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ABSTRACT Over the past five decades, the buffer allocation problem in production lines has been the topic
of continuous interest. This paper proposes an adaptive simulation-optimization approach relying on particle
swarm optimization (PSO) to solve the buffer allocation problem for unreliable serial production lines. The
objective is to maximize the production rate of the production line. The key idea is to integrate a jumping
strategy based on logarithmic and exponential functions into the velocity equation of the PSO algorithm
using dynamic parameters to achieve quickly (near-)optimal solutions. To evaluate the effectiveness of
the proposed method, extensive numerical experiments are conducted using several configurations of
production lines, ranging from 3 to 100 machines. Additionally, benchmark algorithms from the literature
are employed for comparison purposes. The results indicate that the proposed adaptive approach outperforms
the benchmark algorithms regarding efficiency and solution quality.

INDEX TERMS Buffer allocation, particle swarm optimization, production rate, simulation, unreliable
production lines.

I. INTRODUCTION
Manufacturing is critical to the global economy and pros-
perity [1]. A significant body of literature has extensively
studied serial production lines utilized in manufacturing sys-
tems. These production lines consist of machines arranged
sequentially, with buffers between adjacent machines. Units
or items, such as materials, parts, or products, traverse these
machines following predetermined sequences. Several stud-
ies in the manufacturing field aim to enhance the effective-
ness of these production lines, considering various objectives
such as production rate or profit. However, the efficiency
of the production line can be hindered by random factors
and events, including machine failures and repairs, random
service times, and consequently events such as starvation
and blockage. These factors and events can impede the
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smooth flow of materials and adversely affect the produc-
tion line’s overall performance. One approach to mitigate
the impact of these disruptions is by allocating additional
buffer sizes along the production line. This buffer alloca-
tion strategy helps increase the line’s average production
rate (PR) while mitigating the propagation of disruptions.
Nevertheless, this solution introduces additional challenges
as it may lead to higher work-in-process (WIP) inventories,
increased capital investment costs, and more floor space
requirements. Therefore, determining the optimal alloca-
tion of buffers is a challenging optimization problem.in the
design of serial production lines called the buffer alloca-
tion problem (BAP) [2], [3]. The BAP varies depending on
the line’s typology and the solution methodology employed.
These variations include primal/dual problems, WIP mini-
mization, and profit maximization. Solving the BAP entails
developing algorithms based on evaluative search methods
(e.g., Markovian state model, decomposition, simulation) or
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generative search methods (e.g., metaheuristics like particle
swarm optimization, simulated annealing and genetic algo-
rithms, search algorithms, and dynamic programming).

The BAP can exhibit variations in its objective function
and constraints. The primal problem formulation aims to
minimize the total buffer capacity needed for the produc-
tion line while satisfying constraints related to the desired
production rate. Conversely, the dual problem formulation
aims to maximize the achievable production rate under a total
buffer capacity limitation. In the context of constraint profit
maximization, the objective is to maximize the profit while
adhering to a predetermined total buffer capacity. On the
other hand, the unconstraint profit maximization formulation
relaxes the constraint on buffer capacity, allowing for more
flexibility in the search for the maximum profit.

From the complexity point of view, the BAP is a
well-known combinatorial optimization problem classified
as NP-hard [4]. Closed-form mathematical description that
relate decision variables (e.g., buffer capacities) to perfor-
mance measures are challenging to develop. Moreover, the
computational complexity of the BAP increases significantly
with the problem size. Traditional approaches often struggle
with local-optima traps, nonlinearity, high-dimensional data,
parameter tuning, uncertainty, multi-objective optimization,
dynamic environments, and exploration-exploitation trade-
offs. Intelligent optimization algorithms, such as Genetic
Algorithm (GA) and particle swarm optimization (PSO),
efficiently navigate in complex solution spaces, tackle nonlin-
earity, adapt to changing conditions, and balance competing
objectives. By mitigating these shortcomings, these algo-
rithms enhance researchers’ ability to address intricate prob-
lems and achieve optimal or near-optimal outcomes across
diverse fields.

Therefore, themain contributions of this paper are twofold:
investigating the performance of PSO in solving the BAP in
unreliable production lines and developing a novel variant,
named Adaptive Dynamic Jumping Particle Swarm Opti-
mization (APSO for short). The objective function consists
of maximizing the production rate of unreliable serial produc-
tion lines. APSO integrates a leaping strategy based on both
logarithmic and exponential functions, as well as dynamic
parameters. To the best of our knowledge, only two studies
have proposed PSO approaches for the BAP [7], [8]. Another
goal of this work is to develop (near-)optimal solutions for
different system sizes and various configurations that may
help designers make decisions related to the production line
design.

The paper is structured as follows: Section II presents
a thorough literature review of solution approaches for the
BAP. The mathematical formulation of the problem is pro-
vided in Section III. Section IV outlines the optimization
method and the associated assumptions. The results of numer-
ical experiments are discussed in Section V. Finally, the paper
concludes with discussion of the main results summary and
highlights potential avenues for future research.

II. LITERATURE REVIEW
The methods used to address the BAP can be categorized
into iterative optimization methods (generative and evalua-
tive methods), integrated methods, and explicit solutions [3].
Explicit solutions involve deriving formulas or rules that
describe the allocation of buffers based on given optimization
problem parameters. These rules and formulas are obtained
through exact analytical methods, analysis of optimal solu-
tion characteristics, or approximate performance evaluation
techniques [9]. Integratedmethods employ performance eval-
uation formulations based on analytical results or sampling
and utilize integer programming and standard linear solvers
to solve the optimization problem [10], [11]. The iterative
method is the most widely used, requiring both generative
and evaluative tools [12]. The generative method gener-
ates solutions, while the evaluative method assesses their
performances.

Evaluation methods can be divided into two categories:
analytical methods and simulations. Analytical methods,
such as Markovian state models, comprehensively char-
acterize system features but are only suitable for small
production lines due to their ample state space and compu-
tational complexity [13], [14]. Simulation methods, on the
other hand, use discrete event simulation packages such as
Arena to evaluate the performance of large and complex
production systems [15], [16]. Simulation is beneficial for
complex design problems, for which the other assessment
techniques may lack precision [2]. However, simulations can
be time-consuming as they use multiple replications to pro-
vide reliable solutions [17].

There are three commonly used approximation meth-
ods for large production lines: the generalized expansion
method [18], [19], the decomposition method [20], [21], [22],
and the aggregation method [23], [24]. The generalized
expansion method utilizes queuing models and split and
merge configurations, accommodating reliable machines and
random distributed service times. Decomposition methods
divide the system into smaller subsystems to reduce compu-
tational effort. These methods are applied assuming that ser-
vice times (resp. repair/failure rates) are either exponentially
distributed or deterministic (resp. exponentially or geomet-
rically distributed). Aggregation methods, on the other hand,
replace two-machine-and-one-buffer components with equiv-
alent single machines, recursively applying this aggregation
until the first or last station is reached.

In terms of generative (optimization) methods, exten-
sive research has focused on finding (near-)optimal values
for decision variables [25]. Complete Enumeration (CE)
is the simplest generative method but is only suitable for
small systems. However, due to computational constraints,
no approach efficiently solves the BAP for large produc-
tion lines [26], [27]. To address the combinatorial nature
of the BAP and improve computational efficiency, vari-
ous optimization methods have been proposed, including
dynamic programming, search methods, and metaheuristics.
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FIGURE 1. Serial production line.

Dynamic programming is a powerful optimization method
that divides the BAP into subproblems to reduce the com-
binatorial complexity [28], [29]. However, it is typically
adapted to reliable production lines. Search methods aim
to find feasible solutions close to (near-)optimal solutions
to overcome the explosion of the number of feasible solu-
tions [2]. Commonly used search methods include the gra-
dient method [30], [31], the degraded ceiling method [32],
and Qaraad et al. method [33]. However, search methods are
prone to get trapped in local optima and struggle to assess
the impact of small changes in buffer capacities on overall
system performance. To address these issues, heuristic search
algorithms have been developed [34], [35]. Metaheuristics
are a category of optimization methods that efficiently man-
age the search process and explore the solution space within
reasonable computing times. Examples of metaheuristics
include genetic algorithms (GA) [36], simulated annealing
(SA) [37], tabu search (TS) [38], and ant colony optimiza-
tion [39]. Hybridization of metaheuristics with other methods
to enhance their efficiencies has been explored, such as com-
bining TS with Nested Partitions [40], GA with SA [41],PSO
and Optimal Computing Budget Allocation (OCBA) [42],
and GA with Finite Perturbation analysis (FPA) [43], [44].

Regarding PSO, there are only two works addressing
the BAP [7], [8], both focusing on small production lines
(8 machines). Lin and Chiu [42] hybridizes PSO with OCBA
but for the Resource Allocation Problem. With regards to
PSO this paper proposes a new variant of efficient PSO
algorithm, namely the APSO wich is well adapted to solve
the BAP for both small and large unreliable production lines
(from 3 to 100machines). The efficient convergence of APSO
is achieved through integrating a jumping technique in the
velocity equation, employing exponential and logarithmic
functions. This enables the particles to make leaps and avoid
being trapped in local optima. Determining each particle’s
role and action set is a crucial task, similar to other optimiza-
tion paradigms involving ‘‘agents’’ [45].

III. PROBLEM FORMULATION
Serial production lines, also referred to as flow lines, tan-
dem lines, transfer lines, and similar terms, typically consist
of multiple machines through which materials (parts) flow
from an external source into the system. The material starts
at the first machine, denoted as M1, then proceeds to the
first buffer, known as b1. From there, it moves on to the
next machine, M2, and continues this progression until it
reaches the final machine,Mn, fromwhere it exits the system.
Figure 1 illustrates such a production line, demonstrating
the connection between n machines (M1, . . . ,Mn) and their

separation by (n − 1) buffers (b1, . . . , bn−1). Each buffer,
bi, represents the capacity between two adjacent machines,
Mi and Mi+1. Indeed, the machines can be either operational
(UP) or non-operational (DOWN) due to internal failures.
Several assumptions guide our work: the first machine is
always supplied with parts, and the last machine is never
blocked; machines can only fail when they are UP and not
blocked or starved; the repair and failure rates of machines
follow a geometric distribution; delays in part supply are
negligible; when a machine is UP, it can be starved (or have a
Null Input (NI)) if its upstream buffer is empty, and it can be
blocked (or have a Full Output (FO)) if its downstream buffer
is full.

To quantify machine reliability, we define the repair prob-
ability (ri) as the likelihood of a machine being UP for the
next part, given that it was DOWN for the current part.
The failure probability (fi) represents the probability of a
machine being DOWN for the next part, given that it was
UP for the current part. The Mean Time Between Failures
(MTBF i) for machine i, with a service time of ti, is defined
as MTBF i = t i

/
fi, while the Mean Time To Repair (MTTRi)

is defined as MTTRi = t i
/
ri.

The total buffer capacity available for allocation across
the buffers b1, b2, . . . ,bn−1 in the serial production line is
denoted as Bmax . The objective of the BAP is to determine
the vector b = (b1, b2, . . . ,bn−1) that maximizes the average
production rate while satisfying the constraint

∑n−1
i=1 bi =

Bmax . The mathematical formulation of the BAP can be rep-
resented as follows:

Find b = (b1, b2, . . . , bn−1) so as to maximize f (b) (1)

Subject to:
∑n−1

i=1
bi = Bmax; bi ≥ 0 and integer (2)

where f (b) represents the average PR of the production line.
Let us assume that the system operates for a duration of
time T during an experiment, and during this time, the system
produces a total of L parts. In this context, we can express the
PR of the production line as follows:

PR = L
/
T (3)

The complexity of the BAP arises from the absence of an
algebraic relationship between line throughput, buffer sizes,
and the inherent combinatorial nature of buffer design. While
an exact method such as the complete enumeration exists,
it becomes impractical due to the exponential increase in
feasible allocations as buffer slots (Bmax) and buffer locations
(n− 1) grow. Solution methods (e.g., heuristics, metaheuris-
tics) are more suitable for tackling large, realistic instances
of the problem. In our research, we employ an adaptive
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simulation-optimization approach that relies on the PSO
algorithm. The subsequent section delves into the intricacies
of this solution approach.

IV. SOLUTION METHOD
A. PARTICLE SWARM OPTIMIZATION
Particle Swarm Optimization (PSO) is a metaheuristic
inspired from the collective behavior of birds or fish flocks,
where each particle represents a potential solution and learns
from its own experience (personal best position) and the
experiences of other particles (global best position) in the
search space [46]. The objective is to find the (near-) opti-
mal solution through iterative movements. Choosing PSO
can be justified based on several factors. First, PSO stands
out due to its simplicity and ease of implementation. It has
a straightforward concept and requires minimal parameter
tuning, making it accessible to researchers and practitioners.
This simplicity facilitates its integration into various applica-
tions without extensive computational overhead or intricate
implementation procedures. Second, PSO exhibits a desir-
able convergence speed, often enabling it to reach promising
solution-space regions rapidly. This characteristic is advan-
tageous when computing time is critical and prompt opti-
mization results are required. Moreover, efforts to enhance
PSO’s performance by developing strategies that mitigate
premature convergence issues will ensure a more effective
search space exploration. Furthermore, PSO inherently bal-
ances exploration and exploitation by utilizing personal best
and global best information. By leveraging these compo-
nents with the introduction of novel concepts, PSO efficiently
explores the search space while simultaneously exploiting
promising regions. This ability to avoid getting trapped in
local optima contributes to its effectiveness as an optimization
algorithm.

In PSO, each particle is characterized by velocity and
position. In the standard PSO algorithm, during each iteration
or generation (denoted as it), the position (x iti ) and velocity
(viti ) of each particle i are updated according to Equations (4)
and (5) below:

vit+1
i = w viti + c1R1

(
pbest i it − x iti

)
+ c2R2

(
pgbest it − x iti

)
(4)

x it+1
i = vit+1

i + x iti (5)

Here, w represents the inertia weight coefficient, while
c1 and c2 are acceleration coefficients. R1 and R2 denote
two random values sampled from the interval [0, 1]. Sim-
ilarly, in subsequent equations (mentioned in the following
subsection), R3,R4, . . . ,R10 also represent random values
from the interval [0, 1].

Equation (4) updates the velocity of the particle by
considering three terms: the inertia term (wviti ), the

cognitive term (c1R1
(
pbest i it − x iti

)
), and the social term

(c2R2
(
pgbest it − x iti

)
). The inertia term allows the particle to

retain part of its previous velocity. The cognitive term adjust-
sthe velocity based on the particle’s personal best position,
while the social term adjusts the velocity based on the global
best position (pgbest ) among all particles.

Equation (5) then updates the particle’s position by adding
the newly computed velocity. These iterative velocity and
position updates allow the particles to explore and exploit the
search space to converge toward the (near-)optimal solution.

B. PARAMETERS AND GENERATION OF THE INITIAL
SWARM OF APSO
The APSO uses the following parameters. Further informa-
tion about these parameters can be found in [5].

• swt : social acceleration worst-coefficient
• cwt : cognitive acceleration worst-coefficient
• cb : cognitive acceleration best-coefficient
• sb : social acceleration best-coefficient
• lw : logarithmic weight parameter
• ew : exponential weight parameter
• w : inertia weight
• N : population size
• d : damping coefficient
• c1 : cognitive scaling parameter
• c2 : social scaling parameter
• maxG : maximum number of generations (iterations)

The initial swarm consists of m different particles,
denoted as P = (P1,P2, . . . ,Pm). Each particle Pi =(
pi,1, pi,2, . . .pi,j, . . . ,pi,n−1

)
represents a configuration with

n-1 buffer capacities, where pi,j represents the jth buffer
(position) of the ith particle. The particle’s configurations
are generated randomly and uniformly using the discrete
uniform distribution, allowing for coverage of various regions
in the search space. To satisfy the Bmax constraint, an adjust-
ment procedure is employed that uniformly increases or
decreases specific buffer values of the particle. For a more
comprehensive understanding of how these initial solutions
are generated, please refer to Kassoul et al. [44].

C. PROPOSED APSO
This subsection provides a detailed description of the pro-
posed APSO Algorithm, which serves two primary purposes.
The first purpose is to overcome the limitations of classi-
cal PSO, such as premature convergence, by incorporating
a jumping strategy consisting of a logarithmic part and an
exponential part. The second purpose is to achieve faster con-
vergence through velocity control using dynamic parameters.
The pseudocode of APSO is presented in Algorithm 1.

The initial step of APSO involves generating the initial
population swarm (as explained in Subsection IV-B) and
assigning random velocities to the particles using the dis-
crete uniform distributionU {vmin, vmax} for each coordinate.
Here, vmin and vmax represent the maximum and minimum
values of the velocity and are set to the lower and upper
bounds of the variable search space, named lb and ub,
respectively.
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Algorithm 1 APSO
Step1: Initialization
Set the initial values for the parameters

ew, lw, cb, sb, cwt , swt , c1, c2, d,w,N ,MaxG.
Initialize the velocity vi (i = 1, 2, . . . ,N ) uniformly and randomly.
Initialize the position xi (i = 1, 2, . . . ,N ) uniformly and randomly.
Evaluate the fitness value of each particle (PR) using the

simulation model, and set the initial best position values
pbest i and worst position values pworst i equal to the current
xi (i= 1, 2, . . . ,N ).

Determine the global worst and best positions pgworst and pgbest .

Step 2: Update of the velocity and position of particles
Divide the population into three equal subswarms N1,N2 and N3.

for the first subswarm N1, do
Calculate ξ and ζ using Equations (6) and (7).
Calculate the velocity vi for each particle using Equation (8).

for the second subswarm N2, do
Calculate the velocity vi for each particle using Equation (12).

for the third subswarm N3, do
Calculate the velocity vi for each particle using Equation (13).
Apply the velocity limits using vi,j = max

(
vi,j; vmin

)
and

vi = min
(
vi,j; vmax

)
, where vi,j represents the jth velocity

coordinate of the ith particle.
Update the position of particles using Equation (5).
Apply the position limits using xi,j = max

(
xi,j; lb

)
and

xi = min
(
xi,j; ub

)
, where xi,j represents the jth position

coordinate of the ith particle.
Step 3: Update of the personal and global worst/ best positions
Calculate the fitness values (PR) for each particle.
Update the personal and global worst/ best positions of the particles.
Update the dynamic parameter ew using Equation (11)
Update the inertia weight w using Equation (14)
Step 4: Convergence procedure
Check if the termination criterion is satisfied (i.e., verifying if the

maximum number of iterations has been reached).

The next step of the algorithm involves decomposing
the swarm population into three equal subswarms, namely
N1,N2 and N3, to effectively explore a large portion of the
search space. The velocity equation of the first subswarm N1
incorporates exponential ξ and logarithmic ζ components.
These components are expressed in Equations (6) and (7)
respectively:

ξ it = e1/
(∥∥piti −xiti

∥∥+ϵ
)

(6)

ζ it = log
(∥∥∥pbest i it − x iti

∥∥∥ + ϵ
)

(7)

where ϵ is a very small positive value.
The equation also includes various acceleration coeffi-

cients (swt , cwt , cb, sb) and randomvalues (Rvec,R1,R2,R3,R4,
and R5) to influence the velocity update process. The formu-
lation of the velocity, given in Equation (8), is as follows:

vit+1
i = w viti + ewξRvec + lwζR1

(
pbest i it − x iti

)
+ cbR2

(
pbest i it − x iti

)
+ sbR3

(
pgbest it − x iti

)
+ cwtR4

(
pitworst i − x iti

)
+ swtR5

(
pitgworst − x iti

)
(8)

The logarithmic and exponential components play a crucial
role in allowing particles to jump when their velocity is near
zero, indicating a possible entrapment in a local optimum.
By escaping such regions, particles can explore the search
space more effectively. To ensure the feasibility of the solu-
tion, the velocity and position equations of the proposed
method are updated as follows:

vit+1
i =


vmax if vit+1

i > vmax
vmin if vit+1

i < vmin
vit+1
i otherwise

(9)

x it+1
i =


ub if x it+1

i > ub
lb if x it+1

i < lb
x it+1
i otherwise

(10)

To strike a balance between exploration and exploitation,
the exponential weight parameter ew is utilized. It decreases
linearly using the damping coefficient d , facilitating global
exploration with large leaps at the beginning of the search and
localized exploitation with small jumps in specific regions.
The exponential weight parameter ew is updated according to
Equation (11).

eit+1
w = deitw (11)

The velocity update of the first subswarm considers the
global and personal worst positions to maintain population
diversity and explore new regions in the solution space.
Negative values are assigned to the coefficient parameters
(cwt and swt ) associated with the personal and global worst
positions, respectively, allowing for investigation of opposite
solution-space regions visited by these positions.

For the second subpopulation N2, the velocity update
incorporates the logarithmic and exponential components,
previous velocity, and global and personal best positions. The
formulation of the velocity is given in Equation (12).

vit+1
i =w viti +ewξRvec+lwζR6

(
pbest i it−x

it
i

)
+ cbR7

(
pbest i it−x

it
i

)
+sbR8

(
pgbest it − x iti

)
(12)

Lastly, the velocity update of the subswarm N3 follows
the CNPSO procedure proposed by [5] and differs from the
standard PSO by setting c1 = −1 and c2 = 2. The equation
for velocity update is provided in Equation (13).

vit+1
i = wviti + c1R9

(
pbest i it − x iti

)
+ c2R10

(
pgbest it − x iti

)
(13)

The value of the inertia weight coefficient (w) in APSO
decreases linearly from an initial value to a final value. This
adjustment gradually reduces the particles’ ability to perform
a global search while increasing their ability to conduct a
local search. w is updated using Equation (14).

wit+1
= d

(
1 − wit

1 + wit

)
(14)
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In summary, the APSO Algorithm encompasses a jumping
strategy and dynamic parameter control to address the limita-
tions of classical PSO. It divides the swarm into subswarms
for efficient exploration across the search area, employing
different velocity updates with logarithmic and exponential
components. These enable particles to jumpwhen their veloc-
ity nears zero, preventing them from being stuck in local
optima. Additionally, the algorithm includes various acceler-
ation coefficients, and dynamic parameter within the velocity
equation, allowing effective exploration and exploitation of
the search space.

V. NUMERICAL EXPERIMENTS
The experiments are conducted on a computer with a 2.4-GHz
Core (TM) i5 CPU and 16 GB of RAM. The discrete-event
simulation models are developed using the Arena simulation
language V14.0, and the algorithms are implemented in Java.
The APSO algorithm is terminated after reaching a maximum
of 50 generations (MaxG = 50).
The study considers three different sizes of serial pro-

duction lines: small lines with 3, 5, and 10 machines,
medium lines with 20 machines, and large lines with 40 and
100 machines. All machines in the production lines are
identical and unreliable. The repair and failure times are geo-
metrically distributed. The service time for each machine (ti)
is set to 1. The final buffer allocation, average PR values, and
convergence features are analyzed in the study.

To ascertain the effectiveness of the proposed APSO
method, we conduct a comparative analysis with seven state-
of-the-art algorithms that are well-established for solving
the BAP. The selection of these algorithms is rooted in
their demonstrated capabilities, and their performance data
and outcomes are accessible for a subset of the consid-
ered instances. This deliberate selection ensures a meaning-
ful and relevant evaluation of APSO’s performance when
compared to established benchmarks. The algorithms being
compared are GT (Gradient Technique) [47], DGT (Dual
Gradient Technique) [30], DC (Degraded Ceiling method
and decomposition approximation) [32], IDA (Immune
Decomposition Algorithm) [48], ADA-TS (Tabu Search with
Analytical Decomposition Approximation) ( [49], GA-SA
(Simulated Annealing and Genetic Algorithm) [41], and
GA-FPA (Genetic Algorithm and Finite Perturbation Anal-
ysis) [46]. The buffer allocation and the average PR are
reported for each experiment. The results of the best
algorithm are highlighted in bold.

Figure 2 illustrates the convergence curves of APSO for
representative instances with n values of 5, 10, 20, and 40.
We highlight that all simulation runs in this study are per-
formed using identical experimental conditions. Table 1
presents detailed information regarding the number of sim-
ulated units or parts, as well as the number of runs (replica-
tions) for each example. These specific numbers are carefully
selected to ensure equitable comparisons with other methods
and to obtain stable results with consistent average PR values.

TABLE 1. Number of simulated units and replications for the six
comparative examples.

Although a detailed discussion of computation times is not
provided, it is worth noting that the average computation time
to obtain the best solution is approximately 96 minutes for a
large instance with n = 40 machines. This duration, when
scrutinized against insights gleaned from diverse industrial
investigations within the production field [50], [51], [52],
emerges as a judicious timeframe. Importantly, this observa-
tion offers more than just a ballpark estimate; it sheds light on
the time investment necessary for attaining optimal outcomes
for numerous real-world industrial contexts. This delineates
the capacity of intelligent optimization techniques, like the
APSO approach, to mitigate time complexity challenges by
yielding optimal or near-optimal solutions within practical
timeframes, even for intricate and expansive production line
scenarios.

A. RESULTS ON A SMALL INSTANCE WITH 3 MACHINES
Table 2 presents the repair and failure rates for the instance
proposed by Gershwin and Schor [30], who consider
3 machines and where the buffer configuration and produc-
tion rate (PR) for this instance are not explicitly mentioned.
Table 3 provides a comparison between IDA, GA-FPA, and
APSO. Interestingly, APSO and GA-FPA yield the same PR,
indicating their comparable performance in finding an opti-
mal solution. Moreover, all three methods exhibit a similar
buffer allocation scheme, where the first buffer is larger than
the second buffer. This observation can be attributed to the
relatively higher values of failure rate (f1) and repair rate
(r1) associated with the first machine compared to the second
machine (f2 and r2, respectively).

TABLE 2. Parameters of the considered instance.

TABLE 3. Results on an instance with n = 3 machines and Bmax = 2.

The preference for a larger buffer at the beginning of the
production line can be explained by the need to accommodate
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potential disruptions caused by the first machine’s higher
failure and repair rates. By allocating a larger buffer, the
system can mitigate the impact of downtime and maintain a
smoother materials flow.

B. RESULTS ON A SMALL INSTANCE WITH 5 MACHINES
Table 4 provides the repair and failure rates for the instance
proposed by Ho et al. [47], who consider 5 machines. Table 5
presents the results of GT, DGT, IDA, ADA-TS, GA-SA,
GA-FPA and APSO. Among these methods, APSO achieves
the highest PR value, indicating its superior performance in
maximizing the PR. APSO reaches this optimal configuration
within the first 15 generations, as illustrated in Figure 2.

An interesting observation from the results is that all
the approaches, including APSO and the other algorithms,
converge to configurations where smaller buffer slots are
allocated at the ends of the production line. This allocation
strategy is advantageous as it facilitates the smooth passage of
parts and reduces the likelihood of line blockages. The system
can maintain an uninterrupted production flow by allowing
for smaller buffer slots at the ends, thereby improving overall
productivity.

TABLE 4. Parameters of the considered instance.

TABLE 5. Results on an instance with n = 5 machines and Bmax = 31.

C. RESULTS ON A SMALL INSTANCE WITH 10 MACHINES
Table 6 provides the repair and failure rates related explicitly
to the instance proposed by Nahas et al. [32], who considers
10 machines. Table 7 presents the comparative results of DC,
IDA, ADA-TS, GA-SA, GA-FPA and APSO. By examining
the data provided in Table 7, we can observe that APSO
achieves the second-best PR value among the algorithms
evaluated. Figure 2 highlights that APSO reaches its optimal
buffer allocation solution relatively quickly. Specifically, the
best buffer allocation for APSO is achieved before complet-
ing 25 generations, demonstrating its efficiency in finding the
optimal solution quickly.

D. RESULTS ON MEDIUM INSTANCE WITH 20 MACHINES
In Table 8, the first two columns present the repair and
failure rates specifically for the instance proposed by
Demir et al. [49], who consider lines with 10 machines.
In this instance, all machines exhibit similar repair and failure
rates, ranging from 0.1 to 0.9, with an increment of 0.1. This
implies that 9 cases are considered in this example, each
corresponding to a different combination of repair and failure
rates.

The subsequent columns in Table 8 provide the PR val-
ues obtained by the different methods: ADA-TS, GA-SA,
GA-FPA, and APSO. Upon examination, it becomes evident
that APSO outperforms both GA-SA and ADA-TS regarding
PR values. This indicates that APSO consistently achieves
higher-quality solutions compared to the other two methods
for this instance. Interestingly, APSO and GA-FPA exhibit
similar performances, as both methods reach the best results
in four cases out of the nine cases considered. This demon-
strates their comparative effectiveness in finding optimal
solutions.

Additionally, it is worth noting that APSO attains its best
PR values before reaching the generation #30, implying that
it converges relatively quickly to better solutions. This obser-
vation aligns with expectations, as it is generally anticipated
that the PR values would increase with the values of ri and fi
for all the methods tested.

TABLE 6. Parameters of the considered instance.

TABLE 7. Results on an instance with n = 10 machines and Bmax = 270.

E. RESULTS ON LARGE INSTANCES WITH 40 MACHINES
Table 9 follows the same structure as Table 8 and pertains to a
larger instance proposed byDemir et al. [49]. The comparison
involves the same methods as in Table 8.

It is noteworthy that APSO is notably more efficient than
the other methods when applied to this larger instance. In fact,
APSO delivers the best solution in 7 out of the 9 cases evalu-
ated. This finding suggests that APSO’s efficiency improves
as the instance size increases, making it a more effective
approach than the alternativemethods. Similar to the previous
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FIGURE 2. Convergence curves of APSO for various instances with n belonging to the set {5, 10, 20, 40}.

TABLE 8. Results on an instance with n = 20 machines and Bmax = 100.

instance, it is worth noting that PR increases with respect to
ri and fi.

F. RESULTS ON A LARGE INSTANCE WITH 100 MACHINES
Works on BAPs for very large production lines have been
relatively limited, such as those conducted by Kose and
Kilincci [41] and Spinellis et al. [18]. Researchers in this
field have found that obtaining competitive results for such
problems requires extensive computation times, often span-
ning several hours. The computation time exhibits exponen-
tial growth as the number of machines n increases. In this

example, we focus on a production line of 100 unreliable
machines proposed by Kose and Kilincci [41]. The repair and
failure rates for these machines follow a geometric distribu-
tion where ri = 0.5 and fi = 0.05.
Due to the demanding nature of the required computa-

tions, the experiment is conducted with fewer generations.
Expressly, MaxG is set to 20 instead of 50. Table 10 provides
a comparative analysis of the results obtained from GA-SA
and APSO algorithms. The computation times in seconds
for each method are listed in the last column. Upon exam-
ination, it becomes evident that APSO outperforms GA-SA
significantly regarding both solution quality (considering the
PR values) and speed (considering the computing times
required to obtain the best solution). This significant perfor-
mance gap suggests that APSO offers a favorable trade-off
between solution quality and computation time.

G. BEHAVIOR OF THE RESULTS WHEN N AUGMENTS
Relying on Figure 2 and Tables 3, 5, 7 to 10, several obser-
vations can be made regarding the augmentation of n which
represents the number of machines in the system. One impor-
tant finding is that APSO demonstrates increased competi-
tiveness compared to other methods as n grows larger. APSO
tends to achieve (near-)optimal solutions while ensuring a
significant margin is maintained within the allowed number
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TABLE 9. Results on an instance with n = 40 machines and Bmax = 200.

TABLE 10. Results on an instance with n = 100 machines and
Bmax = 300.

of generations (MaxG=50). For instance, in Figure 2, APSO
reaches its optimal solution at generation 11 with n equal to 5,
at generation 20 with n equal to 10, at generation 25 with
n equal to 20, and at generation 22 with n equal to 40.
This pattern suggests a high level of stability across different
problem sizes, indicating that APSO effectively balances its
exploration and exploitation search abilities throughout the
search process.

Regarding allocating buffer capacity for production lines
of varying sizes, APSO consistently generates the best buffer
allocation in 14 out of the 22 cases, showcasing its superior
performance. Even in cases where APSO is not ranked first,
it still produces highly competitive results. However, the
observed patterns of buffer allocation are often unexpected,
underscoring the complexity of the problem. Notably, the
buffer values in the middle of the line tend to be similar
and relatively larger compared to the buffer capacities at the
end of the production line. Additionally, as the number of
machines increases, the optimal buffer values tend to become
identical.

VI. CONCLUSION
This study introduces a new variant of PSO, the Adaptive
Dynamic Jumping Particle Swarm Optimization (APSO) for
the Buffer Allocation Problem in unreliable production lines.
Results of the application of the algorithm to different sizes
and configurations of productions lines show that it is effi-
cient and reliable when the production rate is maximized.
As APSO incorporates a jumping strategy, utilizing exponen-
tial and logarithmic functions and dynamic parameters within
the velocity equation, such strategy enables it to explore the
solution space effectively and converge more rapidly than
state of the art optimization techniques regarding solution
quality and computation time, highlighting its superiority

in solving the buffer allocation problem. The experimental
evaluation encompasses various instance sizes, ranging from
small-scale systems with n = 3 machines to larger sys-
tems with n = 100 machines. The results demonstrate that
APSO performs consistently well across different problem
sizes, showcasing its capability to scale up without reducing
its performance. The observed patterns in buffer allocation
underscore the challenging nature of the problem, with mid-
dle buffers having similar and larger capacities compared
to the end buffers and convergence of buffer values as the
number of machines increases.

A promising avenue for future research lies in the explo-
ration of hybridizing the APSO approach with other meta-
heuristic techniques. This innovative fusion could entail
the integration of sophisticated learning mechanisms intro-
duced by Thevenin and Zufferey [53] and by Schindl and
Zufferey [54], into local-search methodologies. By incorpo-
rating these advanced learning strategies, APSO’s capabilities
could be enhanced, leading to potentially superior conver-
gence and solution quality.

Moreover, a valuable extension of the proposed algorithm
could involve its adaptation to address more intricate produc-
tion line scenarios, such as assembly/disassembly systems.
Additionally, a noteworthy future direction involves extend-
ing APSO’s applicability to encompass multi-objective opti-
mization scenarios. This expansion would not only enhance
APSO’s versatility but also reinforce its effectiveness in tack-
ling real-world production optimization challenges across
diverse operational contexts.
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