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(Received 15 March 2019; published 21 August 2019)

We study the Hall response of two-dimensional lattice systems of charged fermions in a transverse
magnetic field, in the ballistic coherent limit. We identify a setup in which this response vanishes over wide
regions of parameter space: the “Landauer-Büttiker” setup commonly studied for coherent quantum
transport, consisting of a strip contacted to biased ideal reservoirs of charges. We show that this effect does
not rely on particle-hole symmetry, and is robust to a variety of perturbations including variations of the
transverse magnetic field, chemical potential, and temperature. We trace this robustness back to a
topological property of the Fermi surface: the number of Fermi points with positive velocity of the system.
We argue that the mechanism leading to a vanishing Hall response applies to noninteracting and interacting
systems alike, which we verify in concrete examples using density-matrix renormalization group
simulations.
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Transport properties induced by electromagnetic fields
are an active area of study in condensed matter physics. The
Hall response, σH, is of particular interest: It represents the
off-diagonal response of a current density J to an electric
field E, σH ¼ εijσij, where Ji ¼ σijEj and εij is the Levi-
Civita symbol. The Hall response probes important geo-
metric or topological properties of quantum systems: the
Fermi-surface curvature of metals under weak magnetic
fields [1–3], the Berry curvature of anomalous Hall systems
[4], and related topological invariants of band insulators
[5,6]. Studies of σH are ubiquitous in fields focused on
topological quantum matter [7] and synthetic realizations
thereof [8,9].
Scattering is essential in conventional studies of σH: in

the two-dimensional (2D) Hall effect [10], e.g., Boltzmann-
type approaches [11] that reproduce the observed
Hall constant, RH, for weak magnetic fields B: RH≡
−σH=ðσxxσyyBÞ ∼ −1=ðneÞ, where n is the density of
carriers with charge e, and xðyÞ denote the longitudinal
(transverse) direction. Scattering also explains the plateaus
of quantized Hall conductance (σH ¼ νe2=h for filling
factor ν) appearing in strong-field regimes [12–14].
As ballistic systems become more accessible experi-

mentally [8,15,16], new challenges are emerging for theory
beyond Boltzmann-type approaches, despite past efforts
in mesoscopic systems [17,18]. For example, σii can be
infinite in clean interacting systems, even at a finite temper-
ature [19,20]. The connection between Hall response and
carrier density is not even clear in the presence of interactions
[21–24]. Recent progress was made with the calculation of
RH in dissipative metallic systems [25], where σii is finite
at zero frequency [26]. Nevertheless, the Hall response of
coherent ballistic systems remains largely unexplored.

In this Letter, we identify a ballistic setup in which
charged fermions in a transverse magnetic field can exhibit
a strictly vanishing Hall response. We demonstrate this
effect in noninteracting 2D lattice systems at zero temper-
ature, and extend our results to interacting analogs using a
density-matrix renormalization group (DMRG). We show
that the Hall response vanishes under a wide variety of
perturbations: variations in magnetic field, chemical poten-
tial, temperature, and particle-hole symmetry breaking. We
relate this remarkable robustness to the topological nature
of the key property underpinning the effect: the number of
Fermi points with positive velocity of the system.
Hall response of ballistic systems.— We consider lattice

systems in a 2D strip geometry (Fig. 1), with edges in the y
direction. Edges imply that the transverse current Jy vanishes
in the low-frequency limit ω → 0 of the longitudinal electric
field Ex. The Hall response is then described by the trans-
verse polarizationdifferenceΔPyðx; tÞ ¼

R
t
t0
dt0Jyðx; t0Þ.We

set Pyðx; t0Þ ¼ 0 at time t0 right before Ex is applied
(corresponding to a gauge choice [29–31]), and denote
ΔPyðx; tÞ≡ Pyðx; tÞ.
The relation between Py and σH can be derived using

linear response theory [32]: writing Ex ¼ −∂tAx (with
e ¼ ℏ ¼ c ¼ 1), one finds

Pyðk;ωÞ ¼ −σHðk;ωÞAxðk;ωÞ; ð1Þ
where k is the crystal momentum along x. This can be seen
as a Kubo formula for the polarization induced by a time-
dependent vector potential, Pyðx; tÞ ¼ i

P
x0
R
dt0θðt − t0Þ

h½Pyðx; tÞ; Jxðx0; t0Þ�iAxðx0; t0Þ [see the Supplemental
Material for details [33] ].
Equation (1) allows for very different Hall responses

σH, depending on the nature of Ex, for the same
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longitudinal current Jx. Here we consider a paradigmatic
setup for coherent quantum transport: a system with two
ends in the x direction, where Ex (or Jx) is generated by
ideal contacts to two external reservoir of charges (left and
right) with chemical potentials μL and μR [Fig. 1(a)]. In this
“Landauer-Büttiker” (LB) setup [34], Jx is related to the
potential difference eV ≡ μL − μR via the conductance G of
the system: Jx ¼ GV. Without interactions, the polarization
Py ≡ PLB

y in this setup can be obtained from conventional
scattering theory [35], with conductanceG derived from the
Landauer formula. Kubo’s formalism [Eq. (1)] provides an
instructive equivalent approach [36]. As we detail in the
Supplemental Material [33], the LB setup can be described
by Axðx; tÞ ¼ −Ve−iωtδðxÞ, i.e., by a potential drop of
amplitude V at the position x ¼ 0 of contact between the
system and the left reservoir. Since Axðx; tÞ is local, the
stationary PLB

y takes the form of an integral of the Hall
response over all momenta [33]:

PLB
y

Jx
¼ −G−1 lim

ω→0

1

2π

Z
dkeikx

σHðk;ωÞ
ωþ i0þ

; ð2Þ

where i0þ is a small positive imaginary part.
To illustrate the strong differences that can arise in Hall

response between ballistic coherent systems, we consider
an additional “Aharonov-Bohm” (AB) setup: a contactless
ring where Jx is induced by a time-dependent magnetic flux
[Fig. 1(b)]. In that case, Axðx; tÞ corresponds to the vector
potential describing the inserted flux, i.e., Axðx; tÞ ¼
eiωtΦ=Nx, where Nx is the number of sites along x. The
flux induces a persistent current [37,38] Jx ¼ DΦ=Nx,
where D is the Drude weight [39], generating a reactive
Hall response [40,41] [Fig. 2(b)]. In contrast to Eq. (2),

and in agreement with known results [42], the stationary
Py ≡ PAB

y found here depends on the zero-momentum
component of σH [33]:

PAB
y

Jx
¼ −D−1 lim

ω→0
σHð0;ωÞ: ð3Þ

Hall response in the LB setup.—We now detail the LB
setup and derive an explicit formula for PLB

y at zero temper-
ature, in the low-bias limit μL → μR ≡ μ. Our results apply
to a broad variety of lattice models. For clarity, however,
we take the viewpoint of the Harper-Hofstadter (HH)
model [43]. Specifically, we consider fermions on a square
lattice with Hamiltonian HHH ¼ −

P
x;y½txeiByc†x;ycxþ1;y þ

tyc
†
x;ycx;yþ1�=2þ H:c:, in the Landau gauge, where c†x;y

creates a fermion on site ðx; yÞ, B is the magnetic flux per
plaquette, and txðtyÞ is the nearest-neighbor hopping ampli-
tude in the xðyÞ direction [Fig. 1(a)]. In this minimal
model, the system can be seen as Ny coupled longitu-
dinal wires: its spectrum εk can be regarded as Ny bands
tx cos½k − yB=ðNy − 1Þ�, shifted by yB=ðNy − 1Þ in mome-
ntum (with y ¼ 0; 1;…; Ny − 1), and hybridized by ty.
As we demonstrate below, the response PLB

y vanishes
identically when the system’s spectrum is symmetric under

(a)

(b)

FIG. 1. (a) Landauer-Büttiker setup enabling a vanishing Hall
response: a ballistic lattice system is connected to ideal reservoirs
(in gray) with weakly biased chemical potentials μR < μL
[corresponding to Fermi-Dirac distributions fL=RðEÞ]. (b) Ballis-
tic Aharonov-Bohm setup where the Hall response is, in contrast,
generically finite (with persistent current along x induced by a
magnetic flux Φ).

(a) (c)

(b) (d)

FIG. 2. (a), (b) Schematic band structures showing the key
single-particle states for the Hall response: in the LB setup, the
current Jx ≠ 0 is induced by occupied states (full dots) with
velocity vk > 0 in a small energy window ½μR; μL� around the
chemical potential μ (horizontal dashed line). Left-moving states
at μ are empty. In the AB setup, instead, Jx ≠ 0 is induced by the
spectral flow Δk ¼ Φ=Nx of all states with threaded magnetic
fluxΦ. (c) Band structure of the HH model computed for Ny ¼ 4,
B ¼ 0.7, and ty ¼ 0.5tx. Horizontal lines (dark gray) indicate
energies at which the number cðμÞ of Fermi points with vk > 0
changes, with cðμÞ ¼ Ny in shaded (light gray) regions. See the
Supplemental Material [33] for other parameter regimes includ-
ing Ny → ∞. (d) Hall response of the system in (c) in LB vs AB
setups: when cðμÞ ¼ Ny, Py=Jx strictly vanishes in the LB setup,
while it only goes to zero at particle-hole symmetry (μ ¼ 0), in
the AB setup (see inset enlargement).
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k → −k, and the number cðμÞ of Fermi points with velocity
vk ≡ ∂εk=∂k > 0 is equal to Ny. Remarkably, these con-
ditions are satisfied in wide regions of parameter space, for
weak and strong B. We distinguish two main scenarios, in
particular: (i) the “weak-field” regime (B≲ 1=Ny), where
all bands tx cos½k − yB=ðNy − 1Þ� hybridize in the first
Brillouin zone, and (ii) the “strong-field” regime, where
bands hybridize after backfolding into the first Brillouin
zone. We focus on (i) in what follows, and extend our
discussion to (ii) in the Supplemental Material [33].
In the HH model, symmetry under k → −k arises from a

combination of time reversal (TR) and spatial inversion in
the y direction. This effective TR symmetry is described by
the operator Θ ¼ IyK, where Iy permutes positions y
around the center of the system, and K describes complex
conjugation. As ½HHH;Θ� ¼ 0, the action of Θ on an
eigenstate jψkðEÞi of HHH with momentum k and energy
E yields a (non-necessarily distinct [44]) eigenstate
Θjψk0 ðEÞi with k0 ¼ −k and identical energy. As in
Eq. (2) [33], the Hall response can be derived using
scattering theory: in the low-bias, zero-temperature limit,
the conductance reads G ¼ G0

P
j Tj, whereG0 ¼ e2=h ¼

1=ð2πÞ is the conductance quantum, and Tj is the trans-
mission probability, at the chemical-potential energy μ, of
scattering modes ψ jðx; yÞ incoming from the left reservoir.
We consider infinite reservoirs described by HHH (with
chemical potentials μL and μR, respectively), so that
scattering modes have a similar form as the system’s
eigenmodes. In that case, Tj ¼ 1 for all modes available
at μ. Relevant modes have an asymptotic form
ψ jðx → −∞; yÞ ¼ eikF;jxwjðyÞ=vF;j, where kF;j (vF;j) are
Fermi momenta (velocities), and wjðyÞ transverse wave
functions. The conductance reduces to G ¼ cðμÞG0, where
cðμÞ is the number of Fermi points with positive velocity
vk ¼ ∂εk=∂k > 0, as in Fig. 2(a). Equation (2) becomes

PLB
y ðμÞ
Jx

¼ 1

cðμÞG0

XcðμÞ
j¼1

X
y

y
wjðyÞ2
vF;j

; ð4Þ

as derived in the Supplemental Material [33] (with more
explicit expressions for finite B and Ny ¼ 2, or B → 0 and
arbitrary Ny ≥ 2).
We used the simulation package KWANT [46] to verify

our formulas, compute PLB
y for arbitrary B and Ny, and

compare PLB
y to PAB

y . Our results are illustrated in Fig. 2(d)
for the weak-field regime, and in the Supplemental Material
[33] for the strong-field regime (including a discussion
of the limit Ny → ∞). They demonstrate two key points:
first and foremost, PLB

y vanishes identically whenever
cðμÞ ¼ Ny, irrespective of the specific value of B or μ
[see, e.g., the region around μ=tx ¼ �0.5 in Fig. 2(d)], and
of particle-hole symmetry (generically absent here).
Second, the responses PLB

y to PAB
y are strikingly different,

as hinted by Eqs. (2) and (3). Intuitively, this arises from
the fact that LB and AB stationary states are different
[Figs. 2(a) and 2(b)], with distinct polarizations Py, though
they carry the same current Jx. Specifically, each con-
duction channel j gives a contribution Py;j ¼ CjJx;j to Py,
proportional to the current Jx;j carried by the channel [33].
The factor Cj does not depend on the origin of Jx;j.
Crucially, however, every channel carries a different current
Jx;j ¼ vF;jΦ=ðπNxÞ in the AB setup, whereas all channels
carry the same one in the LB case. Accordingly, the two
responses coincide when cðμÞ ¼ 1, and generically differ
otherwise [33]. They also share the same sign, set by the
particle (þ) or hole (−) nature of charge carriers, leading
to their vanishing at particle-hole symmetry [μ ¼ 0 in
Fig. 2(d)]. Moreover, both responses are discontinuous
at transitions between distinct cðμÞ.
Topological origin of the vanishing Hall response.—We

now demonstrate that PLB
y ¼ 0 due to (i) the topological

nature of cðμÞ, and (ii) the traceless nature of the operator
P̂y describing the polarization. The number cðμÞ of Fermi
points with vk > 0 is topological in the sense that it
corresponds to the central charge of the system (the
number of gapless modes with vk > 0, in a Luttinger-
liquid interpretation). The polarization operator is P̂y ¼ eY,
where Y ≡P

x;y yc
†
x;ycx;y describes the “center-of-mass”

position along y. To ensure that hψLB
i ðμÞjP̂yjψLB

i ðμÞi ¼ 0

in the initial state jψLB
i ðμÞi≡ jψ ii with zero bias

(V; Jx ¼ 0), corresponding to our gauge choice for the
polarization, we set y ¼ 0 at the center of the system. The
operator P̂y then satisfies ITy P̂yIy ¼ −P̂y. It is traceless, and
PLB
y ¼ 0 at zero bias is ensured by the symmetry between k

and −k: indeed, jψ ii is the many-body ground state of
HHH with single-particle states occupied symmetrically
around k ¼ 0, up to the chemical potential μ. It is symmetric
under Θ (i.e., Θjψ ii ¼ �jψ ii), such that hψ ijP̂yjψ ii ¼
hψ ijΘ†P̂yΘjψ ii ¼ hψ ijITy P̂yIyjψ ii ¼ −hψ ijP̂yjψ ii.
When applying a finite bias V ≠ 0 to generate a sta-

tionary current Jx in the “final” state jψLB
f ðμÞi≡ jψfi, the

symmetry Θ breaks: the state jψfi is a many-body sta-
tionary state with single-particle states occupied symmet-
rically around k ¼ 0 except at μ where single-particle states
are occupied where vk > 0 only. By symmetry, noncancel-
ing contributions to the polarization can only come from
these cðμÞ Fermi points. We index the latter as j ¼
1; 2;…; cðμÞ, and denote by jji the corresponding
single-particle states (jji≡ jkF;j; sji, here, where kF;j
and sj are the Fermi momentum and band index of the
Fermi point j). In this picture, the polarization becomes

PLB
y ðμÞ ¼

XcðμÞ
j¼1

njhjjP̂yjji; ð5Þ

where nj ¼ 1 is the occupation of jji.
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We can now show thatPLB
y ðμÞ vanishes when cðμÞ ¼ Ny:

the states jji in Eq. (5) belong to the eigenspace ofHHH with
energy μ, and are characterized by distinct momenta. Since
they are not related by symmetry [47], they form a basis for a
Hilbert (sub)space of dimension cðμÞ. Therefore, when
cðμÞ ¼ Ny, Eq. (5) becomes

PLB
y ðμÞjcðμÞ¼Ny

¼
XNy

j¼1

hjjP̂yjji ¼ TrP̂y ¼ 0: ð6Þ

This demonstrates our main result: the existence of a con-
servation law for the Hall response of the LB setup. Note that
other, potentially observable conservation laws canbederived
from the tracelessness of P̂y: in particular, replacing the set
fjjig by a basis of Bloch eigenstates fjk; sig (with momen-
tum k and band index s ¼ 1; 2;…; Ny), one finds

PyðkÞ≡PNy

s¼1hk; sjP̂yjk; si ¼ 0, meaning that the Hall
response of a system with Ny bands vanishes in momentum
sectors k where bands are equally occupied. This conserva-
tion law corresponds to the known zero-sum rule for the
Berry curvature of all eigenstates of a Hamiltonian [48].
Equation (6) can be seen as an analog with fixed energy,
instead of fixed k.
Robustness to perturbations.— The vanishing of PLB

y at
cðμÞ ¼ Ny is protected against temperature by an energy
gap Δμ corresponding to the smallest chemical-potential
variation required to change cðμÞ. More precisely, the Hall
response is suppressed as e−βjΔμj at finite temperature T ¼
1=β [33]. We emphasize that the gapΔμ need not close with
increasing Ny. In fact, in the above HH model, the gap
around μ ¼ 0 is Δμ ≈ ðtx − tyÞ − jμj approximately inde-
pendent of Ny when ty ≲ tx [33].
Deviations from a strictly vanishing Hall response are

expected in the presence of generic disorder, as this breaks
the symmetry Θ connecting momentum sectors k and −k.
Disorder in quasi-1D systems generally leads to Anderson
localization [49]. Nevertheless, if the scattering region
connecting the reservoirs is shorter than the localization
length (scaling as Nyt2x=W2 with disorder strengthW [50]),
disorder remains a weak perturbation. In that case, devia-
tions of the disorder-averaged polarization hPyi from zero
scale as W2=t2x, with large fluctuations around the average
(as do conductance fluctuations in disordered systems
[51]); see the Supplemental Material for details [33].
Generalization to interacting systems.—Equation (6)

applies whenever the current Jx is carried by c ¼ Ny
independent, equally occupied fermionic channels, regard-
less of interactions. To demonstrate this, we consider the
HH model on a two-leg ladder (Ny ¼ 2), with additional
intra- and interleg interactions described by Hamiltonian
terms Uk

P
x;y¼�1nx;ynxþ1;yþU⊥

P
xnx;1nx;−1, where nx;y

is the density on site ðx; yÞ. To simulate transport in
the LB setup, we evolve the system with reservoirs

described by a quenched steplike potential−ϵ
P

x<Lres;ynx;yþ
ϵ
P

x>LsysþLres;ynx;y, where Lsys=res denotes the length of the
system and reservoirs. We set ϵ ¼ 0 and prepare the full
system in its ground state using DMRG [52,53]. We then
switch ϵ > 0, at time τ ¼ 0, and evolve the system using
time-dependent DMRG (TDMRG) [53] and the ITensor
library [54]. We set Lsys ¼ 2, for simplicity [55], and
compute the Hall response PLB

y =Jx in the middle of the
system at times 1≲ τ=tx ≲ Lres [56], averaging over a time
window where Jx is approximately stationary. Figure 3
shows typical results for Uk ¼ U⊥ ¼ tx=2. For comparison,
we simulate transport in the AB setup by quenching, instead,
a small linear potential −ðϵ=NxÞ

P
x;yxnx;y. While Jx

increases linearly in time in that case [Fig. 3(b)], the ratio
PAB
y =Jx oscillates around a constant value corresponding to

the stationary Hall response [41].
The results shown in Fig. 3 are consistent with our

theoretical analysis: LB and AB Hall responses are iden-
tical (with time averaging, within errorbars) when the initial
ground state is characterized by a central charge c ¼ 1
[33,57]. More importantly, they strongly differ when c ¼
2 ¼ Ny [Fig. 3(c)], with large oscillations of PLB

y =Jx
around an average consistent with PLB

y =Jx ¼ 0, and a finite
PAB
y =Jx. Our results (including additional data presented

in the Supplemental Material [33]) fully support our
theoretical result that PLB

y =Jx vanishes when c ¼ 2 ¼ Ny.
Discussion.— The conservation law found in this work

exemplifies the rich and sometimes counterintuitive

(a) (b)

(c)

FIG. 3. Numerical TDMRG estimates of the LB and AB Hall
responses of the interacting HH model, with tx ¼ ty ¼ 1,
Uk ¼ U⊥ ¼ 1=2, and ϵ ¼ 0.01, for 10 fermions in a system of
length Lx ¼ 60. (a) Evolution of PLB

y =Jx (filled symbols) and
PAB
y =Jx (empty symbols) for a magnetic flux χ ≡ B=Nx ¼ 0.2π

(Luttinger-liquid phase with c ¼ 1), and 0.7π and 0.8π (c ¼ 2).
Lines interpolate more data points than shown. (b) Time evolu-
tion of Jx for parameters as in (a). (c) Average of PLB

y =Jx (×) and
PAB
y =Jx (□) over times 10 < τ < 30. The dashed line indicates

the estimated transition between c ¼ 1 and c ¼ 2. Averages
coincide for χ ¼ 0.4π, while no stationary regime was reached
for 0.5π.
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phenomena that can occur in ballistic coherent systems.
Solid-state and synthetic-matter experiments would be well
suited to observe it [8,15,16]. In fact, a platform for
realizing the LB setup has recently been proposed [58].
We emphasize that our results extend to bosons: a vanishing
transverse polarization would be observed in photonic
systems [59], e.g., by selectively populating the c ¼ Ny
states in Eq. (6) [60].
Our results provide additional clues to better understand

the Hall response of strongly correlated (non-Fermi-liquid)
systems, for which low-energy quasiparticle descriptions
of quantum transport inexorably fail. Presently, they raise
intriguing questions regarding the behavior of the trans-
verse polarization Py of interacting systems at finite
temperatures: Although a transition to dissipative or met-
allic regimes is expected, explicit calculations of Py remain
challenging [25]. Recent studies have shown the persist-
ence of ballistic and superdiffusive behavior in specific
cases [19,20]. It will be interesting to investigate analogs in
quasi-1D lattice systems.
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[38] L. P. Lévy, G. Dolan, J. Dunsmuir, and H. Bouchiat, Phys.
Rev. Lett. 64, 2074 (1990); I. O. Kulik, Low Temp. Phys.
36, 841 (2010); L. Saminadayar, C. Bäuerle, and D. Mailly,
Encyclopedia Nanosci. Nanotechnol. 3, 267 (2004); A. C.
Bleszynski-Jayich, W. E. Shanks, B. Peaudecerf, E.
Ginossar, F. von Oppen, L. Glazman, and J. G. E. Harris,
Science 326, 272 (2009).

[39] W. Kohn, Phys. Rev. 133, A171 (1964); B. S. Shastry and B.
Sutherland, Phys. Rev. Lett. 65, 243 (1990); A. J. Millis and
S. N. Coppersmith, Phys. Rev. B 42, 10807 (1990).

[40] P. Prelovšek, M. Long, T. Markež, and X. Zotos, Phys. Rev.
Lett. 83, 2785 (1999); X. Zotos, F. Naef, M. Long, and P.
Prelovšek, Phys. Rev. Lett. 85, 377 (2000).

[41] S. Greschner, M. Filippone, and T. Giamarchi, Phys. Rev.
Lett. 122, 083402 (2019).

[42] J. M. Luttinger, Phys. Rev. 135, A1505 (1964).
[43] P. G. Harper, Proc. Phys. Soc. London Sect. A 68, 874

(1955); D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[44] Since Θ2 ¼ þ1 (due to the spinless nature of the fermions

that we consider), Kramers’s theorem does not hold.
[45] R. Landauer, Philos. Mag. 21, 863 (1970).
[46] C. W. Groth, M. Wimmer, A. R. Akhmerov, and X. Waintal,

New J. Phys. 16, 063065 (2014).
[47] The symmetry Θ relates states with opposite momenta.
[48] The quantity hk; sjP̂yjk; si can be seen as a Berry connection

in the continuum limit where the position operator Y ¼ P̂y

is represented by Y ¼ −i∂ky ; see also Ref. [7].
[49] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.

Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979); E.

Abrahams, 50 Years of Anderson Localization, Vol. 24
(World Scientific, Singapore, 2010); A. Lagendijk, B. van
Tiggelen, and D. S. Wiersma, Phys. Today 62, No. 8, 24
(2009).

[50] M. Kappus and F. Wegner, Z. Phys. B 45, 15 (1981).
[51] B. Altshuler, JETP Lett. 41, 648 (1985); P. A. Lee and A. D.

Stone, Phys. Rev. Lett. 55, 1622 (1985);
[52] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[53] U. Schollwöck, Ann. Phys. (Amsterdam) 326, 96

(2011).
[54] ITensor Library (version 2.0.11), http://itensor.org.
[55] Cases with different Lsys, leading to analogous results, are

presented in the Supplemental Material [33].
[56] M. Einhellinger, A. Cojuhovschi, and E. Jeckelmann, Phys.

Rev. B 85, 235141 (2012).
[57] C. Holzhey, F. Larsen, and F. Wilczek, Nucl. Phys. B424,

443 (1994); V. E. Korepin, Phys. Rev. Lett. 92, 096402
(2004); P. Calabrese and J. J. Cardy, J. Stat. Mech. (2004)
P06002.

[58] G. Salerno, H. Price, M. Lebrat, S. Häusler, T. Esslinger, L.
Corman, J.-P. Brantut, and N. Goldman,arXiv:1811.00963.

[59] I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013);
M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor,
Nat. Phys. 7, 907 (2011); S. Kruk, A. Slobozhanyuk, D.
Denkova, A. Poddubny, I. Kravchenko, A. Miroshnichenko,
D. Neshev, and Y. Kivshar, Small 13, 1603190 (2017); M.
Bellec, U. Kuhl, G. Montambaux, and F. Mortessagne,
Phys. Rev. B 88, 115437 (2013); A. Poddubny, A.
Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, ACS
Photonics 1, 101 (2014); C. A. Downing and G. Weick,
Phys. Rev. B 95, 125426 (2017).

[60] C.-E. Bardyn, S. D. Huber, and O. Zilberberg, New J. Phys.
16, 123013 (2014).

PHYSICAL REVIEW LETTERS 123, 086803 (2019)

086803-6

https://doi.org/10.1147/rd.323.0384
https://doi.org/10.1103/PhysRevB.40.8169
https://doi.org/10.1103/PhysRevB.40.8169
https://doi.org/10.1016/0375-9601(83)90011-7
https://doi.org/10.1016/0375-9601(83)90011-7
https://doi.org/10.1103/PhysRevLett.64.2074
https://doi.org/10.1103/PhysRevLett.64.2074
https://doi.org/10.1063/1.3514415
https://doi.org/10.1063/1.3514415
https://doi.org/10.1126/science.1178139
https://doi.org/10.1103/PhysRev.133.A171
https://doi.org/10.1103/PhysRevLett.65.243
https://doi.org/10.1103/PhysRevB.42.10807
https://doi.org/10.1103/PhysRevLett.83.2785
https://doi.org/10.1103/PhysRevLett.83.2785
https://doi.org/10.1103/PhysRevLett.85.377
https://doi.org/10.1103/PhysRevLett.122.083402
https://doi.org/10.1103/PhysRevLett.122.083402
https://doi.org/10.1103/PhysRev.135.A1505
https://doi.org/10.1088/0370-1298/68/10/304
https://doi.org/10.1088/0370-1298/68/10/304
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1080/14786437008238472
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1063/1.3206091
https://doi.org/10.1063/1.3206091
https://doi.org/10.1007/BF01294272
https://doi.org/10.1103/PhysRevLett.55.1622
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
http://itensor.org
http://itensor.org
https://doi.org/10.1103/PhysRevB.85.235141
https://doi.org/10.1103/PhysRevB.85.235141
https://doi.org/10.1016/0550-3213(94)90402-2
https://doi.org/10.1016/0550-3213(94)90402-2
https://doi.org/10.1103/PhysRevLett.92.096402
https://doi.org/10.1103/PhysRevLett.92.096402
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1742-5468/2004/06/P06002
http://arXiv.org/abs/1811.00963
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1038/nphys2063
https://doi.org/10.1002/smll.201603190
https://doi.org/10.1103/PhysRevB.88.115437
https://doi.org/10.1021/ph4000949
https://doi.org/10.1021/ph4000949
https://doi.org/10.1103/PhysRevB.95.125426
https://doi.org/10.1088/1367-2630/16/12/123013
https://doi.org/10.1088/1367-2630/16/12/123013

