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Abstract

In recent decades, semiparametric and nonparametric models have received increasing
interest, which can be explained by the desire to get away from the strong restrictions
of parametric models. Although their rate of convergence is slower, semiparametric and
nonparametric models offer greater flexibility for estimation. This thesis proposes to use
these models for respectively economic and econometric modelling in chapter one and two
and to provide a solution to the distributed data problem in chapter three. In the first
chapter, we use a general additive semiparametric model to estimate the long run efficiency
of offshore wind farms. We rely on mainly well-established nonparametric methods that we
had to modify appropriately to fit with the economic model we wanted to estimate. In the
second chapter, we use a varying coefficient semiparametric model to estimate Regional
Knowledge Production Function. We rely on general ideas of economic and econometric
modelling of bilateral trade by gravity models and develop semiparametric estimators
that could estimate such a sophisticated model structure. Finally in the third chapter,
we start from the data distributed problem. We propose an operational way to get timely
estimates, fits or predictions with huge but distributed data sets, including model and
parameter selection. Our approach is to think fully locally using local linear nonparametric
estimation with LASSO penalty for statistical analysis, may it be estimation, prediction,
or attribution.






Résumé

Au cours des dernieres décennies, les modeles semi-paramétriques et non-paramétriques
ont fait 'objet d’un intérét croissant qui peut s’expliquer par le désir de s’affranchir des
fortes restrictions des modeles paramétriques. Bien que leur taux de convergence soit plus
lent, les modeles semi-paramétriques et non-paramétriques offrent une plus grande flexi-
bilité pour 'estimation. Cette these propose d’utiliser ces modeles pour la modélisation
économique et économétrique dans les chapitres un et deux et d’apporter une solution au
probleme des données distribuées dans le chapitre trois. Dans le premier chapitre, nous
utilisons un modele semi-paramétrique additif général pour estimer l'efficacité a long
terme des parcs éoliens en mer. Nous nous appuyons principalement sur des méthodes
non-paramétriques bien établies que nous avons dii modifier de maniere appropriée pour
les adapter au modele économique a estimer. Dans le deuxieme chapitre, nous util-
isons un modele semi-paramétrique a coefficients variables pour estimer la fonction de
production de connaissances régionales. Nous nous appuyons sur des idées générales de
modélisation économique et économétrique du commerce bilatéral par des modeles de
gravité et développons des estimateurs semi-paramétriques qui pourraient estimer une
structure de modele aussi sophistiquée. Enfin, dans la troisiéme partie, nous partons
du probléme de la distribution des données. Nous proposons une maniére opérationnelle
d’obtenir des estimations rapides, des extrapolations ou des prédictions avec de tres grands
ensembles de données distribuées, en incluant la sélection des modeles et des parameétres.
Notre approche consiste a penser entierement localement en utilisant I’estimation non-
paramétrique linéaire locale avec une pénalité LASSO pour l'analyse statistique, qu’il
s’agisse d’estimation, de prédiction ou d’attribution.
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Introduction

In recent decades, semiparametric and nonparametric models have received increasing
interest, which can be explained by the desire to get away from the strong restrictions
of parametric models. Although their rate of convergence is slower, semiparametric and
nonparametric models offer greater flexibility for estimation. This thesis proposes to use
these models for respectively economic and econometric modelling in chapter one and two
and to provide a solution to the distributed data problem in chapter three.

In the first chapter, we use a general additive semiparametric model to estimate the
long run efficiency of offshore wind farms. We rely on mainly well-established nonpara-
metric methods that we had to modify appropriately to fit with the economic model we
wanted to estimate. Offshore wind energy has emerged as an attractive alternative to con-
ventional resources to meet the Paris agreement commitment. This chapter studies the
long run capacity of offshore wind farms to transform kinetic energy into electricity. We
start estimating the technical efficiency of twenty-six farms over a thirteen years interval
using a fully parametric and a semiparametric stochastic frontier model. The latter allows
the factors of production to impact non-linearly on the quantity of electricity produced,
those reducing the possibility of committing a functional misspecification error. Our re-
sults suggest that fully parametric specifications fails to identify the non-linear effect of
labour cost on volumes of electricity produced. Then, we regress the estimated technical
efficiency over the farm age, while controlling for the technological change of the wind
power industry, to single out the resilience of the technical efficiency to aging. According
to our calculations, technical efficiency ranges from 83% to 98% and it does not decline
with age. This result shades light on the capacity of offshore wind farms to be a long
term solution of the energy transition.

In the second chapter, we use a varying coefficient semiparametric model to estimate
Regional Knowledge Production Function (RKPF). We rely on general ideas of economic
and econometric modelling of bilateral trade by gravity models and develop semiparamet-
ric estimators that could estimate such a sophisticated model structure. The estimation of
RKPF is subject of a vast literature prevailing the application of the spatial linear regres-
sion models. However, the adequacy of these models has been questioned in recent work
which discloses the existence of nonlinearities and heterogeneous effects not sufficiently
addressed in the existing literature on model specification. This chapter approaches these
modelling issues recurring to some semiparametric methods that today are easily acces-
sible to practitioners. We illustrate this along the analysis of panel data on European
regional knowledge production. It is shown how the heterogeneity of effects of potentially
complex functional forms in the RKPF can be revealed, including heterogeneous spatial
spillovers. Among other alternatives, this work introduces varying coefficient spatial re-
gression models for the RKPF, in which direct effects and spatial spillovers on knowledge



creation due to variations of R&D expenditures and Human Capital resources depend on
the population density of the region. Not surprisingly, we find a lot of heterogeneity in
the effects and spillovers, creating a lot of serious non-linearities. Results obtained in the
empirical study suggest for instance, that innovation policies should take into considera-
tion the specific region features like population density.

In the third chapter, we start from the data distributed problem. We propose an op-
erational way to get timely estimates, fits or predictions with huge but distributed data
sets, including model and parameter selection. Our approach is to think fully locally
using local linear nonparametric estimation with LASSO penalty for statistical analysis,
may it be estimation, prediction, or attribution. We borrow ideas of local smoothers and
prediction algorithms to generate our practical tool. Further, while typically distributed
databases are considered as a bane, data localization can turn it into a boon. Similarly,
since most of the problems with divide-and-conquer algorithms root in the paradigm of
facing a global parameter set, they disappear by localization, and the selection of an op-
timal subsample size is melted with the one of optimal bandwidths which in addition we
allow to be local too. Moreover, model and variable selection are possible, and sometimes
even necessary, when staying local. For each step and subprocedure, we look for the most
efficient implementation to keep the procedure fast. The proof of concept and computa-
tional details are given in a simulation study. An application to ocean warming illustrates
the practical use of such a tool.



Chapter 1

Measuring the Long Run Technical
Efficiency of Offshore Wind Farms

1.1 Introduction

During the last decade, offshore wind technology became a valuable alternative to con-
ventional resources (Bosch, Staffell, & Hawkes, 2019). Measures like the generation per
turbine and the generation per unit of capacity suggest that the opportunity-costs of de-
ploying offshore hubs, which install bigger rotors and exploit faster and more uniformly
distributed wind, is positive (Dismukes & Upton Jr, 2015). Furthermore, offshore wind
resources seem to be a suitable option in different environments like the United States
coast, the Iberian peninsula, the North Adriatic Sea and the South China Sea (Schweizer
et al., 2016; Soares, Lima, Cardoso, Nascimento, & Semedo, 2017; Costoya, DeCastro,
Carvalho, & Gémez-Gesteira, 2020; Wen, Kamranzad, & Lin, 2021). As a result, offshore
technology could become a long term solution of the energy transition.

The previous conclusion holds true only if the capacity to generate offshore electricity
does not decline over time. In other words, only if the Technical Efficiency (TE) of offshore
farms remains constant for a number of years sufficient to amortize their deployment costs,
the returns to scale can fully unfold. Previous studies suggest that this might not be the
case. For example, regressing (ideal) load factors on the farm age suggests a statistically
significant decline in onshore load factors over time (Hughes, 2012; Staffell & Green, 2014;
Olauson, Edstrom, & Rydén, 2017). However, these conclusions seem to apply only to the
onshore wind installations since an increase in offshore load factors have been observed
between 2005 and 2014 in the United Kingdom (Crabtree, Zappala, & Hogg, 2015). This
increase could be explained either by an increase in offshore wind speed or a maturation
of operation regimes, which reduces downtime. We proposed to investigate the effect of
aging though TE analysis. To the best of our knowledge, no study has investigated the
relation between the TE of offshore wind farms and their aging. The aim of the present
paper is to close this gap in the renewable literature.

Applied econometricians estimate the TE using either Data Envelopment Analysis
(DEA) or Stochastic Frontier Analysis (SFA). The former is a deterministic performance
measurement, which assesses the relative efficiency of decision-making units (Charnes,
Cooper, & Rhodes, 1978). The latter is a stochastic regression model, which separates
the TE from random noises (Aigner, Lovell, & Schmidt, 1977; Meeusen & van Den Broeck,
1977). Traditionally, DEA has dominated the renewable literature due to the constraints
SFA imposes on the structure of the production function (Akbari, Jones, & Treloar, 2020).
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In recent years, SFA overcome many of its restrictions, while keeping the advantages of a
probabilistic framework.

We use a flexible semiparametric SFA, which does not impose any strict output-input
link, to identify the TE of the United Kingdom offshore wind industry. Our choice is
motivated by the relative advantages of this methodology compared to traditional SFA
and DEA approaches. On the one hand, the semiparametric SFA does not require a
functional production function specification. On the other, the methodology remains
stochastic. We start constructing a database, which merges information from the Re-
newable Energy Foundation, the United Kingdom companies register, and a wind speed
estimation algorithm (Staffell & Pfenninger, 2016), to obtain the output and inputs of a
standard neo-classical production function. The resulting panel data contains yearly in-
formation about twenty-six wind farms observed over the time interval 2005-2018. Then,
we mimic the process introduced by Y. Fan, Li, and Weersink (1996), while adapting the
first step to a semiparametric framework, to measure the farm-level TE.

Once obtained the efficiency measures, we regress them on the farm age, while con-
trolling for technological change (Henningsen, 2014). Our empirical results suggest that
no significant decline in efficiency is observed as time passes. This finding completes a
series of previous results based on onshore installations (Iglesias, Castellanos, & Seijas,
2010; Barros & Antunes, 2011; Lin & Luan, 2020).

This study contributes in several aspects. Firstly, we propose a to our knowledge
the first stochastic frontier analysis of offshore wind electricity production. Secondly, we
decided to rely on a semiparametric extension of the traditional SFA to compute wind
farm technical efficiency. Thirdly, we investigated if efficiency where affected by aging.
Finally, we provided details on the construction of our database based on latest wind
sector research.

The rest of the paper is organized as follows. Section 2 presents a semiparametric SFA
applied to wind industry. Section 3 describes the construction of the dataset. Results are
provided in section 4 and discussed in section 5. Section 6 presents the conclusions.

1.2 A Stochastic Frontier Analysis of the Wind In-
dustry

Stochastic Frontier Analysis (SFA) is an econometric technique designed to identify the
Technical Efficiency (TE) of a producing unit. At its core, there is the idea to disentangle
the unexplained part of the production function into the first error component, which
is a pure stochastic noise, and the second error component, which captures technical
inefficiency.

The first SFA analysis applied only to standard production and cost functions (Aigner
et al., 1977; Meeusen & van Den Broeck, 1977; W. H. Greene, 1980; Stevenson, 1980).
While theoretically appealing, these rigid formulations could misspecify the input-output
relation, those returning biased estimates of the TE (Giannakas, Tran, & Tzouvelekas,
2003). Inrecent years, Y. Fan et al. (1996) extended SFA to semiparametric specifications.
These new formulations allow the different factors of production to impact non-linearly on
the volumes of output produced, those decreasing the possibility to commit a functional
form mispecification error. Among them, the present paper uses an additive semipara-
metric model where the outcome of the production function is the quantity of electricity
produced and the inputs are the quantity of capital, labour and kinetic energy (Iglesias
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et al., 2010; Ferrara & Vidoli, 2017). In our framework, the logarithm of the quantity
of electricity generated by offshore wind farm ¢ at time ¢, measured in Megawatts Hour,
is function of the logarithm of the quantity of capital employed, k;; = log K;;, measured
in thousands of pounds spent per year, of the cost of labour, [;; = log L;;, measured in
thousands pounds spent per year, and of the logarithm of the quantity of kinetic energy
employed in the process, e; = log E;;, measured in Megawatts Hour,

log(Electricity)y = a+ f(ki) + fi(lie) + fe(ew) + pi + €, €0 = Vig — gy - (1.1)

In equation (1.1), « is the unconditional expectation of the produced electricity’,

[f(.), fi(1), fe(.)] are three unknown smooth functions (Hastie, 2017), which can take any
shape suggested by the data with one-dimensional convergence rates (Stone, 1986), and
w; is a farm-specific fixed effect (i.e a specific intercept is estimated for each farm), which
captures unobserved cross-sectional heterogeneity. The composite error €;; is made out of

two components: 1) the pure random noise vy N (0,02), which is normally distributed

with homoskedastic variance, and 2) the technical inefficiency u; “ N+ (0, 02), which is
half-normal distributed with homoskedastic variance; see Weinstein (1964) and Aigner et
al. (1977) for details.

We estimate the TE embedded in equation (1.1) employing the two-step procedure
introduced by Y. Fan et al. (1996). First, we estimate equation (1.1) using a General
Additive Model (GAM). From this first estimation, we extract the estimated residuals

€. Then, we estimate the ratio of relative variability of the two error sources, A = 2«

oy’

maximizing the pseudo-likelihood function? ,

~ - ~ A1
/{rel%)i{ —nlogd + ;log {1 — O(éy0 )\)} —

1 & }
=D s (1.2)
262 3
where ®(.) is the cumulative density function of a standardized normal distribution and
1 & ——
6*==-> & =02+02. (1.3)
iz
Knowing \ and &, we obtain &, and &, solving a linear system of two equations in two

unknowns. Finally, we write the probability density function of u;, conditional on the
estimated residuals €,

f(uit|€it) = * o , with .= — 11 ‘ and 5—3 — 3 v ,
20, 1_@(_%) 2 52
[

(1.4)

as a function of estimated quantities (Jondrow, Lovell, Materov, & Schmidt, 1982). The
exponential of the opposite of the first moment of this distribution returns the TE of each

farm,
Eit A ~ 3
it A
o) & ) . (5)
1—@(4r) o

ED)
1+ )2

By = exp(~Eluléu]) = exp ( _

where ¢(.) is the probability density function of a standard normal distribution.

Lo = E[log(Electricity);;] is imposed for identification to avoid collinearity with fixed effects.
2Note that defining lambda as the ratio of variability allows us to maximize the log-likelihood function
over a single parameter.



6 Chapter 1. Measuring the Long Run Technical Efficiency of Offshore Wind Farms

1.3 Dataset Construction

In order to fit equation (1.1), we collect information from three distinct data sources. First,
we obtain annual farm level data on the volumes of Megawatt Hour produced downloading
monthly data from the Renewable Energy Foundation website®. The monthly data are
then aggregated to obtain annual ones. Second, we collect labour and capital expenditures
using the United Kingdom companies register*. We start isolating the Special Propose
Vehicles (SPV), which contain financial information specific to each farm. Annual reports
are available at the register of United Kingdom companies. Then, we use the audited
books of the SPVs, which are generally more reliable than information available from
farm websites or public reports, to identify different types of expenditures (Ederer, 2015;
Aldersey-Williams, Broadbent, & Strachan, 2019). More precisely, we use as a proxy
variable for capital costs the Capital Expenditures (CAPEX), net of the decommissioning
costs and of the values of the transmissions assets”, which farms need to sell to the Offshore
Transmission Network Owners (Aldersey-Williams et al., 2019),

ki = log(CAPEX;; — Decommissioning CAPEX,, — OFTO Assets;) . (1.6)

In the same way, we use as a proxy variable for labour costs the Operational Expen-
ditures (OPEX) faced by the SPV. The latter includes sales and administrative costs,

l;iy = log(Cost of Sales OPEX;; + Administrative OPEXj;) . (1.7)

Figure 1.1 shows that k;; and [;; are driven by the water depth and the distance to shore of
the installation (Myhr, Bjerkseter, Agotnes, & Nygaard, 2014). Since these two variables
also explain a large fraction of the farm-specific capacity to generate electricity, it is
reasonable to think that the combined effect of (kj, l;;) and the farm fixed-effect p;, which
isolates further farm-specific characteristics, like the type of turbine installed, leaves as
the only elements of €;; the technical inefficiency and a white noise.

Finally, we estimate the total wind energy flowing through the surface area of farm i
at hour s using the formula of the kinetic energy,

eis = log <g> +log A + 3log wps , (1.8)

where p = 1.23 is the air density, A is the swept area of rotor, wy;, is the wind speed at
height h in location j, with ¢ € j, at a given hour s. While p and A are known quantities,
vwys must be estimated. Traditionally, this quantity has been computed for any h and
j using annual averages (Iglesias et al., 2010). In order to improve the accuracy of our
calculations, we use hourly estimates of wind speed at point j and height h relying on the
algorithm proposed by Staffell and Pfenninger (2016). The authors record wind speed
data from the Modern-Era Retrospective analysis for Research and Applications climate
dataset®. This climate dataset maps the globe using a 0.5° x 0.66° grid, which reports

3The raw data can be downloaded at https://www.ref.org.uk/energy-data

4The raw data can be downloaded at https://www.gov.uk/government/organisations/companies
~house

5All values are available on audited books.

6The row data are downloadable here https://gmao.gsfc.nasa.gov/reanalysis/MERRA/ and here
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/


https://www.ref.org.uk/energy-data
https://www.gov.uk/government/organisations/companies-house
https://www.gov.uk/government/organisations/companies-house
https://gmao.gsfc.nasa.gov/reanalysis/MERRA/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
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Figure 1.1: Estimated surface of CAPEX (billions pounds) and OPEX (millions pounds)
against distance to shore (km) and water depth (meters).

hourly wind speed at every edge of the grid for three different heights. These initial data
are obtained using the climate reanalysis method, a widely used meteorological technique,
which combines historical observations and updates models in order to make retrospec-
tive forecasts (Dee et al., 2014). Once these initial data are collected, the algorithm
interpolates hourly wind speed, at the desired location, using Locally Weighted Scatter-
plot Smoothing (LOWESS). Then, the algorithm extrapolates the hourly wind speed,
at the desired height, using the logarithm Wind Profile Law (WPL) (Banuelos-Ruedas,
Camacho, & Rios-Marcuello, 2011),

thjs> h— DH
L= log [ -2 1.
Whg ( 04 ) %8 ( SRis (1.9)

where F'V is the friction velocity, 0.4 is the Von Karman constant, D H is the displacement
height and SR is a measure of the surface roughness. Since the data contain measurements
at three different heights, it is possible to estimate the unknown quantities (F'V},;s, SRp;s)
using a linear regression and obtain ;s for every height h, location j and hour s. Sub-
stituting the estimated ;" into equation (1.8), we compute the hourly kinetic energy
of each farm. Then, we aggregate these estimates to obtain the annual kinetic energy of

"To take into account the limits of turbine technology, the author use only wind speed ranging from
0 to 40 m/s. In our case, all estimated wind speeds are ranging from 1.762 to 27.513 m/s.
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each farm,

S
it = Z [log (g) + log A + 3log wps | (1.10)

s=1

where S = 8,760 during a normal year and S = 8,784 during a leap year. According
to the Betz’s law, wind turbines cannot transform more than 16/27 (59.3%) of the wind
kinetic energy into electricity (Grogg, 2005). In addition to this physical barrier, there
are aerodynamic, mechanical, technical and rated power limit losses, which contribute
to decrease the ratio of kinetic energy transformed into electricity (Hau, 2013). We
compute these ratios for each farm and each year based on our estimates and displayed
resulting boxplots in Figure 1.2. The differences between the red dashed line representing
the maximum possible energy conversion and boxplots correspond to wind farms energy
conversion losses. Note that this figure highlights some heterogeneity due to farm specific
fixed-variables, for instance turbine characteristics.

0= = = = = = = = _—_—— = = = = == == = = = = = —
Betz's law

0.5¢
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Ratio of energy converted
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Figure 1.2: Ratio of Kinetic Energy converted into Electricity

Merging the information about electricity, costs and kinetic energy, we obtain a panel
dataset, which contains yearly statistics for twenty-six offshore wind farms located in the
United Kingdom across the time interval 2005-2018. The locations of wind farms are
shown in Figure 1.3. In order to avoid transitional dynamics, we subtract from this initial
dataset all the information regarding the year of the commissioning of the farm. The
final dataset contains 176 data points®. The summary statistics of input variables of our
production function defined in equation (1.1) are provided in Table 1.1.

8Note that a balanced dataset would have 26 * 14 = 364 data points. The discrepancy is due to the
construction of several of the wind farms during the analyzed time interval.
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Figure 1.3: Location of Offshore Wind Farms
Table 1.1: Summary Statistics
Statistic Variable Unit of Account N Mean SD Min Max
Electricity Electricity MWh 176 584,597 556,050 128,400 2,490,000
OPEX L 1000 $ 176 46,512 53,139 4,561 352,802
CAPEX K 1000 $ 176 477,237 545,687 77,561 2,296,264
Kinetic Energy E MWh 176 2,138,676 2,195,970 451,910 9,486,701

1.4 Empirical Results

We start our empirical analysis estimating a parametric version of equation (1.1),
log(Electricity)y = a + Biki + Bilis + Befir + i + €t (1.11)

which assumes that the three unknown smooth functions are linear, fi(.) = Brki, fi(.) =
Bilit, and fe(.) = Peéir. We estimate two versions of equation (1.11). In the first one,
we do not take advantage of the panel nature of the dataset (1; = 0). In the second
one, we control for the presence of unobserved fixed effects p;. This second specification
corresponds to the true fixed effect model presented by W. Greene (2005). Then, we
estimate equation (1.1), without imposing restrictions on the shapes of [fx(.), fi(.), fe(\)],
using the thin plate regression splines option of the mgcv package of the statistical software
R (Duchon, 1977; Wood & Wood, 2015). Like in the parametric case, we estimate a
specification without and one with fixed effects. The obtained parametric terms of all
four models are reported in Table 1.2.
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In the parametric SFA without fixed effects, all factors of production impact positively
on the volumes of electricity produced. The most important one is the amount of kinetic
energy (i.e. the fuel of the farm). Increasing the kinetic energy by 1% increases the
electric output by 0.62%. The economic variables are also relevant. Increasing CAPEX
by 1% increases the electricity production by 0.12%, increasing OPEX by 1% increases
the electricity production by 0.15%. Once the fixed effects are introduced, both economic
variables become statistically insignificant. This result suggests that if we control for
unobserved heterogeneity the only relevant factor is the quantity of kinetic energy, those
there is no statistically significant degree of substitutability between money, allocated
either in operational either in capital expenditures, and wind. Flnally, both parametric
models indicate decreasing returns to scale since the sum of (ﬁk, A, Be) is smaller than
one in both cases.

Like in the case of the parametric model, in the semiparametric SFA without fixed
effects, all factors of production are statistically significant. However, contrary to the
parametric model, in the semiparametric SFA with fixed effects, OPEX remains statisti-
cally significant. To investigate this difference, we display in Figure 1.4 fl() and fe()
The former is non-linear and its impact changes in sign as OPEX grows. This finding
is overlooked by the parametric specification. In other words, increasing OPEX can in-
crease the farm output at least till a neighborrod around 60,000 pounds spent. To the
contrary, like in the parametric case, any increase in kinetic energy always augments the
final output.

Table 1.2: Estimated Stochastic Frontier Models

Parametric SFA semiparametric SFA
(1) (2) (3) (4)
Intercept 0.959*** 12.925%*
(0.221) (0.008)
k 0.125* 0.150

(0.040)  (0.113)

! 0.149"*  0.005
(0.037)  (0.030)

¢ 0.624**  0.406***
(0.032)  (0.064)

o 0.139 0.091 0.121 0.073
A 0.000 1.208 1.076 0.957
Fixed Effect No Yes No Yes
Observations 176 176 176 176
AIC -185.51 -366.76 -272.74 -405.19
Note: *p<0.05; *p<0.01; **p<0.001

Following the procedure presented in Section 2, we use (4, 5\, €;:t) to obtain ﬁit. Ac-
cording to our estimates, technical efficiency is relatively high both in parametric and in
semiparametric fixed effects specification with values ranging from 0.835 to 0.986, with the
semiparametric estimates showing a smaller variance. Figure 1.5 displays the emiprical
probability density function of TE;;.
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Figure 1.5: Estimated Empirical Probability Density Function of ’ﬁit.

Once obtained the technical efficiency, we can investigate its origin regressing TE; on a
set of explanatory variables. Our key interest is to understand if this measure is impacted
by the aging of the farm. Therefore, we regress it on the farm age, while controlling for
a time trend (i.e corresponds to the year of each observation),

TE; = 0.4520 + 0.0001 Age,, + 0. 0003 Year, , (1.12)

(0.9072)  (0.0004) (0.0005
which should incorporate an eventual homogeneous technological trend within the wind
industry. The latter should increase the technical efficiency at rate 0TE;/0Year;. Ac-
cording to our result, both Age;, and Year; do not impact in a statistically significant
way TE;, see Figure 1.6. We confirm that conclusion using bootstrap estimated standard
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Figure 1.6: Offshore wind farms efficiencies against age and year.

errors. We also check if variables Age,, and Year, are jointly significant using an F-test.
The test reject the joint significance of the variables. Furthermore, the regression has no
explanatory power. This second result confirms our distributional assumption of technical

, . jid
inefficiency, u;; ~ N(0, 02).

1.5 Discussion

Our results contradict a series of previous measures of onshore wind farm performance de-
cline with age based on linear regression. Hughes (2012) measured a decline in wind farm
capacity factor of 5-13%" per year in the United Kingdom and in Denmark. A more con-
sistent estimation of 1.6% decrease per year is obtained by Staffell and Green (2014) using
corrected capacity factors of onshore wind farms located in United Kingdom. Recently, a
similar study has obtain a significantly lower estimated decline of 2.7-5.4% decrease over
20 years in Sweden onshore wind farms (Olauson et al., 2017). Two explanations may
explain why our results are contradictory to the current literature. First, it is possible
that new offshore turbines require more than ten years to display a statically significant
decline in their performances (Astolfi, Byrne, & Castellani, 2021). Although our panel
includes a time period of thirteen years, there are relatively few wind farms older than
ten years, as shown in the figure 1.6. Hence, it might be too soon to observe a decrease in
offshore wind farms efficiency. This finding would be per se interesting because it would
suggest that there is no decline in TE for more than a decade from the installation of the
mills, this might not be the case for onshore installations as a decrease in load factors
has been observed over time (Hughes, 2012; Staffell & Green, 2014; Olauson et al., 2017).
Second, in the cited studies performance was measured through the transformation of a
single input, namely the kinetic energy. Whereas in our paper, efficiency is measured by
a multivariate production frontier made out of three inputs. A decline in the load factors
could then be compensated by a more efficient use of capital and labour. Said differently,
there would be a statistically significant substitution effect between natural capital (i.e.
the wind), physical capital (i.e. CAPEX), and human capital (i.e. OPEX).

9These results are controversial as they are likely to be mainly driven by farm downtime
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1.6 Conclusions

To the best of our knowledge, no empirical study has investigated the effect of aging on
the TE of offshore wind farms. The present paper tries to fill using data of the United
Kingdom offshore wind sector.

Starting from a standard production function, which links the quantity of electricity
produced to the capital, the labour and the kinetic energy used, we estimate a parametric
and a semiparametric stochastic frontier analysis. We obtain the TE of twenty-six farms
observed over a thirteen years period. According to our results, once netted out farm-
specific fixed effects, the TE ranges from 83% to 98% and are not affected by aging of
the farm. This result suggests that offshore wind farms are highly efficient in the short
as well as in the long run.

This empirical result complements the literature on wind power across three aspects.
First, we show the first application of a Stochastic Frontier Analysis (SFA) to the offshore
wind sector. Second, among different types of SFA, we apply a flexible semiparametric for-
mula, which relaxes many of the traditional SFA assumptions and captures the non-linear
impact of operational expenditures on the quantity of electricity produced. Third, we
describe in detailed how to construct the database to allow other researchers to replicate
this type of research for different regions of the world.






Chapter 2

Nonlinearities and Heterogenous
Effects in the Regional Knowledge
Production Function

2.1 Introduction

It has broadly been recognized that spatial econometric methods are useful tools to model
an insightful data analysis, and have therefore become eminently requested with the in-
creasing availability of geo-referenced data. Since the seminal work of Paelinck (1978) the
specification modelling and estimation techniques have evolved profusely in this direction.
Instead of a comprehensive revision, we refer to Anselin (2010) as a quite important survey
on the evolution of spatial econometrics since its outset till the last decade. In particu-
lar, it displays well the increasing importance of the subject moving from the margins of
applied regional science to the mainstream of econometric methodology. See also Arbia
(2016) for a brief overview of recent developments in the area. In this context, already
McMillen (2012) acknowledged the importance of using semiparametric and nonparamet-
ric techniques in model specification and estimation with spatial data. He emphasized
its capacity to deal with the prevalent problems of correlated unobserved spatial hetero-
geneity and unknown functional form due to the complexity of spatial relationships, see
also Pinkse and Slade (2010). More specifically then, Basile, Durban, Minguez, Montero,
and Mur (2014) introduced a semiparametric spatial regression model based on penalized
splines, whereas Lu, Steinskog, Tjgstheim, and Yao (2009) modelled spatial heterogeneity
in covariates’ impacts for spatio-temporal data proposing by coefficients varying over spa-
tial location and an unknown index. They estimated both, i.e., the coefficient functions
and the index variable with a two-step procedure that recurs to standard kernel regres-
sion. More recently, Basile and Minguez (2018) provided a critical discussion comparing
parametric and semiparametric spatial regression models.

Independently from the above said, the ability of regions to produce knowledge and
innovation is an important subject of research. Griliches (1979) introduced the knowledge
production function (KPF) as a tool to analyse the creation of knowledge and innovation.
This approach has not lost anything of its popularity until today. It departs from the fact
that knowledge is an output determined by R&D investment and human capital resources.
Somewhat more recently, several authors disclosed that regional knowledge production has
to take into account the effect of knowledge endowments of the neighbours in the trans-
mission and generation of knowledge. As this obviously is - at least partly - reflected in



Chapter 2. Nonlinearities and Heterogenous Effects in the Regional Knowledge
16 Production Function

the spatial proximity of regions it clearly suggest to recur to spatial econometrics which
introduce explicitly spatial dependency and spatial effects in model specification and esti-
mation. On the other hand, the complexity in the relationship between R&D expenditures
and the creation of knowledge is documented in the literature, leading to refinements of
the KPF, e.g., whether including additional variables that capture regional features like
industrial diversity (Piribauer & Wanzenbock, 2016), technological proximity and inten-
sity of economic activity (Parent & LeSage, 2008), the level of foreign direct investment
(F. Zhang, Wang, & Liu, 2020), or considering more flexible specifications by introducing
nonlinearities in the KPF (Piribauer & Wanzenbock, 2016; Kijek & Kijek, 2019), spatial
heterogeneity in the effects of the input variables (Autant-Bernard & LeSage, 2019; Kang
& Dall’erba, 2016; Parent & LeSage, 2008). The latter arguments call for flexible mod-
elling, recurring to nonparametric and semiparametric approaches (Charlot, Crescenzi, &
Musolesi, 2015) as we discussed them above. This link has been motivating the present
paper.

This paper contributes to the literature in at least two ways. On one hand, it con-
tributes methodologically by analysing the complex relations between knowledge cre-
ation and knowledge inputs using semiparametric spatial models and allowing for spatial
spillovers. It gives a special relevance to spatial econometric models with varying coeffi-
cients, where the effects of each variable may depend on other variables, simultaneously
allowing for spatial dependency and spatial effects. On the other hand, it contributes
to a better understanding of how to model the complex relationship between R&D in-
vestment, Human capital and knowledge production, making use of methods that today
are accessible to the user. The main objective is to explore and understand better the
heterogeneity of effects; classical methods only estimate direct average effects. This is
little informative - and thus not of much help - if the effects’ heterogeneity is of first
order, i.e. more important than the average effect itself. To our knowledge, those varying
coefficients models (in the perspective that marginal effects of a variable may depend on
other variables, often called drivers, see Sperlich and Theler (2015), (Benini, Sperlich, &
Theler, 2016), Benini and Sperlich (2021)) are not used in spatial econometrics and in
particular, cannot be found in the KPF literature. In a different context, using firm level
data, Kanwar and Sperlich (2019) consider a varying coefficients conditional difference-in-
differences specification to assess the impact of the intellectual property environment in
India in factor productivity assuming that the first depends on the level of R&D activities
of the firms.

It should be mentioned that the augmented KPF approach has been criticised, among
others by O hUallachdin and Leslie (2007), which argue that the added regional fea-
tures into the KPF are a source of confusion between causes and effects. Autant-Bernard
and LeSage (2019) reinforce this idea and prefer to use instead a heterogeneous spatial
autoregressive model for spatial-temporal data. Kang and Dall’erba (2016) present a
comprehensive survey on the approaches used in the literature to model spatial hetero-
geneity in the KPF. However, very few consider spatial heterogeneous marginal effects.
We distinguish the work of Autant-Bernard and LeSage (2019) with spatial-temporal
data where all the coefficients are specific to a region (vary across regions), estimated
by Bayesian methods and ridge regression to overcome collinearity problems. The latter
emerge because in their estimation, they need a significant variation over time to identify
the region-specific coefficients. In some regions, however, the variables hardly vary over
time. Kang and Dall’erba (2016) use a different approach, recurring to geographically
weighted regression (GWR) and mixed GWR in a sample of US counties. They observe
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a high degree of spatial heterogeneity in the marginal effects of the knowledge input vari-
ables across Metropolitan Statistical Areas. To the best of our knowledge, no-one has
so far considered the different alternatives we discuss below, showing how an explorative
spatio-temporal data analysis of a KPF could be performed in practice, resorting only to
ready-to-use software.

In the next section we review the most related RKPF literature to place our contribu-
tion. Then we briefly introduce the data along which we have organized the presentation
and discussion of the data analysis and modelling which we present in the section that
follows. We conclude with a brief discussion, and have deferred some more tables and
figures to the appendix.

2.2 Knowledge spillovers, nonlinearities and omitted
heterogeneity in the RKPF

Since the seminal work of Griliches (1979) a profusion of empirical articles has been pub-
lished on estimating Knowledge Production functions. A special interest has been given
to the regional knowledge production embedding the existence of spatial knowledge ex-
ternalities and potential presence of spatial dependence in the error terms of traditional
regression models. These could also result from omitted determinants of innovation cre-
ation with high spatial heterogeneity (Autant-Bernard, 2012). For more discussion see
also Audretsch (2003) for an analysis on the role of spatial spillovers and externalities
in the production of knowledge. On the other hand, Autant-Bernard and LeSage (2019)
stress that there are a variety of region-specific features such as social and business net-
work structure, social and demographic stratification, educational achievement, cultural
factors, governance, or science—industry relationships, that influence the creation of re-
gional knowledge. The usual proxies used in the empirical literature for the inputs of
knowledge production are unable to capture well the effects of all those regional features,
resulting in specifications for the RKPF with omitted heterogeneity.

To address the presence of spatial dependence and knowledge spillovers in the RKPF,
some spacial econometric tools have been used, typically following the pioneer work of
Anselin, Varga, and Acs (1997). Firstly, traditional linear spatial regression models were
widely adopted. A higher accuracy when estimating the complex relation between knowl-
edge creation and its main inputs (R&D expenditures and Human Capital) was expected
to be assured with a judiciously choice of the proxy control variables of RKPF. These
aim to disclose effects of unobserved spatial heterogeneity due to spacial and technolog-
ical proximity between regions, regional economic dynamics, institutional environment,
among others. See, for example, Buesa, Heijs, and Baumert (2010) for a study on the
choice of the determinants of regional knowledge creation, and (Ferreira & Godinho, 2015)
for different proxies to control in particular for technological sophistication, regional devel-
opment, entrepreneurship and institutional environment regulation. At the same time, the
inclusion of spatial lags in the RKPF has become popular as a mean to control for omitted
heterogeneity in the classical specification, and consequently to prevent from a potential
endogeneity bias in estimation. Autant-Bernard and LeSage (2011) give an empirical mo-
tivation for this approach, stressing as well its advantage of enabling the identification of
direct and indirects effects or spillovers in innovation activities. The estimation of spatial
knowledge spillovers (or externalities) is an important issue in the empirical literature on
innovation and knowledge creation; see, among others, Bottazzi and Peri (2003), Moreno,
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Paci, and Usai (2005b), Autant-Bernard and LeSage (2011) or Kijek and Kijek (2019).
Parent and LeSage (2008) use a different approach. They estimate a Bayesian hierarchical
model in which regional knowledge spillovers are captured by latent random coefficients
that are spatially structured, accounting for the connectivity structures between regions
by relying on technological as well as transportation and geographical proximity.

More recently, with the availability of panel data, or more generally, data with repeated
observations of spatial units over several time periods, and the development of spatial
panel methods, several authors opt to estimate the RKPF recurring to space-time models.
As the name says, these models allow to analyse the dynamics of knowledge production
over space and time as well. To this end, dynamic models are popular containing spatial
lags of the variables together with time lags. Moreover, the inclusion of fixed or random
effects specific to time and /or to the spatial unit allows to control for omitted heterogeneity
in order to gain robustness against omitted variables (using fixed effects) or to increase
efficiency (using random effects). As examples, see (Piribauer & Wanzenbock, 2016) who
specify a linear dynamic space-time KPF for European regions, extending the classical
linear spatial Durbin model with space and time lags, adding, as well, region and time
fixed-effects to control for region-specific and time-specific omitted heterogeneity, and
Parent (2012) who considers a linear spatial dynamic panel data model for knowledge
creation in the US states with random effects, estimated by Bayesian Markov Chain Monte
Carlo methods. Another motivation to include fixed /random effects in the modelling is to
avoid spurious spatial dependence. Because the omitted variables causing heterogeneity
might be spatially correlated. Therefore if there are not properly controlled, they could
cause spurious spatial dependence (Heckman et al., 1981).

Autant-Bernard and LeSage (2019) advocate the existence of regional disparities in
the ability to transform local R&D and Human capital inputs into innovation, and to
benefit from or generate interregional spillovers. The parametric RKPF that is typically
used in the empirical literature does not account for these regional heterogeneities even
for space-time panel data models, because the coefficients associated to the inputs of
knowledge creation are the same over all time periods and regions except if one would
include several interaction terms (i.e., interacting production factors with space and time
indicators). To overcome this limitation the above authors introduce a heterogeneous
coefficient spatial autoregressive (HSAR) model that allows for variations in the level of
spatial dependence/interaction as well as in the RKPF coefficients, intercepts and noise
variances across each region. Their approach allows also to introduce prior information in
their estimation (via Bayesian modelling). The estimator relies on Markov chain Monte
Carlo (MCMC) procedures in place of a maximum likelihood or quasi-maximum likelihood
(QML) based procedure.

The vast majority of empirical articles in the literature of regional knowledge cre-
ation estimate a log-linear RKPF. However, the linearity of the RKPF has repeatedly
been questioned. Proenca and Glérias (2021) argue the nonlinear functional form of the
Cobb-Douglas type of the RKPF should be directly estimated through Poisson Quasi-
maximum Likelihood because it could lead to more accurate estimates of the direct and
indirect effects of knowledge inputs than those obtained with the loglinear model. On
the other hand, (Griliches, 1990) alerts for the complexities in the process of knowledge
creation leading to nonlinearities in the knowledge production functional form, though
this issue has been largely neglected in the empirical literature until recently. Charlot
et al. (2015) disclose empirically important nonlinearities in the RKPF by estimating a
semiparametric Generalized Additive Model (GAM) with spatial effects to account for
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spatial dependence, including time and region specific fixed effects, recall our discussions
from above. Basile and Minguez (2018) in their above-mentioned critical review of para-
metric and semiparametric spatial econometric models specify a Penalized-Spline Spatial
Lag model (with a spatial autoregressive component) that would account for spatial de-
pendence and nonlinearities in the functional form. They control for unobserved spatial
heterogeneity by including a geo-additive term which is a smooth function of the spatial
coordinates of the regions.

The semiparametric approaches mentioned prove to be very flexible to model the
complex process of knowledge creation. However, given those methods are intrinsically
data-driven, they can easily produce results that are hard to interpret or even odd. More-
over, there is not only the risk of scarifying interpretability for flexibility. If not data
fitting and prediction but interpretation of the model parameters and functions is the
central interest, then this should be reflected in the modelling. Finally, even if one agrees
on a flexible modelling for interpretation (instead of prediction and data-fitting), you can
still distinguish between targeted and untargeted modelling. For example, using a random
slope coefficient may reflect very well the heterogeneity of the associated covariate’s effect,
but it cannot ’explain’ it. For this you may rather apply a so-called varying coefficients
model in which the slope coefficients are unknown functions of (possibly other) covariates.
The most simple case if this driver’ and the associated covariate coincide; then you simply
allow for size (or scale) effects. These considerations motivate to look for a specification
incorporating more economic structure in order to induce results with more meaningful
interpretation and, simultaneously flexible enough to allow incorporating regional het-
erogeneity, spatial dependence and nonlinearities. To this aim, this article considers as
RKPF first semiparametric additive panel models, and then introduces a varying coef-
ficient semiparametric model. Spatial dependence and spatial spillovers are accounted
for with the inclusion of spatially lagged values of the knowledge inputs variables, and
omitted spatial or time heterogeneity are controlled with fixed effects.

Doubtless, one can think of many different candidates to serve as so-called ’drivers’
for the effect heterogeneity. Moreover, for each covariate one could choose a different one.
This, however, would go beyond the scope of this paper. Instead, we concentrate - you
may say 'for the sake of illustration’ - on population density. An assumption underlying
this choice is that population density is a good indicator for the heterogeneity of the
coefficients of R&D and Human Capital, respectively, in the RKPF, and also for those
of their spatially lagged counterparts. On the one hand, one may say that the relation
of population density in innovation processes has not been much investigated and would
deserve more attention. On the other hand, there are several indications in the literature
that suggest our choice. For instance, Knudsen, Florida, Stolarick, and Gates (2008) find
that the density of creative workers is a key component of knowledge spillovers and a key
component of innovation. Nomaler, Frenken, and Heimeriks (2014) find a statistically sig-
nificant nonlinear relation between scientific knowledge production and population density
in in U.S. Metropolitan Areas. (Carlino, Chatterjee, & Hunt, 2007) show that knowledge
creation measured by patent intensity is positively related to the density of employment in
the highly urbanized Metropolitan Areas in US. These works recur to standard regression
methods, but their findings partly indicate the existence of a role of population density on
innovation activities and knowledge creation. Nonetheless, even if someone might prefer
other ’drivers’ for the effects’ heterogeneity, the below outlined modelling approach and
ideas hold equally well for any other candidate.
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2.3 The Data Set

We face a panel data set covering 195 European regions from 2000 to 2012. To define
regions of comparable size and governance structure, we rely on a relatively heteroge-
neous spatial European knowledge literature (Charlot et al., 2015; Kijek & Kijek, 2019;
Bottazzi & Peri, 2003; Moreno et al., 2005b; Parent & LeSage, 2008; Paci, Marrocu, &
Usai, 2014). We use NUTS 2 (Nomenclature of Territorial Units') regions for Austria,
Bulgaria, Croatia, Czech Republic, Finland, France, Hungary, Italy, Netherlands, Nor-
way, Poland, Portugal, Romania, Slovakia, Spain, Switzerland and Sweden, NUTS 1 for
Belgium, Germany and United Kingdom and NUTS 0 for Denmark, Estonia, Ireland,
Latvia, Lithuania and Luxembourg. More details are provided in Table 2.4 in Appendix.

Table 2.1: Summary Statistics

Variable Mean SD Min Max

Patents K 70.574 104.58  0.02  1018.94
R& D Expenditures R&D 1.21 0.96 0.07 12.21
Human Capital HR 34.39 9.33 11.00 63.40

Density Population DP 324.00  797.78 3.3 7194.20

The data are downloaded from the EUROSTAT?. Following the above cited literature,
we use as proxy for innovation, K, the number of patent applications to the European
Patent Office (EPO) per million inhabitants. Similarly, the innovation inputs, R&D and
HK, are respectively Research and Development expenditure measured as percentage of
GDP and Human Resources in science and technology measured as share of the active
population. The effects’ driver, population density (DP), is measured as the number
of persons per square kilometre. Summary statistics of all the variables of interest are
provided in Table 2.1.

We display log of patent applications in our NUTS regions for year 2011 in Figure
2.1. One can observe a concentration of high innovation intensity in the centre of Eu-
rope (Switzerland, West of Germany and West of Austria), in Netherlands and in some
Scandinavian regions, highlighting the presence of strong central-periphery distribution of
innovation activity (Moreno, Paci, & Usai, 2005a). The most innovative region is North
Brabant (NL) well known for its electronic activity (Philips, NXP, ASML), and the less
innovative region is respectively Sud Muntenia (RO). We compute the Moran’s I statistic,
I,y = 0.74, for year 2011 to test the presence of spatial dependence in our dependent vari-
able. This value is significant at 0.001 level rejecting the null hypothesis that innovations
are randomly distributed across NUTS regions. Note that positive values of Moran’s I
imply positive spatial autocorrelation.

We compute the weight matrix, W, using Queen contiguity (i.e. regions are considered
neighbours if they share either a side or an edge). W is then row-standardized. The finally
applied Queen contiguity based neighbours are displayed in Figure 2.7 in the Appendix.
Note that others type of weighting matrix are possible. We obtained relatively similar
results using the inverse euclidean distance weighting matrix; see (Delgado & Robinson,
2015) for spatial weighting matrix testing.

'We use the version NUTS 2010.
2The raw data can be downloaded at https://ec.europa.eu/eurostat/fr/home
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Figure 2.1: Spatial distribution of log(Patents) for 2011.

2.4 A Step-wise Modelling of a Regional Knowledge
Production Function with Heterogeneous Effects

In this section, we introduce step-by-step the suggested modelling approaches, always
presented together the results of the estimated models plus the codes used. We concentrate
here on estimation facilities provided by the free and open-source language R.

2.4.1 The classical models

We first consider the simple parametric regression model based on the traditional Griliches’
KPF (Griliches, 1979) extended by the inclusion of fixed effects and of spatially lagged
variables to depict knowledge spillovers. This gives, in its most general form,

ID(KZ ) = 61 ID(R&th) + 62 lIl(HKzt) + 63WR&D¢ +
+ OWHK;+o;+ 6 +uy, i=1,...n; t=1,..T (2.1)

where WR&Dy = 3, wiyIn(R&Dj,), WHKy = Y, wij In(HKj,) with wy; the ele-
ments of the spatial matrix W. These, like the fixed effects for region, «;, and time,
d¢, to control for region unobserved heterogeneity and unobserved time related factors,
respectively, will be included successively. More specifically, the variables W R&D;; and
W HK; are weighted averages of the i’s neighbouring level of in(R&D) and In(HK) at
time ¢, allowing for the estimation of knowledge spillovers (indirect effects). This way is
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modelled the knowledge creation in region ¢ due to the variation of the inputs of neigh-
bours. This model can also be seen as a panel data extension of the Spatially Lagged
X-variable Model (SLX) (Halleck Vega & Elhorst, 2015). Clearly, this is a good starting
point, because among spatial econometric models it is the simplest (Gibbons & Overman,
2012). Unlike other models, no restriction on the ratio between direct and indirect effects
is required (Elhorst, 2010). However, one needs to assume that the relationships between
inputs and production of innovation are linear and that model’s coefficients are homoge-
neous across regions (i.e. the effect of increasing input’s level is the same across regions).
These assumptions will be relaxed in the specifications further below. The results of this
panel data SLX model and of differently restricted versions without spillover effects (i.e.
estimating equation (2.1) without spatially lagged variables) or fixed effects are reported
in Table 2.2.

Table 2.2: Estimates of the Parametric Knowledge Production Functions (2.1)

Aspatial KPF SLX KPF
(1) (2) 3) (4) (5) (6) (7)
Intercept —3.873*** —1.394%
(0.438) (0.398)
In(R&D) 1.297** 0.205™*  0.162*** 0.849*** 0.165**  0.843**  0.135**
(0.043) (0.057) (0.058) (0.041) (0.060) (0.040) (0.059)
In(HK) 2.025%** 1.985%*  1.209*** 1.380*** 1.812%*  1.441**  1.185"*
(0.124) (0.141) (0.199) (0.108) (0.159) (0.108) (0.199)
W R&D 1.124* 0.176*  1.139*** 0.164*
(0.047) (0.079) (0.047) (0.084)
WHK —0.035 0.054 -0.017 —0.063
(0.039) (0.048) (0.039) (0.050)
Adjusted R? 0.705 0.942 0.946 0.788 0.942 0.789 0.946
Region fixed effect No Yes Yes No Yes No Yes
Time fixed effect No No Yes No No Yes Yes
Note: 1473 observations *p<0.1; *p<0.05; **p<0.01

It is well known that the inclusion of a; and d;, cf. column (7), we only estimate the
constant effects of the within variations in excess of the cross-region time fixed effects,
those fixed effects specifications tend to underestimate the real direct effects quite impor-
tantly, see (Hauk & Wacziarg, 2009). Therefore it is recommended to countercheck those
results with models including less or no fixed effects, cf. columns (4) to (6). Moreover,
while for time fixed effects interpretation is often relatively clear, the regional fixed effects
simply stand for any time-invariant, not-modelled heterogeneity that is correlated with
'region’, they do not help for further insight into the heterogeneity like changing returns
to scale, or potential effect drivers. In all models, all inputs impact either positively the
production of innovation or are clearly insignificant. The most important one seems to
be the endowment of human capital. Increasing the share of Human Resources in science
and technology by 1%, predicts the number of patent applications to increase by up to
2%. As expected, also the R&D input is quite relevant. Increasing the share of GDP
spent in Research and Development by 1% is associated with an increase of the number
of patent applications by up to 1.3%. Certainly, the estimated elasticities are mitigated
once spillover effects are included. In the SLX model, we distinguish direct impact and
indirect impact of innovation inputs. The former corresponds to the effect of increasing
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R&D and HK on the K of a given region (i.e. coefficients 51 and (). The latter corre-
sponds to the effect of increasing innovation inputs in all neighbouring regions on the K
of a given region i (i.e. 33 ;. wy; and B4 Y, .; wi; which are respectively 3 and (4 due
to row normalization of W). Joint F-tests on the significance of fixed effects exhibit their
statistical significance. We observe that the inclusion of regional fixed effects decrease all
coefficient values quite a bit, whereas this is much less the case for the inclusion of time
fixed effects.

2.4.2 The semiparametric additive models

Certainly, one could directly switch to a fully nonparametric model. While the risk of
model misspecification is minimised then, the interpretability of the estimation outcome is
too. You would therefore rather try to explore the possible deviations from the benchmark
specification (2.1). We first consider potentially changing returns to scale by allowing for
non-linearities between innovation inputs and patent applications. This gives a non-
parametric additive extension of the above SLX model(s), namely

+ o+ 0 t+uy, 1=1,..n; t=1,...T (2.2)

where f1(.), f2(.), f3(.), f4(.) are unknown smooth functions, which can take any smooth
shape suggested by the data. For identification issues, these functions are typically centred
to zero such that the all-over mean of In(Kj;) is reflected in the fixed effects or an intercept
if included. For the various above discussed reasons, we will estimate model (2.2) with
and without the regional fixed effects a;.° Note that for identification issues, you may
think of asking for sufficient degrees of freedom, the more fixed effects you include, the
smoother the f;(-) have to be. For instance, in our case we used the mgev package from R
with penalized thin plate regression splines (Wood, 2003). Then, including the «; requires
an important reduction of basis functions, cf. the used codes shown in the Appendix. The
inclusion of fixed effects in non- and semiparametric additive models has been discussed
in various papers but depends strongly on the chosen smoothing method. For methods
that in the moment of implementation are fully parametric, like for instance splines, this
is straight forward, whereas for kernel based methods this is more involved (Profit &
Sperlich, 2004; Mammen, Steve, & Tjostheim, 2006) such that readily useable software is
harder to find. The output when using splines provides also F-type statistics to test the
significance of the smooth functions. Fortunately, they come to the same conclusions as
the 95% confidence intervals in our figures suggest. For details on how these are calculated
we again refer to Wood (2017); it is essentially a Monte-Carlos method.

The estimated smooth functions are reported in Figures 2.2 for model (2.2) with all
fixed effects, and 2.3 when estimated without the «;*. For the former we see an often
observed phenomenon: as subjects (in our case the regions) are strongly correlated with
the size of the covariates, allowing the returns to vary over size while keeping the subject
specific fixed effects can produce hardly interpretable estimates. At least the general
tendency of the curvatures partly correspond to our observations in Table 2.2, cf. column
(7). Specifically, fl, fg representing the relative direct impacts of R&D and HK show

positive trends with f; having a strong one, while fl is insignificant. The estimated

3 A residual analysis exhibited a positive correlation between residuals and time when §; was excluded.
4Note that for all provided figures, the confidence bands are pointwise.
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Figure 2.2: Estimated smooth functions fi(In(R&D)), fo(In(HK)), fs(WR&D) and
f1(WHK) in model (2.2). Used are penalized thin plate regression splines with 15 basis
functions.

indirect effect of HK, f1, has a negative trend but is insignificant. The estimated indirect
effect of R&D, f3, goes down, up and down again. One could also compare the coefficients
shown in column (7) of Table 2.2 with

1 L2 f ()

9
Yt i im Ora

c=1,2,3,4 (2.3)

with z;; indicating the respective covariates. Clearly, for the common user this is only
possible if that derivatives and its predictions are provided. We estimated the derivatives
of smooth functions using central finite differences with the gratia package and obtain
the following estimates of integrated values (2.3) respectively for fi, fo, f3 and fy: —0.03,
0.49, 0.06 and —0.09. They partly resemble to the parametric coefficient, specifically the
effect of log HK.
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Figure 2.3: Estimated smooth function fi(In(R&D)), fo(In(HK)), f3(WR&D) and
fs(WHK) in model (2.2) without «;. Used are penalized thin plate regression splines
with 15 basis functions.

As discussed, there are several reasons to countercheck the estimation results obtained
with subject specific fixed effects included, recall also the critics of (Hauk & Wacziarg,
2009). If we therefore exclude the «;, the picture changes quite a bit; see Figure 2.3. Now
all counter-intuitive estimation outcomes disappear. Recall that here we are no longer
estimating the within effects but explore the whole range of variation of covariates and
their impact. Certainly, this is not for free as we do no longer control for potentially
confounding time-invariant heterogeneity between regions. Not surprisingly, the findings
resemble those of column (6) in Table 2.2, except that they show for impact functions
fl to fg (while f4 remains insignificant) a flattening or even reversing for very small and
very large values of R&D, HK and W RD. Conversely, in their interquartile range, the
returns are clearly higher than the parametric estimates suggest. We can again look at
the integrated values (2.3), and obtain respectively for fi, fa, f3 and fy: 0.85, 0.99, 1.19
and —0.11.
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2.4.3 The semiparametric varying coefficients models

Obvious disadvantages of the above approach are, among other minor issues, that the
heterogeneity of effects is limited to changes returns to scale, and maybe (depends on the
interest of the researcher) that for identification reasons the functions can be arbitrarily
shifted and are therefore centred to zero. An interesting alternative is to return to the
classical linear fixed effects model (2.1) and to think about relaxing the assumption of
constant 1, s, B3, f4. Well known are the options of random slopes, but these typically
require independence from all covariates and wu;. Moreover, they show the distribution
of returns but explain even less than the fixed effects «; do. Also well studied have been
time-dependent slopes by allowing all these four slopes to vary over years. More recent
is the semiparametric literature on varying coefficients, see the review of Park, Mammen,
Lee, and Lee (2015), and (Rodriguez Péo & Soberon, 2014) for an early approach to
semiparametric varying coefficients in fixed effects panel models.

More specifically, to allow for spatial heterogeneity in the marginal effects, we extend
the classical model to the Varying Coefficient Spatially Lagged X-variable model (VC-
SLX),

In(Ky) = fi(DPy)In(R&Dy) + fo( DPy) In(HEK;,) + f3(DPy)W R&Dy,
+ fiDPOWHK +o; +6; +uy, i=1,...,n; t=1.,T. (2.4)

This model can be estimated for example by using the kernel smoothed backfitting, see
Roca Pardinas, Rodriguez Alvarcz, and Sperlich (2021) for the R package. The algorithm
was introduced by Roca-Pardinas and Sperlich (2010) and was based on Mammen and
Nielsen (2003) and Mammen et al. (2006).

While in previous models, mainly region and time fixed effects controlled for spatial
heterogeneity (by allowing for different intercepts), in the VC-SLX we would like to allow
for heterogeneous coefficients. Certainly, if the heterogeneity of interest can be captured
by the respective covariates, this is also true for model (2.2). Note that for the interpre-
tation below making reference to the level of DP;, its log or urbanization is essentially
exchangeable.
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Figure 2.4: Estimated smooths coefficients of model (2.4) with all fixed effects. Used was
local linear smoothed backfitting with bandwidth h = 0.3 for all smooth functions.

The estimated smooth coefficients are displayed in Figure 2.4 with confidence bands
estimated from 200 wild bootstrap samples. The smooth coefficient associated with input
In(R&D), f1(DPZ-t), is almost always positive, clearly increasing with population density
and on average > (.15, but pretty low and flat for regions with low population density.
The coefficient associated with input In(HK), fg(DP,-t), is clearly decreasing with popu-
lation density, quite high for areas with low but even negative for regions with very high
population density. The latter must not be over-interpreted as at this stage we included
all fixed effects, so that we are talking of within-variation effects in excess to cross-region
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time fixed effects. On average it is about 1.0. The smooth coefficient associated with in-
put WR&D, fg(DRt), oscillates with the level of urbanization. The coefficient is always
positive, on average about 0.12 and steadily on its highest levels for medium and very
high population densities. Finally, the smooth coefficient associated with input WHK,
F1(DPy) is steadily increasing with urbanization, but on average around zero. We see that
these results are not in contradiction to the fixed effects estimation in the classic linear
model, recall column (7) of Table 2.2, but it gives, as expected, more insight about the
heterogeneity of the covariate effects. One may also be interested in testing for constancy
and linearity of the smooth coefficients following (Delgado & Arteaga-Molina, 2021) and
(Mammen & Sperlich, 2022).

As in the exercises before, we countercheck these findings with estimating functions f;
to fy from model (2.4) excluding «; to exploit the covariates’ full variation going beyond
within effects’ estimation. The results are plotted in Figure 2.5. Apart from the numerical
effect reflected in different smoothness, i.e. the functions with the «; included are less
wiggly as these fixed effects filter out a lot of noise (unobserved heterogeneity), it mainly
changes the scale like it happened for the classic models when comparing column (6) and
(7) in Table 2.2. The only clear difference is in f; which becomes clearly insignificant
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Figure 2.5: Estimated smooths coefficients of model (2.4) with year fixed effects. Used
was local linear smoothed backfitting with bandwidth h = 0.3 for all smooth functions.

In our varying coefficient modelling approach with D P;; as driver, add to the standard
critics against excluding or including «; two more points: First the fact that D P; hardly
varies over time, and is therefore strongly (cor)related with regions. Second, one may
argue that the number of patents should be transformed to a per capita indicator. Both
arguments, together with the standard critics for and against subject-specific fixed effects
a; can be encountered by including nonparametrically In(DP) in our equation, namely,

h’l(Kit) = f1 (DRt) hl(R&Dlt) + f2(DP1t> ID(HK”) =+ f3(DPZt)WR&Dlt
+ f4(D]Dlt)WHKZt+f5(DPZt) +5t+uit, Z = 1,...,nt; t = 1,...,T. (25)

Note that for reasons of optimal smoothing D P;; entered in log-terms in all nonparametric
functions. The results are depicted in Figure 2.6. For the sake of presentation, f5 is
plotted in Figure 2.8 in the appendix. As expected, it is positive throughout with a
strong significantly, almost linear upwards slope.

We observe several interesting features: The estimation outcome looks very much like
a compromise between the former two specifications and estimates. As expected, the
slope directions remain the same, the shapes and scale are closer to those of Figure 2.5.
The interpretation is still clear, although we included the In(DP) additively on the right
side of the equation instead of directly looking at In(K/DP).

To summarize, the average direct effects of our covariates, defined by

1 Ly

SN fuDPy), c=1,2,34 (2.6)

2oty t=1i=1
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Figure 2.6: Estimated smooths coefficients of model (2.5). Used was local linear smoothed
backfitting with bandwidth h = 0.3 for all shown smooth functions.

for the three different varying coefficient models are provided in Table 2.3. As expected,
they are not equal but also not totally different from what we have in columns (6) and (7)
of Table 2.2. This confirms that our specifications do not entirely change the interpretation
compared to the classical approaches; however, they allow us to explore the heterogeneity
of the covariates effects. Moreover, we see that sometimes heterogeneity of effects is of
first order, i.e. the average direct effects - typically reported in standard empirical research
- are of little political value.

Finally notice that a simple residual analysis suggests that the variance varies a bit
over the NUTS regions. We therefore repeated the estimation including weights in our
smoothed backfitting estimator as suggested by (Roca-Pardinas & Sperlich, 2010). They
showed that including weights inverse to the heteroscedasticity give more efficient esti-
mates (in our case Wyys = 67 2(Nuts)). However, in our study the conclusions remain
the same.

Table 2.3: Integrated values of VCM models

VCM (2.4) with all fixed effects ~ VCM (2.4) with time fixed effect ~VCM (2.5)

i 0.14 0.81 0.82
fa 1.01 1.68 1.59
fs 0.14 1.18 1.17
£ —0.04 0.00 —0.01

2.5 Final Discussion and Conclusions

In this article we are introducing and discussing various extensions of the so-called regional
(or spatial) knowledge production function analysis with panel data. We have done this
along European data comprising 195 Furopean regions from 2000 to 2012. We start
from some classical linear fixed effects panel model with spatial matrices to account for
neighbours’ impact. Then we consider mainly two different semiparametric extensions
that today are readily available. Semi- and nonparametric methods have only been chosen
for underlining the explorative nature of this approach. In practice, especially when facing
much smaller samples, you may want to resort to these only for obtaining a better idea of
model specifications suggested by the interplay of modelling and data adaptive estimation.

The different approaches are always compared to the classical ones and how we can
interpret the estimates provided by those methods. We critically discuss pros and cons of
each specification. Thereby we follow the spirit that each model gives a limited description
of the reality, as a model always simplifies, but a good guide for model choice (apart
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from its statistical properties) is an appropriate compromise between interpretability and
flexibility, both driven by the researcher’s objective and interest. A main objective in our
article is to study potential heterogeneity of the covariates’ effects. Our estimates clearly
indicate that their heterogeneity is indeed of first order, that is, more emphasized than
the average impact itself. We believe that this is an important finding or both, a deeper
understanding as well as evidence based policy.

2.6 Additional Tables and Figures

Table 2.4: Summary of selected regions

Country NUTS | Regions
Austria 2 9
Belgium 1 3
Bulgaria 2 6
Czech Republic 2 8
Croatia 2 2
Denmark 0 1
Estonia 0 1
Finland® 2 4
France® 2 21
Germany 1 16
Hungary 2 7
Ireland 0 1
Italy” 2 19
Latvia 0 1
Lithuania 0 1
Luxembourg 0 1
Netherlands 2 12
Norway 2 7
Poland 2 16
Portugal® 2 5
Romania 2 8
Slovakia 2 4
Spain”’ 2 15
Sweden 2 8
Switzerland 2 7
United Kingdom 1 12
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Chapter 3

Interpretable Local Machine
Learning for Huge and Distributed
Data

3.1 Introduction

In his seminal talk and paper, Breiman (2001) differentiated between two cultures in the
use of statistical modeling to reach conclusions from data. According to its definition,
one is characterized by assuming that the data are generated by a particular stochastic
data model, while the other is characterized by the use of algorithmic models in which the
data mechanism is treated as unknown. He complained that the statistical community
had been committed to the former one, i.e. the almost exclusive use of data models. This
commitment, he argued, had ‘led to irrelevant theory, questionable conclusions, and kept
statisticians from working on a large range of interesting current problems’. It is evident
that the second culture forms part of the more general family of machine learning methods.
About 20 years later, Efron (2020) in his talk and paper, has revisited this discussion
by carving out the main differences between these two cultures (see his Table 5) which,
according to him, continued to develop in parallel or say, almost independently with just a
few intents to close or bridge the wide gulf between these cultures. He identifies two trends
for (re-)unification, one that aims to make the output of a prediction algorithm more
interpretable, and one trying to achieve ‘some of the advantages of prediction algorithms
within a traditional framework’.

Regarding the discussion of Efron’s paper, while we agree with Friedman, Hastie, and
Tibshirani (2020), saying that they don’t see any fundamental tension between prediction
and estimation or attribution, as they all have their motivation and validity in different
contexts, we agree a bit less with Yu and Barter (2020) saying that ‘we are much further
along the path of reunification, with the theoretical underpinnings being less critical
than [...] empirical evidence in today’s reality-rooted era’ Other discussants of Efron
(2020) are mainly in line with his statements and conclusions. What we found a bit
surprising is that in all these discussions, very little attention was given to the literature on
nonparametric statistical methods with well-established theory and clear interpretation.
One may either classify it as a third culture or as a main bridge pier in the middle of
the above-mentioned gulf. We tend to the latter, a view that substantially motivates the
analytical tool we introduce in this article. This view is intuitively supported by imagining
the ‘penalization’ or ‘smoothing parameter’ of nonparametric methods as a slider to move
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between estimation and prediction. Let us specify the kind of nonparametric methods we
are talking of.

Intuitively, high flexibility and prediction power should be achievable by high levels of
local adaptiveness. We employ the plural to emphasize that the optimal level may change
with location. At the same time, flexibility due to local adaptiveness typically results
in estimators or predictors that are easier to understand and interpret. Consequently,
we are thinking of local estimators; and to keep the presentation easy, concentrate on
local smoothers. Since there exists a considerable literature about extensions of local
smoothers to allow for peaks and jumps, this constraint is actually less restrictive than
it seems at first; see Gijbels, Hall, and Kneip (2004), Gijbels, Lambert, and Qiu (2007),
or Desmet and Gijbels (2011) for the below-considered context of local linear methods.
Local adaptiveness is not only interesting for regression estimation but also for matching
and causal analysis, both being specific prediction problems as highlighted in Frolich and
Sperlich (2019). It is the basic principle of various estimators like for example k-nearest-
neighbors (kNN), caliper and kernels, or several splines and wavelet-based estimators.
Since the first two can be seen as special cases of kernel estimators, and Silverman (1984)
proved the equivalence of smoothing splines with kernels, we concentrate our presentation
on the latter see Schwarz and Krivobokova (2016) for the equivalence between the different
spline approaches.

3.2 Local Linear Analysis in the Context of Multiple
Data Sets

Consider response variables Y; and a d-dimensional set of predictors denoted as X; =
(X1, ..., Xia), where observation pairs {(V;, X;)}¥, are (typically but not necessarily)
assumed to be independent and identically distributed. The easiest way to start is either
to imagine that the here proposed method is an amplified local linear regression, or to
think of a solution for the challenge of finding a fast algorithm that gathers in parallel from
different sources (our data giants) the observations close to a given point. We rely on a
fast algorithm designed to search the approximate nearest neighbors in the different large
data sets (Arya, Mount, Netanyahu, Silverman, & Wu, 1998) and employ data-adaptive
LASSO to select the locally optimal model(s), see Tibshirani (1996).

3.2.1 Problem Framework and Challenges

The present standard method for statistical estimation with distributed data is the Al-
ternating Direction Method of Multipliers (ADMM) (Boyd et al., 2011) designed for
distributed convex optimization, see also Parikh and Boyd (2014). This decentralized al-
gorithm coordinates local solutions of subproblems to find the global solution. Although
it converges towards the optimum, it has several drawbacks. First, convergence can be
very slow, and second, optimization is often stopped earlier at intermediate solutions
that are considered sufficient. Third, despite being theoretically applicable to all convex
optimization problems, ADMM so far works only for simple optimization problems with
little flexibility like sparse linear models (Hu, Chi, & Allen, 2016). Our method extends it
significantly in several aspects while our implementation borrows some ideas of the classic
ADMM. Furthermore, neither the original version of local linear estimation is designed
for data giants, nor any version of LASSO is designed for local nonparametric estimation.
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Figure 3.1: Illustration of distributed data.

In this section, we redesign and merge step-by-step all three algorithms. We do this in
a way that, (a) it can be applied to distributed data, (b) without becoming a black-box,
but (c¢) being computationally efficient, i.e. fast with only tiny approximation errors.

The distributed database system is illustrated in Figure 3.1. Data is stored in different
servers that often are not physically connected to each other, though typically through
a communication network. Let us focus on such database shard as it is maybe the most
common system of distributed databases. Data is partitioned horizontally such that each
distributed site, say data giant, contains a different subset of data with an overlapping
set of attributes; for the sake of presentation we concentrate on these overlaps such that
in each we have some observations {(Y;, X;)}¥= N = Y¥M_ N,,. The global database D
is the union of data giants D,,, i.e.

D=DyUD,U...UDy. (3.1)

Typically, though not necessarily, it is assumed that data are independent and identi-
cally distributed across data giants, see for example J. Zhang, Tao, and Wang (2014) for
discussion.

Usually, you cannot or do not want to merge all data on one computer for legal,
physical or any other reason. More generally, you may simply say that you cannot or do
not want to analyze jointly all D,,, m = 1,..., M on one processor. The so-called divide
and conquer algorithms do then the analysis on each D,, separately and try to merge the
resulting statistics to infer on D. In contrast, we are just looking for an algorithm that
asks each data giant to provide the k,, < k nearest neighbors of a point ¢ of interest. From
those, we select the k closest observations to the point of interest. As the different D,,
may neither have the same distributions nor number of observations, one may criticize
that we only get the k closest neighbors for sure if k,, = k for all m. While this is true,
though only for extremely different D,,, a resulting bias is strongly diminished by the use
of kernels with falling tails (i.e. of any standard kernel except the uniform one) since this
criticism concerns only observations at the boundary of the neighborhood.

For the various above described reasons, the first step is defining the local environments
for which we plan to perform the local analyses to afterwards combine them via a supposed
dependence structure, in our case the smoothness, recall our discussion above. After
having fixed a set of points, typically a grid over the support of interest, we have to define
the neighborhood for each of these points. The analysis is then conducted only with the
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observations being located in the respective neighborhood. There certainly exist many
possibilities to define a neighborhood, but for the discussed reason we stick to kernel
methods, i.e. either select all data located in a sphere centered at the point ¢ of interest
or search for the £ € IN closest observations to this point. The latter corresponds to
kNN or kernel regression with local bandwidths. In addition, it is most suitable for the
implementation of a fast parallel computing algorithm.

3.2.2 Search of Nearest Neighbors From Different Sources

Thinking of large data sets, a classic kNN algorithm would be too time-consuming. Denote
by N, the number of observations in database m, d the number of predictors X;, and
N =M n,, the total number of observations in the distributed system. Without loss
of generality but to simplify notation, suppose that each database has about the same
number of observations, so that we can suppress index m where appropriate. A naive
kNN search would require at each point of interest the calculation of N distance metrics
with d dimensions, and the sorting of M vectors with n entries. Even if some of these
operations are not expensive, their number increases rapidly with prediction points. This
suggests the use of the approximate nearest neighbors (ANN) search method of Arya et al.
(1998) that significantly reduces the number of operations. Recall that the here described
procedure will be applied on all data giants in parallel for k,, < k neighbors on each, and
storing their distance to the point of interest. The final k-approximate-nearest-neighbors
(kANN) are those of these Mk, neighbors with the smallest distance. For simplicity, we
henceforth skip index m here.

An (1+ e€)-approximate nearest neighbor of x, is a point z,, whose Minkowski distance
dist(p,0) to xg is at most by € > 0 larger than for the true nearest neighbor z,-,

dist(p,0) < (1+¢€) dist(p*,0). (3.2)

We can generalize this definition to a set of k-approximate nearest neighbors with the se-
quence of data points, 2, , Tp,, ..., T, , Where x,, corresponds to the (14-¢)-approximation
of the jth nearest neighbors of zg, for 1 < j < k. The base idea is to preprocess the data
into a tree structure (with cells or leaves) to report the kANN without computing a met-
ric for all data points. Each leaf of the tree is associated with a cell containing a single
data point. The ANN search starts by locating the cell in which point x lies. Next, the
leaf cells are enumerated in increasing order of distance to xg, called order of priority.
Leaf cells are then visited in this order, and the distance of this point in the cell to z is
reported. The algorithm will not visit all leaves of the tree. Inequality (3.2) defines the
distance limit | = dist(p,0)/(1 + €) that stops the search, where z, is the closest point
found so far. Cells located at a greater distance from x( are excluded from the search.
Note that increasing the relative error € will speed up the algorithm because reducing [
diminishes the number of cells visited. But it also increases the likelihood to miss the
true nearest neighbor. Evidently, for ¢ = 0, the ANN is this true nearest neighbor. The
steps for the search of a single ANN are summarized in Algorithm 1.

An example of a single ANN search is provided in Figure 3.2 for an illustrative prepro-
cessed tree. Note that the search is terminated once cell 2 is visited. Hence observation
z, is reported as the ANN of query point ¢, while the true nearest neighbor z,- is in cell
3. This highlights the trade-off implied by the choice of € between speed and approxima-
tion error. The ANN search can be generalized to kANN search which aims to find the
sequence T, , Tp,, ..., Tp,. Following the same order of priority, kKANN search stores the k



3.2. Local Linear Analysis in the Context of Multiple Data Sets 35

Algorithm 1 ANN search for query point z

Require: Preprocessed data in tree-structure; query point xzq; error €
1: locate leaf,, leaf where z lies
2: enumerate leaf cells in (increasing) order of distance from x
3: Start search
4. visit leaf cell in the order of priority
compute distance between single point in visited leaf cell and x
report closest point z, found so far and dist(p,0), & set [ = dist(p.0)

5

6 (14¢)

7. if all non-visited cells are at greater distance than [ from xy, then stop search
8

9

. else repeat search with next leaf cell in order of priority.
: return z,, ANN of query point z

e ° Observations
query point
Cuts

l — dist(p,O)
(I+e)
Search limit

1 Cell containing x
Cell No. 1

Cell No.
Cell No.
Cell No.
Cell No.
Cell No.
Cell No.
Cell No.

1

IR

-2 -1 0 1 2

Figure 3.2: Illustration of the ANN search for a given preprocessed.

closest points found so far and computes I, = dist(pg,0)/(1 + €). The search terminates
once the distance from current cell to xy exceeds [,. The ANN search allows us to find
the KANN by computing distance metrics for a small amount of data. Moreover, once the
data is preprocessed, the cost in time of searching kKANN of additional points of interest
(other xg) is very low. This method provides a significant improvement over the naive
kNN search for a moderate number of dimensions. Arya et al. (1998) recommend using
it with dimensions as high as 20, but do not discourage applications with significantly
higher dimensions.

There are several closely related data structures available for preprocessing the data.
We chose the simplest and most widely-used one (Dasgupta & Kpotufe, 2021), the so-
called k-d tree (Bentley, 1975; Friedman, Bentley, & Finkel, 1976). It is constructed by
successive cuts that are placed at the median of a predictor having the highest spread in
values. The space is then partitioned into 2 subspaces stored as nodes. This process is
applied to every new node until the corresponding subspace contains a single observation.
The final nodes are our leaves. The partition applied to node i is illustrated by the pre-
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Preprocessed Algorithm Building a k-d tree at node @

Require: S;, subspace at node i

compute n;, number of observations in S;

if n, = 1 store 5; as leaf, else

for each variable 1, ..., d of the subset find spread in value
select v, variable associated with largest spread

compute med, median of v

partition S; into two subspaces at med

store new subspaces as nodes

processed algorithm below. In the case of clustered data, the balanced box-decomposition
(BBD) tree structure (Arya & Mount, 1995) might be more appropriate. This tree is
constructed by a combination of split and shrink, where the former corresponds to k-d
tree’s successive cuts, and the latter partitions the space into 2 subspaces, one being inside
the other. We tried different methods but in our simulations, the obtained results were
independent of the chosen tree structure. We therefore chose the simplest and fastest
structure to compute.

As the metric used is a Minkowski distance, we normalize our predictors (standard-
ization is not needed) before starting the kANN search. Normalization is strongly recom-
mended anyway for smoothing methods applied to multivariate data (Klemeld, 2009). We
do this by dividing each predictor by its estimated standard deviation. Since this should
not be impacted by outliers, we recommend robust estimators of the standard deviation,
;. A standard choice is the median absolute deviation (MAD) popularized by Hampel
(1974), namely 6x, = const - median(| Xi; — X5 [), where X is an approximation of the
center of the distribution, and const is a constant to ensure consistency. By default, the
software R sets const = 1.4826, whereas X§ might be the median of X; in a random sub-
sample of D. Here we think of global outliers, referring to observations being abnormal
compared to all other data in the distributed system. We must therefore compute this
estimator globally and not locally or separately on each data giant. For practical reasons,
we randomly select a subsample from each data giant to compute the MAD from their
aggregate.

3.2.3 Local Kernel Regression With Model Selection

As above, also for the next step, it is irrelevant if we are rather thinking of a surface plus
error model, or of a model-free relation between response and predictors. In either case,
we are willing to relate predictor variables and response by an unknown m(X) as follows:

Y = m(X;) + ui, (3.3)

where u; has Eu;] = 0 and Var[u;] = 0%(X;). This presentation makes sense even if
one thinks of predicting Y rather than estimating m(X), because for a given x one can
simply define 7(z) as the predictor §(x). Our kernel method can either be seen as an
estimator of a global but smooth function m or as a localization device for predicting Y
with a model that is only valid at this locality around xo. A locally parametric model
suggests applying a local model selection. As the Taylor series expansion of m(X) at
point xy suggests a linear model, and the typically implemented LASSO procedures are
also made for linear models, consider as objective function the following weighted least
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squares using only points in some neighborhood of xg:

min z( o= Zaj ) zaxdw> (dm(X%)> (3.4

aERI+! M MAL i (dM)

where X¢ and X indicate continuous and discrete (essentially thinking of categorical)
predictors respectively. In our implementation, K is the Epanechnikov kernel and dm is
the Euclidean distance computed only for the continuous predictors. Further, maxy,,, (dm)
denotes the maximum distance between our (approximate) k nearest neighbors and the
point of interest xy. As said, this corresponds to a local bandwidth for local linear regres-
sion for which the Epanechnikov kernel has been shown to optimize the linear minimax
risk (J. Fan, 1993). The predicted response g is then defined as

Jo = m(xg) = G + ZOzlard”. (3.5)
I=d;+1

Q. Li and Racine (2004) argue that this handling of discrete variables is not optimal and
could be improved by smoothing over them too. In our framework, however, the number
of discrete cells is supposed to be quite moderate compared to the sample size. As a
compromise one may imagine that discrete variables with natural order get treated like
continuous, and all others get decomposed into dummies with potential interactions. Note
that our objective function (3.4) allows for varying coefficients for the discrete variables,
i.e. to vary with xg.

While local linear regression methods can provide good results for data sets with
few continuous predictors, this is no longer the case for high-dimensional data. Already
Cleveland and Devlin (1988) suggested to include variable selection in the local regression
methodology. Similar to Vidaurre, Bielza, and Larranaga (2012), we do this by adding
the L; norm penalty to the minimization problem (3.4) to achieve a sparse solution. For
a regularization parameter A > 0, the objective function becomes then

min Z " Zla-(xc - ZaXd“ K (AT vl (3.6)
acRHH1 4 0 —~ JN OJ . d1+ll max(dm) g .
This regularization solves the bi-criterion problem (Boyd & Vandenberghe, 2004), where
the first criterion measures the size of weighted residuals and the second measures the size
of coefficients. To solve it we apply the coordinate descent algorithm (Friedman, Hastie,
& Tibshirani, 2010). To see how this works, rewrite minimization (3.6) as

(Gg, &) = arg min||W%(Y —agl — X*a)||3 + |1, (3.7)
where W is a diagonal matrix of weights w; = K <%@’:§))), 1 a vector of ones, and
(XT —26) - (Xiq — 20q,) X1d1+1 e XZZS
X5 —x5) ... (X5, —af Xdis . €
Y (X5, ‘ 61) ‘ (X5q, ' 6a) 2l - 2d (3.8)
(Xm T61) - (Xkdl T6a, ) ngﬁﬂ EE de

Denoting Y = W2Y and X = W2 X *, we center all variables such that our optimization
becomes

{a = arg min||(I — $))Y — (I = $))X a3 + Mo, (39)

Qp = Elt(y — XO{)
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where [ is the k x k identity matrix, and J is a k X k matrix of ones. The algorithm
successively solves for Y¢ = (I — £.J)Y the univariate minimization for each o; (j # 0),

G = arg min||Y® — ijoz_j — X;ajH% + A1, (3.10)

where Xij = (I — +J)X_; correspond to the matrix X with the jth column removed.
Minimization (3.10) is solved effectively using the so-called soft thresholding function,

Xe¢(Ye— X¢,
&; = Sh- ( it __ —J)>, (3.11)
X512
\ 0 i —<o<)\*
with \* = ———— and Sy(v) =v+ A ifv< =)\ (3.12)
X512

v—A* ifo> M\

see Friedman, Hastie, Hofling, Tibshirani, et al. (2007) for details. The algorithm starts
with a complete loop over all «; and then iterates over the non-zero o’s until all updates
have been done. This can be done for different \. The method we employ is called warm
start: evaluating the o’s for decreasing values of A where the first value is Aoz = || X7 Y00
setting & = 0. Then, minimization of (3.9) and (3.10) is done with slightly smaller values
of A such that we can use the previous & as a starting value. We stop at A.,, which in
turn is selected by cross-validation. This is done by launching the coordinate descent
algorithm on equation (3.6) several times. At each start, a different subset of data is
omitted for fitting but used to compute the squared prediction errors. The sum of these
squared prediction errors are calculated for each value of lambda and finally compared
to find the (optimal) A.,. The final coefficient estimates &,,, tell us which predictors are
relevant at location xg.

3.2.4 Global and/or Local Relevant Predictors

The above procedure summarized in Algorithm 2 depicts the relevant predictors locally.
Imagine that in order to use the same tree structure in the kKANN search for all points,
you want to have the same set of predictors over the entire space. Define global rele-
vant predictors as the most frequently selected variables in the space. In practice, we
randomly generate several points of interest and report the selection frequencies of each
predictor. The global relevant predictors are those with selection frequencies higher than
a pre-specified threshold. A standard LASSO, i.e. performed on the entire data, would
also have selected these global relevant predictors; but with the difference that there is
no information on selection frequencies. Hence, the possibility of pre-specifying a thresh-
old is an advantage for practitioners who want to control for the relevance of variables.
Researchers investigating causes of cancer might want to set a relatively low threshold
in order to minimize the risk of missing potential causes. Researchers interested in sim-
pler but stable prediction models might want to set a high threshold to concentrate on
variables with larger prediction power.

One may argue that some predictors could be relevant only in a given region of the
space. The last-mentioned method will most likely define those as globally irrelevant
predictors. Therefore we also provide a statistic that checks whether a predictor is only
relevant in some regions, say regionally relevant. To describe the test, let £ denote
the set of randomly drawn points that constitute our evaluation set which should have
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Algorithm 2 Local LASSO for distributed data

Require: D, distributed database system
Require: k,,, k the number(s) of ANN and 7', threshold
1: get MAD from subsample to normalize X° > robust package (Wang et al., 2017)
2: draw E ‘points of interest’ randomly, x; = (21, ..., %iq), i = 1, ..., E
3: for each point of interest x; Do
4:  for each Dy,...,Dy; € D Do
5: find £, ANN of X¢ > RANN package (Arya, Mount, Kemp, Jefferis, & Jefferis,
2019)
6 compute distance dm between k,,ANN and x;
7. sort dm and select the k smallest values
8:  lasso variable selection(Y, X) with KANN > glmnet package (Friedman et al., 2010)
9:  store list of relevant predictors
10: identify global relevant predictors Z C X for threshold T’

approximately the same distribution as the population of interest. Now think of feature
X, i.e. dimension j of the predictor space. We denote by &; the subset of all points from
& at which dimension j was relevant along with our local LASSO. Then we check regional
relevancy by comparing the distribution F'x of X which in practice is approximated by
Fg, with the distribution of the subset, say Fg;. If a predictor is several times selected but
the two mentioned distributions are not equal, then the predictor is said to be regionally
relevant. More specifically, one could test a predictor X for regional relevance by applying
a two-samples Kolmogorov-Smirnov statistic, namely

KS; = sup | Fe(u) — Fg;(u) | . (3.13)

Approximate p-values are obtained as described in Marsaglia, Tsang, and Wang (2003).
You may take only the global, only regional or a mixture of relevant predictors. For
example, you may take the global relevant ones and add for certain regions the respective
local (i.e. regionally) relevant predictors.

Large dimensions might not just be a problem inside the squared difference in (3.4), it
is even more so inside the kernel function. There exists a significant amount of literature on
dimension reduction to fight the so-called curse of dimensionality in nonparametrics. The
literature on semiparametric modeling is abundant see for instance the recent review on
generalized structured models of Roca-Pardinas, Rodrigucz—Alvarez, and Sperlich (2021),
the review on specification testing or variable selection of Gonzalez-Manteiga and Cru-
jeiras (2013), the review on essential dimension reduction of Polzehl and Sperlich (2009).
It is worth mentioning here that this is not in contradiction to the appetite for dimen-
sions in some machine learning problems; it simply refers to different things: The ‘curse’
says that the convergence rate in estimation slows down for increasing dimensions, as for
the same amount of information the complexity of the estimation problem increases. In
contrast, the ‘appetite’ means that for the same complexity (same classification and pre-
diction problem) the increase of dimensions may contribute additional information. The
here considered LASSO (also often attributed to the machine learning tools) is usually
more tailored to the former idea, motivated by the concept of potential sparsity (i.e. some
predictors don’t contribute information but rather add noise blurring the contribution of
other predictors). In this sense, it fits well into the idea of a dimension reduction of which
a kernel approach would clearly benefit (Biau & Mas, 2012).
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Algorithm 3 Local linear inference for distributed data

Require: D, distributed database system and g, length of grid
Require: k,,, k the number(s) of ANN and Z, set of global predictors
1: define grid with global relevant predictors, z; = (zi1, ..., zip), i = 1, ..., ¢
2: for each grid point z; Do
for each Dy,...,D); € D Do
find k,,ANN of Z¢ > RANN package (Arya et al., 2019)
compute distance dm between k,,ANN and z;
sort dm and select the k smallest values

4

)

6 ~

7. set W = Epanechnikov(dm/max(dm)), Z = Z — z (not needed for Z%*)
8

9

®

calculate & = (ZTWZ)"\ZTWY, §; = &y + X0, 1 0u 28"
: return graph for grid points

3.2.5 Final Algorithm and Remarks

Once the global relevant predictors are found, and locally some local relevant predictors
added, one could update the kKANN, considering only these predictors, and recomputing
the now resulting Euclidean distances dm. This is in line with the literature that advises
against kernel weighting with irrelevant predictors. Otherwise, an observation that is
considered close to the point of interest with respect to relevant predictors could receive
a too small weight if it is far from it in the irrelevant dimensions (Hall, Li, & Racine,
2007). As the sparsity assumption is more appropriate in a high dimension context, in
our second round we minimize (3.4) without penalization. The main reasons are that
the penalization causes a bias and that computationally we get much faster without such
penalization. Update and prediction are summarized in Algorithm 3. For simplicity this
is presented without the explicit adding of local relevant predictors; it is, however, obvious
how to do this. Furthermore, following our suggestion to include all discrete predictors
with the natural order in X¢, it is reasonable to limit the KANN procedure to X¢; recall
also that only these are used for the kernel weights.

Note that we decided to rely on local \., such that each point of interest is associated
with a specific A driven by neighboring observations. Although one may argue that a
common A., provides a middle ground between large and small penalties, we believe
that neighborhoods located in different regions of the conditional distribution are not
expected to share the same penalty. In other words, we want to allow the model to have
locally different variation and signal-to-noise ratios. Both require to allow for locally
different penalties. To the best of our knowledge, little theory has been developed so
far on the impact of locally varying penalization terms; we are aware only of the paper
of Krivobokova, Crainiceanu, and Kauermann (2008) who studied this phenomenon for
p-splines based on linear mixed models with heteroscedastic random cluster effects.

We should finally mention the possibility of switching entirely to a LASSO procedure
that is free of tuning parameters, like the TREX of Lederer and Miiller (2015). What they
actually do is derive and include a data-adaptive tuning parameter that has an implicit
analytical expression. While intuitively this should simplify and speed up our procedure,
its implementation is far from being trivial. In fact, a ready-to-use implementation of
that method in either R or dynamically loadable software is not yet available, see also
github.com/muellsen/TREX.
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3.3 Simulation Results

We performed many different simulations to study the performance of KANN search, pre-
dictor selection, global vs. local A.,, computing times, and to find limits and potential
problems. The largest data sets we tried had N = 500 million observations with only up
to 10 continuous predictors, or a few million observations with up to 100 continuous pre-
dictors. Note that the number of discrete predictors plays a minor role for computational
time and other problems. Note also that thanks to both, the way of managing the dis-
tributed data by parallel computing as well as our localization strategy, an increase of the
absolute number N has a by far smaller impact on computational time than in standard
kernel regression. More important are dimensions d and p, k,, which in our simulation we
set equal to its maximum k (else you can do even much faster), size E of the evaluation
sample, and grid size g. Specifically, to get an idea of the computational time for other
numbers of g, you could simply take the below reported computational time of the first
part and divide it by E, and the second part to divide it by g as a good approximate of
the computational time per point. It is finally to be noted that the reported times are
obtained with our R package which so far consists of our own, easily readable R codes
combined with existing R commands of other packages. That is, on the one hand, there
is still room for faster implementations by using other programming languages, on the
other hand, it is still very flexible allowing for direct modification or amplification, with
a maximum of adaptability and compatibility.

3.3.1 Illustration of Selection and Performance

Having said all this, it seems reasonable to limit our presentation to a simulation of a
somewhat smaller scale. Specifically, we start with simulated data sets distributed over
10 data giants with each of about 1 million observations such that N = 10,000,000, and
20 predictors of which the last one, Xs, is Bernoulli(0.5), and all other are independent
continuous X; ~ N(0,1), 5 =1,...,19. The response is generated as

Y = —X2- ZSin(ng) + XsXs+e, e~ N(0,1). (3.14)

This data generating process has been chosen as it is known that, unless you have prior
information about such oscillation, trigonometric functions are particularly hard to fit. A
quadratic function was chosen since linear terms are nested in our local linear approach
and would therefore be easily captured. Finally, we included a non-nested interaction of
two globally relevant predictors. The majority of predictors is irrelevant.

We apply our method setting £ = 1,000 with tolerance level ¢ = 1 and £ = 1,000
random evaluation points to find the relevant predictors. The selection frequencies of
each predictor over the entire space are reported in Table 3.1. These results come from a
single simulation but are representative as when we conducted 100 simulations, we found
that the variance of selection frequencies did not exceed 0.0003. Note that we can separate
the predictors in three groups: the relevant continuous variables with relative frequencies
higher than 90%, the irrelevant continuous variables with relative frequencies between
25% and 35%, and the drrelevant categorical variable with a relative frequency below
25%. The Kolmogorov-Smirnov tests do not reject the null hypothesis that distributions
of generated and relevant points are equal. In other words, there is no evidence that some
of these predictors are (only) regionally relevant in the sense we discussed above. For any
threshold T" between 35% to 90% you identify X; to X, as global relevant predictors. The
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Predictor =~ Frequencies Two samples KS; stat  p-value

X 0.955 0.017 0.999
X 0.950 0.024 0.941
X3 0.924 0.006 1.000
Xy 0.924 0.005 1.000
X5 0.330 0.070 0.187
Xs 0.328 0.048 0.625
X7 0.331 0.038 0.866
X9 0.306 0.046 0.744
Xoo 0.212 0.014 1.000

Table 3.1: Frequency relevance of predictors. First column: available predictors, second
column: frequencies of how often the variables have been chosen to be locally relevant,
third column: test statistic of the two samples KS-test for local relevance, and fourth
column: p-values of the KS-test.

resulting estimated conditional expectation of Y plotted on predictors X; and X, with
900 grid points is given in Figure 3.3.

We are also interested in illustrating the effect of local regularization and selection.
To do so we compare the method described in Algorithm 3 with and without LASSO.
There is certainly no need to show this for much smaller k. It is actually much more
interesting to see if even for & = 1,000 such a local LASSO still improves on estimation.’
Recall that an improvement is not only expected due to the reduction of local parameters
to be estimated, an already well-studied phenomenon when £ is not much larger than d.
When k£ >> d, then it is interesting to see the effect of changing the kernel weights by
dimension reduction (Vidaurre et al., 2012). This is, even more, the case in our context
as d strongly affects the quality of &,,-ANN searches.

Using the data generating process described above, we predict the response value for
E = g = 1,000 random points and compute the average of the Mean Squared Errors (MSE)
of 50 simulations. We repeat these estimations adding successively additional irrelevant
predictors. More specifically, we started with 14 predictors, namely 4 relevant and 10
irrelevant ones and increased their number up to 26. The result is plotted in Figure 3.4. As
expected, the implemented local dimension reduction achieves both, reducing significantly
the MSE to a number slightly below 0.005, and remaining relatively stable for increasing
numbers of irrelevant predictors. In contrast, the MSE without dimension reduction
steadily increases.

3.3.2 An Analysis of the Computing Time

This subsection is to study the impact of different factors and steps on computing time.
It is maybe not suited for studying the speed per se, since this strongly depends on factors
not directly related to procedure and algorithm (soft- and hardware, the connection of
parallel processors, etc.), recall also our discussions above. All calculations are done in R
with an Acer Aspire 5 1.8GH processor. To get an idea of the distribution of execution
times inside our algorithm, we report them separately for each step of the algorithm. The
easiest way is to divide the method into at least two parts: the variable selection, and

'We could do the same study for checking the quality of prediction.
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Figure 3.3: Conditional distribution of response with 900 grid points and k=1,000.
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Figure 3.4: Average MSE of our procedure with (orange) and without (green) regulariza-
tion for an increasing number of irrelevant predictors for £ = 1,000.

the final estimation. The former is composed of the first KANN search, starting with the
M parallel k,,ANN searches including all predictors available, and concluding with the
local LASSO which in turn includes the cross-validation for choosing the regularization
parameter A. The second part is composed of the kKANN update, starting with the M
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d =10 d=20 d =30
k=100 k=500 k=1000 k=100 k=500 k=1,000 k=100 k=500 Kk = 1,000

First KANN search 26.88 33.55 44.23 49.59 77.12 98.51 2226  324.32 444.93
Local Lasso 43.06 49.84 56.26 46.43 54.54 63.50 50.06 57.86 68.54
Second kANN search 20.33 24.68 31.89 22.70 28.79 38.33 23.07 30.76 36.99
Final local regression 2.88 3.47 4.63 3.93 4.98 6.36 4.89 5.85 7.57

Table 3.2: Computation times for g =900 grid points and £ = 900 in seconds.

k. ANN searches but only for the (global or global plus some local) relevant predictors,
and the final local linear regression (3.4) followed by prediction (3.5).

We reproduced the simulated example from equation (3.14) for different values of k
and dimensions d, changing only the number of irrelevant predictors. The results reported
in Table 3.2 are averaged over 20 simulations. Before discussing the figures plotted in
the table, we need to specify their meanings and how they were calculated. First note
that the procedure was run including normalization, although this was not necessary
for the simulated data, to give a more realistic picture. Next, due to the independence
of predictors, the program always selected the correct global relevant predictors for any
reasonable threshold 7. Therefore, the computing times in the second part should be
theoretically independent of the original d as it only depends on p. However, as d increases,
a larger part of the software memory is allocated to store the generated data which in
turn increases the computation time. Further, unless the data of the different D,, are
not merged on one server (for instance, in the divide and conquer context they often are,
and the division is artificial), the computing times of the two kANN searches depend on
aspects like M, the distribution of N,, with its different possible k,, < k choices, the
communication time between the central server and remote processors, etc. To make it
independent of communication time and type of data distribution, we kept all simulated
data on one computer and reported the total computing time, simply by executing the M
k., ANN searches subsequently on the same processor. This certainly explains the large
figures for the first KANN search. In the optimal case, you could divide them by M but
have to add communication time. Recall that in our simulation we chose all N,,, equal, and
k., = k. In practice, there is some potential for saving computational time. Evidently, all
numbers are also relative to the grid size g. Finally, the slowest step in a small dimension
setting is the LASSO with the data-adaptive selection of the regularization parameter .
As already mentioned, this could be accelerated by a smart implementation of TREX.

When we look at the reported figures, we first note that surprisingly, increasing the
number £ of neighbors does not proportionally raise the computing time of the kKANN
searches. As explained in Section 3.2, we are taking advantage of the fact that once the
data are pre-processed, the cost of searching additional nearest neighbors is very small.
Second, not surprising is that computing time is significantly decreased between the first
and the second kANN search because dimension d matters a lot here. Third, the latter
is much less the case for the local LASSO with an automatic A choice; while computing
time increases with k just a bit slower than it is the case for the first KANN search, it
hardly increases with dimension d (compared to the kKANN search).

To better understand some practical implications of Table 3.2, recall Figure 3.3. Using
our R code with only one Acer Aspire 5 1.8GH processor, this figure was made in slightly
more than 3 minutes; with M = 10 parallel processors, it takes about 2 minutes (depend-
ing on communication time). Have in mind that we study 10 Million observations with
20 dimensions locally adaptive (by kernels with local bandwidths) with a fully automatic
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Figure 3.5: Computation times of KANN search (orange) and average MSE in percent
(green).

local model selector on a relatively large grid, and without having used the full potential
of time reduction e.g. by outsourcing some parts into C++ or similar.

One potential that we can check directly, apart from parallel processors, is exploring
the error tolerance € in the kKANN search, recall Section 3.2. While there exists some
theory indicating error bounds for the e choice, already Arya et al. (1998) showed that
these heavily overestimated the actual error levels. Larger values for e imply bigger
chances to select the wrong neighbors while the gains in speed can be substantial. The
optimal trade-off depends on the context. In our procedure, for instance, the effect of
those errors is even attenuated by the use of the Epanechnikov kernel because errors are
only committed at the boundaries of the kNN neighborhoods. It is clear that the uniform
or some higher-order kernels would not have such an attenuation effect.

We simulated data as above with N = 10 million observations, M = 10, d = 20,
k = 1,000, and evaluate the final predictions at a subsample of 900 randomly drawn
points by calculating their average MSE. For € ranging from 0 (giving the exact kKANN)
to 6, Figure 3.5 shows both the average computing times in seconds of the first KANN
search and the average MSE of the same 10 simulated examples for different values of e.
The average MSE is expressed in percentages of the average MSE when ¢ = 0 is used.
Figure 3.5 shows quite well why we decided for ¢ = 1 as a default value: it produces
essentially the same MSE as € = 0 but € > 1 hardly reduce computational time, at least
not for d = 20. Note that in this specific simulation values of € between 2 and 4 could
even slightly reduce MSE. This might be because the neighborhood implied by our choice
of k is smaller than the ‘optimal’ neighborhood. Hence, increasing the tolerance error
has the effect of enlarging the neighborhood. However, for € larger than 4, the error in
neighbors selection is not compensated. Since the optimal choice of € might depend on
each specification, we decided to set a conservative tolerance level.

We finally evaluated also the scalability of our method with respect to an increasing

number of observations and dimensions respectively. For the former, we repeated the same
simulated example with d = 20 and k£ = 1,000, E' = 900, g = 900, and € = 1, but increase
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Figure 3.6: Computation times of first (orange) and second (green) kKANN search.

the number of observation N of the total distributed system D from 10 to 50 millions.
In Figure 3.6 we have plotted the computing times of the first and second kANN search
against the increasing number of observation. As in Table 3.2 and all time figures or
graphs above, the computing times for the M different k,, ANN searches are added. That
is, for the realistic situation in which M increases with N, as is the case with divide-and-
conquer procedures, both slopes would actually become (much) flatter. For the chosen
scales of minutes of calculation on millions of observations, the slope is clearly smaller
than one, and far away from the exponential shape we typically observe in nonparametric
inference. The latter is to be expected, since the tree structure used leads to a rate of order
O(¢gN log N) with ¢ = d and ¢ = p in the first and second parts, respectively. This already
indicates the impact of the dimension, which we study a bit further below. We also ran
other simulations, not further documented, with (k,p) = (50, 100) and (k, p) = (100, 200),
and for N much smaller. In all cases, the method performed well, accelerating significantly
for smaller samples.

3.4 The Oceans’ Climate Trends: An Application to
in Situ Observations From a Global Array of Pro-
filing Floats

The ocean bears the brunt of climate change as it is an important heat and carbon sink.
Monitoring, modeling and predicting changes in temperature or salinity are therefore
important tools to better understand climate change and its impacts on, for example,
marine ecosystems (Levin & Le Bris, 2015). In this section, we briefly illustrate the
potential of our proposed method in an application to a large size modern oceanography
data set collected by the Argo Program (Argo, 2021).
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Figure 3.7: Illustration of the Argo data management system.

3.4.1 The Argo Data

Argo is a global array of more than 3,900 (active) free-floating devices (‘floats’) that
measure the temperature and salinity of the upper 2,000 metres of the ocean.? The array
provides over 100,000 temperature/salinity profiles and velocity measurements per year,
distributed at an average spacing of 3 degrees across the world’s oceans. In a 10-day cycle,
the drifting floats first sink to a depth with a pressure of 2,000 dbar and then record data
on temperature and salinity as they rise to the surface. At the end of each cycle, the
floats send their data (referred to as ‘profiles’) over satellite to national data acquisition
centres (DAC) where control tests are carried out. The data obtained is then publicly
available within hours after collection via two global data acquisition centres (GDAC) in
France and California. Figures 3.7 and 3.8 illustrate the Argo data management system
and the location of national DACs. For more information on the Argo data system and its
quality control procedures, and the gradual changes in the vertical resolution and spatial
coverage of Argo data, see, for example, Wong et al. (2020).

Stein (2020) points out that the horizontal resolution of the array is not particularly
high and space-time interpolation of Argo data is therefore of great interest. In the
geoscience literature, the focus lies thus on so-called objective analysis or optimal inter-
polation using statistical tools like kriging (J. Li & Heap, 2008) to obtain a dense regular
grid from irregularly collected data. Kuusela and Stein (2018) describe the statistical
challenges associated with the use of Argo data as follows: (i) a huge volume of data;®
(ii) the data are non-stationary in both their mean and covariance structure; and (iii)
they exhibit heavy tails and other non-Gaussian features. In our application, we follow
Kuusela and Stein (2018) and base our predictions (3.5) on a locally-stationary model that
is only valid in the neighborhood of the point of interest. However, we do not assume the
spatio-temporal mean-field to follow a Gaussian process and base our estimation on fully
nonparametric techniques with locally selected predictors. Other articles in the statistical

2As of 17th February 2022, 3,943 active floats covered the globe. For the actual number of active
floats see https://fleetmonitoring.euro-argo.eu/dashboard?Status=Active.

3 As of September 2019, the data holdings in the Argo GDACs amounted to 338 gigabytes of data from
15,231 floats (Wong et al., 2020). This corresponds to around 2 million profiles, each having between 50
and 1,000 measurements.
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Figure 3.8: Locations of Data Acquisition Centers.

literature focus more on improvements in fitting nonstationary models to large spatial
and spatial-temporal data sets (Guinness, 2021) and on the dependence of the Argo data
across location, time, and pressure (Yarger, Stoev, & Hsing, 2020) using functional data
analysis techniques for the problem of temperature and salinity estimation.

3.4.2 Temperature Predictions Using the Argo Data

For our illustration of temperature predictions, we follow Kuusela and Stein (2018) and
Yarger et al. (2020) and use a preprocessed version of the Argo data containing more
than 245 million observations for the period 2007 to 2016.* More specifically, we focus in
our analysis on delayed observations corresponding to high-quality data that have been
subjected to detailed scrutiny by oceanographic experts. This reduces the total sample
size to about 136 million observations.

In the first step, we want to predict temperature for a grid of 9,000 locations at sea level
for a specific (arbitrary) day, the 14th February 2012, based on the available predictors
(salinity, pressure, latitude, longitude, as well as day and year of measurement). To further
reduce complexity, we only use the part of the data that was recorded in January to March
of the different years following Kuusela and Stein (2018) and divide it randomly into ten
data giants of about 3 million observations each to mimic the Argo distributed system.
Note that the pre-processing (the building of the k-d tree structure), the normalization, as
well as the k,,-ANN searches can be done in parallel in each data giant (and in principle
also remotely in each DAC). Summary statistics for the continuous variables are provided

4Downloaded from: https://github.com/mkuusela/ArgoMappingPaper, accessed on 07.14.2021. For
the quality control criteria used for filtering out measurements due to technical issues, see the electronic
supplement of Kuusela and Stein (2018).
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Variable Unit of Account Mean SD Min Max
Temperature Degree Celsius 7.61 6.49 -1.89 33.67
Salinity g (salt) /kg (water) 34.71 0.56 24.60 39.90
Pressure Decibar 809.30  580.50 0.00  2,000.00
Latitude Degree -11.05 31.07 -72.50 79.17
Longitude Degree 9.44 124.82 -180.00 180.00

Table 3.3: Summary Statistics of the Continuous Variables (sample size: N = 31,071,737)

Predictor Frequencies ~ Two samples KS; stat  p-value

Pressure 0.999 0.002 1.000
Longitude 0.899 0.009 1.000
Latitude 0.854 0.024 1.000
Day 0.806 0.013 0.999
Year 0.782 0.015 0.868
Salinity 0.280 0.161 0.000

Table 3.4: Frequency relevance of predictors

in Table 3.3.

In the first part of our procedure, k,, = k is needed because the salinity and pressure
values essentially separate the locations covered by the different data giants D,,. This
only changes if one of these predictors is eventually identified as globally irrelevant. With
k = 1,000 and € = 1, we obtain the selection frequencies of temperature predictors, as
given in Table 3.4, based on £ = 1,000 randomly drawn locations. The initial KANN
search and the Local Lasso took 56.58 and 78.67 seconds, respectively, with an Acer
Aspire 5 1.8GH processor.

Of the available predictors, only salinity is classified as a non-globally relevant pre-
dictor, having been selected as a predictor in only 28% of the cases. However, the null
hypothesis of the Kolmogorov-Smirnov test is rejected (p-value=0.000), suggesting that
salinity may be locally relevant. To explore this point in more detail, we show in Fig-
ure 3.9 the localization of random points where salinity is relevant (yellow) or irrelevant
(blue). However, most of the points where salinity is relevant are in the Southern Ocean.
This could be due to reverse causality, as higher ocean temperatures contribute to ice
melt, which in turn leads to lower salinity in seawater (Pritchard et al., 2012).

After the globally relevant predictors have been selected, the temperature predictions
for the grid consisting of 9,000 points can now be carried out (the second part of our
procedure). The second kANN search and the final local regression took 624.22 and 37.54
seconds, respectively. Note that the significant increase in time compared to the first
step is mainly due to the high memory usage for 9,000 query points. In Figure 3.10, we
show our results with different values of k € {100;250; 500; 1,000}. Note that the surface
temperature of the ocean is higher at low latitudes.

We also provided predictions of temperature at different depths for a fixed longitude
of 30°W. Figure 3.11 shows the predicted temperature for depths ranging from 0 to 2,000
m. The very cold temperatures predicted for the latitude of —50°S correspond to the
Antarctic bottom water. On the opposite pole, ocean temperatures are relatively higher
due to the North Atlantic Deep Water.
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Figure 3.9: Global distribution of relevant points (yellow) and irrelevant points (blue) for
salinity:.

(c) k = 500 (d) k = 1,000

Figure 3.10: Predicted surface temperature for 14th of February 2010.
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Figure 3.11: Estimated temperature for Longitude = 30°W, k = 1,000 for different depth
and latitude.

In a final step, we want to investigate the warming of the ocean in the period 2007 to
2016. To do this, we predict the temperature for each of our 9,000 grid points for each day
in each February from 2007 to 2016 and finally form the respective global February average
temperature.” The results of this approach are shown in Figure 3.12, where the red line
shows the temperature change at sea level and the blue line at a depth of 50 meters. The
shaded areas around the curves were computed with the maximum and minimum monthly
temperatures and are a measure of the variability of the predictions. Both curves show an
upward-sloping trend which is more pronounced for the ocean surface. Our temperature
predictions for the ocean surface are in line with the National Oceanic and Atmospheric
Administration (NOAA) predicted data. However, our method not only confirms the
values already found for the sea surface but also shows that deeper layers follow the same
trend. This provides a better understanding of the impact of climate change on the ocean.

3.5 Conclusions and Discussion

In this article, we have introduced a readily applicable procedure to perform the most
flexible possible estimation, prediction and attribution related analysis on large, poten-
tially distributed data sets. The way it is realized, our methods also contributes to the
literature about ‘divide-and-conquer’ procedures as it might be seen as an extension of
the ADMM of Boyd et al. (2011). After having revisited Breiman (2001), Efron (2020)

5These predictions could be done for any day of the year but we restrict our computation to February
for computational reasons.

Shttps://www.epa.gov/climate-indicators/climate-change-indicators-sea-surface
—-temperature
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Figure 3.12: Monthly averaged temperature in degrees of February at the ocean surface
(red) and 50-meter depth (blue).

and the discussions of their articles on the needs and challenges of such data analysis, we
decided on the strategy of localization. Apart from the fact that classical nonparametric
estimators (referring here to local smoothers) represent a pier to bridge the gulf described
by Efron, it also turns banes from distributed data or divide-and-conquer problems into
boons by a smart reordering of the data for parallel computing. In the spirit of strict
localization, our proposition relies on the combination and adaptation of distinct algo-
rithms that each on its own is well developed and understood: Specifically, after having
organized the analysis problem as seemingly separated local problems, an efficient kKANN
search gathers neighboring observations for the different points of interest, a local kernel
weighted LASSO (with locally adaptive penalization) infers about local attribution and
sparsity, to finally return a local estimator or predictor. This is offered together with
an inferential tool for distinguishing global from local relevant predictors. The specific
implementations of our different steps follow computational efficiency considerations. We
provide numerical examples as proof of concept. The found results confirm the use, func-
tioning and practicability. The method is finally illustrated along with an application
using the Argo project data.

What could be seen as an important distinction compared to related procedures is
that albeit both characteristics, complexity and data adaptiveness, it has no feature of a
black box procedure. We know perfectly what the method does to the data and how the
final results are obtained. At least for the separated steps we even know the statistical
properties; we admittedly cannot state analytical formulae for the final estimates for
post-selection inference. Depending on the sample size, one would either apply sample
splitting the way it is frequently used for many machine learning procedures, or resort
to multi-fold cross-validation similar to the one applied for finding Aoy above. Certainly,
bootstrap procedures are feasible but computationally not very attractive in this context.
As the entire procedure follows the principle of localization, we also advise against uniform
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inference in the sense of constructing confidence bands instead of point-wise confidence
intervals in nonparametric estimation.

We conclude with a brief discussion on the distinction between estimation and pre-
diction in the context of using our method. The distinction between traditional statistics
and pure prediction algorithms is not always clear. For instance, logistic regression which
belongs to traditional statistics is often present in machine learning books. In order to
distinguish, Efron (2020) proposes to separate them according to their purpose. Regres-
sion approaches can be used for prediction when the aim is to predict new cases, for
estimation to discern a typically smooth underlying process that generates the data, and
for attribution to assign the significance of individual predictors. The distinction becomes
clearer when noticing that traditional statistics are mainly used for estimation and attri-
bution whereas pure prediction algorithms focus on prediction or classification (including
clustering). To illustrate this, let’s take respectively the linear regression and random for-
est as representatives of traditional statistics and pure prediction algorithm. The linear
regression aims to investigate the true underlying data generation process through surface
plus noise estimation, and uses p-values or confidence intervals for studying attribution.
When linear regression is used for prediction through inter- or extrapolation of the surface,
it is easily outperformed by the prediction accuracy of a random forest. Its predictive
power could rely on many so-called week learners, combinations of correlated predictors,
to obtain a prediction. Estimation is neglected as we cannot discern a potentially true
smooth function by a black box. While one may argue that the random forest provides
its own method of attribution through the so-called variance importance score, it can’t
determine which are the strong individual predictors when relying on many weak learners.
The purpose of a random forest is then only prediction (or classification).

With a nonparametric approach like ours, you can have both, locally a clear structure
with globally varying predictive power and varying contributions from, or attributions
to specific predictors. Recall that most algorithms minimize a certain objective function
which in our case is approximating E[(Y — Y)2|X] where ¥ = (X)), see (3.3). When
the information set X is allowed to be an arbitrary one and thereby arbitrarily large, this
actually approximates E[(Y — Y)?]; and if m(-) is only restricted by its smoothness in a
local neighborhood, the difference between estimation and prediction shrinks to the ques-
tion of what a reasonable environment is. This question, however, is an unsolved problem
even within the prediction context. Therefore, in our procedure, the distinction between
estimation and prediction is determined by the selection of predictors and k, where the
former is guided by local LASSO with data-adaptive A and the resulting frequencies of
relevance. In contrast, we have nothing said so far about the choice of k. Recall first
that we opted in favor of k£ instead of a bandwidth choice as we believe it complies bet-
ter with the localization principle; in areas where you have more observations you are
willing to relax the smoothness restriction on m(-). Furthermore, the problem of multi-
variate bandwidth choice is less accentuated when opting for elliptical kernel weighting
with normalized data. Regarding the choice of £ we recommend running the procedure
with three to five different numbers of k£ (as we did in the application) to explore and
better understand the local features as recommended by Chaudhuri and Marron (1999)
when introducing SiZer for bandwidth selection in nonparametric kernel regression.
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