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Abstract

In this paper robustness properties of the maximum likelihood es-
timator (MLE) and several robust estimators for the logistic regres-
sion model when the responses are binary are analysed analytically
by means of the Influence Function (IF) and empirically by means of
simulations. It is found that the MLE and the classical Rao’s score
test can be misleading in the presence of model misspecification which
in the context of logistic regression means either misclassification er-
rors in the responses or extreme data points in the design space. A
general framework for robust estimation and testing is presented and
a robust estimator as well as a robust testing procedure are presented.
It is shown that they are less influenced by model misspecifications
than their classical counterparts and they are applied to the analysis
of binary data from a study on breastfeeding.

Keywords: logistic regression, misclassification, robust statistics,
M-estimators, Rao’s score test, influence function, breastfeeding.

1



1 Introduction

In many fields of social research such as psychology, binary data are quite
common. They usually result from either planned experiments where the
response is of the type success/failure or from observational studies where
the response is yes/no for each subject in a survey. In all cases it is important
that the data are analyzed properly such that inference from the sample to
the population can be made.
Here we are interested in a robust approach to statistical inference for

these type of data when the model is the logistic regression model. In partic-
ular, questions are addressed such as “what is the influence of data misclassi-
fication (a yes mistaken from a no) on the value of the parameter’s estimates”
or “what is the influence of a singular subject in the survey on the results of
significance tests”. We also state a general framework for robust inference
and propose to the field researcher robust estimators and testing procedures.
The general robust theory is developed in Huber (1981) and Hampel,

Ronchetti, Rousseeuw, and Stahel (1986), but the work of Wilcox (see Wilcox
1998 and the references therein) has opened the way for more systematic use
of robust methods in psychology in particular and in the social sciences in
general. It is often truly argued that robust methods are difficult to compute
and software is not always available. Therefore, for the calculations made
in this paper, Splus functions are available from the author upon request.
Robust methods are built to deal with model misspecification. This includes
for example cases such as the problem of heteroscedasticity in the linear (or
ANOVA) model, as well departures from the normality of the error assump-
tions. In particular heavy tailed distributions, gross errors or even extreme
data are dealt with by robust procedures. A question that might arise is
what type of misspecification could hamper the analysis of binary data? As
it will be discussed below, we can see here two types of problems: a mis-
classification problem whereby a yes response is mistaken by a no (or indeed
the contrary) or the presence of leverage points in the independent variables.
Both problems induce a misspecification in the assumption of the model that
can have a dramatic effect in the results of a classical analysis.
Our analysis is based upon the Influence Function (IF) (Hampel et al.

1986) a mathematical tool which allows to investigate the robustness prop-
erties of estimators and testing procedures for a given model. It will be
accompanied by illustrations based on simulations and on a real example.
The paper is organized as follows. In Section 2, the theoretical framework

is set in which first the logistic model and its MLE is shortly presented, then
a general framework for robust estimation is given and links are made with
other results for the logistic model, a finally robust testing is developed. A
robust estimator is proposed and in Section 3 it is compared to the MLE
and other robust estimators through an extensive simulation study involving
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different parameters and contaminated samples. In Section 4, the results
are applied on real data from a study on breastfeeding which is thoroughly
analyzed. Finally, Section 5 concludes.

2 Theoretical results for robust inference

Several authors have studied the logistic regression model in terms of the
robustness properties of the MLE (see e.g. Markatou, Basu, and Lindsay
1997, Carroll and Pederson 1993, Kuensch, Stefanski, and Carroll 1989, Co-
pas 1988, Pregibon 1982). After setting the framework for the logistic model
and shortly reviewing the main results about the robustness properties of
the MLE, a general framework for robust estimation for the logistic model is
introduced in which we propose a robust estimator and compare it to others
through a simulation study.

2.1 The logistic model and the MLE

A very common model for the analysis of binary data is the logistic regression
model. Let Y be a binary response variable (for example Y = 1 when the
answer is yes). It is supposed that Y has the binomial distribution (B) with
parameter µ = E[Y ] = P (Y = 1) and n = 1 (Y is also called a Bernoulli
trial). When independent variables X = [X1, X2, . . ., Xp] are observed, they
are “linked” to the expectation of Y by means of a link function g(µ) = Xβ
such that g−1(Xβ) gives values in (0, 1), the definition interval of µ. X
denotes here the design variables which usually include a constant and are
supposed to be fixed. There are different possible choices for the link function,
but we will consider here the canonical link (McCullagh and Nelder 1989),
i.e.

g−1(Xβ) = µ(Xβ) =
exp(Xβ)

1 + exp(Xβ)

With a sample (of size n) each response yi is supposed to have expecta-
tion µi linked to the vector of observed independent variables x

0
i though

µi = µ(xiβ) =
exp(xiβ)
1+exp(xiβ)

. The n unknown expectations can therefore be
determined by the specification of p+ 1 parameters β0, β1, . . ., βp.
To estimate the parameter β = [β0, β1, . . ., βp]

0 classically one uses the
maximum likelihood estimator (MLE) defined as the solution in β of the
score function

1

n

nX
i=1

(yi − µi)x0i = 0

This is usually done by means of an iterative procedure based on the scoring
method (see McCullagh and Nelder 1989).
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The question we would like to address now is how is the MLE of β in-
fluenced by model misspecification? One way to study the question is by
means of the IF (see Hampel et al. 1986). The IF is a function of the point
which might be misspecified (or contaminated) and depends on the estima-
tor and the model. It carries most of the information about the robustness
properties of a statistic T since it measures a first-order approximation of the
(asymptotic) bias of T due to an infinitesimal deviation (of any type) from
the assumed model (for an illustration see Hampel et al. 1986, Figure 1,
page 42). A statistic T with an unbounded or large IF is non robust since an
infinitesimal model deviation can make the bias arbitrarily large. In general,
the IF for the MLE is proportional to the score function, and for the logistic
model, the IF is given by

IF ((y,x); β̂, B) = J(β)−1(y − µ(xβ))x0 (1)

where J(β) is the Fisher information matrix E
h
(y − µ)2x0x

i
= 1

n

P
µi(1 −

µi)x
0
ixi. It is therefore unbounded in x and bounded in y. However, al-

though the effect of extreme values in the design space is clearly dangerous,
the contrary cannot be said about errors in the responses. These errors are
in fact misclassification errors and have been studied by e.g. Copas (1988)
and Pregibon (1982). Their results and ours (see below) show that misclas-
sification errors can lead to a biased MLE. It is therefore important to use
robust estimators which are little influenced by deviations in the x’s as well
as in the responses.

2.2 A general framework for robust estimation

In light of what was said above, we now turn to possible robust estimators for
the logistic regression model. The problem comes from misclassification of
the responses and also from extreme data in the design space. It is therefore
important to bound both types of influences.
A question might arise at this point: what about finding outlying or ex-

treme data by using the tools proposed by e.g. Pregibon (1982) and then
remove them from the analysis? We see several drawbacks with this ap-
proach. First, removing completely one observation might be a too drastic
approach in that some observations might be just at the limit of outlyingness.
Moreover, it can be a tedious procedure in that successive steps are needed
before a sample could be declared outlier free, often leaving the analyst with
a considerably reduced sample. It is also a procedure that does not guaran-
tee uniformity since two analysts might make different decisions. Second, as
Kuensch et al. (1989) argue, a diagnostic approach might lead to situations
where the estimators are numerically very unstable. Third, if data have been
removed, then inference becomes very difficult if not impossible because of
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the dependence between the “good” and the “bad” data (see Wilcox 1998).
Finally, it should be stressed that robust methods of estimation and testing
are very general because they are not only robust to extreme or outlying
data but also to any kind of (slight) model specifications. They do not lead
to the removal of observations but instead downweight their influence upon
the resulting estimator or upon the level of the test. Moreover, they provide
weights which can be used as diagnostics tools to detect the suspicious data.
Having said that, it should be however added that diagnostic tools can still
be used in a preliminary analysis of the data.
A general formulation for a consistent robust estimator for the logistic

regression model is given by the solution in β of (see also Carroll and Pederson
1993, equation 2.1)

1

n

nX
i=1

(yi − µ(xiβ))wix0i −
1

n

nX
i=1

b(xi,β) = 0 (2)

where wi are weights that might depend on xi, yi or both, and b(xi, β) is
defined to ensure consistency (see below). If wi = 1 and b(xi,β) = 0 ∀i,
then (2) yields the MLE. It should be noted that (2) defines an M-estimator
for which asymptotic properties are now well known (see e.g. Huber 1981,
Hampel et al. 1986). For example, the asymptotic covariance matrix of the
robust estimator is given by

V (β) =M−1Q(M
0
)−1 (3)

where

M =
1

n

X
µi(1− µi)x0ixi (µiwi|y=0 + (1− µi)wi|y=1) (4)

and

Q =
1

n

X
µi(1− µi)x0ixi (µiwi|y=0 + (1− µi)wi|y=1)2 (5)

We consider here consistency as defined in Kuensch et al. (1989), namely
conditional Fisher consistency. This means that given xi,

E
h
(y − µ(xiβ))wix0i

i
− b(xi,β) = 0

∀i so that
b(xi,β) = E

h
(y − µ(xiβ))wix0i

i
If the weights do not depend on the response then b(xi, β) = 0.
Three robust estimators are considered in this paper. The simplest one is

given by taking weights depending on the standardised residuals or Pearson
residuals yi−µi

[µi(1−µi)]1/2 (see McCullagh and Nelder 1989) as proposed in Cantoni
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(1999) for generalized linear models. The weights are simply Huber-type
weights given by

wi = wyi = min

1; c
¯̄̄̄
¯ yi − µi
[µi(1− µi)]1/2

¯̄̄̄
¯
−1 (6)

where c is a tuning constant which controls the degree of robustness (see
e.g. Hampel et al. 1986). To ease the notation, we will also use wy0i =

min
½
1; c

¯̄̄
µi

[µi(1−µi)]1/2
¯̄̄−1¾

and wy1i = min
½
1; c

¯̄̄
1−µi

[µi(1−µi)]1/2
¯̄̄−1¾

. This Huber-

type estimator does not consider simultaneously the problem of misclassifi-
cation and extreme data in the design space. This problem could be solved
by also considering a weighting scheme in the x’s. This would lead to the a
weight function of the type wi = wyi · wxi which separates the weights on
extreme residuals (wyi) for the misclassification errors and the weights on
extreme data in the design space (wxi). One possibility would be to base
wxi on the diagonal elements of the hat matrix H = X(X

0
X)−1X0. The hat

diagonals lie between 1/n and 1 and their average value is p/n. Belsley, Kuh,
and Welsch (1980) suggest that points with a hat diagonal greater than 2p/n
be considered high leverage points. Therefore a choice for wxi is given by
the Huber weights

wxi = min

(
1,
2p/n

hii

)
We prefer, however, to choose a weighting function for the x’s based on the
IF . (2) can be written as

1

n

nX
i=1

[wyi(yi − µi)− ai]x0iwxi = 0 (7)

where the constants ai ensuring conditional Fisher consistency are given by

ai = E [wyi(y − µi)] = µi(1− µi)(wy1i − wy0i )

This estimator belongs to the so-called Mallows class of estimators (Mallows
1975). Its IF is given by

IF ((y,x), β̂, B) =M−1 [wy(y − µ)− a]x0wx

where M is given in (4) with wi|y=0 = wxi · wy0i and wi|y=1 = wxi · wy1i .
Actually there exists several ways to bound the IF (see Hampel et al. 1986),
one of them being the standardized version given by¯̄̄

IF ((y,x), β̂, B)
0
V (β)−1IF ((y,x), β̂, B)

¯̄̄1/2 ≤ c
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or equivalently

|wy(y − µ)− a|wx
h
xQ−1x

0i1/2 ≤ c
where Q is given in (5). We therefore propose here the following weighting
system: Huber weights on the response’s standardized residuals given by (6)

and Huber weights on
h
xQ−1x

0i1/2
, i.e.

wxi = min

1; cxh
xiQ−1x

0
i

i1/2
 (8)

A referee suggested to note that the weights wxi are a variation of Maha-
lanobis distances with the exception that the matrix Q is not the covariance
matrix of x. To compute the estimator one needs an iterative algorithm,
whereby given a current value for the estimates one computes the weights
and then a Newton-Raphson step for (7)1. Alternatively, by using a scoring
method, these estimators can be seen as reweighted least squares estimators.
Indeed, the iterative steps for the estimates are

β(k+1) = β(k) +M−1 1
n

X
[wyi(yi − µi)− ai]x0iwxi

or equivalently

Mβ(k+1) =Mβ(k) +
1

n

X
[wyi(yi − µi)− ai]x0iwxi

However, we have that

M =
1

n
X

0
WX

where
W = diag

³h
µiwy

0
i + (1− µi)wy1i

i
µi(1− µi)wxi

´
Similarly

1

n

X
[wyi(yi − µi)− ai]x0iwxi =

1

n
X

0
Wv

where

v = vec

Ã
wyi(yi − µi)− ai

[µiwy0i + (1− µi)wy1i ]µi(1− µi)
!
= vec(vi)

so that we can write
X

0
WXβ(k+1) = X

0
Wz

where
z = vec

³
xiβ

(k) + vi
´

1In order to simplify the estimation, the weights in (5) are taken to be only the weights
on the response, i.e. wi|y=0 = wy0i and wi|y=1 = wy1i .
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We note here that Markatou, Basu, and Lindsay (1997) proposed also a
weighted likelihood estimating equations for the logistic regression model. It
can be implicitly written as (2) (see their equation 3.5) with b(xi, β) = 0, ∀i
and a weight function wi given (in their notation) by

wk(y) =

"
A(δy) + 1

δy + 1

#k

with k a tuning constant, δy =
y−µi

µi−(1−y) and A is a residual adjustment

function (Lindsay 1994). Markatou, Basu, and Lindsay (1997) choose in
particular A(δ) = 2[

√
δ + 1− 1]. By using a little algebra, one can find that

E
h
wk(y)(y − µ)

i
6= 0, ∀k 6= 0, k = 0 being the MLE. This means that this

estimator is not consistent. Moreover, like the Huber-type estimator, it does
not consider simultaneously the problem of misclassification and extreme
data in the design space. For these reasons, we will not consider it for the
simulations and the real data example.
Finally another estimator with a weight function which depends both on

the design and the response has been proposed by Kuensch et al. (1989). Its
weight function is given by

wi = min

1; c

|yi − µi − di|
h
xiA−1x0i

i1/2
 (9)

where A is defined implicitly by Q = I, c is a tuning constant and di is given
by (see Kuensch et al. 1989)

di =


c

[xiA−1x0i]
1/2

µi
(1−µi) − µi if xiβ < 0,

c

[xiA−1x0i]
1/2 < 1− µi

(1− µi)− c

[xiA−1x0i]
1/2

(1−µi)
µi

if xiβ > 0,
c

[xiA−1x0i]
1/2 < µi

0 otherwise

The procedure to compute this estimator is rather complicated because of
the implicit calculation of A. Nevertheless, it should be stressed that this
estimator not only has a bounded IF (1) with a bound controlled by a unique
tuning constant c, but also that it is the most efficient estimator in the whole
class of consistent M-estimators with bounded IF in which robust estimators
of the type given in (2) are included. This estimator is actually the Opti-
mal B-robust Estimator (OBRE) defined for general parametric models by
Hampel et al. (1986). By means of some simulation studies and through
several examples, Carroll and Pederson (1993) conclude that the OBRE has
the overall best performance in terms of robustness and efficiency with rea-
sonable sample sizes compared to the robust estimator they propose (with
weights depending on xiβ through µi) and other (non consistent) ones.
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In section 3 we present the results of a simulation study in which the MLE,
the OBRE, the Huber type and Mallows type estimators are compared, from
which it will be concluded that the Mallows type estimator has the best
performance overall.

2.3 Testing in logistic regression

AsWilcox (1998) stresses, robustness becomes really appealing when it comes
to testing. Robust theory actually started with testing procedures where the
problem is to control the probability of type I error in the presence of model
misspecification (see Box 1953). To investigate the robustness properties of a
testing procedure one works with the asymptotic bias on the level of the test
due to an infinitesimal model deviation (see Heritier and Ronchetti 1994).
In the logistic regression model, as with any model from the generalized
linear models, one is interested in testing the null hypothesis that a group
of regressors or a linear combination of regressors is equal to 0. As a special
case, one can test the significance of factors on more than two levels at the
time. Several classical procedures allow this type of inference, and because
we will consider their robust analogue, we concentrate here on the Rao’s score
test. Suppose that β is split into two parts β(1) and β(2) (and correspondingly
x(1) and x(2)) and we want to test the null hypothesis that β(2) = 0. Rao’s
score test statistic is given by

R2 = U(β̇)
0
J(β̇)−1U(β̇)

where

U(β̇) =
1

n

nX
i=1

(yi − µ(xβ̇))x0i

and β̇ is the MLE under the constraint β(2) = 0. Rao’s score test statistic
can also be written as

R2 = Z
0
C−1Z (10)

where

Z =
1

n

nX
i=1

(yi − µ(xβ̇))x0(2)i

C = J(β̇)(22) − J(β̇)(21)J(β̇)−1(11)J(β̇)(12)
and β̂(1) is defined implicitly by

1

n

nX
i=1

(yi − µ(xβ̇))x0(1)i = 0

nR2 can then be compared to the χ2q distribution with q = dim(β(2)). It
follows from the results of Heritier and Ronchetti (1994) that the asymptotic
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level of Rao’s score test under a slight model misspecification in logistic
regression (of amount ε) is given by

α0 + ε
2δ(y − µ(xβ̇))2x(2)J(β̇)−1(22)x

0
(2) (11)

where α0 is the nominal level and δ is a quantity that depends on α0 and
q. By looking at (11), one can see that the level can become arbitrarily
biased either because of misclassification in the response (especially when
we observe y = 0 when µ is near 1 or when we observe y = 1 when µ
is near 0) or when there are extreme points in the design subspace X(2).
Heritier and Victoria-Feser (1997) examine an example of logistic regression
and confirm that the level of the classical score test can be seriously biased
by data contamination. It is therefore important to use a robust procedure
which downweights extreme data so that the significance level is really the
postulated one.
In this subsection we present the results of Heritier and Ronchetti (1994)

on robust testing. In order to make the classical score tests statistic R2

robust, the idea is to replace the score function Z in (10) by the scores
function of an M-estimator, i.e.

ZM =
1

n

nX
i=1

ψ((xi, yi), β̂)(2)

and β̂ is obtained by solving

1

n

nX
i=1

ψ((xi, yi), β̂)(1) = 0

with β̂(2) = 0. The robust test statistic is then obtained by standardizing
ZM by its asymptotic covariance matrix (see below). Heritier and Ronchetti
(1994) show that under some fairly general conditions on the function ψ
(n times) the resulting test statistic is asymptotically χ2q . If ψ is the score
function one gets the classical score test statistic. Heritier and Ronchetti
(1994) argue that the choice of ψ must be made such that the (standardized)
IF of β̂(1) is bounded. A choice for ψ as given in (7) with weights given by
(6) and (8) satisfies this requirement. It should be stressed that it is not the
same ψ function than the one proposed by Heritier and Ronchetti (1994) but
a rather simpler one.
For the logistic model the robust score test statistic based on a Mallows-

type estimator is given by

R2M = Z
0
MC

−1ZM

where

ZM =
1

n

nX
i=1

h
wyi(yi − µ(xiβ̂))− ai

i
x
0
(2)iwxi
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with the weights given in (6) and (8), β̂(2) = 0 and β̂(1) defined implicitly by

1

n

nX
i=1

h
wyi(yi − µ(xiβ̂))− ai

i
x
0
(1)iwxi = 0

The standardization matrix is given by

C =M(22.1)V(22)M
0
(22.1)

whereM(22.1) =M(22)−M(21)M
−1
(11)M(12) and V(22) are obtained by computing

respectively (3) and (4) at β̂(2) = 0 and β̂(1). nR
2
M is then compared to a

χ2q. We use this robust test statistic for the analysis of the data from the
breastfeeding study.

3 Simulation study

In order to compare the different robust estimators in different settings by
taking the OBRE as a benchmark, we performed a simulation study. The
design matrix is made of a constant and two simulated standard normal
variables. It is purposely simple because robust estimators result in high
computational time in simulations. Three different sample sizes were con-
sidered, namely n = 100, 50, and 25. The sample size of 25 was not a good
choice because all estimators where very unstable, even without contamina-
tion. For example, for the MLE without contaminated data, we got values
of the bias up to 150! We also considered two arbitrary parameter sets,
β = (2, 3, 1) and (−2, 1, 3) for which the true means µi = xTi β have mean’s
and standard deviation’s values of respectively (0.72, 035) and (0.4, 0.4). We
then contaminated the samples in five different ways. First we took pro-
portions ε of responses chosen randomly and changed them from 0 to 1 or
1 to 0. This constitutes the misclassification-type error. Second we took
proportions ε of x2 and replaced them by the value of 10. This constitutes
a systematic misspecification in one of the explanatory variables (which is
also called leverage). Third we took proportions ε of one of x1 or x2 (chosen
randomly) and replaced them by the value of 10. It should be stressed that
only the value of one of the regressors should be contaminated, otherwise the
misspecification error is confounded with a misclassification error. The aim
is to create leverages in both explanatory variables. Finally, misclassification
and misspecification errors where mixed, in that the first contamination type
was combined either with the second or with the third. The proportions ε
were of 0%, 1%, 2%, . . . , 10% for n = 100 and of 0%, 2%, . . . , 10% for n = 50.
The simulation results are presented in the form of boxplots of the dis-

tribution of the estimates for one of the parameters. The line in the center
of the box represents the median value and its distance to the horizontal
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line in the picture indicates the bias. The vertical size of the box in the in-
terquartile range and gives an indication of the variability of the estimators.
It is used to compare efficiencies. We believe that the boxplots give the best
information about the distribution of the estimates, since it appears that the
logistic model for binary data can be very unstable (whatever the estimator)
in that some times the estimates are far away from the parameters’s values
and therefore summary statistics such as means and variances wouldn’t be
appropriate.

3.1 Computing the tuning constants

To compute the robust estimators, one has to choose first the tuning con-
stant(s). In order to be fair in the comparisons, the tuning constants were
chosen so that each of the robust estimator achieves the same degree of effi-
ciency at the model compared to the MLE. The efficiency is computed here
as the ratio of the traces of the asymptotic covariance matrices of the MLE
and the robust estimator (see equations (3), (4) and (5)) for a given design
matrix and a parameter’s value. We chose an efficiency ratio of 0.85 which is
for example the default value for robust regression based on M-estimators in
the Splus 4.5 statistical software. To obtain the value of the tuning constant c
for the Huber estimator and the OBRE, the efficiency is computed for several
values of c, then a plot of c versus the efficiency ratio is produced in which
the appropriate c is chosen. This has led to the choices of c = 2.4

√
3 (OBRE)

and c = 1.8
√
3 (Huber) and c = 2.75

√
3 (OBRE) and c = 3.4

√
3 (Huber)

for respectively n = 50 and n = 100, whatever the parameters’s value. For
the Mallows-type estimator, the procedure is slightly more complicated since
two tuning constants c and cx need to be chosen. One can proceed as for the
other estimators and add the variation of cx, and then produce contour plots
to choose the combination of c and cx giving the appropriate efficiency ratio.
We did this for the two parameter’s values and the two sample sizes. The
parameter’s values didn’t lead to different contour plots, whereas the sample
size made them slightly change. For example in Figure 1 is presented the
contour plot for the case n = 100 and β = (−2, 1, 3). On can then choose the
tuning constants along the 0.85 contour. We chose the values c = 2.4

√
3 and

cx = 4. For n = 50, we chose in the same way the values of c = 1.8
√
3 and

cx = 4. It should be stressed that with real data, the true parameters are
unknown, but as we already noticed, the parameters’s value doesn’t seem to
change the efficiency ratio, whereas the sample size (and the design matrix)
does, so that contour plots for a given dataset can be used to chose the tuning
constants.
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3.2 Estimates distributions

With misclassification errors, the simulations results depend on the sample
size, the parameter which is estimated and the true parameters’s values. For
example, with β = (2, 3, 1), all 4 estimators behave in the same manner, and
depending on the parameter which is estimated they are (almost) unbiased
for ε up to 5%: see Figure 2 for β1. This behaviour is however not always
observed. With n = 50 and/or with β = (−2, 1, 3), the MLE becomes biased
with already 1% of contaminated data, whereas the robust estimators remain
stable with up to 4% contaminated data. For example, with n = 100 and
β = (−2, 1, 3), one can see in Figure 3 that for β2 Mallows estimator performs
well even with 4% of contaminated data. All simulations results cannot be
presented here but the following conclusions can be drawn: with misclassifica-
tion errors, the MLE can become biased with just one misclassified response
whereas the robust estimators can withstand up to 4% contaminated data.
However, it should be stressed that in some cases the breakdown point of the
robust estimators (i.e. the smallest proportion of contaminated data they
cannot anymore withstand) doesn’t exceed 3%. This is the worst situation
we have found.
When the contaminated data are leverage points, the simulation results

are different. With leverage systematically in x2 it is the estimates of β2
that are most dramatically affected. However, Mallows estimator is very
resistant with contaminated data at least up to 3%. For example, in Figure
4 and 5 are presented the β2 estimates distributions for respectively n = 100
and n = 50. Only the Mallows estimator remains unbiased. Moreover, a
bias can also be present for the other parameters as presented in Figure
6 for β1. With β = (2, 3, 1), the bias on all estimators are smaller than
with β = (−2, 1, 3), except for β2, for which both the OBRE and Mallows
estimators are resistant up to 3% of contaminated data. It therefore seems
that the effect of contamination strongly depends on the parameter’s value
and we don’t have an explanation for that. In general, with n = 50, the
simulation results are similar to those with n = 100. With leverages in x1
and/or x2, the MLE of all three parameters can become biased with only
one leverage. This is especially the case with β = (−2, 1, 3), as is shown in
Figure 7 for β0 with n = 50. Among the robust estimators, once again it is
Mallows’s estimator which is the most resistant overall. The conclusion is
that it is probable that with leverages, the MLE becomes biased with only
1% of contaminated data, that Huber estimator and the OBRE are more
resistant but Mallows estimator is overall the most resistant, with at least
3% of contaminated data.
Finally, with both types of errors (misclassification and leverages), the

simulation results show again that the MLE can be biased with only 1% of
misclassified response and 1% leverages (this makes in reality 2% of conta-
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minated data), whereas robust estimators are more resistant, with Mallows
estimator having the best performance overall. For example, in Figure 8
are presented the distributions of β2 estimates and one can see that only
Mallows’s estimator is resistant to up to 3% of both types of errors. The
smallest breakdown point for Mallows’s estimator we have found is of 3% of
misclassification errors and 3% of leverages, i.e. 6% of contaminated data all
together.
To summarize, the simulation results have shown that the MLE for the

logistic model with binary data can become biased with only one either mis-
classified response or leverage. Huber estimator and the OBRE are more
resistant than the MLE but in general to smaller amounts of contaminated
data (of any type) than Mallows’s estimator which in the worst situation
we have found has a breakdown point of 3%. When analysing real data, it
is neither possible to know where the errors might be (misclassification or
leverages or both) nor their amount. Therefore it is safer to use Mallows’s
estimator which has overall the best performance.

3.3 Estimating standard errors

Parameters estimation is just the start to statistical inference. It is also im-
portant to be able to judge of their significance through a t-test. In order
to do that, one needs to compute standard errors for the estimator and one
could wonder what the effect of contaminated data is on the estimated stan-
dard errors. In the same simulation study as the one for the estimators, we
also computed standard errors for the estimators using the diagonal elements
of (3) with the estimated parameters for each estimator. In general we found
that contamination has the effect of lowering standard errors, that the MLE
can be affected by only 1% contamination, that the robust estimators are
more resistant with the Mallows estimator being the most resistant overall.
When n = 50, we also found that the OBRE estimated standard errors can
be very large for some samples, thus showing some instability. This is not
surprising because Kuensch et al. (1989) remarked that the effect of estimat-
ing the matrix A in (9) might have an effect on asymptotic results in small
samples. The cases in which the standard errors are underestimated are the
same as these when the estimators are biased, for all estimators, so that the
same conclusions for all types of contaminations can be drawn for estimated
standard errors. As an example, consider the case of β2 with leverages in x2
presented in Figure 9. The triangle in the boxplots are the standard errors
computed using the true β. One can see that for the MLE the standard errors
are systematically underestimated with only 1% leverages and that both the
OBRE and the Mallows estimator give standard errors comparable to the
0% contamination case with up to 5% leverages. It should be stressed that
underestimating standard errors means that the chance of finding significant
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parameters is increased or in other words that the significance tests are not
made at the usual 5% significance level, but at a much larger one.

3.4 Computational time

Finally, a referee asked to compare the computational times of the different
estimators. As expected, the computational times (as measures by the func-
tion unix.time in Splus which gives the cpu time needed in seconds to run a
function) increase with the complexity of the estimator. The smaller com-
putational times are for the MLE, followed by Huber estimator, the Mallows
estimator and finally the OBRE. The comparisons of computational times
were similar across all the simulation setting, and as an example we present
in Figure 10 the different computational times for n = 100 and β = (−2, 1, 3).
It is clear that time is gained by using Mallows estimator compared to the
OBRE.

4 Example: breastfeeding study

In this section we apply robust estimation and testing procedures on real
data. Moustaki, Victoria-Feser, and Hyams (1998) conducted a study in a
UK hospital on the decision of pregnant women to breastfeed their babies or
not. 135 expecting mothers were asked what kind of feeding method they
would use for their coming baby. Their responses where classified in two
categories, one which included breastfeeding, try to breastfeed and mixed
breast- and bottlefeeding and another which was only bottlefeeding. One
of the aim of the study was to determine the factors which are important
for a woman to choose to at least try to breastfeed and then use the results
to promote breastfeeding to women with a lower probability of choosing it.
The factors (variables) that were considered were the advancement of their
pregnancy (beginning or end) (X1), how they were fed as babies (only bottle-
or some breastfeeding) (X2), how their friends fed their babies (only bottle-
or some breastfeeding) (X3), if they had a partner (X4), their age (X5), the
age at which they left full time education (X6), their ethnic group (white or
non white) (X7) and if they smoked, stopped smoking or never smoked (X8).

4.1 Choosing the tuning constant

Before using the robust estimators, one has to choose the tuning constants.
As for the simulation study, given the design matrix, we computed several
efficiency ration for different tuning constants or combinations of them. Since
the parameters values doesn’t seem to change very much these relations, we
simply took the MLE’s estimates. For the OBRE and Huber estimator, we
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found respectively c = 2.5
√
10 and c = 0.6

√
10 for an efficiency ratio of

(approximately) 85%. For Mallows estimator, the contour plot is given in
Figure 11 and one can see that c = 0.6

√
10 and cx = 4 is a possible choice

for an efficiency ratio of 85%.

4.2 Robust estimation

The different estimates using the tuning constants found above and their
standard errors for the MLE and the robust estimators are given in Table 12.
On the whole, the estimates are of a similar order across methods. However,
we can notice some substantial differences. The intercept is very large (and
significant) when using the Mallows-type estimator. β̂3 (for the way friends
fed their babies) is stable but becomes not significant with the Mallows-type
estimator. β̂6 (for the age at the end of full time education) is 5 times higher
and significant with the Mallows-type estimator compared to the MLE. Fi-
nally β̂7 (for the ethnic group) is substantially larger (in absolute value) for
the Mallows-type estimator compared to the MLE.
This estimates differences means that the interpretations about the fac-

tors determining the choices of expecting mothers are also different. If one
takes a classical approach, then the age at which expecting mothers leave full
time education (meaning their educational level) is not important, whereas
it is with a robust (Mallows) approach. On the other hand, how friends feed
their babies is a significant factor with a classical approach and is not with
a robust approach. Moreover, if one computes the odds ratios from the esti-
mated parameters (exp(β̂)), one finds that for a white expecting mother they
are considerably smaller with a robust approach (0.045 compared to 0.141)
meaning that it is considerably less probable that a white expecting mother
chooses to at least try to breastfeed her baby. When comparing the three
robust estimators, one also notices some differences. Huber estimator, com-
pared to Mallows leads to a significant parameter for the way the expecting
mother’s friends feed their babies. The OBRE on the other side produces
only two significant parameters, namely those for the smoking habit. So one
might ask which result to trust? There is in our opinion no definite answer,
but by construction of the estimators and from the simulations results, it
is our opinion that Mallows estimator should be preferred. The only doubt
would be about the significance of the factor how the expecting mother’s
friends feed their babies, since with Mallows estimator one can see that it
is just not significant at the 5% level but would be at the 10% significance
level. The gain with a robust approach with this particular data set is thus
the significance of the educational level, and the different odds for a white

2Variables were coded as dummy, with ones for the first category of each factor. Bold
estimates denote significant parameters at the 5% level.
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expecting mother.

4.3 Diagnostics analysis

When performing a diagnostic check using the tools proposed by Pregibon
(1982), we find after a few successive steps that three observations are ex-
tremes (namely number 75,89 and 90). If one looks at their weights using
the robust estimators, we find respectively w75 = 0.272, w89 = 1, w90 = 0.498
for the OBRE, w75 = 0.069, w89 = 1, w90 = 0.250 for the Huber-type and
wy75 = 0.003, wy89 = 1, wy90 = 0.250 and wx75 = 0.049, wx89 = 0.127,
wx90 = 0.160 for the Mallows-type estimators. It is interesting to see that
observation 89 is not downweighted by the OBRE and the Huber-type esti-
mator, but it is by the Mallows-type estimator.
If one looks at the other weights, the picture becomes broader. In Figure

12 are plotted the weights for the OBRE and the Huber-type estimators.
Both estimators found 6 either misclassified responses or leverages (or both),
but not all the same. In Figure 13 are represented the weights on Y and on
X for the Mallows-type estimator. The weights on the response are similar
to those of the OBRE and the Huber-type estimator, except for observation
12 which is found outlying by the Mallows-type estimator. The weights on X
reveal leverages that were previously not detected, for example observation
18.

4.4 Testing

With this data set, a few hypothesis are of interest. They are presented
in Table 2 where they are tested classically and robustly using the results
of subsection 2.3 with the tuning constants used to compute the estimates.
The first hypothesis concerns the influence of the expectant mother’s mother
and friend in the way they fed their babies. If one uses a classical score test,
we find that this influence is significant whereas a robust test fails to reject
the null hypothesis. If one evaluates the influence on the social background
as measured by the presence or not of a partner and the age of full time
education’s leave, both tests fails to reject the null hypothesis at the 5%
level, but the robust one is at the borderline of significance. Finally, the
factor smoking (with three levels) is clearly significant with both the classical
and the robust score test statistic. These results confirm similar results by
Heritier and Ronchetti (1994) on another dataset.
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5 Conclusion

In this paper we have presented a general framework for robust estimation
and inference based on the IF, applied to the logistic regression for the analy-
sis of binary data. We have proposed a Mallows-type estimator and compared
it with the MLE and other robust estimators all belonging to the general class
of M-estimators. The findings show that the MLE can be biased in the pres-
ence of misclassification errors and extreme data in the design space, whereas
the robust estimators are stable with reasonable amounts of contamination.
The Mallows-type estimator is however preferred since it is more robust than
the Huber estimator when there are leverages, more resistant, less compli-
cated to compute and faster than the OBRE with reasonable amounts of
contamination. For testing, a robust score test statistic is proposed that is
stable under model misspecification. It is used and compared to the classical
one on the breastfeeding data and it is found that the conclusions about some
hypothesis can be different. We would therefore recommend to the applied
researcher to at least try a robust procedure when analysing binary data.
Finally, it should be stressed that the theoretical results can be extended to
any model of the family of generalized linear models, but this will be the
subject of other papers.
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mator
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Int X1 X2 X3 X4 X5 X6 X7 X8/1 X8/2

MLE -4.12 -0.98 0.31 1.50 1.08 0.027 0.17 -1.96 1.57 3.31
(SE) 2.39 0.58 0.59 0.59 0.70 0.05 0.13 0.76 0.59 1.01

Huber -7.12 -0.90 0.51 1.45 0.85 0.03 0.38 -2.64 1.91 3.51
(SE) 3.24 0.68 0.69 0.68 0.80 0.06 0.18 1.05 0.67 1.11

OBRE -5.06 -0.80 0.31 1.35 0.91 0.023 0.25 -2.21 1.71 3.22
(SE) 6.93 0.89 0.88 0.85 1.00 0.074 0.41 1.37 0.80 1.40

Mallows -14.31 -0.68 0.85 1.51 0.66 0.04 0.83 -3.09 1.85 3.93
(SE) 6.19 0.82 0.82 0.81 0.91 0.07 0.37 1.46 0.77 1.43

Table 1: Classical and robust estimates for the breastfeeding data

Classical test Robust test
(p-value) (p-value)

H0 : β2 = β3 = 0 0.017 0.094

H0 : β4 = β6 = 0 0.086 0.061

H0 : β8/1 = β8/2 = 0 0.0002 0.0004

Table 2: Classical and robust scores test for the breastfeeding data
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