) BE GENEVE

Article scientifique 2020 Published version

This is the published version of the publication, made available in accordance with the publisher’s policy.

C-Mannosylation of Toxoplasma gondii proteins promotes attachment to
host cells and parasite virulence

Albuquerque-Wendt, Andreia; Jacot, Damien; Dos Santos Pacheco, Nicolas; Seegers, Carla;
Zarnovican, Patricia; Buettner, Falk F. R.; Bakker, Hans; Soldati-Favre, Dominique; Routier, Francgoise H.

How to cite

ALBUQUERQUE-WENDT, Andreia et al. C-Mannosylation of Toxoplasma gondii proteins promotes
attachment to host cells and parasite virulence. In: Journal of Biological Chemistry, 2020, vol. 295, n° 4,
p. 1066—1076. doi: 10.1016/S0021-9258(17)49916-9

This publication URL:  https://archive-ouverte.unige.ch/unige:128181
Publication DOI: 10.1016/S0021-9258(17)49916-9

© The author(s). This work is licensed under a Creative Commons Attribution (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0



https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:128181
https://doi.org/10.1016/S0021-9258(17)49916-9
https://creativecommons.org/licenses/by/4.0

|BC ARTICLE

L))

Check for
Updates

C-Mannosylation of Toxoplasma gondii proteins promotes
attachment to host cells and parasite virulence

Received for publication, August 11,2019, and in revised form, December 17,2019 Published, Papers in Press, December 20,2019, DOI 10.1074/jbc.RA119.010590
Andreia Albuquerque-Wendt*', Damien Jacot®, Nicolas Dos Santos Pacheco®, Carla Seegers®, Patricia Zarnovican®,

Falk F. R. Buettner®, ©® Hans Bakker®,

Dominique Soldati-Favre®, and

Francoise H. Routier*’

From the *Department of Clinical Biochemistry OE4340, Hannover Medical School, 30625 Hannover, Germany and the
SDepartment of Microbiology and Molecular Medicine, CMU, University of Geneva, 1206 Geneva, Switzerland

Edited by Gerald W. Hart

C-Mannosylation is a common modification of thrombospon-
din type 1 repeats present in metazoans and recently identified
also in apicomplexan parasites. This glycosylation is mediated
by enzymes of the DPY19 family that transfer a-mannoses to
tryptophan residues in the sequence WX, WX,C, which is part of
the structurally essential tryptophan ladder. Here, deletion of
the dpyl19 gene in the parasite Toxoplasma gondii abolished
C-mannosyltransferase activity and reduced levels of the micro-
nemal protein MIC2. The loss of C-mannosyltransferase activity
was associated with weakened parasite adhesion to host cells
and with reduced parasite motility, host cell invasion, and
parasite egress. Interestingly, the C-mannosyltransferase—
deficient Adpyl9 parasites were strongly attenuated in viru-
lence and induced protective immunity in mice. This parasite
attenuation could not simply be explained by the decreased
MIC?2 level and strongly suggests that absence of C-mannosyl-
transferase activity leads to an insufficient level of additional
proteins. In summary, our results indicate that T. gondii C-man-
nosyltransferase DPY19 is not essential for parasite survival, but
is important for adhesion, motility, and virulence.

Toxoplasma gondii is a protozoan parasite belonging to the
phylum of Apicomplexa and responsible for a worldwide
spread of zoonotic infection. This obligate intracellular parasite
can infect virtually all warm-blooded animals and is of high
veterinary and medical importance. The disease toxoplasmosis
is generally benign although the parasite establishes a chronic
infection that persists in cysts throughout the hosts lifespan. In
immunocompromised patients, such as HIV patients or trans-
plant recipients, primary infection or cysts reactivation can lead
to ocular toxoplasmosis, cerebral toxoplasmosis, or dissemi-
nated toxoplasmosis and can be life-threatening. When first
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contracted during pregnancy, congenital toxoplasmosis may
lead to malformations or death of the fetus (1).

Tachyzoite, the motile and invasive form of T. gondii,
actively and rapidly penetrates various types of cells (2, 3).
Attachment of the apical pole of the parasite to host cells is
followed by the formation of a moving junction formed by the
apposition of the host and parasite plasma membranes, through
which the parasite penetrates. A parasitophorous vacuole (PV)?
derived from the invagination of the host cell plasma mem-
brane is formed and sealed to provide a safe harbor and nutri-
ent-rich milieu for parasite replication (2, 4). Parasites egress
the invaded cell by rupturing both the PV and host cell plasma
membranes prior to invading neighboring cells. The parasite
Iytic cycle relies on the sequential and regulated secretion of
proteins from specialized apical organelles called micronemes
and rhoptries (5, 6).

Micronemal proteins (MICs) typically contain evolutionary
conserved modular domains such as epidermal growth factor-
like, PAN/Apple, or thrombospondin type 1 repeats (TSRs) that
mediate protein-protein and protein-carbohydrate interac-
tions (7, 8). These interactions are involved in the formation of
MIC complexes and enable attachment of the parasite to host
cells (8). Several MICs (e.g. MIC2, MIC6, or MIC8) also interact
via their cytoplasmic domain with the parasite submembrane
actomyosin system and thus bridge the parasite cytoskeleton
and the host cell. The actomyosin system is part of a multipro-
tein complex known as the glideosome that ensures transloca-
tion of MIC complexes engaged to host cell receptors from the
apical pole of the parasite toward the posterior pole. This rear-
ward translocation enables gliding motility of the parasite and is
required for parasite migration through tissues, invasion of host
cells, and egress from infected cells (2, 3).

Microneme exocytosis, a prerequisite to parasite attachment
and gliding motility, follows a rise of the cytosolic calcium con-
centration. The release of calcium from the endoplasmic retic-

3 The abbreviations used are: PV, parasitophorous vacuole; MIC, micronemal
protein; TSR, thrombospondin type 1 repeat; ER, endoplasmic reticulum;
M2AP, MIC2-associated protein; VWF, von Willebrand factor; TRAP, throm-
bospondin-related anonymous protein; CSP, circumsporozoite protein;
DHFR-TS, dihydrofolate reductase-thymidylate synthase; CAT, chloram-
phenicol acetyltransferase; ESA, excretory-secretory antigen; HFF, human
foreskin fibroblast; DMEM, Dulbecco’s modified Eagle’s medium; sgRNA,
single guide RNA; UPRT, uracil phosphoribosyltransferase; IFA, immunoflu-
orescence assay; GA, glutaraldehyde; PFA, paraformaldehyde; ANOVA,
analysis of variance.
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ulum (ER) and other internal stores is typically triggered by a
signaling cascade in response to a low extracellular potassium
level, but can be artificially induced through ethanol exposure
(6, 9, 10). After their release onto the parasite surface, MIC
proteins often undergo proteolytic processing. The microneme
subtilisin protease SUB1 has been shown to trim several MIC
proteins such as MIC2, the MIC2-associated protein (M2AP),
or MIC4, and promote efficient binding to host cell receptors
(11-13). Proteolytic cleavage of the transmembrane domain of
MICs shed the complex from the parasite surface and leads to
the disengagement of the host-parasite interaction. To date,
MIC2, MIC6, MIC8, MIC12, MIC16, and the apical membrane
antigen 1 AMA1 have been shown to be cleaved by the rhom-
boid proteases 4 and 5 (ROM4 and ROMS5) (8, 14.-16).

TSRs have been described in multiple proteins and involved
in various cell-cell or cell-matrix interactions (17). A repeat
comprises ~60 amino acids and presents a conserved three-
stranded elongated structure with six conserved cysteines that
form disulfide bridges (18). In Toxoplasma, TSRs have been
reported in the extracellular domain of the micronemal pro-
teins MIC2, MIC12, MIC14, MIC15, MIC16, and the secreted
protein with altered thrombospondin repeat domain (SPATR)
(7, 8, 19-21). MIC2 has been shown to play a crucial role in
parasite attachment and gliding motility, which are required for
host cell invasion and parasite egress (22, 23). This type I pro-
tein contains a von Willebrand factor type A domain (vWF also
known as A/I domain), six TSRs, and a short cytosolic domain.
The TSRs form a semi-rigid rod-like structure that extends
from the membrane and presents the vIWF domain to host cell
receptors such as sulfated glycoaminoglycans or intercellular
adhesion molecule-1 (24 —-26). They bridge the vWF engaged to
receptors and the cytoplasmic domain bound to the actin cyto-
skeleton and are thought to transmit the tensile force necessary
for gliding (24). The sixth TSR of MIC2 has also been shown to
associate with M2AP in the ER to form a heterohexamer (24,
27). Formation of the MIC2-M2AP complex is essential for its
proper trafficking to the micronemes (22, 28, 29). In contrast to
MIC?2, genetic ablation of secreted protein with altered throm-
bospondin repeat domain did not significantly reduce adhesion
or gliding motility but decreased host cell invasion (20). The
function of other TSR-containing proteins remains to be
established.

Two distinct types of glycosylation, a-O-fucosylation and
a-C-mannosylation, have been shown to modify TSRs in
metazoans and have been recently described in Plasmodium
falciparum and Plasmodium yoelii thrombospondin-related
anonymous protein (TRAP), P. yoelli circumsporozoite protein
(CSP), and T. gondii MIC2 (30 —35). a-O-Fucosylation of folded
TSRs is catalyzed by the protein O-fucosyltransferase POFUT2
that acts on serine or threonine residues in the consensus
sequence CX, ;(S/T)CX,G (which comprises conserved cys-
teines) (31, 32, 36 -39). The B1,3-glucosyltransferase B3GLCT
may then add a terminal glucose to generate the disaccharide
GlcB1-3Fuca-O-Ser/Thr (40-42). Protein-O-fucosylation
occurs in the ER on folded proteins and has been shown to
stabilize and promote trafficking of some TSR-containing pro-
teins in metazoans, P. falciparum and T. gondii (31, 38, 43).
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The O-fucosylation motif is directly preceded by a
WX, WX, WX,C or WX,WX,C sequence that may carry a-
mannose residues linked via a carbon— carbon bond to the tryp-
tophan residues. The latter are part of a tryptophan-arginine
ladder that plays a central role in the TSR-fold. The mannose
residues are transferred from dolichol phosphate mannose by
specific C-mannosyltransferases of the DPY19 family (44, 45).
As all other glycosyltransferases that use dolichol-phosphate—
activated substrate, DPY19 proteins are rather large multipass
membrane glycosyltransferases localized in the ER (45). The
family name originates from the dumpy phenotype observed
in Caenorhabditis elegans worm carrying loss of function
mutation in the dpy19 gene. The phenotype associates with a
defect in neuronal migration and is similar to the phenotype
caused by deficiency in the C-mannosylated protein MIG-21
(45). In mammals, at least two DPY19 proteins (DPY19L1
and DPY19L3) are required for C-mannosylation of proteins
having a WX, W or WX,C motif, including TSRs and type I
cytokine receptors (44). We have recently demonstrated that
T. gondii and P. falciparum DPY19 are C-mannosyltransferases
acting on microneme proteins of the TRAP/MIC2 family (30)
and investigated here the importance of C-mannosylation for
motility, invasion, and virulence of 7. gondii by targeted gene
deletion.

Results

T. gondii protein C-mannosylation is abrogated upon dpy19
deletion

To assess the importance of C-mannosylation in 7. gondii,
the dpy19 gene was replaced by a cassette encoding a pyrimeth-
amine-resistant dihydrofolate reductase-thymidylate synthase
(DHFR-TS) via homologous recombination in the RHAku80
Ahxgprt strain (herein designated as WT) (Fig. 14). Gene
replacement was facilitated by a CRISPR/Cas9 genome editing
using two guide RNAs (gRNAs) targeting the regions immedi-
ately 5" and 3’ of dpyl9. The resulting Adpyl9 strain was
selected using pyrimethamine and single clones were isolated
by limiting dilution. Three clones were selected and analyzed in
this study. Replacement of dpyl9 was confirmed by genomic
PCR analyses (Fig. 1B). To functionally rescue the AdpyI9
mutant, a plasmid encoding myc-tagged DPY19 and the selec-
tion marker chloramphenicol acetyltransferase (CAT) was
transfected in the AdpyI9 strain. The complemented strain
named Adpyl9comp was selected with chloramphenicol and
shown to express MycDPY19 by Western blotting (Fig. 1C). By
immunofluorescence analysis, MycDPY19 co-localized with
the transiently expressed Ty-tagged acetyl-CoA transporter
AT1, previously shown to be in the ER membrane (46) (Fig. 1D).

To confirm the absence of functional C-mannosyltrans-
ferase, enzymatic assays were performed with microsomal
fractions isolated from WT, Adpyl9, and Adpyl9comp
tachyzoites (Fig. 1E). The microsomal preparations were incu-
bated with radioactive GDP-Man (precursor of the dolichol-
phosphate mannose donor substrate) and the acceptor peptide
WAEWGEC. After incubation of the mixture, the peptide was
extracted, purified by reverse phase chromatography, and the
associated radioactivity was measured. The peptide WAKW,
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which is an acceptor of mammalian DPY19 proteins but not of
T. gondii DPY19, was used as control (30). As expected, C-man-
nosylation of the peptide WAEWGEC but not WAKW was
observed in microsomes from the WT strain. Importantly, this
enzymatic activity was absent in the Adpy19 strain indicating
that DPY19 is the only C-mannosyltransferase present in
T. gondii, and was restored in the Adpyl9comp strain (Fig. 1E).

The Adpy19 strain presents a defect in parasite adhesion and
motility

Multiple rounds of lytic cycles over 7 days of culture
resulted in plaque formation within host cell monolayers. C-
Mannosylation—deficient parasites clearly formed smaller
plaques compared with the parental and AdpyI9comp strains
(Fig. 1F). A series of assays was thus carried out to define which
steps of the lytic cycle were affected. We first examined the rate
of replication by counting the number of parasites per vacuole,
24 h post-invasion. The Adpyl9 mutant did not display any
defect in intracellular growth as indicated by the similar num-
ber of Adpy19 or WT parasites per vacuole (Fig. 1G). In con-
trast, both the ability of Adpy19 parasites to invade host cells
and to egress from these cells was significantly impaired (Fig. 1,
H and I). Merely 25.0% (% 6.1) of Adpy19 parasites were found
to invade cells as compared with 57.0% (* 4.8) for WT parasites
representing a reduction of the invasion rate by ~44% (Fig. 1H).
In contrast, invasion of cells by the AdpyI9comp and WT
strains was comparable (Fig. 1H). When infected cells were
treated with the Ca®>"* ionophore A23187 to induce parasite
egress (47), 39.0% (+16.5) of Adpy19 parasites containing vac-
uoles were able to rupture versus 85.5% (£2.4) for the parental
strain (Fig. 11).

Because host cell invasion and parasite egress are intimately
connected to parasite attachment and gliding motility, we
investigated these processes in Adpy19 parasites and the paren-
tal strain. In vitro gliding assay was performed using live-video
microscopy to dissect the twirling, circular, and helical move-
ments previously described (48). Only 19.3% (£3.5) of the
Adpy19 parasites were motile compared with 58.3% (*+9.3) of
WT parasites (Fig. 1]). The impaired motility of AdpyI9 para-
sites was associated to a defect in attachment. Indeed, using a
standard immunostaining assay, we observed that only 29.8%
(% 3.7) of Adpyl9 parasites attached to cultured fibroblasts
compared with the WT strain (Fig. 1K).

Loss of C-mannosylation leads to reduced MIC2 cellular level

To date, the abundant micromenal adhesin MIC2 is the only
protein that has been shown to be C-mannosylated in T. gondii

Importance of protein C-mannosylation for T. gondii

(30-32). In an attempt to demonstrate absence of MIC2
C-mannosylation in Adpyl19, glycopeptides obtained by in-gel
digestion with trypsin and AspN were analyzed by LC coupled
to tandem MS (nanoUPLC-MS/MS). As expected, the TSR5
peptide DERPGEWAEWGECSVTCG was C-mannosylated
and O-fucosylated in samples obtained from WT parasites (Fig.
S1). In samples obtained from Adpy19 parasites, this peptide
(with or without C-mannosylation and/or O-fucosylation) was
not observed, although the detection of other MIC2 peptides
confirmed the presence of this protein (Fig. S1). Other peptides
containing C-mannosylation sites were not observed. These
data indirectly support absence of C-mannosylation in the
AdpyI9 strain.

Given the presumed role of C-mannosylation in protein fold-
ing and/or stabilization (44, 45, 49, 50), we examined whether
the cellular level of MIC2 was influenced by the loss of C-
mannosylation. Lysates of WT, Adpyl9, and Adpyl9comp
tachyzoites were analyzed by Western blotting using an anti-
MIC2 antibody and an anti-tubulin antibody to normalize load-
ing in all lanes (Fig. 24). MIC2 carries at least 9 mannose resi-
dues (~1.5 kDa) (31, 32, 39), whose absence in the Adpy19
strain is supported by the slightly faster migration of MIC2
when compared with the parental strain (Fig. 24). Moreover, a
decrease of ~50% (46 = 15%) in MIC2 cellular level was
observed in the AdpyIl9 mutant compared with the WT (Fig.
2A). As expected, the migration and level of MIC2 were
restored in the complemented strain Adpyl9comp.

Because the level and trafficking of MIC2 was previously
shown to depend on association with M2AP (22, 28), the
interaction of MIC2 with M2AP was analyzed by immunopre-
cipitation using an anti-M2AP antibody and detection with an
anti-MIC2 antibody (Fig. 2B). MIC2 efficiently co-immunopre-
cipitated with M2AP, indicating that the interaction of these
two proteins was not dependent on C-mannosylation (Fig. 2B).
Moreover, a decrease of the proteolytic maturation of M2AP
from its proform to mature form was observed in the Adpy19
mutant, which is in perfect agreement with a reduction of MIC2
cellular level (Fig. 2B) (22). Consistent with the formation of a
complex, MIC2 and M2AP localized at the apical region of par-
asites, corresponding to the micronemes, in the Adpyl9 and
WT strains (Fig. 2C).

Finally, to determine whether secretion and proteolytic
processing of micronemal proteins was influenced by absence
of C-mannosylation, ethanol was added to freshly egressed
tachyzoites to trigger microneme secretion and the excretory-
secretory antigens (ESA) were analyzed by Western blotting.

Figure 1. Deletion of dpy19 abolishes C-mannosylation and leads to impaired cell invasion, parasite egress, motility, and attachment. A, strategy for
the targeted replacement of T. gondii dpy19 by the DHFR-TS selection cassette mediated by homologous recombination. PCRs were performed for validation
of clones and the size of the expected product are indicated. B, validation of a Adpy 19 clone. Genomic DNA from the parental or Adpy19 strain was used for PCR
using the primer pairs AFA113/2017 (PCR1); 2018/AFA65 (PCR2); AFA01/AFA02 (PCR3); and AFA113/AFA65 (PCR4). C, Western blotting of Adpy19 and
Adpy19comp total extracts labeled with an anti-Myc antibody confirms insertion and expression of the dpy19 gene in the complemented mutant. D, T. gondii
DPY19 localizes with the transiently expressed acetyl-CoA transporter AT1-Ty to the endoplasmic reticulum. Scale bars: 2 um. E, C-mannosyltransferase activity
of microsomes isolated from T. gondii WT, Adpy19, and Adpy19comp tachyzoites. In vitro assays contained GDP-[>*H]Man, the synthetic peptide WAEWGEC or
WAKW and a microsomal fraction from WT, Adpy19, or Adpy19comp tachyzoites. F, representative examples and analysis of plaque areas formed in HFF
monolayers inoculated with WT, Adpy19, and Adpy19comp. Fixed cells were stained with crystal violet. Scale bars: 2 mm. G, percentage of intracellular
replication 24 h post-infection. The number of parasites per vacuole (2, 4, 8, 16, or more) were counted from a total of 200 vacuoles with 3 technical replicates.
H, percentage of invasion of host cells after 30 min. /, percentage of ruptured vacuoles, 24 h post-infection. Egress was induced by treating the parasites with
DMSO (control) or A23187. J, parasite motility. Gliding motility was monitored by video microscopy and 100 parasites were used to score gliding behaviors
(circular, helical, or twirling) or no productive movement. K, percentage of parasites attached to host cells after 10 min. Mean values of three independent
assays are shown for all assays =+ S.D. *, p value <0.05; **, p value < 0.01; ***, p value <0.001 in an unpaired t test or one-way ANOVA.
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Figure 2. Absence of DPY19 leads to reduced MIC2 cellular level but does not impact on MIC2-M2AP complex formation, localization, secretion, and
proteolytic processing. A, total extract of WT, Adpy19, and Adpy19comp parasites were analyzed by Western blotting using an anti-MIC2 antibody (upper
panel) and an anti-tubulin antibody (lower panel) to normalize loading in all lanes. MIC2 levels were normalized to tubulin and the average of three biological
replicates is shown. One-way ANOVA with Tukey’s multiple comparison test. *, p < 0.05; ns, nonsignificant. B, co-immunoprecipitation of MIC2 and M2AP.
M2AP was immunoprecipitated from WT and Adpy19 tachyzoites lysates with rabbit anti-TgM2AP. Immunoprecipitated proteins were then analyzed by
Western blotting labeled with mouse anti-TgMIC2 (upper panel) or rabbit anti-M2AP (lower panel). M2AP migrates as a proprotein (p) and mature protein (m).
G, localization of the MIC2-M2AP complex in WT and Adpy19 tachyzoites. Scale bar: 2 um. D, secretion and proteolytic processing of the micronemal proteins
MIC2, AMA1, and MIC6.WT, Adpy19, and Adpy19 comp parasites were incubated in the absence (—) or presence (+) of ethanol to induce microneme secretion.
The resulting pellet and ESA were then analyzed by Western blotting. Catalase (Cat.) was used as cytosolic control and dense granule 1 (GRAT) as control for

constitutive secretion.

Catalase and the dense granule protein 1 (GRA1) were used as
loading control for cellular and constitutively secreted proteins,
respectively. Proteolytic processing and secretion of MIC6 and
AMA]1, which do not contain any TSR or C-mannosylation
motif, was similar in all strains. In line with the reduced cellular
level of MIC2, the relative amount of secreted MIC2, which
migrated as a doublet due to differential trimming of its N ter-
minus, was reduced in the Adpyl9 strain compared with the
parental and complemented strain.

Deletion of dpy 19 results in loss of virulence in mice and
protection against a subsequent parasite challenge

To address the impact of protein C-mannosylation on par-
asite virulence, 5 mice were inoculated intraperitoneally
with 50 parasites of the WT, Adpy19, or Adpyl9comp strain.
After 8 -9 days, mice that had been infected with the WT or
complemented strain were sacrificed due to severe symp-
toms. In contrast, mice infected with the Adpyl9 mutant
showed no symptoms, although seroconversion confirmed
infection. To determine whether these mice were protected
against a subsequent challenge, 100,000 WT parasites were
inoculated on day 21 after the first infection. All challenged
mice survived, which indicated that Adpy19 had induced
protective immunity (Fig. 3).

1070 J. Biol. Chem. (2020) 295(4) 10661076
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Figure 3. T. gondii Adpy19 is strongly attenuated for virulence and con-
fers protective immunity. Mice infected with 50 WT or Adpy19comp para-
sites were sacrificed after 8 to 9 days due to severe symptoms, whereas all
mice infected with 50 Adpy19 parasites showed no symptoms. 21 days after
the first parasite injection, the surviving mice were challenged with 100,000
WT parasites and did not develop any sign of disease indicating that Adpy19
confers protective immunity.

In silico prediction of C-mannosylated proteins in T. gondii

The in vitro C-mannosyltransferase assays presented in Fig.
1C confirmed that T. gondii DPY19 modifies the WAEWGEC
peptide but, in contrast to metazoans C-mannosyltransferases,
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does not act on the shorter WAKW peptide (Fig. 1E) (30, 51).
These data and the few C-mannosylation sites described in
T. gondii, P. falciparum, and P.yoelii proteins (30-35, 39)
strongly suggest that apicomplexan C-mannosyltransferases
recognize WX, WX,C motifs, commonly found in TSRs. A pro-
tein Blast search identified 37 T.gondii proteins with a
WX, WX,C sequence. A previous study of experimentally ver-
ified C-mannosylation sites indicated that metazoan C-manno-
syltransferases have a strong preference for WX, W or WX,C
motifs with a serine, alanine, glycine, or threonine following
the tryptophan residue (52). The few C-mannosylation sites
described in apicomplexan proteins to date suggest that the
parasite DPY19 enzymes have a similar specificity (30 -35, 39).
Tables S1 and S2 present the 14 T. gondii proteins containing at
least one WX*XWX*XC motif, in which the amino acids X* are
a serine, alanine, glycine, or threonine. Besides the WX, WX,C
motif(s), conserved cysteine, arginine, and glycine residues are
present in the vast majority of these proteins and indicate their
relationship to the TSR superfamily (53). These proteins repre-
sent potential substrates of T. gondii DPY19. This list is, how-
ever, potentially not exhaustive given that slight alterations of
the WX, WX,C recognition motif can be tolerated, as seen by
the C-mannosylation pattern of MIC2 (Table S2) (39), and
information about the exact specificity of C-mannosyltrans-
ferases is still limited.

Discussion

In apicomplexans, like in metazoans, little is known about
the extent and function of protein C-mannosylation. In this
study, we analyzed the importance of this protein glycosylation
for the lytic cycle and virulence of T. gondii tachyzoites. Dele-
tion of the T. gondii dpy19 gene was successful, revealing that
protein C-mannosylation is not essential for parasite survival.
Similarly, DPY19 was lately shown to be dispensable for P. fal-
ciparum asexual blood stages viability (54). Genetic screens
predicted, however, that DPY19 confers fitness to 7. gondii
tachyzoites and P. falciparum asexual stages (53, 55). In agree-
ment, DPY19 was shown to play important functions during the
lytic cycle of Toxoplasma, as seen by the small plaques formed
by the dpy19-deficient strain. Importantly, the plaque size was
fully restored by re-expression of the C-mannosyltransferase.
Detailed phenotyping revealed that absence of protein C-man-
nosylation severely compromised parasite adhesion, which as
expected was associated with reduced motility, invasion, and
egress.

The micronemal protein MIC2 secreted by tachyzoites has
recently been shown to be C-mannosylated and O-fucosylated
(30-32). Absence of MIC2 C-mannosylation in the Adpyl9
strain was suggested by the faster migration of MIC2 in SDS-
PAGE and absence of C-mannosyltransferase activity in the
knockout strain. Importantly, the cellular level of MIC2 was
decreased by ~50% in the Adpy19 strain. The formation of the
MIC2-M2AP complex involves the 6th TSR of MIC2 and the
modified galectin domain of M2AP (24, 27) and is determinant
for the cellular level, trafficking, and secretion of both proteins
(22, 28). Reduction of the MIC2 level in the Adpy19 strain was,
however, not due to the absence of interaction with M2AP
because the two micronemal proteins co-immunoprecipitated
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and were co-localized at the apical pole of the parasite. In line
with this result, it was recently demonstrated that the 6th TSR
of MIC2 is not C-mannosylated and not O-fucosylated in Tox-
oplasma tachyzoites (24, 27, 31, 32). As expected, deletion of
the O-fucosyltransferase POFUT2 did not affect the MIC2-
M2AP complex formation either (31, 32). Together, these data
confirm that association of MIC2 and its escort protein M2AP
is mediated by protein-protein interaction (27).

In T. gondii, like in metazoan, the C-mannosyltransferase
DPY19 localized to the ER, as is the case for other known gly-
cosyltransferases that use dolichol-phosphate-linked donor
substrate. C-Mannosylation might be co-translational, because
folded proteins have been shown to be poor acceptor substrates
in vitro (51). Indeed, expression of TSR-containing proteins in
C-mannosylation— deficient cells is often associated with poor
yield, suggesting that this glycosylation process assists protein
folding and/or contributes to protein stability (44, 45, 49, 50, 56,
57). The involvement of C-mannosylation in TSR folding and
stability was lately confirmed for the netrin receptor UNC5
(64). However, the requirement for C-mannosylation seems to
vary from protein to protein. MIC2 contains 6 TSRs and is
modified with at least 9 C-mannose residues (31, 32, 39). In the
Adpy19 strain, this protein might be partially misfolded and
degraded by the ERAD pathway leading to the observed
decrease in MIC2 level. The remaining MIC2 is presumably
folded, associates with M2AP, and is properly trafficked to the
micronemes before being secreted.

In the absence of MIC2, the parasite ability to attach to host
cells was impaired, with severe consequences on motility and
host cell invasion (22, 23). In Adpyl9 parasites, the observed
attachment and invasion defects were less pronounced and
resemble the defects reported for a mutant deficient in the pro-
tein O-fucosyltransferase POFUT2 (31). Note that one of the
described Apofut2 mutants presented significantly lower MIC2
level and an invasion defect (31), whereas the second displayed
no substantial changes in attachment or MIC2 abundance (32).
A third Apofut2 mutant displaying a small plaque phenotype
has been recently generated and might help resolve this contro-
versy (42).

The phenotype of the Adpy19 clearly differs from the pheno-
type of the MIC2-deficient strain Amic2 because 7. gondii pre-
serves its virulence in the absence of MIC2 (23), whereas the
lack of C-mannosyltransferase activity leads to a strong atten-
uation of virulence. A study involving simultaneous disruption
of micI and mic3 has previously demonstrated that microneme
proteins have synergetic roles not only in adhesion and invasion
but also in virulence (58). The different virulence phenotype
observed in Adpyl9 and Amic2 strongly suggests that, in addi-
tion to MIC2, other proteins are impacted by loss of C-manno-
syltransferase activity. Analysis of C-mannosylated peptides by
tandem MS is the method of choice to identify C-mannosylated
proteins. However, this method is often applied to isolated pro-
teins and requires manual annotation of the potential glycopep-
tides spectra. Recently, complex protein lysates from Plasmo-
dium sporozoites or Toxoplasma tachyzoites have been
analyzed, but only the abundant surface proteins TRAP, CSP
(in P. yoelii), and MIC2 were identified as C-mannosylated pro-
teins (30-35, 39). Based on our limited knowledge of C-man-
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nosyltransferases specificity, the micronemal proteins MIC12,
MIC14, MIC15, and MIC16, whose functions are currently
unknown, as well as several uncharacterized proteins were
identified here as candidate C-mannosylated proteins. Further
studies will be needed to confirm C-mannosylation of addi-
tional Toxoplasma proteins and assess their role in parasite
biology and virulence.

Materials and methods
Parasite culture

T. gondii tachyzoites of RH Aku80Ahxgprt strain (59), herein
referred as WT or parental strain, Adpy19 and AdpyI9comp
(this study) were maintained by serial passage on monolayers of
human foreskin fibroblasts (HFF; ATCC® SCRC-1041™) cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM; Bio-
chrom, Germany) supplemented with 5% (v/v) heat-inactivated
fetal bovine serum (iFBS, Biochrom, Germany) at 37 °C and 5%
CO.,.

Deletion of T. gondii dpy 19

All primers used are listed in Table S3. A DHFR-TS selection
cassette (including promoter and terminator regions) was
amplified from plasmid p2854 (60) using the primers AFA96/
AFA97, which each contains 30 nucleotides homologous to the
5'- or 3’-UTR of dpyl9. Additionally, plasmid pU6-dpyl9,
which encodes a single guide RNA (sgRNA) targeting the
region immediately upstream of the start codon (gcagac-
tcgctctcgaaaata) and a sgRNA targeting the stop codon down-
stream region (agttaatcttccttctcegge) was generated and used
to enhance the insertion of the DHFR-TS cassette. To generate
pU6-dpyl9, T. gondii U6 termination sequence and promoter
were amplified from plasmid p2sgRNA with primers AFA102/
AFA103, which each includes a sgRNA sequence. The ampli-
con was then cloned in the Bsal restriction site of pU6-Univer-
sal (between U6 promoter and terminator) (Addgene plasmid
number 52694) (61). The resulting plasmid encodes 2 sgRNAs
under T. gondii U6 promoter and Streptococcus pyogenes Cas9
under the TUB1 promoter.

Freshly egressed RH Aku80Ahxgprt tachyzoites (~107 para-
sites) were pelleted at 1000 X g for 5 min and washed with
cytomix buffer. The pellet was resuspended in cytomix buffer
containing 2 mM ATP, 5 mm gluthatione, 20 ug of the plasmid
pU6-dpyl9, and 7 ug of the DHFR-TS selection cassette in a
final volume of 800 ul. Electroporation was performed in a
4-mm cuvette with 2 pulses of 2kV, 50 €}, 25 microfarad. Trans-
formants were selected using 1 um pyrimethamine. The clonal
Adpyl19 line was isolated by performing serial dilutions in
the presence of drug selection followed by verification of inte-
gration via PCR with primer pairs AFA113/2017,2018/AFA65,
AFA113/AFA65, and AFAO01/AFA02. Three clones were
selected and analyzed.

Complementation of the Adpy19 strain

For complementation of Adpy19, a plasmid coding for N
terminally Myc-tagged DPY19 and the selection marker
CAT was generated. Therefore, T.gondii dpyl9 coding
sequence was amplified from pcDNA3.1-dpyI9 (30) using
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primers AFA114R and AFA115F and inserted in Nsil/Pacl
sites of the pTub8 MycGFPPfMyoAtailTy-HXGPRT plasmid
(62). The tubulin promoter and Myc-DPY19 were then
amplified using AFA116F and AFA118R and inserted into
the EcoRV/BglII sites of the pCAT vector, which contained
300 and 380 nucleotides homologous to the 5'- and 3’-UTR
of the uracil phosphoribosyltransferase (UPRT), resulting in
p5'UPRT-CAT-pTub8-mycTgDPY19-3"UPRT.

Electroporation was performed as described above with 10
g of pSAG1Cas9gfp-U6sgUPRT plasmid (63) and 40 ug of
Notl/Kpnl linearized 5'-UPRT-CAT-pTub8-mycTgDPY19-
3"UPRT. Parasites were selected using 20 um chloramphenicol.
The clonal Adpyl9comp line was isolated by performing serial
dilutions in the presence of drug selection followed by verifica-
tion by Western blotting and immunofluorescence assay using
a mouse hybridoma supernatant anti-Myc (1:100).

Preparation of microsomal fractions and in vitro C-
mannosyltransferase assays

Approximately 10° tachyzoites were harvested from lysed
CHO cells deficient in DPY19L1, -L2, -L3, and -L4 and sus-
pended in 2 ml ice-cold lysis buffer (10 mm HEPES-Tris, pH 7.4,
0.8 M sorbitol, 1 mm EDTA containing protease inhibitor mix-
ture (Roche Applied Science)) and disrupted by nitrogen cavi-
tation at 450 p.s.i., two times, for 10 min, on ice. The homoge-
nate was centrifuged at 1,500 X g, for 10 min at 4°C.
Supernatant was further centrifuged at 100,000 X g for 1 h and
the microsomal pellets were resuspended in 200 ul of 10 mm
MOPS, pH 7.5. Microsomal fractions were aliquoted and kept
at —80 °C.

C-Mannosyltransferase assays were performed as previ-
ously described (30). Reactions contained microsomal frac-
tion (10 ul representing ~35 ug of total protein), 3.7 kBq of
GDP-[?H]Man (American Radiolabeled Chemicals), 2 um
GDP-Man, 100 mm MOPS, pH 7.5, 0.05% saponin, 2 mm
MnCl,, 2 mm MgCl,, 2 mm ATP, 1 mM synthetic peptide
Ac-WAKW-NH, or Ac-WAEWGEC-NH, (ProteoGenix SAS)
in a final volume of 25 ul and incubated for 60 min at 37 °C.
Reactions were stopped by adding 230 ul of ice-cold water and
1 ml of chloroform/methanol, 3:2 (v/v). The samples were
mixed, centrifuged at 3000 X g for 5 min, and the upper phase
was diluted with 2.5 ml of 0.1% TFA (TFA) before loading onto
200-mg C18 Solid Phase Extraction Cartridges (Macherey-Na-
gel). The cartridges were washed 3 times with 3 ml of 0.1% TFA
and peptides were eluted with 4 ml of methanol. After evapo-
ration of the methanol, 2 ml of Luma Safe (Zinsser Analytic)
were added and the samples were counted in a Beckman
Coulter LS 6500.

Plaque assay

Freshly egressed parasites were inoculated on a confluent
monolayer of HFF and incubated 7 days at 37 °C and 5% CO,,
after which HFF were washed once with PBS and fixed with 4%
paraformaldehyde, 0.05% glutaraldehyde for 10 min. Fixed HFF
were stained with crystal violet solution (0.1%) and washed
three times with PBS. Plaques were measured using Fiji soft-
ware version 1.8.0_66. Mean values of three independent
experiments * S.D. were determined.
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Immunofluorescence assay (IFA)

Parasite-infected HFF cells seeded on coverslips were fixed in
4% paraformaldehyde (PFA), 0.05% glutaraldehyde (GA) in PBS
for 10 min. After fixation, cells were rinsed once with 0.1 m
glycine in PBS. Cells were permeabilized with 0.2% Triton
X-100 in PBS for 20 min and blocked in PBS with 2% BSA. Cells
were incubated for 60 min with primary antibodies diluted in
blocking buffer, washed, and incubated for 60 min with second-
ary antibodies IgG Alexa Fluor 488 and 568 (1:500, Molecular
Probes). Slides were viewed on a Zeiss Epifluorescence micro-
scope using X40 or X63/1.4 oil objectives, imaged with an Axio
Cam MRC (Zeiss) camera, and analyzed with Zen 2012 (blue
edition, version 6.1.7601) software or with a Zeiss microscope
(LSM700, objective apochromat 63/1.4 oil).

Intracellular growth assay

Freshly egressed parasites were allowed to invade a mono-
layer of HFF at 37 °C and 5% CO,, for 24 h, after which a
immunofluorescence assay was performed using mouse
hybridoma supernatant anti-GRA3 (1:100) and polyclonal rab-
bit anti-IMC1 (1:1000) antibodies and the number of parasites
per vacuole (2, 4, 8, 16, or more) were counted from a total of
200 vacuoles. Mean values of triplicates from three indepen-
dent experiments = S.D. were determined.

Invasion assay

Freshly harvested tachyzoites were added to HFF monolayer
on coverslips, centrifuged at 1000 X g for 1 min, and allowed to
invade cells for 30 min before fixation with PFA/GA. Extracel-
lular parasites were stained using mouse hybridoma superna-
tant anti-SAG1 (1:100) in nonpermeabilized conditions. After
three washes with PBS, cells were fixed with 1% PFA/GA for 7
min and washed once with PBS. Cells were then permeabilized
with 0.2% Triton/PBS for 20 min and all parasites were stained
with rabbit polyclonal anti-GAP45 (1:3000) antibody followed
by IgG Alexa Fluor 488 and 568 (1:500, Molecular Probes). 200
parasites were counted and the percentage of intracellular par-
asites calculated. Data are mean = S.D. from three independent
biological experiments.

Induced egress assay

Freshly egressed parasites were allowed to invade a mono-
layer of HFF for 24 h. After which, media was exchanged for
pre-warmed, serum-free DMEM containing 3 um A23187 in
DMSO and incubated for 7 min at 37 °C. IFA was performed
using mouse hybridoma supernatant anti-GRA3 (1:100) and
rabbit polyclonal anti-IMC1 (1:1000). For each condition, 200
vacuoles were counted and the number of lysed vacuoles was
scored. Mean values of triplicates from three independent
experiments = S.D. were determined.

In vitro gliding motility assay

Gliding was monitored by video microscopy on a Nikon
eclipse Ti-inverted microscope. Freshly egressed RH Aku80
Ahxgprt and Adpyl9 parasites were allowed to settle onto
glass chamber slides (Ibidi) coated with 0.1% gelatin. Prior to
imaging, 5-benzyl-3-isopropyl-1H-pyrazolo[4,3-d]pyrimi-
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din-7(6H)-one (BIPPO) was added to the medium at a final
concentration of 5 um and parasites were captured by time-
lapse microscopy for 1 min in several areas of the chamber
using a X63 Oil Plan Apochromat objective. One hundred par-
asites were used to score gliding behaviors (i.e. circular, helical,
or twirling) or no productive movement. Experiments have
been done in triplicate.

Attachment assay

Attachment assay was conducted as described previously
(23). Briefly, 10° freshly egressed tachyzoites were inoculated
on a confluent monolayer of HFF and incubated for 10 min at
37 °C and 5% CO,, after which cells were washed once with
PBS. IFA was performed using mouse hybridoma supernatant
anti-SAG1 (1:100) and total numbers of parasites within 15
fields of view (objective X60) were counted. Mean value of trip-
licates from three independent experiments *= S.D. were
determined.

Cellular localization of DPY19

T. gondii atl (TgME49_215940) was amplified from cDNA
using primers DSF5272/DSF5273 and inserted in EcoRI/Nsil
sites of pTub8MycGFPPfMyoAtailTy-XGPRT plasmid (62) to
generate the pTub8-AT1Ty-HXGPRT plasmid. Around 10 ug
of the plasmid were then transiently transfected in the
Adpyl9comp strain. Immunofluorescence assay using anti-
Myc (DPY19) and anti-Ty (AT1) antibodies was performed the
next day.

Mass spectrometry analyses

WT and Adpy19 tachyzoites were disrupted in 500 mm Tris-
HCI, pH 8.5, 50 mm EDTA, 700 mm sucrose, 100 mm KCI, 1%
SDS, and 2% B-mercaptoethanol by sonification 8 X 30 s on ice
(~10® parasites/ml). One volume of Roti-phenol, pH 7.5-8.0
(Roth), was added to samples and mixed by inversion for 10 min
at4 °C. The phenol phase was precipitated with 4 volumes of 0.1
M ammonium acetate in cold methanol at —20 °C for at least
4 h. The pellet recovered by centrifugation at 6000 X g for 10
min at 4 °C was solubilized in Laemmli buffer and proteins
(equivalent to 5 X 107 parasites/lane) were separated on a 10%
SDS-PAGE gel. The MIC2-containing bands were manually
excised from Coomassie gel and treated as previously described
(30). Briefly the proteins were reduced with 10 mm DTT, alky-
lated with 100 mm iodoacetamide, and digested at 37 °C with
0.1 um trypsin followed by digestion with 0.1 ug of AspN (Pro-
mega). The resulting peptides were extracted from gel pieces
with 50% acetonitrile containing 5% formic acid, followed by
75% acetonitrile containing 0.5% formic acid, and finally 100%
acetonitrile. Extracts were dried and dissolved in 2% acetoni-
trile containing 0.1% TFA. A Waters nanoACQUITY-UPLC
System equipped with an analytical column (Waters, BEH130
C18, 100 X 100 pwm, 1.7-um particle size) coupled online to
an ESI-Q-TOF Ultima was used for analysis as previously
described (44). Obtained spectra were explored with MassLynx
version 4.1 software (Waters). The theoretical mass of each
peptide containing putative C-mannosylation sites was calcu-
lated with or without glycosylation (C-mannosylation and
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O-fucosylation). Extracted ion chromatograms were generated
by ion counts for these masses (=0.1Da).

Analysis of MIC2 cellular level by Western blotting

Tachyzoites were harvested, centrifuged at 1500 X g for 10
min, suspended at a concentration of 10° parasites/ml in Laem-
mli buffer, and disrupted by sonification 8 X 30 s on ice. 1%
B-Mercaptoethanol was added and samples were heated at
95 °C for 10 min. Protein were separated by SDS-PAGE on a
12% acrylamide gel and blotted onto nitrocellulose mem-
brane. The membrane was stained with mouse anti-MIC2
6D10 hybridoma supernatant (1:100) or mouse anti-a-tubu-
lin (1:800) (Developmental Studies Hybridoma Bank) fol-
lowed by an anti-mouse IRdye800CW (1:20,000) (LiCor Bio-
sciences) in Odyssey buffer (LiCor Biosciences). Labeled
membranes were detected using LiCor Odyssey IR imager
1060 version 2.1.12, and the images processed with Image
Studio version 4.0.21.

MIC2-M2AP co-immunoprecipitation

HFF monolayers from a 6-cm® dish were infected with
tachyzoites. 48 h post-infection, extracellular and intracellular
parasites were purified by passaging the cell-parasite suspen-
sion two times through 27-gauge needles (Braun), washed once
with PBS, pelleted, and resuspended in 0.5 ml of immunopre-
cipitation buffer (1% Triton X-100, 50 mm Tris-HCI, pH 8.0,
150 mm NaCl, EDTA-free proteases inhibitor (Roche Applied
Science). Parasite suspension was freeze-thawed five times,
sonicated 3 X 10 s on ice, and centrifuged 14,000 X g for 30 min
at 4 °C. Supernatant was incubated with a rabbit anti-M2AP
antibody for 60 min at 4 °C on a rotating wheel. After incuba-
tion, 0.1 ml of Protein A-Sepharose™ CL-4B (GE Healthcare
Life Sciences) beads was added to the suspension and the sam-
ple was incubated for 1 h at 4 °C on a rotating wheel. Complexes
were washed 4 times in 1 ml of immunoprecipitation buffer
with intermediate centrifugation at 1,500 X g for 1 min, at 4 °C.
The remaining pellet was suspended in protein loading buffer
with 5% DTT, separated in a 12% SDS-polyacrylamide gels, and
transferred to a nitrocellulose membrane. Western blots were
processed using anti-MIC2 antibody for 60 min, washed, and
incubated with IRDye LiCor secondary antibody for another 60
min. Labeled membranes were detected using Li-Cor Odyssey
IR imager ODY 1060 version 2.1.12, and the images processed
with Image Studio version 4.0.21.

Microneme secretion assay

Freshly egressed parasites were harvested, washed twice with
pre-warmed intracellular buffer (5 mm NaCl, 142 mm KCl, 1
mMm MgCl,, 2 mm EGTA, 5.6 mm glucose, and 25 mm HEPES,
pH 7.2), equally distributed in two Eppendorf tubes, and resus-
pended in previously warmed DMEM with 5% FCS and *2%
EtOH. Parasite suspension was incubated at 37 °C for 30 min,
followed by centrifugation at 1000 X g, 4 °C, for 5 min. Super-
natants (with constitutively or induced secreted micronemal
proteins) were collected and centrifuged at 2000 X g, 4 °C, for
an additional 5 min to remove residual parasite debris. Pellets
were washed once in PBS. ESA and pellets were separated in a
12% SDS-polyacrylamide gels and transferred to a nitrocellu-
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lose membrane. Membranes were blocked in 3% BSA, 0.02%
Tween in PBS (PBST) for 30 min. Western blots were processed
using a combination of primary antibodies for 60 min, washed,
and incubated with secondary antibodies an additional 60 min.
Labeled membranes were detected using GE Healthcare-Am-
ersham Biosciences ECL Western Blotting Detection Reagent
and visualized on a Bio-Rad ChemiDoc™ MP Imaging system
or directly visualized on a Li-Cor Odyssey IR imager ODY 1060
version 2.1.12, and the images processed with Image Studio
version 4.0.21.

Mouse infection

For each strain (WT, Adpy19, and AdpyI9comp), 5 CD1 mice
(female, 6 weeks, Charles River Laboratories) were infected with
50 parasites by intraperitoneal injection (day 1). The health of the
mice was monitored daily until they presented severe symptoms of
acute toxoplasmosis (bristled hair and complete prostration with
incapacity to drink or eat) and were sacrificed on that day. Because
they showed no symptoms, the 5 mice infected with AdpyI9 par-
asites were challenged with 10° WT parasites at day 21.
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