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We present a nonperturbative analysis of a new experimental technique for probing ultracold bosons in
an optical lattice by periodic lattice depth modulations. This is done using the time-dependent density-
matrix renormalization group method. We find that sharp energy absorption peaks are not unique to the
Mott insulating phase at commensurate filling but also exist for superfluids at incommensurate filling. For
strong interactions, the peak structure provides an experimental measure of the interaction strength.
Moreover, the peak height of the peaks at @! * 2U can be employed as a measure of the incommensur-
ability of the system.
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The experimental realization of Bose-Einstein conden-
sation in weakly interacting ultracold atoms opened the
way to numerous exciting experiments directly probing
fundamental effects of quantum mechanics. More recently,
the regime of strongly interacting atoms has become ex-
perimentally accessible by Feshbach resonances [1] and
the advent of ultracold atoms in optical lattices [2,3]. In a
pioneering experiment, the quantum phase transition from
a bosonic Mott insulator to a superfluid has been demon-
strated [3]. More generally, ultracold atoms in optical
lattices open up the possibility to simulate and explore
complex quantum many-body phenomena known from
electronic solids, such as high-temperature superconduc-
tivity, in a new context [4]. One major advantage of ultra-
cold atom systems compared to their condensed matter
counterparts is the tunability of the system parameters. In
particular, fast tunability in time made a whole area of new
nonequilibrium phenomena experimentally accessible
[3,5,6]. The theoretical description of these phenomena,
especially beyond linear response, is still lacking. To probe
quantum states in cold atoms, various new measurement
techniques have been developed. Light-induced Bragg
scattering yields the dynamical structure factor [7], while
rf absorption provides information about single-particle
excitations [8]. Time-of-flight expansion gives access to
the momentum distribution and correlations via detection
of the average density and noise [9]. Nevertheless, there is
still a lack of measurement techniques compared to con-
densed matter setups.

A qualitatively new way of probing the system which
exploits fast tunability was introduced by Stöferle et al. [6].
They determined the excitation spectrum of ultracold bo-
sons in an optical lattice by measuring the heating induced
by a relatively strong periodical modulation of the lattice
height (20% of the initial lattice height). Three distinct
peaks at different frequencies were observed in the energy
absorption. Up to now, these features, in particular, the
second and the third peaks, are not well understood. Pre-
vious theoretical studies applied a linear response treat-
ment [10–13] or considered weak interactions using the

Gross-Pitaevskii equation [14]. However, the relatively
strong modulation and the presence of a trapping potential
in the experiments, which implies inhomogeneous filling
[15,16], demand for alternative methods to check the va-
lidity of previous approximations.

In this Letter, we present what is to our knowledge the
first simulation of the experiment by Stöferle et al. taking
the full time dependence into account for reasonable sys-
tem sizes in the regime of strong and intermediate inter-
action. Hereby, we focus on one spatial dimension using
the adaptive time-dependent density-matrix renormaliza-
tion group method (adaptive t-DMRG) [17,18]. It is a
numerical method that allows for real-time evolution of
quantum many-body systems out of equilibrium with an
explicitly time-dependent Hamiltonian. For the case of
commensurate filling, we compare for weak modulations
our results to the analytical results of Iucci et al. [10] to
show the reliability of our method. For large modulations,
saturation effects occur and reduce the height of the ab-
sorption peaks. We show that at low temperature incom-
mensurate regions with more than one particle per site are
crucial to reproduce the multiple peak structure of the
experimental absorption spectrum. The appearance of the
peak structure is not a specific sign of the Mott insulating
state, as widely believed, but reflects the gap occurring for
strong repulsion between the coupled energy bands (Hub-
bard bands). For strong interactions, the peak positions can
be used as an experimental measure of the interaction
strength. We also show that the height of the peak at
frequencies @! * 2U can be employed as a measure of
the incommensurability of the system. Such a measure is
highly relevant for the realization of quantum computing
with ultracold atoms in optical lattices, since for current
proposals the formation of wide regions with commensu-
rate filling is crucial.

The Bose-Hubbard model [15,19]
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describes well ultracold bosons in a one-dimensional sys-
tem subjected to an optical lattice. Here L is the number of
sites in the chain, byj and bj are the creation and annihila-

tion operators, and n̂j � byj bj is the number operator on
site j. The parameters J and U are the hopping amplitude
and the onsite interaction strength. The third term models
the chemical potential or an external potential, such as the
trapping potential. In a system with commensurate filling,
a quantum phase transition occurs at a finite ratio �U=J�c
between a Mott insulating phase, in which the atoms are
strongly localized at the lattice sites, and a superfluid phase
with delocalized atoms. For incommensurate filling, how-
ever, it is energetically unfavorable to localize all the
atoms, and the system remains superfluid. The parameters
of the Bose-Hubbard model are directly related to experi-
mental quantities. For large lattice sizes, an approximate
formula is given by [20] J=Er � �4=
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s-wave scattering length, and � is the wavelength of the
laser of the optical lattice. Vx denotes the height of the
optical lattice and V? the strongly confined transverse
direction. For a better comparison to the experiment [6],
we use as � 5:45 nm of 87Rb in the F � 2, mF � 2 hy-
perfine state and � � 825 nm and V? � 30Er. A periodi-
cal modulation of the lattice height—here we use Vx�t� �
V0�1� �V cos�!t��—translates into a periodic variation
of the hopping coefficient J and the interaction coefficient
U via J�t� � J�Vx�t�� and U�t� � U�Vx�t��.

In Fig. 1, the dependence of the energy absorption rate
on the modulation frequency is shown for a system which
is initially in the Mott insulating phase with filling n � 1
per lattice site [21]. We found this rate � to be independent
of the system size before saturation occurs (see inset in
Fig. 1). It is determined by fitting the function f�t� �
E�t � 0� � �t� b1 cos�!t� b2� with the fitting parame-
ters �, b1, and b2 to our results before saturation. The rate
shows a two peak structure: a large peak at @! 	 U and an
approximately 20 times smaller one at @! 	 U=2. The
peak at @! 	 U, in the following called the U peak,
corresponds to particle-hole excitations by a ‘‘single-
photon’’ process [6,10–12]. For a small modulation am-
plitude �V � 0:01, the results for the U peak obtained by
linear response combined with perturbation theory in J=U
(solid lines) agree very well with our full calculation. The
peak at @! 	 U=2, which does not occur in linear re-
sponse, is due to ‘‘two-photon’’ processes where twice
the energy quantum is needed to generate a particle-hole
excitation [23]. In principle, absorption peaks at frequen-
cies which are higher multiples of U can also arise. For
commensurate filling, our calculations demonstrate that
they are negligible [24].

Up to now, we considered an initially Mott insulating
state. However, if the filling is incommensurate, the system
remains superfluid for all interaction strengths. In the limit
of strong interaction, energy bands (Hubbard bands) occur

separated by an energy gap of order U, but the system
remains superfluid, since excitations in the highest occu-
pied band are gapless. Therefore, as pointed out before
[10,12,14], incommensurability changes the low (!

U=@) frequency spectrum. However, the presence of a
trap and the experimental resolution makes it difficult to
observe this change in experiment. We show how incom-
mensurability also imprints clear signatures in the high
(!� 2U=@) frequency spectrum.

For a deep lattice [see Fig. 2(a)], in addition to the U
peak, a new resonance at @! 	 2U, in the following called
the 2U peak, arises [25]. The main contribution to it stems
from the process in which one particle hops onto an already
doubly occupied site. The process where two particle-hole
excitations are created is negligible. Therefore, the 2U
peak is a clear indicator for regions of the optical lattice
with incommensurate filling. For the homogeneous system
considered here, we find that even at zero temperature the
2U peak for an incommensurate filling n 	 1:2 is much
higher than the U peak. Finite temperature could generate
further defects in the occupation and, thereby, additional
contributions to the 2U peak as noted in Ref. [11] for the
commensurate system. The peak height of the 2U peak
could be taken as a measure of the ‘‘degree‘‘ of incom-
mensurability present in the system regardless of the origin
of the incommensurability. The same finding holds for
larger values of the hopping parameter. The peak structure
becomes more complicated [cf. Fig. 2(b)], but the peaks at
@! 	 2U and @! 	 2:6U still appear only for incommen-
surably filled systems. The shift in position compared to
the naively expected positions at integer multiples ofU can
be understood from the change in the energy structure.
Whereas for strong interactions narrow energy bands
with a gap of U exist, for intermediate interactions the
bands broaden with increasing hopping. In particular, the
ground state of the incommensurate system shifts down
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FIG. 1 (color online). Absorption rate vs the modulation fre-
quency ! at a lattice depth V0 � 15Er; the corresponding values
of the Bose-Hubbard model are U 	 0:71Er and J 	 0:0074Er,
i.e., U=J 	 95. The lines are analytical results obtained by linear
response treating the hopping term as a perturbation [10]. The
symbols are the results obtained using the adaptive t-DMRG.
Inset: Energy absorbed versus time. ! � 0:71Er=@ corresponds
to a modulation frequency at resonance and ! � 0:5Er=@ away
from resonance.
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strongly with increasing hopping strength. As a result, the
energy difference towards excited states increases, which
causes in Fig. 2(b) the shift of the center of the U peak to
approximately 1:2U and of the 2U peak to approximately
2:6U. The peak around 2:1U stems from a splitting of the
U band in processes in which a particle-hole pair is created
on singly occupied sites and doubly occupied sites. The
ratio of the amplitudes of the peaks depends crucially on
the degree of incommensurability in the system. We have
verified these findings by exact diagonalization of Bose-
Hubbard chains up to 7 sites.

In order to use this 2U peak as a measure of the amount
of incommensurability, one needs to determine it for the
strong modulations (�20%) used in the existing experi-
ments [6]. The adaptive t-DMRG method, which has no
problem dealing with the strong time-dependent modula-
tion, is thus ideally suited to tackle this question, whereas it
is delicate to use linear response for this purpose. To
illustrate the difference, we compare in Fig. 3 the energy
absorption rate for the case of a small modulation �V1 �
0:01 and a modulation with the strength �V2 � 0:2. The
results for �V1 are rescaled by a factor of ��V2=�V1�

2 to
eliminate the trivial amplitude dependence expected from
linear response. Although the structure of center of the
peak agree qualitatively well even for these high modula-
tion strengths, saturation effects occur in particular in the
height of the peaks. Our results indicate that linear re-
sponse overestimates the actual energy absorption. For
the parameters shown here, a reduction by a factor of
approximately 1.6 takes place. A bimodal structure seems
to appear for strong modulations which causes a broad-

ening of the peaks, here by a factor of approximately 2. We
also plotted the experimentally measured quantity, namely,
the heating, i.e., the integrated absorbed energy. In Fig. 3,
we show �E�tm� � E�0��=tm for a modulation time tm �
600@=Er chosen as in the experiment. The positions of the
peaks agree well in the two spectra but the height deviates,
for the parameter shown here approximately by a factor of
2. This is mainly due to saturation effects in time (cf. inset
in Fig. 1) which cause the actual integrated absorption per
unit time to remain lower than the rate [26].

In order to relate our results to present day experiments,
we have to investigate how much the trap affects the energy
absorption spectrum. We find that the positions of the
peaks are robust against the presence of a trapping poten-
tial [27] and that the amplitudes remain of the same order
of magnitude. This findings can be seen in Fig. 4, in which
we show an example of the integrated absorbed energy at a
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FIG. 3 (color online). Saturation effects for strong modula-
tions. The absorption rate for a weak modulation (a) �V1�
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2 to remove trivial scaling. Clear saturation effects in
the peak height and width can be seen. Saturation of the
integrated energy absorption in time: (c) is the integrated energy
absorbed up to time tm � 600@=Er per unit time (downward
triangles), i.e., �E�tm� � E�0��=tm for �V2 � 0:2. Because of
saturation effects in time, it is smaller than the energy absorption
rate shown in (a).
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fixed time tm versus the modulation frequency for the case
of the presence of an incommensurate region in the center
of the parabolic trap (see inset in Fig. 4) [28]. Therefore, as
in the homogeneous case the occurrence of a peak at @! 	
2U signals the presence of an incommensurate region, and
our findings enable us to compare the positions in the
homogeneous system (Fig. 2) to the experimental data [6].

In the experiment for large values of the initial lattice
height, narrow peaks at @! 	 U and @! 	 2U were
found. These peaks broaden and shift in energy if the
lattice becomes more shallow. For intermediate interaction
strength, an additional peak at @! 	 2:6U appeared. These
findings for the positions of the peaks agree excellently
with our results at zero temperature provided we assume
the presence of an incommensurately filled region in the
experimental system (cf. Fig. 2).

To conclude, we have demonstrated using the adaptive t-
DMRG method that the measurement procedure [6] gives
important information about the properties of the bosonic
system, in particular, about commensurability properties
and the energy levels. It will therefore be of great interest to
extend these calculations and measurements to cold fermi-
ons in optical lattices, which have only recently been
realized experimentally [29].
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[14] M. Krämer, C. Tozzo, and F. Dalfovo, Phys. Rev. A 71,
061602(R) (2005).

[15] D. Jaksch et al., Phys. Rev. Lett. 81, 3108 (1998).
[16] V. A. Kashurnikov, N. V. Prokof’ev, and B. V. Svistunov,

Phys. Rev. A 66, 031601 (2002); G. G. Batrouni et al.,
Phys. Rev. Lett. 89, 117203 (2002); C. Kollath, U. Scholl-
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