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s u m m a r y

Background: A high phase angle derived from bioelectrical impedance analysis has been linked to a high
level of physical activity. However, it is unknown whether a high phase angle is related to running
performance.
Methods: We included all subjects who participated for the first time to the Course de l’Escalade between
1999 and 2016, a yearly city run occurring in Geneva. The subjects underwent a measurement by 50-kHz
tetrapolar bioelectrical impedance analysis (Nutriguard®). Running time was converted to running speed
in km/h. Results are shown as mean (SD) and as frequencies. We performed sex-specific univariate and
multivariate regressions, adjusted for age, body mass index, categories of running distance and year of
measurement, to evaluate whether the phase angle is associated with running speed.
Results: We analyzed 2264 subjects (1025 women and 1239 men). In univariate regressions, phase angle
was significantly related to running speed in women (coeff 0.52, 95% CI 0.35e0.67, p < 0.001, adjusted R2

0.037) and men (coeff 0.57, 95% CI 0.42e0.73, p < 0.001, adjusted R2 0.039). Multivariate regressions
showed that the phase angle was still significantly associated with running speed in women and men
(p < 0.001 for both models), with an adjusted R2 of 0.262 and 0.282, respectively.
Conclusions: The phase angle is positively associated with running performance in men and women. It
remains to be demonstrated if this association reflects the benefit of regular training and whether the
phase angle might be suitable to monitor improvements in running performance.
Clinical trial registry: clinicaltrials.gov, identifier: NCT03400761.
© 2020 The Authors. Published by Elsevier Ltd on behalf of European Society for Clinical Nutrition and
Metabolism. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).

1. Introduction

Bioelectrical impedance analysis (BIA) measures electrical pa-
rameters, such as resistance, reactance, phase angle and imped-
ance, which are introduced into population-specific equations to
derive body composition. However, these equations are not accu-
rate in certain circumstances, as for instance an abnormal hydration
status or a body mass index in the extreme ranges (<16 kg/m2 and
>34 kg/m2) [1]. An increasing amount of publications has thus

focused on the health significance of raw electrical parameters,
especially the phase angle.

BIA devices submit the human body to an alternating electrical
current, and record the opposition to this current, namely the
resistance and reactance [2]. The resistance reflects the pure
resistive behavior of tissues and depends on the intra- and extra-
cellular water content. The reactance is generated by the capaci-
tance of cell membranes and tissue interfaces, which induces a time
delay between the voltage and the current waveform correspond-
ing to the phase angle. Mathematically, the phase angle can be
obtained from the arctangent of the reactance to resistance ratio.
Clinically, the phase angle supposedly reflects body cell mass and
cell membrane function, and the higher the phase angle, the better
is the cell function [3]. It is negatively correlated with the ratio of
extra-to intracellular water, age, body mass index [3] but positively
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associated with physical activity [4]. Here, we hypothesize that a
higher phase angle is related to a better running speed during a
popular city run.

2. Methods

This observational study encompassed all runners aged >16
years who participated for the first time to the “Course de l’Esca-
lade” between 1999 until 2016. In this yearly city run, men <18 yrs
and non-elite women cover a distance of 4.8 km, and men >18 yrs
and elite women a distance of 7.2 km “Datasport AG” (Gerlafingen
AG) measured the running times, which allowed to calculate the
running speed (km/h).

Under a heated tent at the “Course de l’Escalade”, runners could
benefit from free assessments of body composition by tetrapolar
BIA [5]. These assessments were always performed in the 24-h
preceding the run, by trained staff of the Geneva University Hos-
pitals. Height andweight were determined with a height gauge and
an electronic scale, respectively, both calibrated yearly by the
Geneva University Hospitals. BIA measurements were performed
while the subjects were lying in a supine position on a medical
folding bed, with their legs and arms in 30� abduction [6]. Surface
electrodes (3M Red Dot (3M, Rüschlikon, Switzerland)) were stuck
on the dorsal side of the right hand, wrist, foot and ankle, according
to published guidelines [6], and connected to the BIA device. The
latter applied an alternative electrical current (800mA, 50 kHz) and
measured resistance and reactance, impedance and phase angle.
We had used several BIA devices over the years but for this analysis,
we kept only the measurements performed with the Nutriguard®
device (Data Input GmbH, Darmstadt, Germany). This choice relies
on the fact that we have used and are still using this device since
2001 and that the phase angle may vary slightly between devices
[7]. All BIA devices have been calibrated against a calibration jig
(CJ4000, Xitron Technologies) and the limit of tolerance was set at
±2� for 50 kHz PhA and ±5U for 50 kHz impedance. For Data Input
devices, within-day repeatability for measurements performed by
the same observer has been shown to be less than 2% for resistance
and <1.5% for reactance [7].

Thus, for each subject, we reported age, body weight and height,
body mass index, phase angle at 50 kHz, running speed, and the
date of measurement. The local Ethical Committee approved this
protocol, which was registered under ClinicalTrials.gov,
NCT03400761, and each subject gave his informed consent.

2.1. Statistics

Continuous data were described as mean (SD) and categorical
data as frequency. The data were compared between women and
men by unpaired t-tests and ManneWhitney U tests, as
appropriate.

Sex-specific univariate regressions evaluated whether the
phase angle was associated with the running speed. The phase
angle was plotted against the running speed. We calculated the
regression coefficients (coeff), 95% confidence intervals (CI) and
adjusted R2, which corresponds to the variance of speed
explained by the regression model. To evaluate whether the
relationship was linear, we compared the adjusted value of R2 of
the univariate regression with the same regression containing
the squared value of the phase angle. Forward stepwise multi-
variate regressions, performed separately by sex, were adjusted
for age, body mass index, categories of running distance and year
of measurement.

3. Results

The study population included 2264 subjects (1025 women and
1239 men). The baseline characteristics are shown on Table 1. All
continuous data were significantly different between women and
men, including the phase angle. The phase angle values were
similar to previously published reference values of our group [8].

Univariate regressions showed that the phase angle was
significantly associated with running speed in women (coeff 0.52,
95% CI 0.35e0.67, p < 0.001, adjusted R2 0.037) and men (coeff 0.57,
95% CI 0.42e0.73, p < 0.001, adjusted R2 0.039). The adjusted R2 did
not improve with the addition of the squared value of the phase
angle to the regression, in women (R2 0.038) and men (R2 0.046),
showing that the relationship between phase angle and speed is
linear and not quadratic (Fig. 1). Multivariate regressions adjusted
for age, body mass index, running distance and year of measure-
ment showed that the phase angle was still associated with the
running speed in women and men (Table 2) (p < 0.001 for both
models), with an adjusted R2 of 0.262 and 0.282, respectively. The
forward stepwise introduction of variables showed that the
regression models improved mostly with the addition of the body
mass index. To determine which component of the phase angle is
associated with the running speed, we repeated the same multi-
variate regressions using 50 kHz resistance or reactance instead of

Table 1
Characteristics of the study population at baseline (n ¼ 2264).

Variables Women Men pa

n % Mean SD n % Mean SD

Continuous
Age at measurement (yrs) 1025 45 37.1 ± 12.1 1239 55 38.7 ± 12.3 0.003
Body weight (kg) 1025 45 59.3 ± 7.5 1239 55 75.6 ± 9.1 <0.001
Height (cm) 1025 45 164.0 ± 6.5 1239 55 177.1 ± 6.9 <0.001
Body mass index (kg/m2) 1025 45 22.0 ± 2.5 1239 55 24.1 ± 2.5 <0.001
Phase angle 50 kHz (degrees) 1025 45 6.3 ± 0.6 1239 55 7.2 ± 0.7 <0.001
Running speed (km/h) 1025 45 10.9 ± 1.6 1239 55 12.9 ± 2.0 <0.001
Categorical
Running distances (km) <0.001
4.8 1013 99 35 3
7.2 12 1 1204 97

Year of measurement 0.375
2002e2004 249 24 317 26
2005e2007 235 23 281 23
2008e2010 199 19 261 21
2011e2013 156 15 160 12
2014e2016 186 18 220 18

a Unpaired t-test or ManneWhitney U-test.
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the phase angle. Only the resistance was significant (women:
p < 0.001, men: p < 0.001).

4. Discussion

Our study shows that the phase angle derived from 50 kHz-
bioelectrical impedance analysis is positively associated with the
running speed during a timed city run, for men as well as for
women, even when adjusted for age, body mass index, running
distance and year of measurement. Resistance, but not reactance is
the component of the phase angle related to the running speed.

The association between phase angle and running performance
had not been tested so far. However, the phase angle was positively
correlatedwithmaximalmean power during a road bicycle race [9],
which could be a marker of physical performance.

Since a good physical performance is generally the consequence
of training, a high phase angle may just reflect regular physical
exercise. Two recent systematic reviews report a positive associa-
tion between phase angle and physical activity [4,10]. These asso-
ciations were in line with the results of Ditmar et al. who studied
452 adults aged 60e90 years, categorized into 3 physical activity
levels by way of a questionnaire. People with the highest physical
activity had a higher mean phase angle than those with the lowest
physical activity, but were also the youngest [11]. Similarly, longi-
tudinal studies showed that the implementation of a physical ac-
tivity program in non-athletes led to an increase in phase angle
[12,13]. Interestingly, the phase angle values found in our runners
are similar to the reference population data that we have published
earlier [8]. This suggests that our runners may be as physically
active as our reference population was.

Several cross-sectional studies focused on specific sports and
showed that elite athletes have a higher phase angle than their less
trained counterparts. For instance, the phase angle was higher in
elite soccer players [14], professional cyclists [15] and ballet
dancers [16] than in their less trained controls. No study on that
topic was specifically performed in runners but, in view of these
evidences, we may assume that elite runners, by definition per-
forming better in timed runs than less trained persons, have also a
higher phase. Whether the type of sport affects phase angle is
however controversial [10].

These evidences strongly suggest that the link between a high
phase angle and a better running performance found in our study is
actually explained by regular physical activity. In athletes, the phase
angle is positively associated with total body water and intracel-
lular water, measured by dilution techniques [17,18]. Our study
confirms these findings as resistance, which depends on ratio of
intra-to extracellular water content, positively correlates to running

Fig. 1. Two-way scatterplot showing the actual running speed vs. phase angle in
women (A, n ¼ 1025) and men (B, n ¼ 1239). The linear regression line is also shown
for women (speed ¼ 0.515*phase angle þ7.630; SEE 0.081, p < 0.001) and men
(speed ¼ 0.574*phase angleþ8.747; SEE 0.080, p < 0.001).

Table 2
Multivariate linear regression to running speed.

Women (n ¼ 1025) Men (n ¼ 1239)

Coefficient SE p 95% CI Coefficient SE p 95% CI

Phase angle 50 kHz 0.59 0.07 <0.001 0.44 0.74 0.42 0.07 <0.001 0.26 0.57
Age at measurement (yrs) �0.01 0.01 <0.001 �0.02 �0.01 �0.03 0.01 <0.001 �0.04 �0.02
Body mass index (kg/m2) �0.28 0.02 <0.001 �0.32 �0.25 �0.32 0.02 <0.001 �0.36 �0.28
Running distances (km)
4.8 0 0
7.2 0.05 0.42 0.897 �0.76 0.87 0.64 0.31 0.039 0.03 1.24

Calendar time (years)
2002e2004 0 0
2005e2007 �0.09 0.13 0.464 �0.34 0.16 0.28 0.14 0.048 0.01 0.56
2008e2010 0.01 0.13 0.962 �0.26 0.27 0.11 0.14 0.418 �0.17 0.40
2011e2013 �0.56 0.15 <0.001 �0.84 �0.27 �0.45 0.17 0.007 �0.78 �0.12
2014e2016 �0.51 0.14 <0.001 �0.78 �0.23 �0.59 0.15 <0.001 �0.89 �0.29

CI: confidence interval.
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performance. Thus, the higher phase angle in physically active
people seems to reflect physiological cellular adaptations leading to
a higher intracellular water content. A hypothesis could be that
physically active people often practice carbohydrate loading to
improve performance and consequently have a higher intracellular
water content to store glycogen [19]. Physical activity has also been
associated with modifications of cell membrane function. For
instance, it enhances the activity of the transmembrane Na/K-
ATPase pump [20,21]. However, our study shows that running
performance is not related to reactance, which is the other
component of the phase angle and reflects the capacitance of cell
membranes.

The strength of this study is the large number of subjects
participating in a popular run and the use of a single BIA brand,
which limits the device-related phase angle variability. This study
suffers a few limitations such as being retrospective and no record
of possible co-morbidities or modalities of the participants’
habitual physical activity (frequency, intensity, duration. Finally, we
are aware that performance is also influenced bymotivation, which
cannot be captured by the phase angle.

5. Conclusion

The phase angle is positively associated with the running per-
formance in men and women. Whether this association reflects the
benefit of regular training remains to be demonstrated. Future
longitudinal studies should determine the exercise modalities to
improve the phase angle, evaluate if an improvement is associated
with a better performance and whether the phase angle might be
suitable to monitor the running performance.
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