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We study spinless fermions with repulsive nearest-neighbor interactions perturbed by an impurity particle or
a local potential quench. Using the numerical time-evolving block decimation method and a simplified analytic
model, we show that the perturbations create a soliton-antisoliton pair. If solitons are already present in the bath,
the two excitations have a drastically different dynamics: The antisoliton does not annihilate with the solitons
and is therefore confined close to its origin while the soliton excitation propagates. We discuss the consequences
for experiments with ultracold gases.

DOI: 10.1103/PhysRevA.95.063605

I. INTRODUCTION

The properties of an impurity coupled to a bath are a
paradigmatic problem of many-body physics. For classical
baths, the diffusion of massive particles is described by
Brownian motion. A quantum bath leads to more complex
physics. In two and three dimensions, the problem is described
in terms of quasiparticles in which the impurity is surrounded
by excitations of the bath. This is the case for polarons [1,2],
where the bath is made of phonons, bosonic particles, or
fermions such as in a Fermi liquid. Novel effects exist in
one dimension where the excitations of the bath are drastically
affected by interactions. In particular, if the one-dimensional
quantum bath is a Tomonaga-Luttinger liquid [3], the massless
excitations of the bath lead to new diffusion properties for the
impurity, such as a subdiffusion [4,5], and behavior ranging
from polaronic to Anderson’s orthogonality catastrophe [6].

Cold atomic gases provide an ideal testing ground for such
nonequilibrium quantum many-body phenomena due to their
weak coupling to the environment and tunable parameters. The
motion of initially localized impurities of a different spin state
[7] and atom species [8] was measured in one-dimensional
tubes in the continuum. Recent developments in experimental
setups allow addressing and imaging atoms in optical lattices at
the resolution of a single lattice site. This has made it possible
to measure the dynamics of specific nonequilibrium many-
body states [9–11]. One can for instance create a local energy
shift by focusing a laser beam on a selected site and flip the spin
of the atom at that site by a microwave pulse. These techniques
were used for recording the time evolution of initially localized
spin impurities [12] and magnons [13] in bosonic rubidium.
The quantum gas microscope technique has also been extended
to fermionic atoms [14–19].

On the theoretical front, mobile impurities in homogeneous
baths have been largely studied [6,20–25]. The situation is
more complicated if the bath has a structure. In particular,
long-range interactions can lead to a periodic arrangement of
the bath particles. New behaviors are possible in such systems,
such as the localization of the impurity [26]. For a fermionic
bath with nearest-neighbor interactions in the Mott insulator
(MI) state, a diffusive motion of the impurity was predicted to
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be connected to soliton excitations in the bath [27]. This raises
the question of how the impurity and the excitations behave
when the ground state of the bath already contains solitons.
Soliton excitations occur in a variety of one- and quasi-
one-dimensional compounds, such as quantum spin chains
[28–31]. Quantum gas experiments provide complementary
systems and offer the possibility to measure spatially the
motion of such excitations and the impurity. These phenomena
can thus be relevant in experiments with polar KRb molecules
[32,33], Rydberg atoms [34,35], and magnetic atoms [36,37]
in optical lattices, as well as ions in rf traps [38], where effects
of long-range interactions have been observed.

In this article, we use a combination of numerical and
analytic techniques to study the dynamics of an impurity
coupled to a bath of fermions with repulsive nearest-neighbor
interactions. We compare it to the simpler case of a local
quench in potential. Although both perturbations create a soli-
ton and an antisoliton excitation, we show that the antisoliton
can form a bound state with the impurity, which drastically
affects its motion. We consider baths in the MI state and at an
incommensurate filling for which solitons are present in the
ground state. In the latter case, energy conservation prevents
the antisoliton excitation from annihilating with the solitons
and further constrains its motion. We discuss the possibility
of observing these phenomena in experiments with ultracold
gases.

II. MODEL

We consider a bath described by

Hb = −J
∑
〈i,j〉

b
†
i bj + V

∑
j

(
nb

j − 1

2

)(
nb

j+1 − 1

2

)
, (1)

where bj (b†j ) annihilates (creates) a bath fermion at site

j, nb
j = b

†
j bj is the number operator of the bath fermions,

J is the tunneling amplitude, and V is the nearest-neighbor
interaction energy. We consider baths both in the MI state at
commensurate (half) filling and at an incommensurate filling
slightly above one-half. The initial state is shown in the
schematic drawing of Fig. 1(a). Our results also apply for the
XXZ spin model, to which model (1) can be mapped [39]. The
dynamics of excitations in the XXZ model have been studied
by the Bethe ansatz [40], time-evolving block decimation
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j0

FIG. 1. (a) Model: the bath contains spinless fermions (gray). At
half filling, the ground state has a particle every two sites. Above half
filling, solitons consisting of two neighboring occupied sites exist, as
schematically shown. At time t = 0, either an impurity particle (dark)
or a static potential barrier is created at site j0 at the center. (b) For
incommensurate filling, the ground-state density of the bath shows
two neighboring maxima or minima at the most probable locations
of the solitons. Only the left half of the lattice with j � j0 is drawn;
the other half is symmetric. The analytic result of our simplified
domain-wall (DW) model agrees well with the TEBD solution. The
number of fermions is 31 for the MI and 33 for the incommensurate
filling, L = 61, and V = 50J (see text).

(TEBD) [27,41], and time-dependent DMRG [42,43] methods.
The previous studies considered antiferromagnetic [27,40] or
fully polarized [41] initial states with one or a few flipped
spins at the center. Ballistic and diffusive transport regimes
were studied using different types of quenches [42,43].

Here, we study the dynamics after either an impurity
particle or a static potential barrier is introduced at the center
site j0 at time t = 0. The time evolution is described by the
Hamiltonian H = Hb + H ′, where

H ′ = −J
∑
〈i,j〉

c
†
i cj + U

∑
j

(
nb

j − 1

2

)
nj , (2)

H ′ = Unb
j0
, (3)

respectively for the impurity and the potential. The repulsive
on-site interaction between the impurity and the bath fermions
is denoted by U > 0, the annihilation operator of the impurity
by cj , and nj = c

†
j cj . The tunneling energies of the impurity

and the bath fermions are equal. For the static potential barrier,
the barrier height is equal to the on-site interaction energy.

III. RESULTS AND DISCUSSION

We compute both ground-state and time-dependent ob-
servables with the numerical TEBD method [44,45]. An odd
number of lattice sites L = 61 and open boundary conditions
make the ground state nondegenerate for commensurate filling
with Nb = 31 particles. For the incommensurate filling, Nb =
33. A Schmidt number χ = 120 is used in the imaginary
time evolution. In the real time evolution, we use χ = 160
and the second-order Trotter decomposition with time step
δt = 0.01/J . The interaction energies are U = V = 50J

unless mentioned otherwise. We focus on strong interactions
to suppress the creation of solitons and antisolitons due to
quantum fluctuations and to distinguish clearly the effects of
the quenches. We show that essentially the same phenomena

are observed also for interactions U = V = 10J , which are
closer to experimentally realizable values.

A. Ground-state density distribution

In the MI state, for V � J , there is a particle every
two sites and the density oscillates between zero and 1.
For incommensurate filling, the amplitude of the density
oscillation decreases away from the boundaries. A low density
of excess particles or holes with respect to half filling leads to
soliton or antisoliton excitations [3], where the phase of the
density oscillation changes by π . The maxima of the soliton
distribution due to the excess particles can be seen as domain
walls (DWs)—pairs of neighboring maxima or minima—in the
density distribution of Fig. 1(b). For open boundary conditions,
the solitons are not completely delocalized [46] as they would
be for periodic boundary conditions.

When the density of solitons is low and V � J , the solitons
behave as free fermions [3]. In this case, the density profile
can be accurately predicted by a DW model, where one uses
a bond representation to map the solitons to free fermions
in an otherwise empty lattice (see Appendix A). The wave
function of N free fermions can be written as |�1,2,...,N 〉 =∑

l1,...,lN
ϕ

l1,l2,...,lN
k1,k2,...,kN

× |l1〉 ⊗ |l2〉 ⊗ · · · |lN 〉, where lα is the
coordinate of fermion α. The single-particle state where site
l is occupied and the other sites are empty is denoted by
|l〉 = |0, . . . ,0,1l ,0, . . . ,0〉. The coefficient ϕl1,...,lN

k1,...,kN
is given by

the Slater determinant formed of the single-particle wave func-

tions ϕl
km

=
√

2
L

sin(kml), where km = mπ
L

and m = 1, . . . ,N .
One can thus calculate the expectation value of the density
〈nb

j 〉 = 〈�1,...,N |nb
j |�1,...,N 〉 as

〈
nb

j

〉 = 1

2

∑
l1,...,lN

|ϕl1,...,lN
k1,...,kN

|2
j−1∏
d=1

[
2

N∑
α=1

δd,lα − 1

]
+ 1

2
.

More details are given in Appendix A. The result of the DW
model shown in Fig. 1(b) agrees very well with the numerical
solution.

B. Time evolution in the Mott insulator state

We now turn to the time evolution. In the MI state, at
t = 0, the central site j0 is occupied by a bath fermion with
a high probability. A local potential quench [Eq. (3)] causes
the fermion at j0 to tunnel to the neighboring site. A soliton
and an antisoliton excitation are created in this process and
propagate symmetrically in opposite directions. The density
profiles in Fig. 2 show an excitation as an additional DW. We
can verify that the two excitations propagate symmetrically
by studying the correlation of density on both sides of j0, as
is done in Appendix B. The symmetric propagation results
in the complete inversion of the density profile between the
excitations, as shown in Fig. 2(a). The analytic result in
Fig. 2(a) is based on the DW model and agrees very well
with the numerical solution.

In the case of an impurity, the time evolution is richer. The
impurity can oscillate between the two empty sites which form
the antisoliton, and thus form a bound state with the antisoliton
[27]. In this case, only the soliton excitation propagates and the
density is inverted on one side of the lattice. The superposition
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FIG. 2. Density distribution of the bath 〈nb
j 〉 and the impurity 〈nj 〉

in the first half of the lattice. Panel (a) [(b)] is for the commensurate
(incommensurate) filling. The bath density is shown at t = 0 and
the bath and impurity densities at (a) t = 6/J and (b) t = 8/J . The
analytic result of the DW model in panel (a) agrees well with the
TEBD result.

of evolutions where both excitations propagate or only the
soliton propagates in either direction results in a reduced
amplitude of the density oscillation with respect to the initial
state. In addition, the impurity can move past a neighboring
occupied site only in a second-order process with velocity 4J 2

U

[47], which for U � J results in the very slow motion of the
impurity observed in Fig. 2. For the incommensurate filling,
the numerical results in Fig. 2(b) show a similar population
reversal in the regions between the DWs as in the MI. The
DWs in the density remain in the final state after the excitation
has passed. Using the DW model when solitons are present
in the ground state is more delicate since the excitations can
interact with these solitons (see Appendix A) and a mapping
to free fermions would be inaccurate.

In order to understand how the solitons in the initial state
affect the new soliton and antisoliton excitations, we compute
the distributions of neighboring filled sites 〈nb

jn
b
j+1〉 and empty

sites or holes 〈nh
j n

h
j+1〉 = 〈(1 − nb

j )(1 − nb
j+1)〉 as functions

of time. They correspond respectively to the distributions of
solitons and antisolitons. Note that the measurement of such
correlations is well within reach of experiments with quantum
gas microscopes [48]. The soliton distribution for the MI initial
state is shown in panels (a) and (b) of Fig. 3. The distribution is
zero at j0 − 1 and j0, and obtains maxima at j0 − 2 and j0 + 1
when the bath fermion at j0 tunnels either to j0 − 1 or j0 + 1.
The distributions result from the superposition of these two
configurations. Correspondingly, the antisoliton distributions
in panels (c)–(f) have initially a maximum at j0 − 1 and j0.

The different perturbations lead to distinctly different
dynamics. In Figs. 3(a) and 3(c), where the potential is
quenched at j0 in the MI state, the distributions of both solitons
and antisolitons become zero at the center, indicating that the
two excitations indeed propagate symmetrically in opposite
directions. The soliton distributions in Figs. 3(a) and 3(b) are
almost identical for the static barrier and the impurity. For
the antisolitons, on the contrary, creating an impurity at j0

produces an interference pattern and a maximum remains at the
center, as seen in Fig. 3(d). The interference pattern indicates
that the antisoliton can be in several momentum states.
Whereas in the potential quench, the soliton and antisoliton
excitations have a high probability to obtain momenta of equal
magnitude in opposite directions, in the case of the impurity,

FIG. 3. (a),(b) Soliton distribution 〈nb
jn

b
j+1〉 as a function of

position and time for the MI initial state when the system is perturbed
with a static barrier or an impurity, respectively. The distributions are
almost identical. (c),(d) The corresponding antisoliton distributions
〈nh

j n
h
j+1〉. The antisoliton can form a bound state with the impurity

(d), and a maximum remains at the center. (e),(f) The antisoliton
distributions for incommensurate filling. The motion of the antisoliton
is restricted because of the solitons present in the initial state.

part of the momentum in the direction of the antisoliton can
be absorbed by the impurity. The antisoliton can thus have a
smaller momentum than the soliton. The impurity can form a
bound state with the antisoliton, as shown by the remaining
maximum at the center of the lattice. These differences are
also seen in the line profiles of Fig. 4(c) taken at time t = 6/J .
The soliton distributions at t = 6/J are very similar to the
antisoliton distribution for the static barrier in Fig. 4(c).

C. Time evolution at incommensurate filling

For incommensurate filling, an additional effect is observed.
Figure 4(b) shows that the soliton excitation does not propagate
as a free particle but is slowed down by the interactions with
the other solitons in the system. Interestingly, the antisoliton
excitation moves even less. After the initial propagation, it
stays confined in the central region of the lattice, as shown
in Figs. 3(e) and 3(f) and Fig. 4(d). This confinement can be
explained by energy conservation: the motion of an antisoliton
excitation past a soliton would mean that they annihilate. The
time evolution can be drawn schematically as

|ψ(0)〉 = |o x o o x�o x o o x o〉
→ |o x�o o o x x�o o x o〉
→ |o o x o o x o x o x o〉,

where the sites with (without) bath particles are denoted by
o (x). The impurity is not drawn but is considered to stay at
the underlined central site. When U = V � J and kinetic
energy is not taken into account, the total energy in the
first configuration is E = 2V + U = 3V . On the second line,
E = 3V , whereas on the last line, where the antisoliton has
annihilated on the right side, E = 2V . The annihilation should
have a very low probability for V � J since the released
energy cannot be absorbed as kinetic energy. Only a soliton
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FIG. 4. (a) Number of antisolitons NAS as a function of time
for both perturbations and initial states. A dashed line is used
for the impurity since the lines for the static barrier and impurity
overlap. When the initial state is a MI (incommensurate), NAS

saturates at a value close to 1 (0.8). (b) The difference between
the soliton distributions at times t = 6/J and t = 0, δ〈nb

jn
b
j+1〉 =

〈ψ(t)|nb
jn

b
j+1|ψ(t)〉 − 〈ψ(0)|nb

jn
b
j+1|ψ(0)〉, for incommensurate fill-

ing. The distributions are very close to each other for the two
perturbations. (c)–(f) The antisoliton distribution 〈nh

j n
h
j+1〉 at time

t = 6/J for (c),(e) commensurate and (d),(f) incommensurate filling.
For the impurity, the distribution has a maximum at the center
whereas, for the static barrier, there is a minimum. In panels (a)–(d),
U = V = 50J and in panels (e) and (f), U = V = 10J .

can move past another soliton and conserve energy. Since the
solitons in the initial state are not completely localized, the
antisoliton distribution does not go to zero abruptly in Fig. 3
but rather diminishes smoothly.

To verify that the antisoliton does not annihilate with
the solitons, we compute the total number of solitons
NS(t) = ∑

j 〈ψ(t)|nb
jn

b
j+1|ψ(t)〉 and antisolitons NAS(t) =∑

j 〈ψ(t)|nh
jn

h
j+1|ψ(t)〉. Figure 4(a) shows NAS(t), which is

close to zero at t = 0 and increases until t ≈ 1/J , the time
scale for the tunneling of the bath particle away from j0. The
number saturates to a value close to 1 in the MI state and to a
smaller value at incommensurate filling. For t � 1/J , we have
checked that both NS(t) and NAS(t) stay constant, confirming
that no annihilation takes place. The lower saturation value for
incommensurate filling is due to the finite probability of site
j0 being initially empty, in which case excitations would not
be created. Consistently, the value to which NAS(t) saturates
is approximately the initial occupation probability 〈nb

j0
(0)〉.

IV. EXPERIMENTAL REALIZATION WITH ULTRACOLD
DIPOLAR GASES

Lattice models with long-range interactions have so far been
realized with bosonic dipolar atoms [36,37] and molecules
[32,33]. In one dimension, spinless fermions with nearest-
neighbor interactions can be mapped to a spin model [39].
Since spin systems can be mapped to hard-core bosons
[3], bosonic particles with both hard-core and long-range
interactions could be used to realize the fermionic bath
studied here.

In quantum gas experiments, V
J

between zero and ap-
proximately 2 was measured in extended Bose-Hubbard [37]
and t − J -like [36] models realized with magnetic atoms. In
optical lattices, U is tunable by Feshbach resonances [49]
and J by the lattice spacing and depth, which allows one
to tune V

J
[50]. For the same atoms and laser wavelengths

as in [37], we estimate that a larger lattice depth would
allow one to reach V ≈ 10J , where J ≈ 2.7 Hz [27]. A
coherent Bose-Einstein condensate was preserved for up to
1 s [37], which gives a time scale t ≈ 2.7 1

J
sufficiently long

to observe the different dynamics resulting from the two
different perturbations. The time scale required to observe the
confinement of the antisoliton at an incommensurate filling of
the bath is of the same order of magnitude. Another possibility
to realize the type of bath studied here are polar molecules
confined to deep lattices. Spin exchange by dipole-dipole
interaction was demonstrated with immobile KRb molecules
using different rotational states as pseudospin states [32,33].

The results of Sec. III have been obtained for a large
repulsion for clarity. Figures 4(e) and 4(f) show that the same
clear differences are observable for U = V = 10J , although
the probability of finding neighboring empty sites in the
ground state is larger. The larger effective tunneling energy
of the impurity leads to a broader maximum of the antisoliton
distribution at the center of the lattice. Figures corresponding
to Figs. 2–4(a) are presented in Appendix C for U = V = 10J .

Excitations to higher bands can be prevented by mak-
ing the band gap an order of magnitude larger than the
tunneling energies and interactions [36,37]. We therefore
expect choosing interactions U = V ≈ 10J larger than the
bandwidth of the lowest band and smaller than the band gap
to be feasible so that the single-band approximation is valid.
We consider a system initially in the ground state at zero
temperature, whereas, in experiments, the temperature of the
gas cloud is nonzero. For temperatures close to or larger than
V , thermally excited soliton-antisoliton pairs could have an
effect on the dynamics. To minimize the effects of thermal
excitations, postselection techniques [12] could be used. Note
that initial-state preparation can be used to create an excited
initial state with alternating occupation [51].

In experiments with ultracold gases, uniform box potentials
have recently been realized [52–55]. Most experiments how-
ever use a harmonic potential for confining the gas cloud. We
show in Appendix D that a Mott insulator ground state can be
realized in the central region of a sufficiently shallow harmonic
trap. The dynamics in this case is the same as in a box trap.
To realize an incommensurate phase, a box trap is required.
On the other hand, superimposing a harmonic potential and a
box leads to a stronger confinement of the antisoliton than a
uniform box potential, as shown in Appendix D.

V. CONCLUSIONS

In summary, we observe that the presence of solitons in
the bath leads to very different dynamics of the soliton and
antisoliton excitations created by a local perturbation. The
antisoliton does not annihilate with the solitons and is therefore
confined close to its origin while the soliton excitation
propagates. This is an example of the restrictions imposed by
energy conservation on the dynamics: for interactions larger
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than the bandwidth, the energy released in an annihilation
could not be absorbed as kinetic energy. Besides the numerical
results, the simplified analytic model developed here offers a
basis for understanding the dynamics of soliton excitations
which occur in various physical systems.
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APPENDIX A: SIMPLIFIED DOMAIN-WALL MODEL

Using a dual bond representation, one can build a simplified
model of the soliton excitations. Here, we consider the ground
state for the commensurate and incommensurate filling with a
low density of excess particles. In this case, the solitons can be
assumed to not interact. A system with filling slightly below
one-half, where antisolitons exist in the ground state, could be
treated in the same way. We only consider dynamics in the case
of a local potential quench and the MI initial state, where the
soliton or antisoliton excitation can be described in terms of a
single particle. Extending the model to account for the motion
of the impurity or dynamics in the case of solitons in the ground
state would require taking the interactions into account.

1. Dual bond representation

The model of spinless fermions with nearest-neighbor
interactions [Eq. (1) of the main text] can be mapped to the
XXZ spin model

Hb = Jxy

⎛
⎝1

2

∑
〈i,j〉

S+
i S−

j + 	
∑

j

Sz
jS

z
j+1

⎞
⎠ (A1)

by the Jordan-Wigner transformation [39]. The mapping is
illustrated in Fig. 5. In the first sum of Eq. (A1), 〈i,j 〉 denotes
neighboring sites. The coupling constant between the spins
is denoted by Jxy and the anisotropy in the z direction by
	. The operators S±

j = Sx
j ± iS

y

j are the raising and lowering

operators on site j of a spin- 1
2 chain, Sa

j = 1
2σa

j , and σa
j are

the Pauli matrices with a = x,y,z. The parameters in terms of

FIG. 5. Spinless fermions with nearest-neighbor interactions off
half filling can be mapped to an XXZ chain with a nonzero
magnetization. The solitons of two neighboring occupied sites are
mapped to two neighboring up spins.

FIG. 6. Indexing of the lattice sites and bonds of the spin model.

J and V are

Jxy = 2J,

	 = V

Jxy

.
(A2)

The soliton excitations correspond in the XXZ model to
two neighboring spins up, and antisolitons to two neighboring
spins down. These excitations can be represented by filled
bonds, which are then mapped to spinless fermions in an
otherwise empty lattice. One starts by replacing the lattice site
operators in Hamiltonian (A1) by bond operators. In terms of
the Pauli matrices σa, Hb is written as

Hb = Jxy

4

L−1∑
j=1

(
σx

j σ x
j+1 + σ

y

j σ
y

j+1 + 	σz
j σ z

j+1

)
. (A3)

In the spin notation, the density operator is written as

nb
j = Sz

j + 1
2 = 1

2σ z
j + 1

2 .

The local potential term of Eq. (3) of the main text therefore
transforms into

H ′ = U

2
σ z

j0
, (A4)

leaving out the constant term. The matrices σa can be
transformed into bond operators by the Kramers-Wannier
transformation [56,57],

τ z

j+ 1
2

= σ z
j σ z

j+1,

τ
y

j+ 1
2

=
j∏

i=1

σx
i .

(A5)

The indexing of the bonds is illustrated in Fig. 6. When σy =
−iσ zσ x is also transformed, the Hamiltonian (A3) becomes

Hb = Jxy

4

L−2∑
j=2

(
1 − τ z

j+ 1
2

)
τ

y

j− 1
2
τ

y

j+ 3
2
+ Jxy	

4

L−1∑
j=1

τ z

j+ 1
2

(A6)

and σ z
j0

in term (A4) becomes

σ z
j0

= σ z
1

j0−1∏
j=1

τ z

j+ 1
2

(A7)

for j0 � 2. We consider the case where the system is initially
in the commensurate Mott insulator phase and 	 � 1. When
the number of lattice sites is odd and

∑
j 〈Sz

j 〉 = 1
2 , the spins

063605-5



A.-M. VISURI, P. TÖRMÄ, AND T. GIAMARCHI PHYSICAL REVIEW A 95, 063605 (2017)

FIG. 7. Instead of lattice sites, the system can be represented as
bonds. The bonds are either empty or occupied by a spinless fermion,
corresponding to a domain wall in the spin chain.

at the edge sites are up and one can fix the boundary condition
〈σ z

1 〉 = 1.
If neighboring spins point in opposite directions, the bond

operator τ z gives the value −1, and for neighboring spins in
the same direction, +1. The value +1 therefore corresponds
to the existence of a domain wall, which can be a soliton
(two neighboring spins up) or an antisoliton (two neighboring
spins down). We will use here the term domain wall (DW)
for both since they have the same bond representation. For the
configuration of Fig. 6, the value of 〈σ z

j0
〉 is determined by the

parity of j0. When j0 is odd, 〈σ z
j0
〉 = 1, and when j0 is even,

〈σ z
j0
〉 = −1. We focus on the case where j0 is odd and there is

initially a spin up at j0.
Changing into the bond indices l = j − 1

2 , the operators τ z
l

and τ
y

l = i(τ−
l − τ+

l ) can be transformed into spinless fermion
operators using

τ z
l = 2c

†
l cl − 1,

τ+
l = c

†
l e

−iπ
∑

m<l c
†
mcm .

In terms of the fermion operators, one can write [57]

Hb = Jxy

2

L−2∑
l=2

[(1 − c
†
l cl)c

†
l−1cl+1

− (1 − c
†
l cl)c

†
l−1c

†
l+1 + H.c.] + Jxy	

2

L−1∑
l=1

c
†
l cl (A8)

and

σ z
j0

=
j0−1∏
l=1

(2c
†
l cl − 1). (A9)

The creation of a fermion now corresponds to the creation
of a DW in the original spin chain, as depicted in Fig. 7.
The DW representation can be applied to calculating both
ground-state quantities and time-dependent ones, as is done in
Appendixes A 2 and A 3.

2. Density distribution in the ground state

The density operator can be written in terms of the Sz
j

spin operator as nb
j = Sz

j + 1
2 . One can directly use the

expression (A9) for calculating the local magnetization 〈Sz
j 〉

in a system with only few domain walls. The energy cost
of creating a domain wall is large for 	 � 1 and one can
expect 〈c†l−1c

†
l+1〉 ≈ 0. In Hamiltonian (A8), the first term on

the second line can thus be neglected in this limit. When there
is no creation or annihilation of domain walls, the last term
of Eq. (A8) is a constant shift in energy and can also be
left out.

When the density of domain walls is very low, 〈c†l cl〉 ≈ 0,
one can approximate

(1 − c
†
l cl) ≈ 1 (A10)

on the first line of Eq. (A8). This approximation removes the
interaction and leads to the free fermion Hamiltonian

Hb ≈ Jxy

2

L−2∑
l=2

(c†l−1cl+1 + H.c.). (A11)

This Hamiltonian is an excellent approximation of (A8) as
long as the domain walls are far from each other. However,
using Hamiltonian (A11) directly to compute the ground-
state density distribution would be inadequate. It separates
into two decoupled Hamiltonians for the odd and even
bonds, Hb = Hodd + Heven. The Hamiltonian Hb therefore
has degenerate pairs of eigenstates corresponding to Hodd

and Heven, with nearly identical wave functions. The wave
functions corresponding to two eigenstates with the same
energy have a similar envelope, but the ones which correspond
to the eigenstates of Hodd are only nonzero on the odd bonds,
and respectively for Heven. In this description, the domain walls
in the two degenerate states are discernible, and fermionic
statistics do not exclude two domain walls in the same region
of space. In Hamiltonian (A8), the interaction on the first
line prevents the DWs from crossing and ensures the correct
fermionic statistics.

When the number of domain walls is small, their wave-
length is very large. We can therefore take the continuum limit
and ignore the microscopic lattice, since the envelopes of the
wave functions vary at a much larger length scale. In this limit,
we can consider the nondegenerate eigenstates of a particle
in a box,

ϕl
k =

√
2

L
sin(kl), (A12)

with the momenta k = km = mπ
L

, m = 1,2, . . . ,L. We thus
consider indistinguishable domain walls which can be located
on all bonds. Using these states excludes properly two domain
walls from the same region of space by the effect of fermionic
statistics even without the interaction term.

The fermion operators have the momentum representation

c
†
l =

∑
k

ϕl∗
k c

†
k. (A13)

Substituting Eq. (A13), the Hamiltonian of Eq. (A11) can be
written as

Hb =
∑

k

εkc
†
kck, (A14)

where εk = Jxy cos(2k). For this dispersion, there is a max-
imum of energy at k = 0. It is more convenient to have
the minimum of energy at k = 0, and therefore we shift the
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momentum by π
2 :

c
†
l → e−i π

2 lc
†
l , (A15)

which changes Hb → −Hb. The basis functions shift as

ϕl
k = e−i π

2 l

√
2

L
sin(kl). (A16)

The phase factor in ϕl
k cancels in expectation values which

contain |ϕl
k|2. In Hamiltonian (A14), the dispersion relation

becomes

εk = −Jxy cos(2k). (A17)

The ground state of the free Hamiltonian is the many-body
state of N noninteracting fermions,

|�1,2,...,N 〉 =
∑

l1,...,lN

ϕ
l1,...,lN
k1,...,kN

|l1〉 ⊗ |l2〉 ⊗ · · · |lN 〉. (A18)

Here, lα denotes the coordinate of fermion α. In the direct
product, |l〉 denotes a single-particle state where site l is
occupied and other sites are empty,

|l〉 = |0, . . . ,0,1l ,0, . . . ,0〉. (A19)

The coefficient ϕ
l1,...,lN
k1,...,kN

is given by the Slater determinant

ϕ
l1,...,lN
k1,...,kN

= 1√
N !

∣∣∣∣∣∣∣∣∣∣∣

ϕ
l1
k1

ϕ
l1
k2

· · · ϕ
l1
kN

ϕ
l2
k1

ϕ
l2
k2

· · · ϕ
l2
kN

...
. . .

...

ϕ
lN
k1

· · · ϕ
lN
kN

∣∣∣∣∣∣∣∣∣∣∣
. (A20)

Equation (A9) can be used for calculating the expectation value
of magnetization 〈Sz

j 〉 = 1
2 〈σ z

j 〉:
〈�1,...,N |Sz

j |�1,...,N 〉

= 1

2
〈�1,...,N |

j−1∏
d=1

(2c
†
dcd − 1)|�1,...,N 〉

= 1

2

∑
l1,...,lN

|ϕl1,...,lN
k1,...,kN

|2
j−1∏
d=1

[
2

N∑
α=1

δd,lα − 1

]
, (A21)

which gives the expectation value of density as〈
nb

j

〉 = 〈
Sz

j

〉 + 1
2 . (A22)

The number of fermions N is equal to the number of domain
walls N = NDW. In the ground state, the number of DWs is
given by the number of bath fermions Nb,

NDW = 2

(
Nb − L

2

)
− 1. (A23)

In Fig. 9 with (Nb − L
2 ) = 2.5, there are four DWs. The most

probable locations of the DWs are seen as two neighboring
maxima or minima in the density distribution of the upper
panel. The result of Eq. (A22) and the many-body TEBD
solution are shown in Fig. 8 for N = 1 and L = 60. There is a
very good agreement between the two solutions. When N > 1,
the accuracy of the approximation (A11) should reduce since
there can be interactions between the DWs. For N = 4 and
L = 61, we find however a good agreement between Eq. (A21)

FIG. 8. Density distribution has one domain wall when L = 60
and the number of fermions is Nb = L

2 + 1. The result of the DW
model for N = 1 agrees very well with the many-body TEBD
solution.

and the numerical TEBD result, as shown in Fig. 1(b) of the
main text and in the upper panel of Fig. 9.

One can see the correspondence between solitons and
free fermions also by comparing the many-body density
distribution in the upper panel of Fig. 9 directly to the density
distribution of free fermions

〈FS|nj |FS〉 =
∑

k

∣∣ϕj

k

∣∣2
(A24)

shown in the lower panel of Fig. 9. The sum is over k =
π

L+1 , . . . ,kF , where kF = Nπ
L+1 , and |FS〉 = ∏

k�kF
c
†
k|0〉. The

positions of neighboring minima or maxima in the many-body
density distribution coincide with the maxima of the free
fermion density, which has Friedel oscillations due to the
boundaries.

3. Time evolution of the density distribution

In the Mott insulator phase, the time evolution of the density
distribution after a local perturbation can be calculated in a
similar way as the ground-state density in Appendix A 2. We
limit the discussion to the time evolution of one DW excitation.
For incommensurate filling with more than one DW, one could

FIG. 9. Upper panel: ground-state density distribution in the MI
and incommensurate phases. The nearest-neighbor interaction is V =
50J and the size of the lattice is L = 61. The number of fermions
is Nb = 31 in the MI case and Nb = 33 in the incommensurate case,
which gives NDW = 4. Lower panel: the density distribution of free
fermions 〈nj 〉 as in Eq. (A24) with N = 4.
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not use the free-fermion description but would have to consider
the interaction of the DWs.

As can be seen from Figs. 6 and 7, if the up spin at site
j0 in the original lattice is exchanged with the down spin at
site j0 + 1, the DWs are created at bonds j0 − 1 and j0 + 1.
If the up spin at site j0 is exchanged with the down spin at
site j0 − 1, the DWs are created at bonds j0 − 2 and j0. When
considering processes in the same energy sector, a DW created
at bond j0 − 2 or j0 − 1 can only move on the left, l < j0, and
a DW created at bond j0 or j0 + 1 can only move on the right,
l � j0. One can thus consider the time evolution of only half
of the system. We consider an initial state where the DWs have
already been created. The DW on the right side can be created
at two neighboring bonds, j0 or j0 + 1. One can therefore write
the initial state as a superposition,

|ψ(0)〉 = 1√
2

(|j0〉 + |j0 + 1〉)

= 1√
2

∑
k

[
ϕ

j0∗
k + ϕ

j0+1∗
k

]|k〉. (A25)

The calculation is presented here for the right side of the lattice.
The left side is symmetric.

The time-dependent state is obtained by operating with the
time evolution operator,

|ψ(t)〉 = e−iHbt |ψ(0)〉
= 1√

2

∑
k

[
ϕ

j0∗
k + ϕ

j0+1∗
k

]
e−iεk t |k〉, (A26)

where Hb is given by Eqs. (A14) and (A17). We operate on
the time-evolved state with the operator σ z of Eq. (A9),

σ z
j |ψ(t)〉 =

j−1∏
d=1

(2c
†
dcd − 1)

1√
2

∑
k

[
ϕ

j0∗
k + ϕ

j0+1∗
k

]

× e−iεk t

L∑
l=j0

ϕl
k|l〉

= 1√
2

∑
k,l

[
ϕ

j0∗
k + ϕ

j0+1∗
k

]
ϕl

ke
−iεk t

×
j−1∏
d=1

(2δd,l − 1)|l〉. (A27)

The local magnetization is now

〈ψ(t)|Sz
j |ψ(t)〉 = 1

4

∑
l

∣∣∣∣∣
∑

k

[
ϕ

j0∗
k + ϕ

j0+1∗
k

]
ϕl

ke
−iεk t

∣∣∣∣∣
2

×
j−1∏
d=1

(
2δd,l − 1

)
. (A28)

Figure 2 of the main text shows the density distribution given
by Eq. (A28) together with the many-body TEBD result. The
initial state is slightly different in the TEBD simulation than
in the DW model, which leads to some differences in the time

FIG. 10. Correlator 〈ψ(t)|	nb
i 	nb

−i |ψ(t)〉 at different time steps
in the case of (a),(c) a static potential barrier and (b),(d) an impurity.
Panels (a) and (b) correspond to the MI and panels (c) and (d) to the
incommensurate phase.

evolution. The motion of the DW in the density is however
quite accurately given by the simple model.

APPENDIX B: DENSITY CORRELATION

The complete inversion of density for the static barrier
perturbation in Fig. 2(a) of the main text suggests that
the soliton and antisoliton excitation propagate in opposite
directions with a probability close to 1. The soliton and
antisoliton distributions of Figs. 3 and 4 in the main text
become zero at the center of the lattice, which is consistent with
propagation to opposite directions. We can further investigate
the symmetry in the motion of the excitations by computing
the correlation

Ci,−i(t) = 〈ψ(t)|	nb
i 	nb

−i |ψ(t)〉 (B1)

shown in Fig. 10(a). Here, i = j − j0 and

	nb
i = nb

i − 〈ψ(0)|nb
i |ψ(0)〉.

The value Ci,−i(t) = 1 means that the potential has produced
an inversion of the magnetization at distance i in a symmetric
way, and the soliton and antisoliton excitations have propa-
gated in opposite directions. A totally asymmetric time evolu-
tion where only one of the excitations propagates and the other
one stays fixed would lead to Ci,−i(t) = 0. Values between
zero and 1 result from averaging over different possible time
evolutions. These cases are detailed with schematic diagrams
in Appendix C of [27].

The correlation in Fig. 10(a) clearly indicates symmetric
propagation. This is in agreement with the DW model given in
Appendix A, which indeed leads to the creation of a domain
wall on both sides of the center site. In the case of an impurity,
the time evolution is more complicated. The impurity can
move to the neighboring site and form a bound state with the
antisoliton excitation, in which case only the soliton excitation
propagates [27]. This results in a reduced amplitude of the
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FIG. 11. Density distribution of the bath fermions and the
impurity in (a) the commensurate and (b) the incommensurate phase.
The bath density is shown for both perturbations at times t = 0 and (a)
t = 6/J , (b) t = 8/J . The nearest-neighbor and on-site interactions
are V = U = 10J .

magnetization oscillation with respect to the initial state, and
the correlation in Fig. 10(c) has a smaller maximum value
than in Fig. 10(a). In both cases, however, one can see a
light-cone propagation leading to zero correlation beyond a
certain distance.

The correlation of Eq. (B1) shown in Figs. 10(b) and
10(d) has smaller values than in the commensurate case since
the particles are initially partly delocalized. The maximum
of the correlation is again smaller for the impurity than
for the static barrier, since a similar bound state of the
impurity and the possible antisoliton excitation can occur
here as in the commensurate case. The correlation has an
additional maximum between 10 and 20 sites from the center,
corresponding to the density profile.

APPENDIX C: SMALLER INTERACTION V = 10 J

For smaller interactions U = V = 10J , we obtain essen-
tially the same results as for U = V = 50J . Due to a smaller
nearest-neighbor repulsion, the particles are more delocalized
in the initial state. This leads to a slightly reduced amplitude of
the density oscillation in the ground state at t = 0 in Fig. 11.
Due to a larger effective tunneling 4J 2

U
, the impurity moves

further, which results in a broader maximum of the antisoliton
distribution at the center of the lattice in Fig. 4 of the main text.
Essentially the same features as for U = V = 50J can be seen
in the time evolution of the soliton and antisoliton distributions
in Fig. 12: the excitations propagate away from the center when
a static barrier is created, whereas for the impurity, the soliton
propagates while the antisoliton distribution has a maximum at
the center. For the incommensurate filling shown in panels (e)
and (f), the antisoliton excitations clearly propagate a shorter
distance than in the MI.

As seen in Fig. 12, there is a small density of antisolitons in
the ground state. This is seen in the total number of antisolitons
in Fig. 13, which is larger than for U = V = 50J . The number
of antisolitons at t = 0 and the increase during the simulation
time are shown in Table I. For U = V = 50J, NAS is initially
close to zero and the increase is approximately equal to the
initial occupation of site j0 in both the MI and incommensurate
phases. The probability of not creating excitations is thus
approximately equal to the probability of site j0 being empty.

FIG. 12. Panels (a) and (b) show the antisoliton distribution
〈nh

j n
h
j+1〉 as a function of position and time for the MI initial

state when the system is perturbed with a static barrier or an
impurity, respectively. Panels (c) and (d) show the corresponding
soliton distributions 〈nb

j n
b
j+1〉. Panels (e) and (f) show the antisoliton

distribution for incommensurate filling.

For U = V = 10J , the increase in the number of antisolitons
is slightly smaller than the initial occupation of site j0. When
the particles are more delocalized, it is possible that both the
sites j0 and a site next to it are occupied. In this case, an
additional soliton-antisoliton pair would not be created.

The presence of solitons can also be seen as DWs in the
density distribution. The number of DWs NDW(t) in the density
distribution is equal to the number of neighboring filled sites
NS(t) for V → ∞. For a finite V , more than NDW pairs
of neighboring occupied sites can exist in the ground state
due to delocalization, which leads to a smaller amplitude
of the density oscillation. Correspondingly, the number of
antisolitons in the ground state would be zero for V → ∞
but can be nonzero for a finite V . We have verified that
NAS(t) ≈ NS(t) in the MI state, and NAS(t) ≈ NS(t) − NDW(0)
for incommensurate filling, with differences of order 10−3 for
U = V = 50J and 0.08 for U = V = 10J . We attribute the
slightly larger soliton number to a small asymmetry in the

FIG. 13. Number of antisolitons in the MI and incomensurate
states for U = V = 10J . The initial value is larger than for U =
V = 50J since the energy cost of neighboring occupied sites in the
ground state is smaller.
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TABLE I. Number of antisolitons in the initial state, the dif-
ference 	NAS = NAS(t = 8/J ) − NAS(0), and the initial occupation
probability of site j0. The numbers are shown for the MI and
incommensurate states and interactions U = V = 10J and U = V =
50J . The number at time t = 8/J corresponds to the time evolution
with the local potential quench. For the impurity case, the numbers
are the same within the accuracy shown here.

U/J = V/J NAS(0) 	NAS 〈nb
j0

(0)〉
MI 50 0.02 1 1

10 0.6 0.9 1
Incomm. 50 0.02 0.8 0.8

10 0.5 0.7 0.8

system: a nondegenerate state for odd L at half filling requires
one filled site more than the number of empty sites.

APPENDIX D: HARMONIC TRAP

The ground state of the bath with a harmonic potential is
described by the Hamiltonian

H = Hb + Htrap, (D1)

where

Htrap =
∑

j

Vtrap(j )nb
j (D2)

and Vtrap(j ) = V0(j − j0)2. For a sufficiently small V0, i.e.,
when V0(j − j0)2 � 2V at j = j0 + Nb − 1, the ground state
in the central region of the trap is a Mott insulator, leading
to the same dynamics as in a uniform system with open
boundary conditions. The ground-state density distribution is
shown in Fig. 14. For the ground state to be incommensurate,
the particles must be confined by hard boundaries. The lower
panel of Fig. 14 shows the ground-state density distribution
for a stronger harmonic confinement, where the energy is
minimized by a higher particle density in the center of the

FIG. 14. Density of particles in a harmonic trap, in the ground
state of Hamiltonian (D1). Upper: for a sufficiently shallow trap, the
central region of the system is in the MI state. Lower: for a larger V0

or Nb, the central region of higher average density is surrounded by
Mott insulator regions. Here, L = 80, and the density distributions
extend over approximately 60 sites.

FIG. 15. Density distribution in the ground state of Hamiltonian
(D1) calculated by TEBD. The strength of the harmonic potential
Vtrap(j ) = V0(j − j0)2 is V0 = 0.005J . The filling is incommensurate
with Nb = 33 and L = 61, which leads to four domain walls as in
Fig. 9. The height of the potential at the edges of the lattice is 4.5J

and the nearest-neighbor repulsion is V = 10J .

trap surrounded by Mott insulator regions. This distribution is
qualitatively different from the incommensurate case of Fig. 9,
and leads to different dynamics.

We find that when a shallow harmonic potential is super-
imposed on a system limited by hard boundaries, the particle
density at incommensurate filling is similar to the one in a
uniform box but the solitons are distributed closer to the center,
as shown in Fig. 15. At half filling, the ground-state density dis-
tribution is not modified significantly by the harmonic potential
when Vtrap(1) = Vtrap(L) � 2V . In the time evolution, H =
Hb + Htrap + H ′, where Htrap is modified in the case of the
impurity,

Htrap =
∑

j

Vtrap(j )
(
nb

j + nj

)
. (D3)

The time-dependent antisoliton distributions in Fig. 16 show
that, at incommensurate filling, the antisoliton is confined to a
smaller region around j0 than in Figs. 12(e) and 12(f).

FIG. 16. Antisoliton distributions as in Figs. 12(c)–12(f) in the
case of a harmonic trapping potential with V0 = 0.005J . Here,
L = 61, Nb = 33, and the nearest-neighbor repulsion is V = 10J .
At commensurate filling, the distribution is not significantly modified
from the case of a uniform potential, whereas at incommensurate
filling, the antisoliton is confined closer to the center of the
lattice.
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