles in mesoscopic wires. Phys.
Rev. Lett., 79:3490–3493, Nov 1997.

8







Chapter 2

Theoretical concepts

The aim of this chapter is to introduce the theoretical concepts needed to
understand electron transport in graphene-superconductor devices. The first
section §2.1 shows a derivation of the electron band structure in a single-
layer graphene using the tight-binding model. It also discusses how these
results can be approximated in the low-energy limit [1, 2], which is impor-
tant since transport in graphene is usually probed in a small range around
zero energy. Moreover, it focuses on the relevant aspects of low-energy trans-
port when an electric field or a magnetic field are applied. Phase coherent
transport and quantum interference phenomena are explained in §2.2. In
§2.3 we present important concepts related to superconductivity and in the
following section (§2.4) we give the description of Andreev reflection (the
process mediating transport at normal conductor/superconductor interfaces),
so that all the necessary elements to understand the basic aspects of the su-
perconducting proximity effect are provided. In §2.5 two manifestations of
the superconducting proximity effect in the dissipative transport properties,
relevant for this work, are explained in detail. This chapter ends with a sec-
tion discussing the supercurrent flowing through a normal conductor placed
between two superconducting electrodes.

2.1 Electronic properties of graphene

Single layer graphene consists of carbon atoms forming a two-dimensional
honeycomb structure. In total, there are six electrons in a carbon atom. Two
of them occupy the 1s2 orbital and are strongly attached to the nucleus. The
remaining four valence electrons occupy 2s and 2p orbitals. They are respon-
sible for the interaction between the neighboring atoms in graphene.

In graphene, the 2px and 2py orbitals hybridize with the 2s orbital re-
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sulting in three sp2 orbitals that lie in the graphene plane, at 120◦ angles.
The sp2 orbitals of the neighboring atoms overlap and build strong covalent
bonds, known as σ bonds which give graphene its extraordinary mechanical
properties. The hybridization process leaves one 2pz orbital per every carbon
atom, oriented perpendicular to the graphene layer. Hybridization of the 2pz
orbitals of neighboring atoms give rise to the so-called π bands. Electrons in
these π bands are weakly attached to the carbon atoms and are effectively
free to move around (i.e., they are delocalized). These are the conduction
electrons that contribute to transport in graphene. Their properties are well
described by a simple tight-binding model.

2.1.1 Tight binding model and band structure

The graphene crystal lattice consists of two inequivalent triangular sublat-
tices, denoted as A-sublattice and B-sublattice, shown in Fig. 2.1. Two atoms,
one atom from the A-sublattice and the other from the B-sublattice, form the
basis of the graphene Bravais lattice. The primitive lattice vectors of the Bra-
vais lattice are shown in Fig. 2.1a and are defined by

a1 =
a

2
(1,
√

3) and a2 =
a

2
(1,−

√
3), (2.1)

where a = 2.46 Å. The interatomic distance (i.e., the distance between a A
and a B atom in the same unit cell) is a/

√
3 = 1.42 Å. The A and B sites

are independent as it can be seen from the fact that the lattice vector R =
na1 + ma2 (n and m are integers), cannot connect their atomic positions. In
real space, every carbon atom in graphene is bonded to three atoms from the
opposite sublattice, which are its nearest neighbors, separated by vectors

δ1 = (0,
a√
3

), δ2 = (
a

2
,− a

2
√

3
) and δ3 = (−a

2
,− a

2
√

3
). (2.2)

The reciprocal vectors satisfy the conditions aibj = 2πδi,j and are equal to

b1 =
2π

a
(1,
√

3) and b2 =
2π

a
(1,−

√
3). (2.3)

The resulting reciprocal lattice is also hexagonal. Figure 2.1b shows the first
Brillouin zone and the high symmetry points in momentum space

Γ(0, 0), M(
2π

3a
, 0), K+(

2π

3a
,

2π

3
√

3a
) and K−(

2π

3a
,− 2π

3
√

3a
). (2.4)

The corners of the first Brillouin zone can be subdivided into two groups la-
beled as K+ and K−. Within each group there are three equivalent corners
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2.1 ELECTRONIC PROPERTIES OF GRAPHENE

Figure 2.1: (Left panel) The honeycomb lattice of graphene with two carbon atoms
per unit cell, one belonging to the A (colored blue) and the other to the B sublattice
(colored red). The primitive vectors of the Bravais lattice are a1 and a2. The nearest
neighbor vectors from the B site to the A sites are δl (l = 1, 2, 3). (Right panel) The
first Brillouin zone also has hexagonal shape with the reciprocal lattice vectors b1 and
b2. Γ,M, K+ and K− represent the high symmetry points in momentum space.

that are connected by vectors of the reciprocal lattice. These points are im-
portant in the description of the low-energy transport properties of graphene
and are commonly referred to as Dirac points.

The dispersion relation of the π and π∗ bands in graphene are found by
solving the Schrödinger equation

Ĥ|Ψ〉 = Ek|Ψ〉, (2.5)

where Ĥ is the Hamiltonian obtained from the tight-binding model, |Ψ〉 an
eigenstate and Ek the corresponding eigenenergy. Because of the lattice peri-
odicity the wave function |Ψ〉 satisfies the Bloch condition

Ψ(r + R) = eikRΨ(r), (2.6)

with a wavevector k. Since the unit cell of the graphene crystal lattice ac-
commodates two atoms (two 2pz orbital per unit cell), a generic Bloch wave
function can be written as

Ψ(k, r) =
1√
N

[
cA

N∑
RA

eikRAϕA(r−RA) + cB

N∑
RB

eikRBϕB(r−RB)
]
, (2.7)

with N being the total number of unit cells in the crystal, cA and cB the
amplitudes of Ψ on A and B sublattices, RA and RB are the lattice vectors

13
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on A and B sublattices, ϕA and ϕB are the wave functions of the pz orbitals
centered on the A and B sublattices, respectively.

From the tight-binding system the eigenstates and corresponding eigenen-
ergies on both sublattices can be obtained by projecting on the states |ϕA〉 and
|ϕB〉

〈ϕA|Ĥ|Ψ〉 = Ek〈ϕA|Ψ〉, (2.8)

〈ϕB |Ĥ|Ψ〉 = Ek〈ϕB |Ψ〉. (2.9)

If only the nearest neighbor hopping is considered, and with the position of
the B atoms relative to the A site, RA −RB,l denoted by δl, l = 1, 2, 3 (1.2),
Eqs. (2.8) and (2.9) can be rewritten as

cA〈ϕA|Ĥ|ϕA〉+ cB〈ϕA|Ĥ|ϕB〉(eikδ1 + eikδ2 + eikδ3) =

Ek

[
cA〈ϕA|ϕA〉+ cB〈ϕA|ϕB〉(eikδ1 + eikδ2 + eikδ3)

]
,

(2.10)

cA〈ϕB |Ĥ|ϕA〉(e−ikδ1 + e−ikδ2 + e−ikδ3) + cB〈ϕB |Ĥ|ϕB〉 =

Ek

[
cA〈ϕB |ϕA〉(e−ikδ1 + e−ikδ2 + e−ikδ3) + cB〈ϕB |ϕB〉

]
.

(2.11)

The term 〈ϕA|Ĥ|ϕA〉 can be replaced with the energy of the 2pz orbital, ε2p.
Since the carbon atom on the A site is chemically the same as the carbon
atom on B site the value of 〈ϕB |Ĥ|ϕB〉 is also equal to ε2p. In addition,
the terms 〈ϕA(RA)|Ĥ|ϕB(δl)〉, which describe hopping from an A site to the
nearest B sites, have the same value for all neighboring pairs and are set
equal to −t. Electron hopping from a B atom to a A atoms is also given by
−t. The overlap between two 2pz orbitals on the same atom is considered
to be 〈ϕA|ϕA〉 = 1, and the same applies for B atomic sites, the orbitals of
adjacent atoms are considered as orthogonal 〈ϕA(RA)|ϕB(δl)〉 = 0 for all
three neighboring atoms. The equations above then become

cAε2p − tcB(eikδ1 + eikδ2 + eikδ3) = cAEk, (2.12)

− tcA(e−ikδ1 + e−ikδ2 + e−ikδ3) + cBε2p = cBEk. (2.13)

Without loss of generality we can set ε2p = 0, and we denote with f(k) =
(eikδ1 + eikδ2 + eikδ3) the coupling between A and B sublattices. The eigenen-
ergies are then found by solving the equation

det

(
−E −tf(k)

−tf∗(k) −E

)
= 0, (2.14)

which gives the following dispersion relation

E± = ±t

√
1 + 4 cos

3akx
2

cos

√
3aky
2

+ 4 cos2

√
3aky
2

. (2.15)
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2.1 ELECTRONIC PROPERTIES OF GRAPHENE

The + and - sign correspond to the conduction and valence bands, respec-
tively. These two bands touch at the corners of the first Brillouin zone (K+

and K− points), so that there is no band gap separating valence and conduc-
tion bands (see Fig. 2.2). As there are two free electrons in each unit cell,
the valence band is completely filled while the conduction band is completely
empty. The Fermi level is positioned at E = 0, and crosses the dispersion
relation exactly at K+ and K− points.

Figure 2.2: (Left panel) The energy dispersion of graphene calculated from the tight
binding model. The conduction band and valence band touch at the K+ and K−
points, often referred to as Dirac points. (Right panel) Enlarging the energy dispersion
around the Dirac points shows a conical shape of the conduction and valence band.
Figure adapted from [3].

2.1.2 Dirac equation at low energies

The electronic structure of single layer graphene exhibits crossings of the con-
duction and valence bands at the corners of the Brillouin zone, namely at the
K+ and K− points. The position of these two inequivalent points in momen-
tum space is given by Kε = ε( 4π

3a , 0) where ε = ±.
From the Hamiltonian obtained with the tight-binding model it is possible

to conclude that at Kε points the coupling between the A and B sublattices
disappears. The coupling is described by the hopping quantity −tf(k). When
the wavevector is exactly equal to Kε the function f(k = Kε) is equal to

f(Kε) = eiKεδ1 + eiKεδ2 + eiKεδ3 = 0. (2.16)
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This perfect cancellation of the coupling with the three nearest neighbors
does not occur once the wave vector is not exactly at the Kε points. If the
wave vector is slightly different from Kε but still in the low-energy limit the
momentum measured relative to Kε can be taken as

p = ~k− ~Kε. (2.17)

The function f(k) in the vicinity of Kε and in the linear-momentum approxi-
mation becomes

f(k) ≈ −
√

3a

2~
(εpx − ipy). (2.18)

As the Kε points are independent their electronic states are calculated sepa-
rately using the effective long-wavelength Hamiltonians (with ε = ±)

Ĥ = v

(
0 εpx − ipy

εpx + ipy 0

)
, (2.19)

where v is the Fermi velocity given by −
√

3at/2~ = 106 m/s.
At low energy the effective Hamiltonian can then be written in terms of Pauli
matrices as

Ĥ = v(εσxpx + σypy), (2.20)

with σ = (σx, σy, σz).
The Schrödinger equation with this effective Hamiltonian for electrons at low-
energies is equivalent to the Dirac equation and results in a linear dispersion

E± = ±vp, (2.21)

where the + sign refers to the conduction band and the − to the valence
band. The dispersion relation Eq. (2.22) gives rise to a conical shape of the
electronic bands around the Kε points. As a consequence, the low-energy
electrons in graphene are considered to be Dirac fermions because they are
massless and move with constant velocity.
The resulting energy eigenfunctions have two-components

Ψ± =
1√
2

(
1

±εeiεϕ
)
eipr/~, (2.22)

with ϕ being a polar angle defined as ϕ = arctan (px/py). The two com-
ponents of the wave function correspond to the relative amplitudes of the
Bloch functions on the A and B sublattices. This wave function has the form
of a spinor, and is commonly referred to as pseudospinor (where the term
”pseudo” is used to differentiate it from the real spin of the electron, which is
also present).
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2.1 ELECTRONIC PROPERTIES OF GRAPHENE

The pseudospin can be illustrated in the following way. Let us imagine
that an electron in graphene sits only on the A atomic sites. This corresponds
to pseudospin ”up” state, and is illustrated in Fig 2.3a. If, on the other hand,
the electron is located only on B sites, this would correspond to a pseudospin
”down” state (Fig 2.3b). In graphene, a generic electron wave function is
a linear combination of pseudospin ”up” and pseudospin ”down” states, as
shown on Fig. 2.3c.

Figure 2.3: Illustration of pseudospin and chirality in graphene. a) Pseudospin ”up” is
associated to the situation when an electron wave function is located only on A atomic
sites. b) Pseudospin ”down” can be viewed as when the electron wave function is lo-
cated only on B sites. c) In graphene, an electron wave function is shared between A
and B sites, so that the pseudospin component of the wave function is linear combi-
nation of ”up” and ”down” states. d) Near the K+ point, the pseudospin of electron
(hole) states in the conduction (valence) band is parallel (anti-parallel) to the momen-
tum. The pseudospin directions are reversed near the K− point. Figure adapted from
[4].

An important property of graphene electrons is that they are also chiral
which means that the direction of the pseudospin is linked to the direction of
the momentum p. For the K+ valley, the pseudospin is parallel to p in the
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conduction band and anti-parallel to p in the valence band, see Fig. 2.3d.
In the K− valley the opposite happens. When the momentum of the particle
rotates in-plane by an angle of 2π, the chiral wave function undergoes a π
phase change which is exactly the same value of the phase acquired by a
particle with spin 1/2 upon 2π rotation in the presence of magnetic field.
This π phase shift is known as Berry’s phase.

2.1.3 Consequences relevant for thesis

The discovery of graphene in 2004 by Manchester group [5], which marked
the start of the exploration of a whole new class of two-dimensional materials,
initiated an intense research on its physical properties. In particular, consid-
erable attention has been devoted to the electronic properties of this system.
Already the first experiments done on graphene-based field-effect transistor
[5] showed that graphene supports both electron and hole transport. They
also demonstrated that when subjected to strong magnetic fields, the rela-
tivistic nature of charge carriers in graphene leads to an unusual quantization
sequence of the Hall resistance. This section gives an overview of the low-
energy transport properties of graphene in the presence of an electric field
and a magnetic field.

Electric field effect on graphene transport

Graphene devices are commonly made using graphene exfoliated from graphite
crystals and deposited onto a degenerately doped Si wafer (acting like a gate
electrode) covered with a SiO2 layer. When a voltage is applied to the gate
electrode a charge is accumulated in graphene. The concentration of electro-
statically induced charge carriers can be obtained thinking of the system as a
parallel plate capacitor

n =
CgVg
e

, (2.23)

where Cg is the capacitence per unit area of the gate electrode, Vg is the
applied gate voltage and e is a single electron charge. Cg is defined as a ratio
of a relative dielectric constant εr = 3.9εo of the SiO2 oxide and the oxide
thickness dox (Cg = εr/dox).

The accumulation of charge shifts the Fermi level in graphene. An impor-
tant consequence of the absence of a gap is that the Fermi level can be shifted
continuously from the valence band to the conduction band, as illustrated
in Fig. 2.4. For negative gate voltages, the Fermi level is located inside the
valence band and transport occurs due to holes. In case of positive gate volt-
age, the Fermi level is in the conduction band, so that electrons are mediating
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2.1 ELECTRONIC PROPERTIES OF GRAPHENE

Figure 2.4: (Left panel) Resistivity of graphene as a function of gate voltage illus-
trating the occurrence of ambipolar field effect in graphene (adapted from ref. [6]).
Under the influence of the gate bias, the Fermi level can be set in the valence or con-
duction band (the insets indicate the position of EF for different Vg values in the
low-energy spectrum). When the Fermi level is at the Dirac point, the resistivity ex-
hibits a maximum. (Right panel) Example of a typical device used to probe field effect
in graphene; with graphene etched in Hall-bar geometry, see dark purple region, and
normal electrodes in yellow (adapted from ref. [7]).

transport.
In practice experiments show that when the Fermi level is sufficiently close

to the charge neutrality point the conductivity becomes independent of car-
rier density. This phenomenon is known to arise due to the formation of
”charge puddles”, corresponding to electron and hole doped regions created
by random potential fluctuations [2]. The appearance of the ”charge puddles”
prevents exploring the transport in the vicinity of Dirac point [8].

Quantum Hall effect in graphene

When a two-dimensional electron gas (2DEG) of sufficiently high quality is
subjected to a perpendicular magnetic field, propagating electrons experience
the Lorenz force and move in circular orbits. Quantum mechanically, elec-
trons following these circular orbits can occupy only discrete energies known
as Landau levels. When probed in transport measurements these discrete en-
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ergy levels give rise to oscillations of the longitudinal resistivity, known as
Shubnikov-de Haas oscillations, and to a quantized Hall resistivity (the quan-
tum Hall effect).

In conventional conductors with a quadratic dispersion relation the ener-
gies of Landau levels are given by EN = ~ωc(N + 1/2) where N is an integer
number that refers to N-th Landau level and ωc is cyclotron frequency defined
as ωc = eB/m. The energy gaps between successive Landau levels are inde-
pendent on N and are equal to ∆E = ~ωc. The lowest Landau level occurs
at E0 = ~ωc/2 and at zero energy there are no available states. The density
of states of the 2DEG is a sequence of peaks, corresponding to delta functions
broadened in energy by disorder. Between two Landau levels the density of
states becomes vanishingly small. The density of states of each level is mag-
netic field dependent and given by n = gsgveB/h, where gs is the spin and gv
the valley degeneracy.

Figure 2.5: (Left panel) In the absence of magnetic field, the low-energy dispersion
relation has conical shape and the corresponding density of states is linear in energy.
(Right panel) In the case of strong magnetic field, the low-energy dispersion exhibits
a discrete series of unevenly spaced Landau levels. The density of states becomes a
sequence of peaks centered around the energies of the Landau levels. Figure adapted
from [9].

A change in magnetic field shifts the positions of the Landau levels, and
accordingly the peaks in the density of states. As a consequence, the longi-
tudinal resistance, measured in a Hall device configuration, oscillates with
magnetic field. When the Fermi level is located inside a Landau level, the lon-
gitudinal resistance exhibits a maximum, and when EF is inside the gap the
longitudinal resistance has a minimum, and eventually vanishes. The reason
for this vanishing resistance is that at high magnetic fields the contribution of
the edge states to transport becomes important. Edge states carrying current
in only one direction are localized at one physical edge of the device, and
states carrying current in other direction are localized on the opposite edge.
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Since states propagating in different directions are spatially separated elec-
trons move along the edges without any possibility to back-scatter. The Hall
resistance then is quantized according to

Rxy =
h

νe2
, (2.24)

where ν = n/nB is the filling factor and nB is the degeneracy of a Landau
level.

Figure 2.6: Quantum Hall effect in single layer graphene as a function of carrier con-
centration n. The longitudinal resistivity ρxx exhibits a peak at n = 0 in high magnetic
fields due to a Landau level which is present at exactly zero energy. The electronic
states for this level come from both conduction and valence band. The Hall conduc-
tivity σxy exhibits plateaus (red line) at the values indicated by the dashed lines σxy
plateaus. Figure adapted from [7].

In graphene, the Hall resistance quantization occurs with a different se-
quence as compared to conventional conductors. This characteristic quantiza-
tion is a direct consequence of the chiral nature of the electrons in graphene.
Due to graphene’s unconventional π Berry’s phase the Landau levels can be
found at energies given by EN = ±vF

√
2e~BN . The energy separation be-

tween two consecutive Landau levels is in the case of graphene dependent on
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N as illustrated in Fig. 2.5. Moreover, for N = 0 there exist a Landau level
exactly at zero energy, shared equally between electron and hole states, see
Fig. 2.5. Because of this, the Hall resistance is quantized with the filling factor
ν = 4(N + 1/2) where 4 accounts for the fourfold spin and valley degeneracy
[7, 10, 11, 12]

Rxy =
1

4(N + 1/2)

h

e2
. (2.25)

Figure 2.6 demonstrates the Hall conductance plateaus and oscillations of the
longitudinal resistance in a single layer graphene. Because of this specific
quantization sequence of the Hall resistance, quantum Hall measurements
are regularly used to identify graphene.

2.2 Phase coherent electron transport

Two characteristic length scales are important to describe electron transport
in mesoscopic systems at low temperatures, as sketched on Fig. 2.7. The mean
free path (lm) represents the average distance that electron travels through
a conductor without undergoing scattering processes. If the dimensions of a
conductor are shorter than the mean free path, no scattering occurs during
the electron propagation and motion is said to be ballistic. In the opposite
case (lm much shorter than the dimensions of the conductor), electrons scat-
ter many times during their propagation, each time changing direction of
motion. In this regime, the electron motion is diffusive. The other important
length scale is the phase coherence (Lφ) that describes up to what length elec-
tron propagates without loosing phase information. When Lφ is sufficiently
long, quantum phenomena due to the wave character of electrons can become
visible experimentally. Examples are so-called weak localization correction to
the conductivity and universal conductance fluctuations.

Figure 2.7: Illustration of an electron propagation in a conductor where the mean-free
path lm is much shorter then a phase coherence length Lφ. Wiggled lines represent
electron motion, green circles elastic collisions and red squares inelastic collisions.
Adapted from [13].
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The coherence length depends on the nature of the impurity scatterers.
Elastic scattering does not change the electron energy and normally phase co-
herence is preserved. In contrast inelastic scattering processes destroy phase
coherence. The most important inelastic processes that lead to shortening of
Lφ are electron-electron interaction and electron-phonon interactions. Low-
ering the temperature below 1K decreases the rate of the inelastic processes
so that Lφ increases and the quantum interference effects become more pro-
nounced [14, 15].

To explain the physics associated to the effects of electronic interference
on transport we adopt a semiclassical approach, in which electron motion is
described in terms of partial waves or trajectories, with an associated quan-
tum amplitude of probability. In a diffusive conductor there are many possible
trajectories connecting two different points in space. To calculate the proba-
bility of an electron to move from r1 to r2 during a certain time t, P (r1, r2, t),
it is necessary to take into account all trajectories. This probability is given by
the absolute value squared of the sum of all individual probability amplitudes
Ai associated to different trajectories as [16, 17]

P (r1, r2, t) =
∣∣∣∑

i

Ai

∣∣∣2, (2.26)

which can be rewritten as

P (r1, r2, t) =
∑
j

∣∣Aj∣∣2 +
∑
j,j′ 6=k

AjAke
i(φj−φk), (2.27)

where φj and φk are phases corresponding to trajectories j and k. The first
term, the sum of the modulus square of the probability amplitudes of individ-
ual trajectories, represents the classical diffusion probability. The second term
results from quantum interference of different trajectories. If the effect of in-
terference is neglected and the second term is omitted, one finds the classical
result (i.e. sum over probabilities)

Pc(r1, r2, t) =
∑
j

∣∣Aj∣∣2. (2.28)

2.2.1 Ensemble-averaged and sample-specific quantum in-
terference effects

There are two different types of quantum interference effect that are exper-
imentally relevant, and that lead to so-called ensemble-averaged (EA) and
sample-specific (SS) phenomena. EA phenomena, such as weak localization
and weak antilocalization, are defined by the average properties of the sam-
ple while the SS phenomena are determined by the sample details, such as
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the precise impurity configuration. In experiments, these two quantum inter-
ference effects occur at the same time.

In this section we discuss weak localization as a typical example of EA phe-
nomena and universal conductance fluctuations (UCF) as a typical example of
SS phenomena. Additionally, we explain the ensemble-averaged procedures
that are commonly used to distinguish these two effects. Later in this chapter,
these concepts will be useful in the discussion of the proximity effect which is
essentially a quantum interference effect.

Weak localization

At low temperatures, the probability for inelastic scattering processes to occur
in a conductor is suppressed. Once no inelastic scattering events occur, the
resistance is entirely due to elastic collisions with impurities and upon further
lowering of the temperature it is expected not to change according to a semi-
classical theory of transport. Contrary to this expectation, experiments reveal
that often at low temperature the resistance starts to increase. This increase
of the resistance occurs due to a quantum interference phenomenon called
weak localization.

Figure 2.8: (Left panel) Mechanism of weak localization. The black arrow represents
an incident electron wave. The time-reversed trajectories (orange and blue lines) have
identical probability amplitudes and interfere constructively at the point of departure
giving rise to weak localization effect. (Right panel) Weak localization is suppressed
when a perpendicular magnetic field is applied.

In general, there is a large number of different trajectories that contribute
to the quantum interference term in Eq. (2.28). As different trajectories are
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uncorrelated, i.e. have uncorrelated phases, the contribution to the quantum
interference term averages out. However, in the presence of time reversal
symmetry (TRS), trajectories in which an electron comes back to its start-
ing point give a non vanishing contribution to interference. In fact these
trajectories can be traversed in a ”clockwise” and in a ”counterclockwise”
sense, with exactly the same amplitude (because of TRS), as illustrated in
Fig. 2.8. Upon summing these amplitudes and squaring, interference results
in an enhanced probability for electrons to come back to the position where
they started from. If all time-reversed trajectories are grouped together the
probability of backscattering can be written as

Pb(r1, r1, t) =
∑
j

A2
j +

∑
j,j′

AjAj′e
i(φj−φj′ ) +

∑
j,j′ 6=k

AjAke
i(φj−φk), (2.29)

where Aj and Aj′ are the amplitudes of the time-reversed trajectories. Since
Aj and Aj′ and phases associated to these trajectories (φj and φj′) are the
same, the second term is equal to the first one (i.e. the classical contribu-
tion). On the contrary, the interference term including all the trajectories
that are not time-reversed averages out. As a result, the total probability for
backscattering is doubled as compared to the classical result

Pb = 2
∑
j

A2
j = 2Pc. (2.30)

This enhanced backscattering represents a tendency of electrons towards lo-
calization and leads to an increase of resistivity. This fact was used to coin the
term a ”weak localization”.

Weak localization can be suppressed by removing time reversal symmetry
between counterpropagating trajectories around the loop. This is typically
done by applying a magnetic field so that the probability amplitudes of clock-
wise (Aj) and counterclockwise (Aj′) propagation acquire different phase
shifts given by the following equations

∆φj = kFL−
e

~

∫ r2

r1

Adrj , (2.31)

∆φj′ = kFL+
e

~

∫ r2

r1

Adrj . (2.32)

In Eq. 2.32 drj′ is expressed in terms of drj since drj′ = −drj . The first
terms in these equations account for a standard dynamical phases whereas
the second terms correspond to Aharonov-Bohm phases originating from the
vector potential A associated to the applied magnetic field. The phase differ-
ence developed between these trajectories indicates breaking of time reversal
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symmetry whenever magnetic field is non-zero

∆φj′ −∆φj =
2e

~

∫ r2

r1

Adrj =
2e

~

∫
S

(∇×A)dS =
2e

~
Φ, (2.33)

where Φ is the magnetic flux enclosed by the trajectory. Since different coun-
terpropagating trajectories, in general, enclose different areas, the phases ac-
cumulated in a magnetic field are random so that the interference term giv-
ing rise to weak localization averages out (see right panel in Fig. 2.8). At
magnetic fields higher then ∼ ~/(2eL2

φ) weak localization is completely sup-
pressed [17].

The evolution of weak localization in magnetic field is commonly used to
determine the average coherence length of electrons and microscopic mecha-
nisms inducing scattering of a charge carriers and affecting transport proper-
ties of samples.

Universal Conductance fluctuations

In diffusive systems, conductance fluctuations appear due to the ”random”
quantum interference of waves elastically scattered from impurities. The ef-
fect is due to the last term in Eq. 2.29, which disappears upon averaging, but
that in devices of size comparable to Lφ gives a finite ”random” contribution of
magnitude ∼ e2/h. The contribution is random in the sense that it fluctuates
upon changing microscopic details of device (i.e the position of an individual
impurity). Even though these conductance fluctuations are random they are
highly reproducible and can be easily distinguished from the experimental
noise. In experiments, the conductance fluctuations are observed by varying
the Fermi energy or magnetic field, as shown on Fig. 2.9. Their most im-
portant feature is that at zero temperature the fluctuation amplitude is found
to be always of the same order δG ∝ e2/h (as long as Lφ is larger than the
sample size) regardless of sample details or degree of disorder provided that
the transport through sample is diffusive [18, 19]. Considering this fact, Lee
and Stone suggested Universal Conductance Fluctuations (UCF) as a name
for this effect.

At sufficiently low temperatures, when the phase coherence is long and
thermal averaging can be neglected, the expression for conductance fluctua-
tion according to theory [20, 17] reads

δG ≡
√
V ar(G) =

gsgv
2
β−1/2C

e2

h
, (2.34)

where C is a constant defined by the geometry of the sample (in case of
long and narrow sample C ≈ 0.73; in case of short and wide sample it is
C =

√
W/L), gs and gv are respectively spin and valley degeneracy and β

26



2.2 PHASE COHERENT ELECTRON TRANSPORT

Figure 2.9: Conductance fluctuations as a function of perpendicular magnetic field of
a gold wire at T = 0.01K. The conductance fluctuation pattern is random due to the
random impurity potential fluctuations but it is highly reproducible. The root-mean-
square of the conductance fluctuations is close to the e2/h. Adapted from Ref. [13].

is equal to 1 in the absence of magnetic field and 2 when the time-reversal
symmetry is broken by magnetic field.

The universality of the conduction fluctuation amplitude is due to the cor-
relations among different trajectories through a disordered system. In order
to have statistically independent trajectories the difference in energy between
them should be larger than a certain correlation energy. This correlation en-
ergy was found by Thouless to be given by [21]

Ec ≈
~
τF
≈ ~D

L2
, (2.35)

where τF is the time needed to traverse the sample of length L and D = v2
F τF

is diffusion constant. Ec is normally referred to as ”Thouless energy”.

2.2.2 Ensemble-averaging procedure

As mentioned before, ensemble-average and sample-specific interference ef-
fects are present simultaneously in diffusive systems. If the device investi-
gated has dimensions comparable to Lφ, the magnitude of SS and EA effects
is comparable. As one is often interested in isolating the EA contribution only,
a strategy needs to be developed to suppress SS effects. Experimentally the
sample-specific component can be suppressed in much of the same way as
it happens in sufficiently large samples by disorder averaging, i.e. systems
consisting of large number of statistically independent pieces. In such large
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systems, SS effects are suppressed as they are effectively averaged over many
different microscopic realization of disorder. For small devices with dimen-
sions comparable to Lφ, the ”obvious” way is to prepare many microscopi-
cally different samples with the same ensemble properties. However, with the
existing sample fabrication techniques this way of ensemble-averaging is not
possible in practice. Instead it is possible to use a single sample to mimic the
behavior of many samples that differ only in their impurity configuration. In
fact for what concerns SS effects, a change in impurity configuration can be
induced by a small modulation of external parameters such as carrier density
or magnetic field [22, 23].

In order to obtain conditions corresponding to uncorrelated systems (i.e.,
to different microscopic impurity configurations) out of one sample, it is suf-
ficient to induce a modification of Fermi energy ∆EF or of magnetic field ∆B
larger then the correlation energy Ec or correlation magnetic field Bc. The
idea is that a change in EF results in a random change of dynamical phase ac-
quired by the electrons upon their propagation, which is conceptually equiv-
alent to having a different microscopic configuration of impurities. The same
is true when considering the effect of changing Aharonov-Bohm phases due
to a small change in magnetic field. The correlation energy Ec for a diffu-
sive system is equal to the Thouless energy. If the shift of the Fermi energy
is smaller than the correlation energy, ∆EF < Ec, the impurity configura-
tion effectively remains unchanged and there is no significant change in the
interference pattern, i.e. the conductance fluctuations remain the same. In
the opposite case, a shift in Fermi energy by more than Ec causes a complete
change in the effective impurity configuration of the sample and results in a
different conductance fluctuations pattern. In this case, the sample at EF and
at EF + ∆EF (as long as ∆EF > Ec) behave as two microscopically different
but macroscopically identical systems. By averaging over N uncorrelated sys-
tems the root mean square amplitude of the conductance fluctuations decays
as

δG ≈ 1√
N
. (2.36)

Similar arguments can be made for changes in magnetic field larger then Bc.
In the process, care needs to be taken to ensure that Ec and Bc are small, so
that changing EF andB many times by Ec andBc does not alter the ensemble
properties of the system.

At finite temperature, kBT (kB is Boltzmann constant) defines the en-
ergy range around the Fermi level in which electronic states contribute to
transport. If kBT is smaller than Ec all trajectories traversing the sample are
correlated and no averaging occurs. When kBT > Ec there are N = kBT/Ec
uncorrelated sets of trajectories that give statistically independent contribu-
tions to the conductance fluctuations. The amplitude of the conductance fluc-
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Figure 2.10: Temperature averaging showing how the root-mean-square of the sample
specific fluctuations decreases with an increase of temperature according to 1/

√
T .

The dashed line represent the theoretical curve. Adapted from Ref. [13].

tuation averaged over N independent contributions decrease with N−1/2 and
in terms of temperature this implies

δG ≈ 1√
T
, (2.37)

as illustrated in Fig. 2.10 (under the assumption that in the entire tempera-
ture range the device dimension remains larger then Lφ).

2.3 Superconductivity

Superconductivity is a phenomenon that manifests itself through the absence
of resistivity and exclusion of magnetic field in some metals below a certain
critical temperature [24], see Fig. 2.11. The absence of resistivity was dis-
covered by H. Kamerlingh Onnes in Leiden in 1911, shortly after he liquefied
4He for the first time, while measuring the resistivity of mercury as a func-
tion of temperature. The second fundamental property of superconducting
materials -expulsion of magnetic flux- was discovered by W. Meissner and R.
Ochsenfeld in 1933 and it is know as the Meissner effect. An indirect attrac-
tive interaction between two electrons was suggested by Frohlich [25] to be
the mechanism which leads to superconductivity. In 1956 it was shown by
Cooper that two electrons close to the Fermi surface, with opposite spin and
momentum, can form a bound state under the influence of lattice vibrations
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Figure 2.11: (Left panel) Resistance of mercury as a function of temperature exhibits a
superconducting transition at Tc = 4.2K. (Right panel) Illustration of Meissner effect.
When a metal is in the superconducting state (T < Tc) and if a magnetic field is not
too strong, the metal expels the magnetic field completely.

[26]. Based on this attraction principle, Bardeen, Cooper and Schrieffer for-
mulated the microscopic theory of superconductivity, known as BCS theory
[27]. Here we present the very basic aspects of the superconductivity that are
important for this thesis.

The properties of a superconductor can be described in terms of Cooper
pairs that form the ground state of a superfluid condensate, described by a
”macroscopic” wave function (or order parameter) ψ(r) = |ψ(r)| exp(iϕ(r)).
Unpaired states represent quasi-particle excitations which are hole-like for
|k| < kF , and electron-like for |k| > kF (see Fig. 2.12a). The formation
of the superconducting state gives rise to the opening of an energy gap ∆ so
that there are no available states in the energy window from −∆ to ∆ (Fig.
2.12b).

The dynamics of electron-like and hole-like quasiparticle states are de-
scribed by the Bogoliubov-de Gennes (BdG) equations [28] in conceptually
the same way as the electron motion in a normal conductor is described by
the Schrödinger equation. A useful aspect of the BdG equations is that they
are well-suited for the description of systems with a spatially varying gap. This
includes normal/superconducting junctions since a normal conductor can be
simply described by setting ∆ = 0. The Bogoliubov-de Gennes equations have
the form (

H − EF ∆(r)
∆(r)∗ −(H∗ − EF )

)(
ψe(r)
ψh(r)

)
= E

(
ψe(r)
ψh(r)

)
, (2.38)
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Figure 2.12: a) Cooper pairing in k-space. The light/dark shaded areas represent
empty/occupied states, the black/white dots represent electron/hole excitations and
wiggled lines represent the Cooper pairs. b) Quasi-particle spectrum for a BCS super-
conductor. The density of states NS is normalized to the normal state density of states
N0 and the energy E to the gap ∆.

where H is the single particle Hamiltonian which contains the kinetic en-
ergy and all other single particle potentials, ∆(r) is the position dependent
superconducting gap, EF is the Fermi energy and E is the energy of the par-
ticle relative to EF . The wave functions have two components corresponding
to the electron part (top component) and hole part (bottom component) of
the elementary excitations of the superconductor. From the BdG equations it
is obvious that the coupling between electron-like and hole-like excitations,
which is a phenomenon peculiar of superconductivity, occur when ∆(r) is fi-
nite. The solutions of the BdG equations in a uniform superconductor are
plane waves. Their dispersion relation is shown in Fig. 2.13.

2.4 Andreev reflection

Although Cooper pairs are created only inside superconductors, they can en-
ter a normal conductor in good electrical contact with a superconducting
material, and affect its properties. This phenomenon is referred to as su-
perconducting proximity effect. At energies below the superconducting gap
transport of unpaired electrons is forbidden inside a superconductor. A nor-
mal current carried by individual electrons in a normal conductor therefore
cannot enter a superconductor and need to be converted into a ”Cooper pair”
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Figure 2.13: Dispersion relation for electron and hole quasi-particle excitations in the
superconductor are found by solving the Bogoliubov-de Gennes equations.

current. The process that is responsible for this conversion and that allows
charge transfer at the N/S interface is known as Andreev reflection [29].

An electron in a normal conductor, with energy lower than the supercon-
ducting gap ∆ (E < ∆), approaching the NS interface from the N side cannot
enter S as there are no available states. Instead of being reflected in a con-
ventional manner, the incoming electron couples with a second electron in N
and is transferred across the N/S interface as a Cooper pair. As a result of this
process a 2e charge joins the superconducting condensate as a Cooper pair
while a missing electron in N gives origin to a hole reflected back from the
interface. The wave function of the Andreev reflected hole acquires the phase
of the condensate and traces back the path of the incident electron. This mi-
croscopic mechanism illustrated in Fig. 2.14 converts the dissipative current
in N into a dissipationless current in S.

The reversed situation, when a supercurrent is converted into a normal
electron current, can occur too. A hole reaches the N/S interface and, upon
Andreev reflection, ”splits” a Cooper pair in S. One of the electrons in the pair
fills the hole. The other electron occupies an excited state in the conduction
band above the Fermi energy with opposite momentum and spin as compared
to the incoming hole. The net result of this process is that a charge −2e is
transferred from N to S.

2.4.1 Properties of Andreev reflection

Andreev reflection possesses several important properties (retro-reflection,
phase coherence, and phase conjugation of electron and hole waves) that
are needed to understand the work presented in this thesis. These properties
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Figure 2.14: Schematic illustration of Andreev reflection. An incoming electron at
energy ε creates an Andreev reflected hole at energy −ε in the normal conductor. At
the same time, the incoming electron together with another electron at energy smaller
than EF are converted into a Cooper pair and enter the superconductor.

are explained here below.
Upon Andreev reflection, an incident electron at the Fermi energy with

wavevector ke1 forms a Cooper pair with another electron in the normal con-
ductor which has opposite momentum ke2 = −ke1, because the momentum
of Cooper pair is zero. The resulting reflected hole created in this process
propagates inside N with a wavevector that is the same as that of the ini-
tial electron, since kh = −ke2 = ke1. The Andreev reflected hole, therefore,
moves away from the NS interface by perfectly tracing back the path of the
incoming electron. This property is called retro-reflection.

Andreev reflection is a phase coherent process and there is a well-defined
relation between the phase of the wave function of the reflected hole and that
of the incoming electron. Specifically the phase of the reflected hole wave
function is shifted with respect to that of the incoming electron wave func-
tion by the phase of the superconducting order parameter and by an energy
dependent term, according to the relation

φh = φe + φS − arccos
(E

∆

)
. (2.39)

Similarly for an Andreev reflected hole, the phase of the back-reflected elec-

33



2. THEORETICAL CONCEPTS

tron wave function is:

φe = φh + φS + arccos
(E

∆

)
. (2.40)

Clearly, when considering the motion of electrons and holes in a normal con-
ductor connected to a superconductor, also the phase of the wave function
accumulated during their propagation (i.e. the dynamical phase) needs to be
considered.

At the Fermi energy, when propagating along a path l, the wave function
of the incoming electron acquires a dynamical phase given by θe =

∫
l
kedl.

The wave function of the retro-reflected hole, which traces back the path of
the electron, acquires a phase θh =

∫
l
khdl. The total dynamical phase gained

in this process is then

θtot =

∫
l

kedl +

∫
l

khdl + θAR. (2.41)

Since both particles follow the same path the wave vectors ke and kh have
the same magnitude but opposite signs. Consequently, the dynamical phases
exactly cancel out and the only phase contribution that remains is the one
acquired upon Andreev reflection at the N/S interface

θtot = θAR. (2.42)

At finite energy a difference in momentum is present between the initial
electron and the reflected hole. As a result, the propagation through the
diffusive normal conductor increases a dynamical phase. When the dynamical
phase becomes of the order of π the electron and hole wave functions are
not correlated anymore which is a key mechanism in the disappearance of
superconducting proximity effect.

2.4.2 Effect of interface transparency on Andreev reflection

The quality of the NS interface has a significant influence on Andreev reflec-
tion. In real systems, the interface between N and S is never perfectly clean
and any imperfection induces scattering. The effect of the interface trans-
parency on Andreev reflection and transport in N/S systems has been dis-
cussed first by Bonder, Tinkham and Klapwijk (BTK) [30]. They were the first
to solve the BdG equations for an N/S system with an arbitrary interface trans-
parency considering all elastic processes involved in transport (normal reflec-
tion, Andreev reflection, transmission and branch-crossing transmission) in
order to determine the current-voltage characteristics.

In the BTK model, the interface transparency is determined by the inter-
face barrier strength, which is described by a parameter Z (proportional to
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Figure 2.15: dI-dV characteristics of a N/S system as a function of voltage for different
interface barrier strengths Z at zero temperature. In the absence of a barrier the dI-dV
is twice the normal state value (eV < ∆). In the case of a non-ideal interface, due
to normal reflection, the probability for Andreev reflection is reduced (i.e. the charge
transfer through the interface at eV < ∆ is suppressed). For Z = 50 the transport is
significantly suppressed and the dI-dV curve resembles the one of a tunnel junction.
Adapted from [30].

the height of a delta barrier potential at the interface). The transmission prob-
ability of the N/S junction in the normal state is T = (1 +Z2)−1. The current
flowing from the normal conductor to the superconductor when a bias V is
applied is then given by:

INS = α

∫ ∞
−∞

[f0(E − eV )− f0(E)][1 +A(E)−B(E)]dE, (2.43)

where A and B are the energy-dependent probabilities for Andreev and ordi-
nary reflection, f0(E) and f0(E−eV ) are Fermi-Dirac distribution functions in
S and N reservoirs, respectively. This equation shows that Andreev reflection
enhances the current, since A(E) > 0.
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From Eq. (2.43) it also follows that the differential conductance of the
NS junction is proportional to [1 + A(E) − B(E)]. This relation allows to
understand the evolution of the interface behavior as a function of Z (or
equivalently) of transmission probability (shown in Fig. 2.15). In the absence
of a barrier (Z = 0), the transmission probability is one and A(E) = 1 for
E < ∆: the injected electron can be only Andreev reflected as a hole and
ordinary reflection vanishes B = 0. Accordingly, Andreev reflection doubles
the charge transfer in the NS junction as compared to a normal system ([1 +
A(E) − B(E)] = 2 for E < ∆). For non-ideal interfaces (Z > 0) there is
a probability that electrons are Andreev reflected but due to the presence of
the barrier at the interface, electrons can now undergo normal reflection. In
the subgap regime, since an electron is either Andreev reflected or reflected
normally it must be A+B = 1, and so an increase of ordinary reflection leads
to a decrease of Andreev reflection. When Z � 1 the transparency becomes
very low and almost no transport occurs at E < ∆. The dI-dV curve becomes
the one of a tunnel junction.

2.5 Manifestation of Proximity effect in dissipa-
tive transport

The superconducting proximity effect occurs when a normal conductor is in
a good electrical contact with a superconducting material and it is essentially
a consequence of phase coherent propagation inside the normal conductor
and Andreev reflection at the N/S boundary. This section gives a description
of two aspects of proximity effect in dissipative transport -the so-called re-
entrance effect and Andreev interferometry- that are relevant for this thesis.

2.5.1 Re-entrance effect

A counter-intuitive manifestation of the proximity effect is seen in the energy
dependence of the conductance of a diffusive normal conductor connected
to a superconductor through a highly transmissive interface. The tempera-
ture or voltage dependence of the conductance of such a NS system shows a
non-monotonic behavior with a maximum appearing when kBT or eV are of
the order of the Thouless energy of the normal conductor. In the case when
no interactions are present in the normal conductor, the conductance at zero
temperature or voltage bias surprisingly has the same value as the one mea-
sured as when superconductor is in the normal state (i.e. at T = 0 and V = 0,
G = GN). This is the so-called re-entrance effect [31, 32, 33].

The re-entrance of the conductance as a function of energy can be qual-
itatively understood in terms of quantum interference of Andreev reflected
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Figure 2.16: Illustration of re-entrance effect. Energy dependence of the spectral
conductance of N/S junction is calculated using the full non-linear Usadel equation
(full line) and in the linear approximation (dotted line) assuming the perfect interface
transparency, infinite gap and infinite phase-breaking length. Figure adapted from
[34].

holes. At E = 0, an incident electron approaching the NS interface is con-
verted into a hole whose wave function acquires a phase π/2 (arccos(0) =
π/2) upon Andreev reflection. The Andreev reflected hole can be redirected
towards superconductor, due to disorder, and it undergoes one more Andreev
reflection. The wave function of the resulting electron then has its phase
shifted by π relative to the phase of the incoming electron. The electron can-
not interfere with the hole, however, it can interact once more with the super-
conducting condensate and be re-emitted as a hole which can then interfere
with the partial wave associated to the first Andreev reflected hole. The ampli-
tude associated to the path including 3 Andreev reflections has now opposite
sign as compared to that including only one Andreev reflection. In general,
if the motion in the normal metal is sufficiently diffusive, the hole can be
Andreev reflected many times and paths with a different number of Andreev
reflection processes have comparable amplitude. The sign of this amplitude
however alternates. Since at E = 0 the dynamical phase exactly cancel due to
phase conjugation, the total amplitude of probability for Andreev reflection
is the sum of many terms equal in magnitude, but with alternating sign. The
net result is a vanishing probability for Andreev reflection.

At low non-zero energies E < ETh, the dynamical phases do not cancel
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perfectly. As a result no perfect cancellation of the Andreev reflection am-
plitude occurs. When the energy is comparable to ETh, the phase difference
between trajectories of different number of Andreev refections is of the order
of π, under which conditions the dynamical phase has maximum effect and a
finite probability of Andreev reflection is observed. As the energy is increased
well above ETh the dynamical phase become so large that it randomizes all
effects of interference between the different trajectories. In this case the total
probability of Andreev reflection is again suppressed (which is why at high
energy the resistance corresponds to the normal state value). Albeit only at
a qualitative level, the physical picture outlined here correctly describes the
re-entrance effect of the conductor in N/S diffusive systems with transparent
interfaces.

2.5.2 Andreev interferometry

Another phenomenon that arises from the influence of the superconducting
phase on a normal conductor transport is Andreev interferometry [35, 36, 37,
38]. This is the result of two partial electronic waves undergoing Andreev
reflections at two N/S interfaces with different phase of the superconducting
order parameter, and interfering to determine the total probability of An-
dreev reflection. This particular manifestation of the proximity effect can be
observed in devices called Andreev interferometers, which consist of a phase
coherent conductor connected to a superconducting loop with two N/S in-
terfaces connected in parallel. The schematic illustration of such an Andreev
interferometer is shown in Fig. 2.17.

The application of magnetic field through the superconducting loop cre-
ates a phase difference of the condensate at the opposite ends of the loop,
so that partial electron waves undergoing Andreev reflection at opposite N/S
boundaries acquire different phases. The interference of these partial elec-
tron waves that carry the macroscopic phases from the opposite loop ends
cause the conductance, and all other transport properties of N, to depend on
the phase difference φ = φs1 − φs2 (where φs1 and φs2 are the macroscopic
phases of electrode S1 and S2, respectively, see Fig. 2.18) in a periodic way.

In practice, the phase difference can be tuned by changing the magnetic
flux through a superconducting loop that connects the two superconducting
electrodes. The relation between the phase difference and the flux is given by

φs1 − φs2 = 2π
Φ

Φ0
, (2.44)

with Φ0 = h/2e the superconducting flux quantum. As a result in the ex-
periments one observes oscillations of the transport properties as a function
of a magnetic field used to generate the magnetic flux. The period of the
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Figure 2.17: (Left panel) Schematic illustration of a T-shaped Andreev interferometer
containing a superconducting loop and a T-shaped normal conductor. (Right panel)
Scanning electron microscopy image of the device. The light-blue colored region rep-
resents the superconducting loop and the yellowish part is the normal conductor. Fig-
ure adapted from [39].

oscillations is

∆B =
Φ0

S
, (2.45)

(with S area enclosed by the superconducting loop).
Andreev oscillations are determined by quantum interference which means

that both ensemble-averaged and sample-specific effects contribute to the
phenomenon. The ensemble-averaged component of conductance oscillations
dominates at small magnetic fields and small energies (since it is phase conju-
gation that is responsible for the EA part of the effect). The EA contribution is
suppressed by breaking time reversal symmetry (when magnetic flux thread-
ing the N conductor exceeds one flux quantum). Therefore, at high magnetic
fields the EA component vanishes and only conductance oscillations due to
the SS effect remain.

2.6 Transport in S/N/S structures

Here we discuss the transport phenomena occurring in SNS junctions, where
Andreev reflection at both NS interfaces gives rise to a very rich physical be-
havior. In particular, we will discuss the existence of supercurrent flowing at
zero bias, and its relation to so-called Andreev bound states [40, 41]. We will
also briefly discuss dissipative transport in SNS structures.
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Figure 2.18: Resistance of the Andreev interferometer in Fig. 2.17 as a function of
magnetic field. The resistance exhibits oscillations with a period defined by the geom-
etry of device. Figure adapted from [39].

2.6.1 Non-dissipative transport

Andreev Bound States

Let us consider a 1D ballistic normal conductor attached to two supercon-
ducting reservoirs through ideal NS interfaces, as shown in Fig. 2.19. An
electron in N with energy smaller than the superconducting gap E < ∆ ap-
proaching the right superconductor is Andreev reflected as a hole with the
same energy. The reflected hole retraces the path of the original electron and
reaches the interface with the left superconductor where it is converted back
into an electron upon Andreev reflection. The electron can then repeat the
process, which results into an electron-hole periodic motion. At a quantum
mechanical level, this semi-classical description implies that discrete levels
inside normal conductor are formed, due to the spatial confinement of the
electron-hole wave function caused by the superconducting gap. These states
are called Andreev bound states. A remarkable property of Andreev bound
states is that even though they are spatially localized they carry a net current.
Indeed, the result of each electron-hole cycle is to transfer a Cooper pair from
one superconductor to the other.

When the macroscopic phase difference between two superconducting
condensates is zero, the time-reversed processes of the process just discussed
above occurs at exactly the same energy. This time-reversed process consists
in a hole (instead of an electron) incident on the right superconductor which
is Andreev reflected into an electron at one N/S boundary, propagating back
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Figure 2.19: Schematic illustration of Andreev bound states. An incoming electron
with energy ε < ∆ arrives at right N/S interface where it is Andreev reflected into
a hole with energy ε. The reflected hole retraces the path of the incoming electron
and reaches the left N/S interface where it is converted back into an electron. The
resulting electron can then repeat the process. The periodic electron-hole motion
leads to formation of Andreev bound states.

to the opposite boundary where it again generates a hole. As a result two
time-reversed Andreev bound states are present at the same energy, and carry
equal current in opposite directions. Under these conditions, therefore, the
total current through a SNS junction vanishes. If a finite phase difference
between the superconductors is present the two Andreev bound states are
formed at different energies, and their occupation (determined in equilib-
rium by the Fermi-Dirac distribution function) is different. As a consequence
also the contribution of the two states to the current is different (since this
contribution is proportional to the occupation probability). A finite current
can then flow at zero bias. This is the Josephson supercurrent.

Description of transport in SNS systems

To describe the electronic structure of a SNS junction we consider a spatially
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dependent superconducting pair potential given by

∆(x) =

 ∆eiφ1 , x < 0
0, 0 < x < L
∆eiφ2 , x > L

(2.46)

where φ1 and φ2 are the phases of the order parameter in the left (x < 0)
and right (x > L) superconductor. Structures with a spatially dependent
superconducting gap can be described using the Bogoliubov de Gennes (BdG)
equations 2.38, with the normal-state single-particle Hamiltonian reads

H(x) =
1

2m

(
− i~ ∂

∂x

)2

. (2.47)

For a uniform superconductor (i.e., with gap ∆ that is independent of po-
sition) the BdG equations give the spectrum of the elementary excitations
shown in Fig. 2.13

E =

√(~2k2

2m
− EF

)2

+ ∆∆∗, (2.48)

and the corresponding electron-hole eigenfunctions. By setting ∆ = 0, the
same BdG equations give eigenenergies and eigenfunctions of the excitations
in the normal metal (that have either electron or hole character). The spec-
trum of energy states in the SNS junction can be obtained by writing the
most generic wave function in the two superconducting electrodes and in the
normal metal, and by imposing continuity of the wave functions and their
derivatives at the two N/S interfaces. For energies smaller than the supercon-
ducting gap one then finds the equation [40, 41, 42]

2 arccos
(E

∆

)
+
L

ξ0

E

∆
± φ = 2πn, (2.49)

whose solutions give the possible energy levels of electron-hole states con-
fined in the SNS junction. In Eq. (2.48) ξ0 = ~vF /2∆ is the BCS coherence
length, φ = φ1 − φ2, and n an integer. The first and the last terms on the
lefthand side of Eq. 2.49 are the phase shifts acquired by the evanescent
electron/hole waves penetrating into the superconductor upon Andreev re-
flection, while the second term, LE/ξ0∆, is the phase shift acquired from the
free particle propagation through the normal region. The appearance of φ in
equation [2.49] implies that the energies of the states depend on the phase
difference of the superconducting condensates.

If the length of the SNS junction is short, the dynamical phase LE/ξ0∆ is
negligible and there exists only one solution below the gap, see Fig. 2.20. The
energy of the Andreev bound state is determined only by the phase acquired
due to the Andreev reflection and is given by

E(φ) = ∆ cos(φ), − π < φ < π. (2.50)
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Figure 2.20: Dispersion relation of the Andreev bound states as a function of the
superconducting phase difference φ for a short (left panel) and long (right panel) one
dimensional ballistic junction. In the case of the short SNS junction there is only one
state below the superconducting gap.

In the long junction limit, the dynamical phase dominates. When the junc-
tion length increases the number of bound states increases as well, leading to
a smaller energy separation between neighboring levels. For E � ∆ the
expression for the energies of bound states reads

E±n (φ) =
~vF
L

[
(n+

1

2
)± φ

]
, − π < φ < π, (2.51)

where ± corresponds to bound states carrying a current in opposite direc-
tions. The Andreev bound states come in pairs since for every value of n there
is the + state denoting the state with right moving electron (left moving hole)
and the − state for left moving electron (right moving hole). When φ = 0 the
states + and − are degenerate, and when φ is non-zero time reversal symme-
try is broken and the degeneracy is lifted.

Supercurrent in SNS systems

One of the most striking properties of Andreev bound states is that, even
though they are spatially confined, they are able to carry the current in the
absence of any bias. Here we discuss how this happens. At zero supercon-
ducting phase difference, for every state that carries current in one direction
there is another degenerate state that carries the same current in the oppo-
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site direction, so that the two contributions cancel exactly and the net current
through the junction is zero. With a non-vanishing phase difference, time
reversal symmetry is broken and the degeneracy between states carrying cur-
rent in opposite directions is removed. The occupation probability of these
bound states is then slightly different which result in a finite supercurrent
flow. As the energy of the bound state depend on the superconducting phase
difference the total supercurrent carried by these states at T = 0K is given by

I±n = −2e

~
∑
n

dE±n
dφ

. (2.52)

If there are states above the superconducting gap these states can also
give a significant contribution to supercurrent. Hence, to calculate the total
supercurrent it is necessary to consider all the supercurrent-carrying states.
The solutions inside the continuum, referred to as Andreev resonances, are
obtained from the same condition as the energies of Andreev bound states
Eq. (2.48). Andreev resonances are also called ”leaky Andreev levels”, since
electrons and holes moving with E > ∆ can enter the superconducting con-
densate, which leads to a broadening of the energy levels as compared to
the states with E < ∆ [43]. The total supercurrent is expressed as the sum
[40, 43]

I(φ) = Id(φ) + Ic(φ), (2.53)

of contributions coming form the discrete levels (Id) and that of the contin-
uum levels (Ic). The contribution from the discrete levels can be written as

Id(φ) =
∑
n

I+
n (φ)f(E+

n (φ)) + I−n (φ)f(E−n (φ)), (2.54)

where I+
n is the supercurrent carried by states in the positive direction, f(E+

n )
its occupation probability and, I−n and f(E−n ) the corresponding quantities for
the states carrying current in the opposite direction. In the same spirit, the
current carried by the continuum can be written as

Ic(φ) =
(∫ −∆

−∞
+

∫ ∞
∆

)
I(E, φ)f(E)dE, (2.55)

where I(E, φ) is the supercurrent-carrying density of states at E > ∆.
By extending properly the definition of the supercurrent density of states and
using properties of f(E), the equations above can be written in the form

Is(φ) =

∫ ∞
−∞

[
1− 2f(E)

]
I(E, φ)dE, (2.56)

with the spectral current I(E, φ) that includes also the contribution of the
discrete states.
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The dependence of the supercurrent on the occupation probability of the
states, 1− 2f(E), provides a way to control supercurrent [42, 44, 45, 46]. It
was predicted by Wilhelm et al. [47] that with suitable shape of f(E) the su-
percurrent can be completely suppressed and even reversed. Experimentally,
the reversal of the supercurrent direction was demonstrated by Baselmans et
al. [48] which proved the importance of f(E) in the normal metal to achieve
control of the supercurrent.

2.6.2 Dissipative transport

The previous section focused on the origin of supercurrent in a SNS junction.
When a finite bias is applied across such a structure, transport is dissipative
and new processes need to be considered. Specifically, in this regime electrons
and holes traveling inside the normal metal experience multiple Andreev re-
flections at the N/S interfaces.

In the presence of a voltage bias, transport in SNS junctions occurs also via
Andreev reflection with a difference that upon each reflection on one of the
N/S interfaces, electrons (holes) gain an energy corresponding to the bias eV .
If the voltage bias is larger then 2∆, an electron coming from the left super-
conductor can directly enter the right superconducting electrode, as sketched
in Fig. 2.21a. Figure 2.21b illustrates electron transport through S/N/S junc-
tion when the bias is in a range 2∆ ≥ eV ≥ ∆. An incoming electron un-
dergoes one Andreev reflection at right N/S interface upon which a Cooper
pair joins the right superconductor. Biasing the junction within an even lower
range ∆ ≥ eV ≥ 2∆/3 leads to total transfer of three electrons, i.e. an incom-
ing electron enters the right superconductor together with another electron as
a Cooper pair; the Andreev reflected hole reaches the left interface and gets
converted back into an electron with energy high enough to overcome the
gap of the right superconductor (see Fig. 2.21c). Further decreasing the bias,
with for instance 2∆/3 ≥ eV ≥ ∆/4, leads to transfer of four electrons, as
shown in Fig. 2.21d. Taking this into consideration one sees that the number
of Andreev reflections and number of transferred charge across SNS structure
can be controlled by applied voltage bias. The number of Andreev reflections
can be determined by formula

n =
2∆

eV
. (2.57)

This multiple coherent Andreev reflections give rise to highly nonlinear
IV curve of the SNS structures which exhibits subgap features at V = 2∆/ne.
This subgap features correspond to a local minimas in the voltage depen-
dence of differential resistance [30, 49]. These features are very informa-
tive since they allow the superconducting gap and transparency of normal
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Figure 2.21: Illustration of multiple Andreev reflections in a S/N/S structure.
Black/white dot represents an electron/hole, the full/dotted pink line represents the
trajectory of an electron/hole. a) An electron with energy eV > 2∆ enters directly
into a right superconductor. b) When the applied bias is 2∆ ≥ eV ≥ ∆, electrons ex-
perience one Andreev reflections upon which they gain energy eV and are converted
into holes that reach empty states inside the left superconductor. c) Two Andreev re-
flections occur when a voltage bias is ∆ ≥ eV ≥ 2∆/3. d) Transfer of two Cooper
pairs for 2∆/3 ≥ eV ≥ ∆/4.

metal/superconductor interface to be determined, we will discuss this in more
details in section §3.5.
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Chapter 3

Device fabrication

This chapter describes the experimental procedures employed in the real-
ization of devices studied in this thesis. Preparation of substrates, the very
first step of device fabrication, includes writing of pre-patterned structure by
means of electron beam lithography and metal deposition, as explained in sec-
tion §3.1. Subsequently, graphene flakes are exfoliated from graphite crystals,
transferred to the substrate and found with the help of an optical microscope.
The use of an optical microscope, in addition, provides a simple and reliable
way to identify the number of layers in a flakes (section §3.2). After con-
tacting graphene with metal electrodes and defining the device geometry by
etching, a sample is wire-bonded to a chip carrier in order to carry out trans-
port measurements (section §3.3). All devices that we investigated aimed
at exploring different aspects of the superconducting proximity effect which
strongly depends on the quality of the superconducting film used to realize
superconducting electrodes (discussed in more details in section §3.4), and
the quality of the graphene/superconductor interface (discussed in section
§3.5).

3.1 Substrate preparation

The process to fabricate graphene devices with superconducting electrodes
starts by preparing a conventional Si/SiO2 wafer with highly p-doped Si and
285 nm thick SiO2 oxyde (illustrated in Fig. 3.1a), which serves as a sup-
porting substrate and enables electrostatical gating. The substrates are pre-
patterned (adding the alignment markers and bonding pads) to facilitate the
search of graphene flakes and device design. This is done by using standard
e-beam technology that involves writing a pattern in a resist (e-beam lithog-
raphy), development of the exposed resist, deposition of metal and removal
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of unexposed resist covered with metal (lift-off process).

Figure 3.1: Typical steps of a sample fabrication process. a) Highly doped Si substrate
with a 285nm thick SiO2 oxide layer. b) The substrate coated with a bi-layer e-beam
resist. c) The desired structure is “written” with a highly focused electron beam (e-
beam lithography). d) By dissolving the e-beam exposed areas the desired mask is
obtained (development). e) Metal is evaporated. f) The remaining resist covered with
metal is removed (lift-off).

The advantage of using an e-beam lithography over UV-lithography is a
higher resolution, i.e. e-beam lithography readily allows the realization of
very fine structures which is essential for our work since the dimensions of
our devices are often of the order of few hundred nanometers. E-beam lithog-
raphy is performed on the substrate covered with a uniform layer of resist that
is sensitive to an electron beam. The e-beam resist most commonly used is a
high resolution positive resist called polymethylmethacylat (PMMA). PMMA
can have different sensitivity to an electron beam depending on its molecular
weight, which makes it very convenient for the realization of a mask for metal
deposition. More specifically, creating a bi-layer resist (see Fig. 3.1b) with a
bottom layer more sensitive than a top layer enables, upon development, the
formation of undercuts. The undercuts facilitate the removal of unexposed re-
gions of resist which are covered with metal in the subsequent so-called lift-off
process. To write a desired pattern the bi-layer resist is exposed to a highly fo-
cused electron beam (the settings of the e-beam are carefully pre-determined
by doing a dose tests), as sketched in Fig. 3.1c. The electron beam breaks
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the polymer chains which become soluble in a chemical developer 1 so that
the remaining resist constitutes a mask ready for metal deposition (see Fig.
3.1d).

The pre-patterned structure is then realized by evaporating metal (Fig.
3.1e). To obtain high quality films it is required, especially for the case of the
superconducting materials, to achieve high vacuum inside the chamber where
the evaporation takes place (10−7 − 10−8 Torr). The evaporation is done by
directing an electron beam with electromagnetic lenses towards a crucible
to heat a metal which then evaporates, condenses on a substrate and forms a
thin film. The alignment markers and bonding pads consist of a bi-layer Ti/Au
(10nm/40nm) were titanium is used to improve the adhesion of the gold film.
Lift-off is performed inside warm aceton that dissolves PMMA and, as a result,
leaves only metal which has the same structure as the e-beam patterned mask
(see Fig. 3.1f). The samples are then cleaned in aceton, isopropanol and
nitric fuming acid immediately before graphene deposition. A pre-patterned
structure with bonding pads and markers is shown in Fig. 3.2.

Figure 3.2: (Left panel) Optical image of a substrate with a pre-patterned structure. In
the corners of the substrate one can find the crosses for alignment for e-beam lithog-
raphy. (Right panel) An optical picture with higher magnification shows the markers
used to located graphene flakes.

3.2 Graphene deposition and characterization

Concerning the production of graphene, new synthesis techniques and fab-
rication processes have been developed and improved since the original dis-

1The same priniciple applies to all positive resists. In a case of negative resists exposed parts
become insoluble whereas the remaining region is dissolved in developer.
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Figure 3.3: Deposition of graphene (a) Folding and unfolding of a scotch tape covered
with graphite flakes (graphene exfoliation) (b) Transfer of a flakes from a tape onto a
Si/SiO2 substrate.

covery of this system [1]. Synthesis techniques, such as CVD [2, 3] or epi-
taxial growth on SiC substrates [4, 5, 6], are highly interesting for industrial
purposes as they produce large graphene areas with quality comparable to
graphene exfoliated from graphite using an adhesive tape [7, 3]. In practice,
graphene devices of highest quality, i.e. the high charge carriers mobilities,
are obtained for suspended graphene devices [9], where the influence of a
substrate is completely removed leading to considerable suppression of disor-
der in graphene. Graphene devices on boron nitride [10, 11, 12] whose lattice
constant almost coincides with graphene have also exceptionally high quality.
Graphene devices produced following the method developed by Novoselov
et al. in 2004 [1, 13], i.e. using Si/SiO2 substrates, are of quality that is
sufficient for the purposes of the research work done in this thesis.

To realize these devices we proceed as follows. A large graphite crystal
is peeled several times by folding and unfolding a scotch tape to get thinner
flakes (see Fig. 3.3a). After each unfolding step we search for the areas cov-
ered with thin graphene layers, and then we place the substrate on a chosen
part of the tape. By gently pressing with a finger for some time, we transfer
flakes from the tape to the substrate (Fig. 3.3b). The tape is slowly removed
to avoid breaking of flakes adhering to the substrate. We dip the substrate
into acetone and isopropanol to remove flakes that are not attached well to
the surface and to dissolve the glue residues originating from the adhesive
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tape. We search for the flakes with an optical microscope which allows us
to determine their location relative to the alignment markers present on the
substrate.

The inspected flakes differ in thickness and the thickness of thin flakes
can be determined with a non-invasive optical contrast technique. This tech-
nique relies on the visibility of graphene [14] as the intensity of light reflected
from graphene on a Si/SiO2 substrate is slightly different from that of light
directly reflected by the bare substrate. The contrast between the flake and
the substrate depends on the thickness of the SiO2 layer and is maximum at
certain optical wavelengths. For a 285 nm thick insulating layer the highest
contrast is achieved when the optical wavelength is in the green spectrum,
hence, we employ a digital green filter of an optical microscope to magnify
the effect [15, 16]. The contrast can be quantified by calculating the relative
green shift, RGS = (Gs − Gf )/Gs, where Gf and Gs are the green compo-
nents taken from the RGB value of a digital color picture of the flake and the
nearby substrate, respectively. Figure 3.4 shows RGS values of a large number
of flakes whose thicknesses correspond to a monolayer, bi-layer and tri-layer
graphene.

Figure 3.4: Identifying a number of layers in graphene with an optical microscope. The
relative green shift for a monolayer (ML), bilayer (BL) and trilayer (TL) graphene.

Another reliable way to characterize graphene is to perform transport
measurements in a high magnetic field. Single-layer graphene flakes con-
tacted by metal electrodes exhibit a unique sequence of quantum Hall con-
ductance steps at half-integer values of 4e2/h which is a direct consequence
of the linear dispersion of graphene, and is different from what one observes
on bi or few-layer graphene. Figure 3.5 shows the two terminal conductance
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Figure 3.5: Conductance of our junction (200 nm long and 800 nm wide) measured
in a two terminal configuration as a function of gate VG, at B = 10T and T = 4.2K,
exhibiting the quantum Hall quantization steps characteristic of graphene monolayers.

of one of our junctions measured as a function of gate voltage, at T = 4.2
K and B = 10 T. Quantized conductance plateaus at 2, 6, 10, 14 e2/h are
clearly visible, which unambiguously identify graphene as monolayer.

3.3 Processing of graphene

Our research focuses on new aspects of superconducting proximity effect by
using graphene as a diffusive normal conductor. Graphene, in comparison to
conventional two-dimensional electron gas systems, enables a good contact
to a superconductor which significantly simplifies the experimental realiza-
tion of devices. Here we describe a typical fabrication procedure of our de-
vices which starts by contacting graphene with a superconducting and normal
metal electrodes, and then, defining its geometry by etching. This requires
three different e-beam lithography steps, with subsequent exposure of well
designed patterns. The sequence of these steps is illustrated in Fig. 3.6 on an
example of specific device, the so-called multi-terminal Josephson junction,
which consists of superconductor/graphene/superconductor junction where
graphene region is connected to two additional normal contacts.

Figure 3.6a shows an optical image of a single-layer graphene flake se-
lected for device fabrication. After selecting the flake, we define a supercon-
ducting structure with the first e-beam lithography step to reduce the con-
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Figure 3.6: Realization of a graphene device (a) A graphene flake on a Si/SiO2 sub-
strate selected for device fabrication. (b) The superconducting electrodes are defined
with a first e-beam lithography step, by evaporation and lift-off. c) Additional normal
metal contacts are added to the device by e-beam patterning and lift-off. d) As a final
step the geometry of graphene is defined by e-beam lithography and ion etching.

tamination originating from the e-beam resist. This considerably improves an
electrical contact between graphene and superconducting electrodes which,
for technical reasons, consist of a tri-layer Ti/V/Au (3.5/10/3.5)nm. An op-
tical image of graphene with a superconducting structure is shown on Fig.
3.6b. The following lithography step is employed to realize a normal metal
structure, as illustrated in Fig. 3.6c, for which we evaporate titanium and
gold (10/40)nm. With the final e-beam lithography, we define which parts of
graphene flake need to be removed, the so-called etching pattern (Fig. 3.6d).
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The sample with a developed mask is then exposed to an oxygen plasma,
immersed in a warm aceton to remove a remaining resist, and glued with a
silver paste on a chip carrier. At this stage, the chip carrier with the sample
can be mounted into a measurement setup.

The contact pads of the chip carrier enable the transport measurement to
be carried out by allowing an electrical connection to be made between the
sample and a measurement system. The connection to the sample is achieved
by soldering aluminum wire from the contact pads of the chip-carrier to the
bonding pads on the chip with an ultrasonic bonding-machine. The parame-
ters for soldering process are carefully chosen to avoid breaking of the SiO2

insulating layer which, as a consequence, leads to an occurrence of a leakage
currents between a backgate and the device.

3.4 Superconducting thin film

For the realization of superconducting structures in our devices vanadium
turned out to be a good trade-off between physical properties and technical
issues related to its use. For instance, aluminum is technically simple to use
with graphene, however, its main drawback is low critical temperature, and
consequently, low superconducting gap. Materials with higher superconduct-
ing gaps such as niobium and lead are more suitable, in the sense, that they
allow proximity-effect experiments to be performed in wider energy range.
Still, since niobium films with good quality cannot be produced by evaporat-
ing with PMMA whereas lead is unstable upon thermal cycling which causes
degrading of the film, we did not select them for our devices. The main rea-
sons for choosing vanadium come from the facts that it has larger supercon-
ducting gap than aluminum and it has lower number of technical problems
compared to niobium and lead. Nevertheless, some technical problems in the
case of vanadium are still present. They arise from a strong strain existing
in their films which considerably limits the advantage of having larger super-
conducting gap.

When evaporated on top of graphene, with titanium as a buffer layer,
strain in vanadium tends to damage the flakes even to the point that large
cracks are produced. This is illustrated by the encircled regions of the scan-
ning electron microscope images of flakes with vanadium contacts in Fig. 3.7a
and Fig. 3.7b, where it can be seen that after the evaporation of vanadium
the graphene layers are teared off. In addition, these figures show lifting of
the vanadium electrodes themselves (bright regions) which is another mani-
festation of strain. Finally, one more strain-related problem is an appearance
of cracks in PMMA that, upon evaporation of metal, leads to short circuits
between the electrodes (see Fig. 3.7c). The effect of strain can be sufficiently
suppressed by making thiner films and structures of smaller size. Significant
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Figure 3.7: Scanning electron microscope images showing a consequences due to a
strong strain in the vanadium film (scale bars correspond to 1µm). a) and b) Break-
ing of graphene followed by lifting of metal which is placed on top of the flake. c)
Formation of cracks in an e-beam resist that are subsequently filled with metal during
evaporation short circuiting the superconducting electrodes.

reduction of the thickness of the film needed to avoid breaking of graphene,
however, also leads to a significant decrease of the critical temperature and,
therefore, of the superconducting gap. Finally, the use of vanadium requires
a very thin layer of gold to be evaporated on top, to prevent oxidation.
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The critical temperature, Tc ∼ 2.5K, and the superconducting gap, ∆ ∼
380µeV (calculated from ∆ = 1.76kBTc), of our vanadium-based multi-layers
are obtained from the temperature dependence of the resistance of 500nm
wide, 10µm long and 3.5/10/3.5 nm thick Ti/V/Au wire (see Fig. 3.8a) mea-
sured in a four-probe configuration. Figure 3.8b shows the differential resis-
tance of a S/G/S junction as a function of voltage bias measured at −60V gate
voltage and 250mK temperature. dV/dI-vs-V curve exhibits sub-gap features
due to the occurrence of multiple Andreev reflections (discussed in §2.6.2)
which are very informative as they allow determination of superconducting
gap and graphene/superconductor interface transparency. Regarding the su-
perconducting gap, we extract from dV/dI-vs-V curve the gap value, ∆ ∼
300µeV, which is comparable to the one obtained from the critical tempera-
ture of the superconducting wire. Information on graphene/superconductor
interface transparency will be discussed in more details in next section.

Figure 3.8: a) Temperature dependence of a differential resistance of supercon-
ducting wire exhibits a crossover to superconducting state at critical temperature
Tc ∼ 2.5K. b) Differential resistance as a function of voltage bias across a superconduc-
tor/graphene/superconductor junction, at VG = −60V and T = 250mK, exhibiting the
multiple Andreev reflection gives the value of the superconducting gap, ∆ ∼ 300µeV.

3.5 Graphene/superconductor interface quality

The transparency between two materials has an important role in determin-
ing the transport properties of a device. In the case of our experiments it is
essential to obtain a high transparency between graphene and the supercon-
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ducting electrode in order to induce proximity effect. A clear indication of the
large transmission probability of the interface between graphene and the su-
perconducting electrodes is obtained by looking at the differential resistance
of graphene-based superconducting junctions fabricated on a doped Si/SiO2

substrate with the same technique and the same electrode composition as the
devices studied in the thesis.

Figure 3.9: Differential resistance at T = 250mK of a representative S/graphene/S
test-junction, for gate voltages VBG = 43, 20 and 8V (the Dirac peak is at VBG ∼ 0V
for this sample). Junction length and width are L = 300nm and W = 1.5µm, re-
spectively. The superconducting gap extracted from the SGS structure is ∆ ∼ 500µeV
(near VSD = 0V the behavior of the measured differential resistance is affected by
an artifact due to the supercurrent branch, which is shown in the panel below; this is
why the data points are not shown in that range).

Figure 3.9 shows the differential resistance of a representative sample with
junction width W = 1.5µm and length L = 300nm, for different values of
back-gate voltage VBG (in this sample the Dirac peak was around VBG = 0V ).
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The sharp and pronounced (exceeding 40%) suppression of the differential
resistance for | VSD |< 2∆/e ∼ 1mV indicates a very large probability for An-
dreev reflection and hence a large interface trasmissivity. In order to obtain a
semi-quantitative estimate for the junction transmissivity, we have integrated
dV/dI-vs-V in Fig. 3.9 to get dc current-voltage characteristics for the same
VBG as shown in Fig. 3.10. From curves in Fig. 3.10 we have estimated the
excess current and compared it with the Octavio-Blonder-Tinkham-Klapwijk
(OTBK) model [17]. Figure 3.11 shows the calculated dependence of the
normalized excess current eIexcRN/∆ on the interface scattering parameter
Z, according to the OTBK model. The values extracted from the dc current-
voltage characteristics, shown in the inset to Fig. 3.10, are of the order of
unity, and – remarkably – independent of VBG. By comparison we extract
for our S/G/S junctions Z ∼ 0.5, and hence a junction transmissivity in the
normal state T ∼ 80%.

Figure 3.10: I − V characteristics for the same devices and values as in Fig. 3.9,
displaying large excess currents. The normalized values are shown in the inset.

The presence of a strong proximity effect in graphene is confirmed by the
presence of a sizeable Josephson critical current, shown in Figure 3.12 for the
same VBG values as in Figure 3.10.

Several S/graphene/S samples of this tipe have been fabricated and tested,
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Figure 3.11: Excess current in a SNS junction according to the OTBK model (figure
adapted from [17]). A normalized excess current corresponds to an interface param-
eter, hence to a transmission probability in the normal state.

allowing us to verify the reproducibility of the fabrication procedure.

Figure 3.12: Current-voltage characteristic of the same sample, for the same VBG
values as in Fig. 3.9. Measurements are performed at T = 250 mK and B = 0.
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Chapter 4

Tuning the influence of
decoherence on proximity
effect in a graphene Andreev
interferometer

We discuss transport measurements through graphene Andreev interferome-
ters exhibiting reentrance of the superconducting proximity effect.We observe
that at high gate voltage (VBG) the energy dependence of the Andreev con-
ductance oscillations exhibits a scaling in agreement with theoretical expec-
tations, which breaks down at low VBG, when the Fermi energy approaches
the charge neutrality point. The phenomenon is a manifestation of single
particle dephasing that increasingly limits the propagation of superconduct-
ing correlations away from the superconductor-graphene interface. Our work
addresses the interplay between microscopic decoherence and superconduc-
tivity, and shows that graphene provides a useful experimental platform to
investigate unexplored regimes and phenomena in the superconducting prox-
imity effect.
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4.1 Introduction

Superconductivity originates from microscopic correlations between electron
and hole excitations in the vicinity of the Fermi level of a normal metal, cor-
responding to the formation of Cooper pairs [1]. The characteristic length
scale of these correlations—i.e., the size of a Cooper pair—is the supercon-
ducting coherence length ε, which in conventional metals at low temperature
is usually much shorter than the phase coherence length of individual elec-
trons Lφ. In this case, dephasing does not pose limits to the formation of
the superconducting correlations, and superconductivity is only suppressed
by thermal excitations at finite temperature. In the opposite case, when Lφ
becomes comparable to ε, dephasing competes with superconductivity and,
if Lφ becomes shorter than ε, it suppresses superconducting correlations. In
conventional bulk superconductors this regime is realized only rarely. One ex-
ample is provided by s-wave superconductors with spin impurities, where—
upon increasing the impurity concentration—dephasing first results in gapless
superconductivity, and eventually in the complete destruction of the super-
conducting state [2]. Given the relevance of the problem, it is worth finding
new experimental systems where the competition between superconductiv-
ity and dephasing can be investigated under controlled conditions. To this
end, induced superconductivity and proximity systems provide a significantly
wider experimental flexibility [3, 4].

Here we present an experimental investigation of induced superconduc-
tivity, in nanoelectronic devices where the effective strength of dephasing can
be tuned. Specifically, we investigate the superconducting proximity effect
(PE) through measurements of phase-modulated transport in a diffusive An-
dreev interferometer [5, 6, 7] whose normal region is a T-shaped graphene
ribbon. We exploit the possibility to electrostatically tune the carrier density
in the ribbon over a very broad range. We find that at large densities in-
duced superconductivity is suppressed by thermal fluctuations, as predicted
by the conventional theory. As the carrier density is lowered, however, a
crossover occurs to a regime in which the behavior of the PE is determined by
dephasing, when Lφ becomes much shorter than the lateral dimension of our
interferometer. Next to illustrating the competition between superconduct-
ing correlations and dephasing, our experiments show how graphene allows
studying unexplored regimes of the superconducting proximity effect.

Our investigations focus on a specific manifestation of the PE, the so-called
reentrance effect (RE) [8, 9, 10]. This counterintuitive phenomenon consists
in the nonmonotonic energy dependence of the conductance of diffusive N/S
junctions with highly transmissive interfaces. When the temperature T is
lowered from just above the critical temperature TC , the conductance first in-
creases, and then unexpectedly decreases so that, in the ideal case, at T = 0
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it returns to the normal-state value GN , as if the PE was completely absent. A
similar nonmonotonic trend is also observed at low temperature, when mea-
suring the differential resistance as a function of applied bias V (i.e., de-
creasing V from V > ∆ = e to 0; ∆ is the superconducting gap), and in
Andreev interferometers, when looking at the amplitude of the conductance
oscillations as a function of bias or temperature. Although not yet observed
experimentally, theoretical work indicates that the RE should occur also in
graphene-based systems [11].

Theory treating the normal conductor in the diffusive limit relates the en-
ergy dependence of the conductance change δG(E) to the Thouless energy
ET = ~D/L2 (L is the length of the N region, and ET � ∆) and to the nor-
mal state resistance RN = 1/GN [12, 13, 14]. The hallmark of the theory is
the universal scaling of the phenomenon in terms of reduced variables, i.e.,
when RNδG(E) is plotted as a function of E/ET [12, 13, 14]. Pioneering ex-
periments have observed the RE in systems where the normal conductor was
either a thin metal film [[15, 16],[17, 18]] or a two-dimensional electron gas
(2DEG) [[19, 20, 21],[22]], and found excellent qualitative agreement of the
experiments with theoretical predictions (quantitative deviations, especially
in the case of 2DEGs, were attributed to device nonidealities). However, the
universality of the scaling between RNδG(E) and E/ET has never been veri-
fied experimentally.

4.2 Sample characterization

Compared to devices used in the past, graphene Andreev interferometers
provide a key experimental advantage, as they enable a stable and repro-
ducible electrostatic tuning over a broad range of densities. This allows us
to study experimentally the dependence of the RE on the transport parame-
ters of the normal conductor. Figure 4.1(a) shows a SEM micrograph of one
of our Andreev interferometers. A single-layer graphene flake is patterned
into a T-shaped ribbon, connected to a superconducting loop, to control the
relative phase of the superconducting order parameter δφ = 2πΦ/Φ0 (Φ is
the magnetic flux threading the loop and Φ0 = h/2e). The device is fab-
ricated on graphene exfoliated onto a degenerately doped Si wafer (coated
with a 285 nm thick SiO2 layer) acting as a gate electrode. Two probes
are placed on the graphene region below the T. The superconducting loop
and these electrodes consist of a trilayer of Ti/V/Au (layer thicknesses are
5/17/5 nm). Measurements on S/graphene/S microjunctions fabricated with
the same process which is used to realize the Andreev interferometers indi-
cate that the S/graphene contacts have very high transparency for all values
of VBG. The superconducting gap extracted from the subharmonic structure
of these microjunctions is ∆ ∼ 500µeV , which matches the one calculated
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from ∆ = 1.76kBTc ∼ 530µeV with Tc = 3.5 K of the film.
Experiments were performed in a filtered 3He system, down to 250 mK.

The single-layer nature of the graphene flake was confirmed by two-probe
quantum Hall measurements between contacts 3 and 4 [23, 24]. The resis-
tance across the ribbon, measured at B = 0 as a function of VBG [Fig.4.1(b)],
raises by 2 orders of magnitude near the charge neutrality point. The strong
suppression of the low-bias conductance near charge neutrality is typical of
etched graphene nanoribbons, and is related to disorder and electron-electron
interactions (EEI): scattering by edge-disorder increases the tendency of elec-
trons toward (Anderson) localization, enhancing the effect of EEI. Indeed,
in sufficiently narrow ribbons this leads to the formation of a full transport
gap originating from Coulomb blockade [25, 26, 27, 28, 29, 30]. Finally,
Fig. 4.1(c) shows the conductance oscillations induced by a small magnetic
field that modulates the superconducting phase, originating from quantum
interference of holes Andreev reflected at the two different superconducting
contacts.

4.3 Transport measurements

As the device transport properties are determined by quantum interference,
we need to distinguish between ensemble-averaged (EA) and sample-specific
(SS) contributions in the measured quantities. The SS component of the An-
dreev oscillations, which consists in phase-coherent conductance fluctuations
modulated by the superconducting phase [19, 20, 21], is dominant at small
energies or at large magnetic fields, where the EA component is suppressed,
respectively, by the RE or by the breaking of time reversal symmetry (when
the magnetic flux threading the graphene T exceeds one flux quantum h/2e).
The mean peak-to-peak amplitude of the SS oscillations, measured in the field
range 200G < B < 500G, is shown in Fig. 4.2(c) as a function of VBG. In
order to minimize the SS component and to isolate the EA contribution, for
each quantity of interest we averaged measurements for 25 different values
of VBG, stepping the gate voltage just enough to cause a change in EF larger
than the correlation energy π2ET [31]. A plot of ET = ~D/L2 for positive
VBG is shown in Fig. 4.2(d). The diffusion constant D is estimated from
the zero-bias conductivity, assuming a linear dispersion for graphene [32, 33]
(we take L = 1µm, corresponding to the distance between the bottom of the
T and the superconducting contacts; note how D decreases as the Fermi level
approaches charge neutrality, consistently with the expected tendency toward
localization).

Figures 4.2(a) and 4.2(d) show the results of the ensemble averaging (per-
formed around VBG = 50 and 60V , respectively) for the magnetic field de-
pendence of the linear conductance and for the bias-dependent differential
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Figure 4.1: (a) False color scanning electron micrograph of one of our devices;
graphene and the superconducting electrodes are colored in yellow and purple, re-
spectively (contacts 1 and 2 are joined by a ' 12µm2 superconducting loop. The scale
bar corresponds to 1µm). (b) Resistance per square of the T-shaped graphene ribbon
(outlined by dashes) versus VBG. (c) Four-probe conductance G3,2|4,1, periodically
modulated by the flux threading the loop (measured at T = 250 mK with an applied
bias VSD = 40µV ).

conductance. Around B = 0 the amplitude of the conductance oscillations
measured at VSD = 40µeV is not much affected by the averaging process,
because at this bias the EA contribution is larger than the SS one. On the
contrary, at higher magnetic field (B > 15mT ), where the EA contribution is
suppressed, averaging over N traces suppresses the amplitude proportionally
to N−1/2 [see Fig. 4.2(e)]. Similarly, individual dI − dV curves are asym-
metric and exhibit random bias dependent features, whereas the EA curve is
symmetric [thick versus thin lines in Fig. 4.2(d)].

Having established the averaging procedure, we look in detail at the EA
phase-modulated oscillations at large charge density (VBG = 60 V). The low-
field conductance oscillations are plotted in Fig. 4.3(a) at T = 250 mK, for
VSD between 0 and 0.55 mV. Similar measurements have been done as a func-
tion of temperature, for VSD = 0. The VSD and T dependence of the peak-
to-peak amplitude of the first and second harmonic are shown in Figs. 4.3(b)
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and 4.3(c). The first harmonic exhibits reentrance in the bias and in the tem-
perature dependence, with the oscillation amplitude having a maximum at an
energy (i.e., either bias or temperature) comparable to the Thouless energy
[ET ≈ 45µ eV at VBG = 60 V, see Fig. 4.2(d)]. The second harmonic, on
the contrary, shows no reentrance. This is expected, because the trajectories
causing conductance oscillations with twice the frequency have to Andreev
reflect at both superconducting electrodes, and are therefore longer (by ap-
proximately twice the distance between the S contacts). The effective Thou-
less energy associated to these trajectories is therefore significantly smaller
than ET , so that the energy at which reentrance would occur for the second
harmonic is smaller than the lowest temperature reached in the experiment
1.

We now analyze the evolution of the energy dependence of the oscilla-
tions as a function of VBG. Figure 4.4(a) shows the bias dependence of the
EA oscillation amplitude (first harmonic) for seven different values of VBG
between 60 and 12.5 V. Upon lowering VBG, the maximum oscillation am-
plitude decreases, qualitatively in line with the theory, because RN increases
[see Fig. 1(c)]. The value of VSD for which the maximum oscillation am-
plitude occurs, however, remains essentially unchanged. Within the existing
theory, this finding is inconsistent with the value of the Thouless energy ET ,
which changes from ∼ 45 to ∼ 10µ eV as VBG is lowered [Fig. 4.2(d)]. For a
more quantitative analysis, we look at the data in terms of normalized quan-
tities, i.e., plotting RNδG versus eVSD/ET [Fig. 4.4(b)]. At large densities,
for VBG = 60, 50, and 40 V, the rescaled curves fall on top of each other, as
expected. When lowering VBG below 30 V, however, deviations from perfect
scaling become progressively larger: the maximum relative oscillation ampli-
tude decreases, and shifts to larger eVSD/ET ratios. Both trends observed
in the range 12.5V < VBG < 30 V are in conflict with what is predicted by
existing theory.

The suppression in the amplitude of the Andreev oscillations and the shift
of their maximum toward higher energy can be explained by a progressive
shortening of Lφ. A finite value of the phase-breaking length, which is taken
to be infinite in the simplest theory, introduces a cutoff for the penetration
of the pair amplitude in N . When Lφ drops below the size of the device L,

1Our measurements far from charge neutrality reproduce what was found in 2DEG-based in-
terferometers [19],[20],[21], having dimensions, a diffusion constant, and carrier density com-
parable to those of our graphene devices at VBG = 60V . This observation indicates that the
Dirac nature of electrons does not play an important role in disordered graphene on SiO2 (see
also X. Du et al. in [40]). Indeed, possibly the only theoretically predicted manifestation of the
Dirac nature of carriers on proximity effect in graphene is the so-called specular Andreev reflec-
tion [43], which requires extremely clean samples, to be able to gate tune the Fermi energy near
the charge neutrality point on a scale of the superconducting gap (' 0.5 meV). This regime is not
relevant here, since for graphene on SiO2 potential fluctuations are approximately two orders of
magnitude larger.
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Figure 4.2: (a) Magnetoconductance (background subtracted), averaged over N =
1, 5, and 25 VBG values around 50 V (VSD = 40µV; the curves are offset for clarity).
(b) Thouless energy ET extracted from the VBG dependent resistance of the device.
(c) Amplitude of the large-field (200G < B < 500G) sample-specific conductance
oscillations. (d) Ensemble-averaged (thick line) versus individual dI/dV curves (thin
lines) measured around VBG = 60 V at T = 250 mK. (e) Sample specific oscillation
amplitude versus the number of averaged experimental curves.
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Figure 4.3: (a) EA conductance oscillations at VBG = 60 V and T = 250 mK, for VSD
varying from 0 (bottom curve) to 0.5 mV (top; curves offset for clarity). (b) Bias de-
pendence of the amplitude of the first and second harmonics of the oscillations shown
in (a). (c) Temperature dependence of the harmonics of the zero-bias EA oscillations.

Eφ = ~D/L2
φ takes the role of ET in determining the energy-scale of the reen-

trance. Having a new energy scale (next to ET ) explains the deviations from
scaling on the energy axis. Dephasing obviously also explains why the ampli-
tude of the proximity effect decreases, since trajectories with a length larger
than Lφ cannot contribute to phase coherent effects. For a very closely related
problem, namely how a reduction in Lφ affects the RE in the conductance of
a single NS junction, a quantitative analysis has been performed by Charlat
et al. [15, 16], using linearized Usadel equations in which a finite value of
Lφ was introduced phenomenologically. The result is illustrated in the in-
set of Fig. 4.4(b), which shows the bias dependent linear conductance for
five different values of the phase coherence length. At a qualitative level the
evolution of the energy dependence reproduces the behavior of the Andreev
conductance oscillations measured in our experiments for different values of
VBG, supporting the idea that the behavior of the Andreev oscillations at low
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Figure 4.4: (a) Bias-dependent amplitude of the EA oscillations (first harmonic) for
−10 G < B < 10 G, measured at T = 250 mK and 12.5 V < VBG < 60 V. (b) Same
data as in (a), plotted in dimensionless units: the curves measured for VBG = 60, 50,
and 40 V exhibit a perfect scaling, which breaks down starting from VBG = 30 V. Inset:
calculated conductance of a diffusive NS junction for decreasing values of Lφ = L (∞,
black curve, 0.6, 0.4, 0.3, 0.2, orange curve), using the linearized Usadel equations, as
in Ref. [15, 16].

carrier density is governed by the shortening of Lφ. Our devices, therefore,
allow the continuous tuning between two regimes, with induced supercon-
ductivity being suppressed by thermal fluctuations at high gate voltage, and
by electron dephasing at low gate voltage, with dephasing eventually com-
pletely suppressing the superconducting correlations.

As for the origin of dephasing, definite conclusions cannot be drawn at
the moment. The progressive increase of the influence of EEI as VBG ap-
proaches the charge neutrality point, is a possible explanation. Evidence for
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Figure 4.5: (a)–(c) Ensemble-averaged dI/dV curves between 265 mK (blue) and 3.5
K (red), for different values of VBG (60, 20, and 12.5 V, respectively). With approach-
ing charge neutrality, the conductance enhancement due to Andreev reflection visible
in (a) is suppressed (b), and eventually completely disappears (c).

such a scenario is provided by the evolution as a function of VBG of the bias-
dependent differential conductance dI/dV (VSD), shown in Figs. 4.5(a)-(c).
At VBG = 60 V (top panel) Andreev reflection results in a clear conductance
increase. At higher temperature (3.5 K) the conductance enhancement ex-
tends to all subgap voltages while at low T a conductance dip appears at
low bias (i.e., the phenomenology of the RE). Upon lowering VBG to 20 V
[Fig. 4.5(b)], the conductance enhancement at subgap voltage becomes sig-
nificantly less pronounced; eventually, for VBG sufficiently close to charge
neutrality [VBG = 12.5 V, Fig. 4.5(c)] no enhancement of dI/dV (VSD) is ob-
served, and only a suppression persists, which occurs on an energy scale larger
than the superconducting gap. This suppression is what is typically seen in
low-dimensional systems where dynamical Coulomb blockade becomes rele-
vant [34, 35, 36, 37]. Dephasing, however, may also have a different origin.
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Indeed, earlier weak-localization measurements in large graphene flakes [38]
have revealed an unexpected saturation of the dephasing time τφ. at low
temperatures, a behavior that is not yet understood and that appears incom-
patible with the sole effect of EEI. More experiments are needed, and possibly,
the study of the PE may provide a useful tool to understand what limits τφ in
graphene.

4.4 Conclusion

In conclusion, we have used graphene-based Andreev interferometers to in-
vestigate and control the influence of microscopic dephasing on induced su-
perconductivity. Our results show how the possibility to gate-tune normal
transport in graphene is particularly effective to investigate unexplored regimes
of the superconducting proximity effect [[3, 4],[39, 40, 41]].
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Chapter 5

Detection of the Josephson
supercurrent carried by
Andreev resonances at
E > ∆

We report a study of how electronic states at different energy contribute to the
supercurrent in superconductor-normal metal-superconductor (SNS) Joseph-
son junctions. The experiments rely on multi-terminal devices with graphene
used as normal conductor, and provide experimental control over the elec-
tronic distribution in the junction, by acting on which we progressively sup-
press the supercurrent. We analyze the data in terms of a one-dimensional
model, and find that the evolution of the critical current that is observed
experimentally is consistent with a "two-step" electronic distribution, as ex-
pected from the characterization of the transport regime of our devices. We
also show that an analysis based on the same model, under the assumption
that electron relaxation is sufficiently strong to generate an electronic distri-
bution with an effective temperature, does not lead to a satisfactory agree-
ment with the data. Within the context of this analysis, our measurements
provide spectroscopic information about the supercurrent carrying density of
states. We conclude that the critical current remains finite, even when the
contribution to the supercurrent of Andreev bound states with energy smaller
than the superconducting gap is entirely suppressed. This remaining finite
critical current is due to the contribution to the supercurrent of Andreev reso-
nances at energies above the gap, whose role in SNS Josephson junctions was
first predicted long ago by Kulik.
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RESONANCES AT E > ∆

5.1 Introduction

Our microscopic understanding of supercurrent in Josephson junctions (JJs)
is based on the concept of Andreev bound states, which are formed by a co-
herent superposition of electron and hole waves, and "live" at energies smaller
than the superconducting gap ∆ [1, 2]. These states, confined by Andreev re-
flection in the region between the two superconducting electrodes, mediate
Cooper pair transfer between them, and fully account for the properties of
the supercurrent in many types of JJs [3]. In some cases, however, states at
energy E > ∆ cannot be neglected, because Andreev reflection [4] can occur
with finite probability at E well above ∆ and cause the formation of scat-
tering resonances, which also contribute to the supercurrent flow [1, 2]. The
existence and properties of these Andreev resonances were predicted theoreti-
cally by Kulik already in 1970, in his seminal analysis of supercurrent through
superconductor-normal metal-superconductor (SNS) JJs, i.e., the same pa-
per where Andreev bound states were originally described [1]. Whereas, by
now, experiments have led to the observation of Andreev bound states at
E < ∆ [5, 6, 7, 8] and confirmed their relation to the supercurrent, no ex-
perimental study has been attempted to detect the contribution of states at
E > ∆ to the Josephson supercurrent of a SNS junction. Here, we use multi-
terminal graphene-based SNS JJs to present experimental evidence indicating
that these states do in fact give a significant contribution to the critical cur-
rent.

Determining the contribution of states at different energies to the Joseph-
son supercurrent requires a suitable form of spectroscopy. A strategy analo-
gous to that commonly used for normal transport (measuring transport while
applying a bias eV across the device) cannot work, since the supercurrent is
–by definition– the current flowing at V = 0. Spectroscopy can be performed
by monitoring the change in supercurrent induced by a known modification
in the occupation probability of the electronic states at energy E [9]. In our
experiments, we employ multi-terminal SNS JJs [10, 11, 12] with two addi-
tional normal contacts connected to the N region (see Fig. 5.1b); we refer to
these two additional contacts as to the "control line") that enable this strategy
to be implemented in practice.

To understand the idea, recall the generic expression for the supercurrent
Is in a SNS JJ, Is =

∫∞
−∞ Js(E, φ)[1 − 2f(E)] dE (Js(E, φ) is the supercur-

rent carrying density of states) [13, 14, 15]. f(E) is the electron distribution:
in equilibrium it corresponds to the Fermi-Dirac function, but –if interaction
between electrons can be neglected– the application of a "control" voltage
Vcnt across the control line generates a two-step non-equilibrium distribu-
tion f∗(E) (see Fig. 5.1b [16]. f∗(E) = 1/2 in an energy range of ±eVcnt/2
around the Fermi energy EF , fully suppressing the contribution of these states
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Figure 5.1: (a) States involved in the supercurrent transport of a SNS Josephson junc-
tion: discrete Andreev bound states at sub-gap energy, confined in the N region by
the superconducting gap, and broadened resonances (quasi-bound states) extending
in the superconducting electrodes at E > ∆. (b) Schematics of the multi-terminal
SNS junctions used in this work, with a sketch of the distribution function induced by
a finite control voltage Vcnt. (c) Scanning electron micrograph of an actual device.
The S electrodes are blue colored, the normal electrodes are yellow, and graphene is
dark grey. The dotted line delimits the control line (the scale bar is 1 µm long). (d)
Normalized Ic as a function of Vcnt for a L = 300nm junction calculated theoretically
with the one-dimensional model of Ref. [13], using the distribution function shown
in panel (b) (see also discussion at the end of the paper). The green line is the result
obtained by removing the contribution of states at E > ∆; the yellow line includes
also the contribution of states at E > ∆. Note how, in the first case but not in the
second, Ic is fully suppressed for Vcnt > 2∆/e.
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to Is 1. To check experimentally whether states at E > ∆ contribute to the
supercurrent, therefore, is conceptually straightforward: it is sufficient to in-
crease Vcnt past 2∆/e and measure whether a supercurrent can continue to
flow. Fig. 5.1d illustrates this point, by showing the dependence of the critical
current Ic as a function of Vcnt expected from a one-dimensional theoretical
model (see Ref. [13] and discussion at the end) when states at E > ∆ do, or
do not, contribute to the supercurrent.

Past work on metal film devices shows that the ideas just outlined are
sound. In particular, the Saclay group [16, 17, 18] analyzed in detail the con-
ditions under which the non-equilibrium distribution function generated by
applying a voltage across a metal strip (the control line, in the multi-terminal
SNS devices that we consider here) corresponds to the one expected for non-
interacting electrons. It was shown that the two-step function is a good ap-
proximation as long as the length of the control line is smaller than, or com-
parable to, the electronic phase coherence length Lφ [16, 17, 18]. This is
so, because it is the same inelastic processes that cause electronic decoher-
ence that also cause the two-step distribution function to relax to a Fermi-
Dirac distribution with an effective temperature when L � Lφ. In parallel
work, Baselmans et al. [19] demonstrated the principle of supercurrent spec-
troscopy outlined above, by showing experimentally that in SNS junctions
states at different energies carry supercurrent in opposite directions, which
is the theoretically expected behavior if the Thouless energy of the N region
ETh � ∆ [15, 14] (in those experiments ETh ' 140µeV � ∆ = 1.5 meV,
and the supercurrent was seen to vanish already when Vcnt ' ∆/e, i.e., for
Vcnt > 2∆/e no supercurrent was measured).

5.2 Multi-terminal S/G/S JJ

For the realization of multi-terminal SNS devices, we use monolayer graphene
as a normal conductor (see Fig. 5.1c; 2). As compared to common metal
films, graphene has a much smaller density of states and a much larger re-
sistance, two factors that contribute to the elimination of undesired effects
of non-equilibrium on the superconducting electrodes (such as inverse prox-
imity effect and charge imbalance [20], which can strongly affect the gap
in the superconducting electrodes). The sizable mean free path of electrons
in graphene –typically of the order of 100 nm away from the charge neu-
trality point, for graphene on SiO2– leads to larger values for the Thouless

1Js(E, φ) is antisymmetric in E, and so perturbation to f∗(E) that are symmetric in energy
do not change the result.

2The Dirac nature of electrons in diffusive graphene does not affect much the phenomenology
of the superconducting proximity effect, except under very specific circumstances that are not
relevant in our devices
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energy. This is ideal for our experiments, since we want ETh ' ∆ (or larger)
to enhance the contribution to the supercurrent from states at E > ∆. A
long mean-free path also facilitates the device fabrication, since it results in a
longer phase coherence length Lφ, which more readily can exceed the length
of the control line (as it is needed to achieve a two-step distribution function).
Finally, another advantage of graphene is that the carrier density can be gate
tuned, which easily allows experiments to be performed and compared for
different values of the Fermi energy.

We want to emphasize explicitly that, in order to perform supercurrent
spectroscopy, the distribution function in the junction has to have (at least
approximately) the "two-step" shape shown in Fig. 5.1b. To ensure that this is
the case in our devices we intentionally design the length of the control line
to be shorter than the phase coherence length in graphene Lφ, as discussed in
detail below. To further confirm the energy relaxation processes do not play
a dominant role, we also analyze our data in terms of both a "two-step" dis-
tribution and of a thermal distribution with an effective temperature (i.e., the
distribution function expected for sufficiently strong energy relaxation), and
show that only the two-step distribution reproduces the data satisfactorily,
with realistic experimental parameters.

The devices (Fig. 5.1c) were fabricated by means of electron-beam lithog-
raphy, metal evaporation, and lift-off, using exfoliated graphene deposited
on a degenerately doped Si substrate (acting as gate) covered with 285 nm
thick SiO2. The superconducting electrodes consist of a Ti/V/Au trilayer
(3.5/11/3.5 nm; Tc = 2.2 K and ∆ = 340µeV, see below) and the contacts
to the control line are formed by a Ti/Au bilayer (10/70 nm). To define the
junction and the control line, graphene was etched in an oxygen plasma; the
separation between the two superconducting electrodes is ' 200 nm and the
control line is L ' 1.5µm long. From the gate voltage dependence of the
resistance of the the control line we estimate the elastic scattering time τ
and the diffusion constant D of electrons in graphene (see supplementary
information). We find that the electron mean-free path is l ' 100 nm, corre-
sponding to half the separation between the two superconducting electrodes
in our junction, and ETh ≈ 300µeV, comparable to ∆. With a mean-free path
smaller than –but comparable to– the junction length and the Thouless energy
ETh ' ∆, superconducting transport in our JJ, although diffusive, is not far
from the ballistic limit. We note that this regime, half way between fully dif-
fusive and ballistic, is rather different from that characteristically realized in
conventional metallic SNS JJs studied in the past. There the mean-free path
is typically much smaller than the separation between the superconducting
electrodes, and the Thouless energy is between one and two orders of mag-
nitude smaller than the superconducting gap. Finally, and importantly, with
the value of the diffusion constant extracted from the device characterization,
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we obtain Lφ =
√
Dτφ ≈ 2µm, which is longer than the control line. This

conclusion is reached by using τφ ≈ 100 ps at T = 250 mK, as found in dif-
ferent literature reports [21, 22, 23], which is a conservative estimate for the
temperature and gate voltage range in which our experiments are performed.
All measurements presented here were performed in a Helium-3 system at
T = 250 mK.

Figure 5.2: (a) I-V curves of the SNS junction at Vcnt = 0 V, measured for VG be-
tween -60 V (blue) and -20 V (purple), in -10 V steps. (b) Color plot of the differential
resistance dV/dI as a function of a current bias I and VG (dark blue corresponds to
I < Ic). (c) dV/dI as a function of bias voltage V across the junction, measured at
VG = −60V , exhibiting features due to multiple-Andreev reflections. (d) dV/dI as
a function of current bias and perpendicular magnetic field, exhibiting a clear Fraun-
hofer pattern. All data were taken at T = 250 mK.

We start by characterizing the superconducting transport properties of our
JJ at Vcnt = 0. Fig. 5.2a shows the I − V curves measured for different gate
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voltages VG, ranging from -60 to -20 V. Supercurrent is observed throughout
this range, with the critical current Ic decreasing as VG approaches the charge
neutrality point (at VG ≈ 0 V) [24]. At VG = −60 V, IcRn = 140µV (Rn is the
JJ normal state resistance), is comparable to what is expected from existing
theory for diffusive SNS junctions which predicts IcRn = arctan(ETh/2∆)∆/e
[25, 26] (∆ is measured from the differential resistance of the JJ as explained
here below), and only a factor of 3-4 different from what is predicted for a
ballistic graphene junction (RnIc = 2.44∆/e) [27]. Finding a RnIc product
that is comparable to that expected for both the diffusive and the ballistic
regimes is due to the fact that the separation between the superconducting
electrodes is only slightly longer –a factor of 2, or even slightly less– than the
electron mean-free path. This observation confirms the remark that we made
just above, namely that transport from one superconductor to the other in
our devices occur in a regime that differs from that of fully diffusive metal-
based JJs studied in the past, in which ETh � ∆. For those JJs the mean
free path is typically much smaller than the separation between the supercon-
ducting contacts, and the IcRn product is correspondingly one-to-two orders
of magnitude smaller than what is expected for ballistic transport. In those
metal-based JJs –but not in our graphene JJs– there is therefore a net sepa-
ration between the diffusive and the ballistic transport regime. We will refer
to these considerations later on, when we choose the theoretical model to
describe superconducting transport, that we use to analyze the data quantita-
tively.

Fig.5.2c further shows that the differential resistance dV/dI as a func-
tion of applied bias V measured at VG = −60 V exhibits a sharp and large
drop upon decreasing V across 2∆/e, as well as clear subgap structure at
V = 2∆/N (with N an integer) due to multiple Andreev reflection processes.
From these measurements we obtain the value of the superconducting gap
in our devices (∆ = 340µeV), as well as the transparency of the S/graphene
interface, which we find to be Tint ' 0.85 (note that the electrodes used to
contact the control line have the same quality, since also in that case –just like
for the superconducting electrodes– the interface with graphene is made of
Titanium). Finally, upon the application of a perpendicular magnetic field, Ic
exhibits a clear Fraunhofer pattern (Fig. 5.2d) whose period agrees with the
one expected from the device geometry, indicating a good uniformity of the
supercurrent density across the junction [24, 26].
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Figure 5.3: I-V curves measured at VG = −60V and T = 250 mK, for Vcnt = 0
(light blue), ∆/e (red), 2∆/e (green), 3∆/e (orange) and 5∆/e (dark blue). Upon
increasing Vcnt the critical current is suppressed, but even at the largest value of Vc, a
finite supercurrent continues to flow. The dashed lines indicate the 1 nV threshold used
to determine Ic quantitatively (using a 2 nV threshold leads to conceptually identical
results).

5.3 Controllable supercurrent:
measurements and analysis

Having characterized the transport properties of our JJ, we now look at how
the control voltage Vcnt affects the critical current for a fixed value of VG.
Fig. 5.3 shows the junction I − V curves measured (at VG = −60 V, T = 250
mK) for Vcnt ranging from 0 to 5∆/e. A finite supercurrent is always present,
albeit a small finite resistance appears on the superconducting branch of the
I − V curve at the largest Vcnt values (as commonly done, Ic is defined as
the current for which a predefined threshold voltage is reached. We fix 1
nV as threshold, corresponding to the vertical lines in Fig. 5.3. We conclude
directly from the data that the critical current remains finite even when Vcnt is
(at least) as large as 5∆/e, i.e. for values much larger than 2∆/e above which
–for a two-step distribution function (Fig. 5.1b)– the contribution of subgap
Andreev bound states is completely suppressed. An identical conclusion is
reached if we analyze the evolution of the differential resistance as a function
of current (dV/dI-vs-I) with increasing Vcnt (see the color plot in Fig. 5.4,
and its "cuts" at individual values of Vcnt). A truly zero resistance state is
observed for Vcnt > 3∆/e, and even at Vcnt = 5∆/e the finite resistance
(approximately 30Ω) that is observed at small currents corresponds to less
than 10% of the normal state resistance measured at V > 2∆/e, Rn ' 400Ω
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Figure 5.4: Differential resistance measured at VG = −60 V and 250mK, as a function
of Vcnt and I. The dashed lines indicate the values of Vcnt for which the data in panels
(b-f) are plotted. A finite critical current is visible throughout the Vcnt range explored,
even for Vcnt significantly larger than 2∆/e, i.e. the value of Vcnt needed to fully
suppress the contribution of Andreev bound states at E < ∆.

(see Fig. 5.2c). It is apparent from the color plot in Fig. 5.4a that a finite
critical current remains visible up to the highest value of Vcnt shown, 6∆/e.

The dependence of Ic on Vcnt for VG between −60V and −30V is illus-
trated in Fig. 5.5, through the plot of Ic(Vcnt)/Ic(Vcnt = 0) (for values of VG
closer to the charge neutrality point, Ic becomes too small to perform accu-
rate systematic measurements as a function of Vcnt). Once scaled to the crit-
ical current measured at Vcnt = 0, all data tend to fall on top of each other.
Ic(Vcnt)/Ic(Vcnt = 0) decreases steeply for |Vcnt| < 2∆/e and more slowly
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Figure 5.5: Normalized critical current at T = 250 mK, with different symbols rep-
resenting measurements taken at different gate voltages: VG = −60 V (triangles),
−50 V (diamonds), −40 V (circles), −30 V (squares). Ic was determined using a 1
nV threshold for the voltage, but the key aspects of our results do not depend on
the precise value of the threshold (see supplementary information). Two different
regimes are visible: for |Vcnt| < 2∆/e, Ic decreases rapidly upon increasing Vcnt; for
|Vcnt| > 2∆/e, Ic remains non-zero and decreases less rapidly, as expected when the
continuum quasi-bound states contribute to the supercurrent. The thick red line rep-
resents a theoretical calculation obtained for the two-step distribution function, and
reproduces the data rather satisfactorily (in the theoretical curve, the crossover be-
tween the two regimes occurs just above |Vcnt| > 2∆/e, because of the finite T ). The
thin black lines are theoretical curves calculated with the Fermi-Dirac distribution for
different effective temperatures T ∗ obtained from the relation T ∗ =

√
T 2 + (aVcnt)2

with a = 3.2 K/mV as expected for the case of strong electron-electron interactions
(dashed-dotted line) and a = 15 K/mV (dashed line) as it is needed to reproduce the
data at large Vcnt. The results show that irrespective of the value of a the assumption
of an electronic distribution with an effective temperature described by T ∗ cannot
reproduce the data well through the entire Vcnt range.

|Vcnt| > 2∆/e, which provides an indication of a crossover in the behavior
of the supercurrent at an electron energy E = eVcnt/2 = ∆. The critical
current remains finite for Vcnt well above 2∆/e for all values of VG in the
range between −60V and −30V . Again, under the assumption that a two-
step distribution function correctly describes the non-equilibrium electronic
population at finite Vcnt values, this observation is a direct manifestation of
the contribution of states with E > ∆ to the supercurrent flow.

We now proceed to the analysis of the results. As discussed above, having
the phase coherence length Lφ larger than the length of the control line L im-
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plies that inelastic scattering processes are not sufficiently strong to cause
thermalization of the non-equilibrium distribution induced by the control
voltage. It follows that the shape of the electronic distribution in the junction
is of the "two-step" type shown in Fig. 5.1b. Nevertheless, we also analyze
the measured dependence of the critical current on Vcnt (or, more precisely
of Ic(Vcnt)/Ic(Vcnt = 0)), by considering the possibility that the electronic
distribution is of the Fermi-Dirac type with an effective temperature T ∗ > T ,
which is what is expected in the presence of strong electron relaxation (i.e.,
what should be expected if the length of the control line L � Lφ). As we
will show, there is a significant difference between the theoretically predicted
dependence of Ic(Vcnt)/Ic(Vcnt = 0) for a two-step distribution and a Fermi-
Dirac distribution with an effective temperature, and only the "two-step" dis-
tribution function leads to a satisfactory agreement with the data.

To compute Ic(Vcnt)/Ic(Vcnt = 0) given a certain distribution function,
we need to select an appropriate expression for the superconducting carrying
density of states. This amounts to selecting the most appropriate theoretical
model to describe the supercurrent flowing between the two superconudcting
electrode, enabling actual calculations to be done. Since –as we discussed
in detail above– our JJs are in between the ballistic and the fully diffusive
regime, one should decide what limit is most appropriate for a quantitative
description. The expression for the supercurrent carrying density of states of
a diffusive SNS junction was given by Wilhelm, Schön, and Zaikin[14], who
developed the theory using Keldish-Usadel formalism, having in mind metal-
based JJs in which ETh � ∆. In that regime, theory shows that a "minigap"
Eg ' 3.2ETh opens at the Fermi level, and that there are no states in that
energy range that can contribute to the supercurrent flow. This implies that
the fully diffusive regime is inappropriate for our graphene devices in which
ETh = ∆, since –if taken at face value– theory would imply that the "minigap"
is 3.2 times larger than ∆ (and that there are no states throughout this energy
range), which is obviously unphysical. The only other possibility to analyze
quantitatively the data based on existing theoretical descriptions is to use a
ballistic model for superconducting transport. Since the separation between
the superconducting electrodes is (not even) two times longer than the mean-
free path, and ETh = ∆, such a ballistic model, albeit not perfect, seems to
be fully reasonable approximation (of course, how satisfactory this approxi-
mation really is should be judged a posteriori, by looking at the comparison
between theory and experiments).

The one-dimensional ballistic model that we use corresponds to the case
described in the paper of Bagwell [13], and includes the contribution to the
supercurrent due to discrete Andreev bound states at E < ∆, as well as that
of the continuum of states at E > ∆. We assume for simplicity transmission
at the superconducting interfaces Tint to be perfect, since we have estimated
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that Tint ' 0.85. We first discuss the case in which the electronic distribution
in the JJ f∗(E) is of the two-step type [28]. In practice, we insert f∗(E) in
Eqs. (10), (11), and (12) of Ref. [13], in place of the equilibrium Fermi-Dirac
distribution (this is also how we obtained the curves shown in Fig. 5.1d).
The result is shown by the continuous red line in Fig. 5.5, in which the finite
critical current visible for Vcnt > 2∆/e originates entirely from the contin-
uum contribution at E > ∆, i.e. from Andreev resonances. The theoretical
curve reproduces the trends observed experimentally rather satisfactorily. In
particular, the critical current is rapidly suppressed at small Vcnt and much
more slowly for Vcnt > 2∆/e. The order of magnitude of the effect –i.e., of
the critical current measured for Vcnt > 2∆/e– is also reproduced with mean-
ingful values of the parameters (the curves are obtained by fixing the length
L of the junction, the only parameter that can be varied in the model, to be
L = 300 nm, somewhat larger than –but comparable to– the actual value).
This overall agreement supports the validity of the physical scenario used to
interpret our experiments, based on the presence of a two-step distribution
function.

Using the same model, we analyze the case in which inelastic scattering
between electrons in the control line is strong. In this case, relaxation pro-
cesses turn the two-step distribution function into a Fermi-Dirac distribution
with an effective temperature T ∗. If electron-phonon interaction can be ne-
glected (which is certainly the case in graphene on a length scale of many
microns, at the temperature of our experiments) and relaxation is due to
electron-electron interactions, the effective temperature T ∗ and the applied
voltage Vcnt are related by a universal relation T ∗ =

√
T 2 + (aVcnt)2 with

a = 3.2 K/mV. Just like for the two-step case, it is straightforward to calcu-
late Ic(Vcnt)/Ic(Vcnt = 0) by inserting the Fermi-Dirac distribution with this
effective temperature in Eqs. (10), (11), and (12) of Ref. [13]. The result of
the calculations is shown in Fig. 5.5 as a thin dashed-dotted line: it is appar-
ent that the calculations deviate pronouncedly from the data for Vcnt > ∆/e.
In particular, the critical current does not decrease sufficiently fast at large
Vcnt and no energy scale is clearly visible in the calculated curve (i.e., there
is not a change in behavior of Ic(Vcnt)/Ic(Vcnt = 0) for Vcnt = 2∆/e as it is
visible in the data). It may be argued that for some reason the coefficient a
does not have the value expected from theory and a different value needs to
be used. To address this possibility, we have calculated Ic(Vcnt)/Ic(Vcnt = 0)
using an Fermi-Dirac distribution in which T ∗ is related to Vcnt through dif-
ferent value of a. The results obtained for a = 15 K/mV, as it is needed to
reproduce the data at large Vcnt, are plotted with a thin black dashed line in
Fig. 5.5. The result shows that if a is chosen artificially large to make the cal-
culations match the data at large Vcnt, the deviations for small Vcnt become
substantial. This analysis, therefore, shows that a Fermi-Dirac distribution
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with T ∗ =
√
T 2 + (aVcnt)2 cannot reproduce satisfactorily the functional de-

pendence of Ic(Vcnt)/Ic(Vcnt = 0), and even when the parameter a is varied
"artificially", the theoretical expression does not reproduce the data, in con-
trast to the case of the two-step distribution function.

Finally, we note that the data in Fig. 5.5 can also be used to exclude
other forms of heating, for the following reason. Specifically, we note that
at a fixed value of Vcnt, Ic(Vcnt)/Ic(Vcnt = 0) is essentially independent of
VG. This observation is relevant, because when changing VG from −60V to
−30V the resistance of the control line, Rcnt, and therefore the dissipated
power, P = V 2

cnt/Rcnt, change by a factor of 2 (see supplementary infor-
mation). Now, if different forms of heating would play a role, the behavior
of the critical current should be determined by the dissipated power, and Ic
should decrease upon increasing P . It follows that, at any fixed value of Vcnt,
Ic(Vcnt)/Ic(Vcnt = 0) should then be smallest at VG = −60V , when P is
largest. In contrast to this scenario, the data show virtually no dependence
on VG, and, if anything, Ic(Vcnt)/Ic(Vcnt = 0) is slightly larger at VG = −60
V, and not smaller.

5.4 Summary and conclusion

In conclusion, we have performed an analysis of superconducting transport
in graphene JJs with an experimentally tunable non-equilibrium distribution
functions. This analysis relies on realistic assumptions, motivated directly by
the device characterization and by established properties of graphene. We
find that –in agreement with these assumptions– a scenario based on a two-
step distribution function reproduces our observations (namely the functional
dependence of Ic(Vcnt)/Ic(Vcnt = 0)) satisfactorily, whereas the use of a ther-
mal distribution with an effective temperature T ∗ does not. The consequence
of this finding is that our results provide spectroscopic information about the
contribution to the supercurrent given by states at different energy. In par-
ticular, our findings imply that when Vcnt > 2∆/e, the contribution given by
subgap states to the supercurrent is essentially entirely suppressed, and that
the remaining supercurrent that flows for Vcnt > 2∆/e is due to states at en-
ergy E > ∆, i.e. the Andreev resonances first discussed by Kulik[1]. We find
that these JJs Andreev resonances at E > ∆ contribute for approximately
20% to the critical current measured in equlibrium, corresponding to a non-
negligible fraction of the total. These results further confirm how the use of
graphene in place of conventional diffusive metals provide new opportunities
to investigate aspects of superconducting proximity effect that have remained
unexplored until now [6, 29, 30].
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5.5 Appendix

Transparency of the superconductor/graphene contacts

Similarly to what we have shown in an early publication [30], we can es-
timate quantitatively the transparency of the graphene/superconductor inter-
face in our devices, by looking either at the sub-gap structure originating from
multiple Andreev refection in the differential resistance versus applied bias,
or at the excess current. The data for the device discussed in the main text,
measured at VG = −60 V and 250 mK are shown on Fig. 5.6. The simplest

Figure 5.6: a) I − V characteristic of the device measured at T = 250mK and VG =
−60V . The dashed line extrapolates the linear behavior observed at large applied bias
down to V = 0 V, to extract the excess current. b) Theoretical plot of the excess
current of a SNS junction according to the OTBK model (figure adapted from [31]),
from which we extract the value of the parameter Z, as indicated by the green dashed
lines. We find Z ' 0.4 and Tint = 1/(1 + Z2) ' 0.86. This value is typical, as it is
comparable to the one that we found on similar graphene Josephson junctions realized
in the past.

way to extract a quantitative estimate is by comparing the measured excess
current to the calculations of the same quantity based on the so-called OTBK
model [31] (see Fig. 5.6 b), and details in the figure captions). We find that
the interface transmission is Tint = 1/(1 + Z2) ' 0.86, with a scattering pa-
rameter Z ' 0.4.
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Gate-voltage dependence of the control line resistance

As a further characterization of our devices, and to extract the diffusion con-
stant D of electrons in graphene, we show the gate voltage dependence of the
square resistance of graphene extracted from the measured resistance of the
control line (see Fig. 5.7; measurement performed at T = 250 mK).

Figure 5.7: Gate voltage dependence of the square resistance of the control line mea-
sured at 250mK. Inset: Gate voltage dependence of the square conductance of the
control line.

From the gate dependence of the conductance per square G2 (shown in
the inset of Fig. 5.7), we determine the charge carrier, using the charge carrier
concentration obtained from n = ε0εr(VG − VD)/de (VD = 4 V is the position
of the charge neutrality point, i.e., the value of VG where the measured resis-
tance is maximum). We find that at high carrier densities µ ≈ 3500 cm2/V s.
To estimate the diffusion constant D we use Einstein equation σ = νe2D
where σ is the measured conductivity and ν = 8π | εF | /(hvF )2 density of
states for graphene at the Fermi level εF . In the gate voltage range where the
experiments described in the main text are done we obtain D ≈ 420cm2/s.
We estimate Lφ =

√
Dτφ using the value of D just obtained and the phase

coherence time τφ obtained from literature studies of weak localization. From
many different papers, we find that at 250 mK and in the same carrier density
range of our experiments, τφ ∼ 100 ps or longer [21, 22, 23], which gives
Lφ ∼ 2µ m or longer. We conclude that Lφ exceeds the length of the control
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line, as it is needed to induce a two-step non-equilibrium distribution function
in our superconducting junction.

Different criteria to determine the critical current

In practice, the critical current of a Josephson junction is defined as the
current for which the voltage across the junction exceeds a fixed (arbitrary)
threshold. In the main text we have used 1nV as threshold. Here, to show that
our conclusion do not depend on the specific value chosen for the threshold,
we show the curve Ic(Vcnt)/Ic(Vcnt = 0) for a different value of the threshold
(2nV ; see Fig. 5.8). All the considerations made discussing Fig. 5.5 of the
main text can be made equally well for the data shown in Fig. 5.8, which
shows that our conclusions do not depend on the specific value chosen for the
threshold voltage.

Figure 5.8: Normalized critical current at T = 250 mK obtained using a 2 nV threshold
criterion. Different symbols representing measurements at different gate voltages:
VG = −60 V (triangles), −50 V (diamonds), −40 V (circles), −30 V (squares). The
red line represents the result obtained with the same theoretical model referred to in
the main text.
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ina, uvek si bio moja najveća podrška i oslonac, pogotovo u periodima usaml-
jenosti, punih unutrašnjih i ličnih preispitivanja; osoba sa kojom najpre pode-
lim i dobro i loše, i koja me uvek podseti ko sam i čemu treba da stremim.
Divim se tvom pozitivnom stavu i energiji, tvojoj ambiciji i posvećenosti poslu
(pre desetak godina mom neprijatelju br.1.), i tvojoj nesalomivoj veri u mene
i u nas (jedna od retkih konstanti u našem odnosu). Hvala na mnogobrojnim
dolascima u Ženevu i prelepim uspomenama koje smo napravili kojekuda po
svetu.
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