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We study the Hall response of two-dimensional lattice systems of charged fermions in a transverse
magnetic field, in the ballistic coherent limit. We identify a setup in which this response vanishes over wide
regions of parameter space: the “Landauer-Biittiker” setup commonly studied for coherent quantum
transport, consisting of a strip contacted to biased ideal reservoirs of charges. We show that this effect does
not rely on particle-hole symmetry, and is robust to a variety of perturbations including variations of the
transverse magnetic field, chemical potential, and temperature. We trace this robustness back to a
topological property of the Fermi surface: the number of Fermi points with positive velocity of the system.
We argue that the mechanism leading to a vanishing Hall response applies to noninteracting and interacting
systems alike, which we verify in concrete examples using density-matrix renormalization group

simulations.
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Transport properties induced by electromagnetic fields
are an active area of study in condensed matter physics. The
Hall response, oy, is of particular interest: It represents the
off-diagonal response of a current density J to an electric
field E, oy = €;;0;;, where J; = o;;E; and ¢;; is the Levi-
Civita symbol. The Hall response probes 1mp0rtant geo-
metric or topological properties of quantum systems: the
Fermi-surface curvature of metals under weak magnetic
fields [1-3], the Berry curvature of anomalous Hall systems
[4], and related topological invariants of band insulators
[5.6]. Studies of oy are ubiquitous in fields focused on
topological quantum matter [7] and synthetic realizations
thereof [8,9].

Scattering is essential in conventional studies of oy: in
the two-dimensional (2D) Hall effect [10], e.g., Boltzmann-
type approaches [11] that reproduce the observed
Hall constant, Ry, for weak magnetic fields B: Ry=
—oy/(0,,0yyB) ~—1/(ne), where n is the density of
carriers with charge e, and x(y) denote the longitudinal
(transverse) direction. Scattering also explains the plateaus
of quantized Hall conductance (oy = ve®/h for filling
factor v) appearing in strong-field regimes [12—14].

As ballistic systems become more accessible experi-
mentally [8,15,16], new challenges are emerging for theory
beyond Boltzmann-type approaches, despite past efforts
in mesoscopic systems [17,18]. For example, ¢;; can be
infinite in clean interacting systems, even at a finite temper-
ature [19,20]. The connection between Hall response and
carrier density is not even clear in the presence of interactions
[21-24]. Recent progress was made with the calculation of
Ry in dissipative metallic systems [25], where o;; is finite
at zero frequency [26]. Nevertheless, the Hall response of
coherent ballistic systems remains largely unexplored.
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In this Letter, we identify a ballistic setup in which
charged fermions in a transverse magnetic field can exhibit
a strictly vanishing Hall response. We demonstrate this
effect in noninteracting 2D lattice systems at zero temper-
ature, and extend our results to interacting analogs using a
density-matrix renormalization group (DMRG). We show
that the Hall response vanishes under a wide variety of
perturbations: variations in magnetic field, chemical poten-
tial, temperature, and particle-hole symmetry breaking. We
relate this remarkable robustness to the topological nature
of the key property underpinning the effect: the number of
Fermi points with positive velocity of the system.

Hall response of ballistic systems.— We consider lattice
systems in a 2D strip geometry (Fig. 1), with edges in the y
direction. Edges imply that the transverse current J, vanishes
in the low-frequency limit @ — 0 of the longitudinal electric
field E,. The Hall response is then described by the trans-
verse polarization difference AP, ( ft dr'J,(x,1'). We
set Py(x,75) =0 at time £, rlght before E,. is applied
(corresponding to a gauge choice [29-31]), and denote
AP, (x,1) = P,(x.1).

The relation between P, and oy can be derived using

linear response theory [32]: writing E, = —0,A, (with
e =h =c=1), one finds
Py(k,w) = —oy(k,w)A,(k, w), (1)

where k is the crystal momentum along x. This can be seen
as a Kubo formula for the polarization induced by a time-
dependent vector potential, Py(x,1) =iy . [df0(t—1)
([Py(x, 1), J(x",))A,(x',7) [see the Supplemental
Material for details [33] ].

Equation (1) allows for very different Hall responses
oy, depending on the nature of FE,, for the same

© 2019 American Physical Society
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(a) Landauer-Biittiker (LB)

FIG. 1. (a) Landauer-Biittiker setup enabling a vanishing Hall
response: a ballistic lattice system is connected to ideal reservoirs
(in gray) with weakly biased chemical potentials up < pyp
[corresponding to Fermi-Dirac distributions f; /g (E)]. (b) Ballis-
tic Aharonov-Bohm setup where the Hall response is, in contrast,
generically finite (with persistent current along x induced by a
magnetic flux ®).

longitudinal current J,. Here we consider a paradigmatic
setup for coherent quantum transport: a system with two
ends in the x direction, where E, (or J,) is generated by
ideal contacts to two external reservoir of charges (left and
right) with chemical potentials g, and pi [Fig. 1(a)]. In this
“Landauer-Biittiker” (LB) setup [34], J, is related to the
potential difference eV = y; — ug via the conductance G of
the system: J, = GV. Without interactions, the polarization
P, = P}® in this setup can be obtained from conventional
scattering theory [35], with conductance G derived from the
Landauer formula. Kubo’s formalism [Eq. (1)] provides an
instructive equivalent approach [36]. As we detail in the
Supplemental Material [33], the LB setup can be described
by A,(x,t) = —=Ve '§(x), i.e., by a potential drop of
amplitude V at the position x = 0 of contact between the
system and the left reservoir. Since A,(x,?) is local, the
stationary PL® takes the form of an integral of the Hall
response over all momenta [33]:

PLB 1 . oy(k, ®)
= — G —/dk e 02— 2
7. w027 | T wt it )

where 0" is a small positive imaginary part.

To illustrate the strong differences that can arise in Hall
response between ballistic coherent systems, we consider
an additional “Aharonov-Bohm” (AB) setup: a contactless
ring where J, is induced by a time-dependent magnetic flux
[Fig. 1(b)]. In that case, A (x, t) corresponds to the vector
potential describing the inserted flux, ie., A,(x,f) =
e'®/N,, where N, is the number of sites along x. The
flux induces a persistent current [37,38] J, = DD/N,,
where D is the Drude weight [39], generating a reactive
Hall response [40,41] [Fig. 2(b)]. In contrast to Eq. (2),

(a) ()

FIG. 2. (a), (b) Schematic band structures showing the key
single-particle states for the Hall response: in the LB setup, the
current J, # 0 is induced by occupied states (full dots) with
velocity v; > 0 in a small energy window [ug, ;] around the
chemical potential y (horizontal dashed line). Left-moving states
at y are empty. In the AB setup, instead, J, # 0 is induced by the
spectral flow Ak = ®/N, of all states with threaded magnetic
flux ®. (c) Band structure of the HH model computed for N, = 4,
B =0.7, and 1, = 0.5¢,. Horizontal lines (dark gray) indicate
energies at which the number ¢(u) of Fermi points with v, > 0
changes, with ¢(u) = N, in shaded (light gray) regions. See the
Supplemental Material [33] for other parameter regimes includ-
ing N, — oo. (d) Hall response of the system in (c) in LB vs AB
setups: when ¢(u) = N, P, /J, strictly vanishes in the LB setup,
while it only goes to zero at particle-hole symmetry (u = 0), in
the AB setup (see inset enlargement).

and in agreement with known results [42], the stationary
P, = P}® found here depends on the zero-momentum
component of oy [33]:

AB
y —_ .
g, =P imen00) 2

Hall response in the LB setup.—We now detail the LB
setup and derive an explicit formula for P}® at zero temper-
ature, in the low-bias limit y;, — pur = p. Our results apply
to a broad variety of lattice models. For clarity, however,
we take the viewpoint of the Harper-Hofstadter (HH)
model [43]. Specifically, we consider fermions on a square
lattice with Hamiltonian Hyy = =3, [tee®elye iy +
tyc;ycx,yﬂ]/Z + H.c., in the Landau gauge, where c;y
creates a fermion on site (x,y), B is the magnetic flux per
plaquette, and 7,(t,) is the nearest-neighbor hopping ampli-
tude in the x(y) direction [Fig. 1(a)]. In this minimal
model, the system can be seen as N, coupled longitu-
dinal wires: its spectrum &; can be regarded as N, bands
t,coslk — yB/(N, — 1)], shifted by yB/(N, — 1) in mome-
ntum (with y =0, 1, ..., Ny, — 1), and hybridized by z,.

As we demonstrate below, the response P)L,B vanishes
identically when the system’s spectrum is symmetric under
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k — —k, and the number c¢(u) of Fermi points with velocity
vy = Oy /Ok > 0 is equal to N,. Remarkably, these con-
ditions are satisfied in wide regions of parameter space, for
weak and strong B. We distinguish two main scenarios, in
particular: (i) the “weak-field” regime (B < 1/N y),» Where
all bands t,cos[k —yB/(N, — 1)] hybridize in the first
Brillouin zone, and (ii) the “strong-field” regime, where
bands hybridize after backfolding into the first Brillouin
zone. We focus on (i) in what follows, and extend our
discussion to (ii) in the Supplemental Material [33].

In the HH model, symmetry under k — —k arises from a
combination of time reversal (TR) and spatial inversion in
the y direction. This effective TR symmetry is described by
the operator ® = I, K, where [/, permutes positions y
around the center of the system, and /C describes complex
conjugation. As [Hyy,®] =0, the action of ® on an
eigenstate |y (E)) of Hyy with momentum k and energy
E yields a (non-necessarily distinct [44]) eigenstate
Olyy(E)) with ¥ = —k and identical energy. As in
Eq. (2) [33], the Hall response can be derived using
scattering theory: in the low-bias, zero-temperature limit,
the conductance reads G = G ) | ; Tj, where Gy = e’/h =

1/(2x) is the conductance quantum, and 7 is the trans-
mission probability, at the chemical-potential energy p, of
scattering modes y/;(x, y) incoming from the left reservoir.
We consider infinite reservoirs described by Hygy (with
chemical potentials y; and pg, respectively), so that
scattering modes have a similar form as the system’s
eigenmodes. In that case, T; = 1 for all modes available
at u. Relevant modes have an asymptotic form
wi(x > —o0,y) = e*r*w,(y)/vpj, where kg (vp ;) are
Fermi momenta (velocities), and w;(y) transverse wave
functions. The conductance reduces to G = ¢(u)G,, where
c(u) is the number of Fermi points with positive velocity
vy = Og/0k > 0, as in Fig. 2(a). Equation (2) becomes

PI;B (u) c(p)

1
Jx - C(/’[)GO

w;(y)?
SyMEE

j=1 UF.j

as derived in the Supplemental Material [33] (with more
explicit expressions for finite B and Ny, = 2, or B — 0 and
arbitrary N, > 2).

We used the simulation package KWANT [46] to verify
our formulas, compute PL® for arbitrary B and N, and
compare P3® to Py, Our results are illustrated in Fig. 2(d)
for the weak-field regime, and in the Supplemental Material
[33] for the strong-field regime (including a discussion
of the limit Ny, — oo). They demonstrate two key points:
first and foremost, Pi® vanishes identically whenever
c(u) = Ny, irrespective of the specific value of B or u
[see, e.g., the region around p/t, = £0.5 in Fig. 2(d)], and
of particle-hole symmetry (generically absent here).
Second, the responses P}® to P4*P are strikingly different,

as hinted by Egs. (2) and (3). Intuitively, this arises from
the fact that LB and AB stationary states are different
[Figs. 2(a) and 2(b)], with distinct polarizations P,, though
they carry the same current J,. Specifically, each con-
duction channel j gives a contribution P, ; = C;J, ; to Py,
proportional to the current J, ; carried by the channel [33].
The factor C; does not depend on the origin of J, ;.
Crucially, however, every channel carries a different current
J.j = vp;®/(aN,) in the AB setup, whereas all channels
carry the same one in the LB case. Accordingly, the two
responses coincide when ¢(u) = 1, and generically differ
otherwise [33]. They also share the same sign, set by the
particle (4) or hole (—) nature of charge carriers, leading
to their vanishing at particle-hole symmetry [ =0 in
Fig. 2(d)]. Moreover, both responses are discontinuous
at transitions between distinct c(u).

Topological origin of the vanishing Hall response.— We
now demonstrate that PL® = 0 due to (i) the topological
nature of ¢(u), and (ii) the traceless nature of the operator
13y describing the polarization. The number ¢ () of Fermi
points with v, > 0 is topological in the sense that it
corresponds to the central charge of the system (the
number of gapless modes with »; > 0, in a Luttinger-
liquid interpretation). The polarization operator is Py =eY,
where Y =3 | ycl,ycx’y describes the “center-of-mass”
position along y. To ensure that (B ()| P, |yt (1)) = 0
in the initial state |ytB(u)) =|y;) with zero bias
(V,J, =0), corresponding to our gauge choice for the
polarization, we set y = 0 at the center of the system. The
operator IA’y then satisfies IyT 13ny = —Py. It is traceless, and
P%B = 0 at zero bias is ensured by the symmetry between k
and —k: indeed, |y;) is the many-body ground state of
Hyy with single-particle states occupied symmetrically
around k = 0, up to the chemical potential u. It is symmetric
under ® (ie., Oly;) = £|w;)), such that <1//,~|f’y\l//,-) =
<V/i|®+py®|l//i> = <1l/i|I)TrPy1y|ll/i> = _<l//i|Py|l//i>'

When applying a finite bias V # 0 to generate a sta-
tionary current J, in the “final” state [y® (1)) = [w), the
symmetry © breaks: the state [y ;) is a many-body sta-
tionary state with single-particle states occupied symmet-
rically around k = O except at u where single-particle states
are occupied where v, > 0 only. By symmetry, noncancel-
ing contributions to the polarization can only come from
these c(u) Fermi points. We index the latter as j =
1,2,...,c(u), and denote by |j) the corresponding
single-particle states (|j) = |kp;,s;), here, where kp ;
and s; are the Fermi momentum and band index of the
Fermi point j). In this picture, the polarization becomes

c(p)
P (u) = " ni(j|P, ). (5)

Jj=1

where n; = 1 is the occupation of |j).
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We can now show that P8 () vanishes when ¢(u) = N,:
the states | j) in Eq. (5) belong to the eigenspace of Hyy with
energy u, and are characterized by distinct momenta. Since
they are not related by symmetry [47], they form a basis for a
Hilbert (sub)space of dimension c¢(u). Therefore, when

c(u) = Ny, Eq. (5) becomes

=

y

P eg=n, = D _UlPylj) = TPy = 0. (6)
=1

~
I

This demonstrates our main result: the existence of a con-
servation law for the Hall response of the LB setup. Note that
other, potentially observable conservation laws can be derived
from the tracelessness of Py: in particular, replacing the set
{|/)} by a basis of Bloch eigenstates { |k, s)} (with momen-
tum k and band index s=1,2,...,N,), one finds
Py(k) = Z?’;l (k.s|Py|k,s) =0, meaning that the Hall
response of a system with N, bands vanishes in momentum
sectors k where bands are equally occupied. This conserva-
tion law corresponds to the known zero-sum rule for the
Berry curvature of all eigenstates of a Hamiltonian [48].
Equation (6) can be seen as an analog with fixed energy,
instead of fixed k.

Robustness to perturbations.— The vanishing of P}® at
c(u) = N, is protected against temperature by an energy
gap Ap corresponding to the smallest chemical-potential
variation required to change c(u). More precisely, the Hall
response is suppressed as e #1244 at finite temperature 7 =
1/p[33]. We emphasize that the gap Ay need not close with
increasing N,. In fact, in the above HH model, the gap
around y = 0 is Au = (1, —t,) — |u| approximately inde-
pendent of Ny, when ¢, <, [33].

Deviations from a strictly vanishing Hall response are
expected in the presence of generic disorder, as this breaks
the symmetry ® connecting momentum sectors k and —k.
Disorder in quasi-1D systems generally leads to Anderson
localization [49]. Nevertheless, if the scattering region
connecting the reservoirs is shorter than the localization
length (scaling as N, 73/ W? with disorder strength W [50]),
disorder remains a weak perturbation. In that case, devia-
tions of the disorder-averaged polarization (P,) from zero
scale as W?/#2, with large fluctuations around the average
(as do conductance fluctuations in disordered systems
[51]); see the Supplemental Material for details [33].

Generalization to interacting systems.—Equation (6)
applies whenever the current J, is carried by ¢ =N,
independent, equally occupied fermionic channels, regard-
less of interactions. To demonstrate this, we consider the
HH model on a two-leg ladder (N, = 2), with additional
intra- and interleg interactions described by Hamiltonian
terms UH Zx.y:i] Ry yNxtly +U, Zx Ry 1My —15 where Myy
is the density on site (x,y). To simulate transport in
the LB setup, we evolve the system with reservoirs

(b)

0.02
+8
~
5
0 10 7 20 30
(c) —
L I X
5 0 5%
SR e=t
| 'ﬁ& : c=2
-1 X
a? [
1.0 L
0 10 20 30 00 02 04 06 0.8 1.0
T
X
FIG. 3. Numerical TDMRG estimates of the LB and AB Hall

responses of the interacting HH model, with t, =1, =1,
U=U.= 1/2, and € = 0.01, for 10 fermions in a system of
length L, = 60. (a) Evolution of P}®/J, (filled symbols) and
P28 /J, (empty symbols) for a magnetic flux y = B/N, = 0.2z
(Luttinger-liquid phase with ¢ = 1), and 0.7z and 0.87 (c = 2).
Lines interpolate more data points than shown. (b) Time evolu-
tion of J, for parameters as in (a). (c) Average of PiTB /J, (x) and
P2B/J, (O) over times 10 < 7 < 30. The dashed line indicates
the estimated transition between ¢ =1 and ¢ = 2. Averages
coincide for y = 0.4z, while no stationary regime was reached
for 0.57.

described by a quenched steplike potential —e> , _; 7, \+
€Y Loyt Loy .y where Ly /.s denotes the lengthv of the
system and reservoirs. We set € = 0 and prepare the full
system in its ground state using DMRG [52,53]. We then
switch € > 0, at time 7 = 0, and evolve the system using
time-dependent DMRG (TDMRG) [53] and the ITensor
library [54]. We set Ly =2, for simplicity [55], and
compute the Hall response PL®/J, in the middle of the
system at times 1 < 7/f, < L, [56], averaging over a time
window where J, is approximately stationary. Figure 3
shows typical results for U = U, = t,/2. For comparison,
we simulate transport in the AB setup by quenching, instead,
a small linear potential —(e/N,)} . xn,,. While J,
increases linearly in time in that case [Fig. 3(b)], the ratio
P2B/J . oscillates around a constant value corresponding to
the stationary Hall response [41].

The results shown in Fig. 3 are consistent with our
theoretical analysis: LB and AB Hall responses are iden-
tical (with time averaging, within errorbars) when the initial
ground state is characterized by a central charge ¢ =1
[33,57]. More importantly, they strongly differ when ¢ =
2 =N, [Fig. 3(c)], with large oscillations of Py®/J,
around an average consistent with P}®/J, = 0, and a finite
P2B/J,. Our results (including additional data presented
in the Supplemental Material [33]) fully support our
theoretical result that P}®/J, vanishes when ¢ =2 = N,.

Discussion.— The conservation law found in this work
exemplifies the rich and sometimes counterintuitive
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phenomena that can occur in ballistic coherent systems.
Solid-state and synthetic-matter experiments would be well
suited to observe it [8,15,16]. In fact, a platform for
realizing the LB setup has recently been proposed [58].
We emphasize that our results extend to bosons: a vanishing
transverse polarization would be observed in photonic
systems [59], e.g., by selectively populating the ¢ = N
states in Eq. (6) [60].

Our results provide additional clues to better understand
the Hall response of strongly correlated (non-Fermi-liquid)
systems, for which low-energy quasiparticle descriptions
of quantum transport inexorably fail. Presently, they raise
intriguing questions regarding the behavior of the trans-
verse polarization P, of interacting systems at finite
temperatures: Although a transition to dissipative or met-
allic regimes is expected, explicit calculations of P, remain
challenging [25]. Recent studies have shown the persist-
ence of ballistic and superdiffusive behavior in specific
cases [19,20]. It will be interesting to investigate analogs in
quasi-1D lattice systems.
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