
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article scientifique Article 2015 Accepted version Open Access

This is an author manuscript post-peer-reviewing (accepted version) of the original publication. The layout of

the published version may differ .

MzJava: An open source library for mass spectrometry data processing

Horlacher, Oliver; Nikitin, Frédéric; Alocci, Davide; Mariethoz, Julien; Muller, Markus Johann;

Lisacek, Frédérique

How to cite

HORLACHER, Oliver et al. MzJava: An open source library for mass spectrometry data processing. In:

Journal of proteomics, 2015, vol. 129, p. 63–70. doi: 10.1016/j.jprot.2015.06.013

This publication URL: https://archive-ouverte.unige.ch/unige:159524

Publication DOI: 10.1016/j.jprot.2015.06.013

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:159524
https://doi.org/10.1016/j.jprot.2015.06.013

MzJava: an open source library for mass spectrometry data

processing

Oliver Horlacher
1,2

, Frederic Nikitin
1
, Davide Alocci

1,2
, Julien Mariethoz

1
, Markus Müller

1,2
 and

Frederique Lisacek
1,2

1
Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, 1211, Switzerland

2
Centre Universitaire de Bioinformatique, University of Geneva, Geneva, 1211, Switzerland

Corresponding authors:

Markus Müller, Frederique Lisacek

Swiss Institute of Bioinformatics, University of Geneva

CMU

Rue Michel-Servet 1

1211 Geneva, Switzerland

Email: markus.mueller@isb-sib.ch, Frederique.Lisacek@isb-sib.ch

© 2015. This manuscript version is made available under the Elsevier user license

http://www.elsevier.com/open-access/userlicense/1.0/

Abstract

Mass Spectrometry (MS) is a widely used and evolving technique for the high-throughput

identification of molecules in biological samples. The need for sharing and reuse of code among

bioinformaticians working with MS data prompted the design and implementation of MzJava, an

open-source Java application programming interface (API) for MS related data processing. MzJava

provides data structures and algorithms for representing and processing mass spectra and their

associated biological molecules, such as metabolites, glycans and peptides. MzJava includes

functionality to perform mass calculation, peak processing (e.g. centroiding, filtering,

transforming), spectrum alignment and clustering, protein digestion, fragmentation of peptides and

glycans as well as scoring functions for spectrum-spectrum and peptide/glycan-spectrum matches.

For data import and export MzJava implements readers and writers for commonly used data

formats. For many classes support for the Hadoop MapReduce (hadoop.apache.org) and Apache

Spark (spark.apache.org) frameworks for cluster computing was implemented. The library has been

developed applying best practises of software engineering. To ensure that MzJava contains code

that is correct and easy to use the library’s API was carefully designed and thoroughly tested.

MzJava is an open-source project distributed under the AGPL v3.0 license. MzJava requires Java

1.7 or higher. Binaries, source code and documentation can be downloaded from

http://mzjava.expasy.org and https://bitbucket.org/sib-pig/mzjava.

Introduction

Mass spectrometry (MS) has become a central analytical technique to characterise proteins,

lipids, carbohydrates and metabolites in complex samples [1] [2]. The diversity of biological

questions possibly addressed with MS is reflected in a wide range of experimental workflows.

Analysing data generated through these workflows is automated though most of the time, the

variability of applications requires software customisation and/or extension. This situation is well

described in a recent review [3] and justifies the development of libraries of MS related software to

facilitate code reuse. Software libraries are meant to benefit the developers’ own group and

collaborators as well as the wider computational proteomics and glycomics communities.

Many early open source contributions dedicated to the automated analysis of proteomic data

were coded in C++ or Perl. The trans-proteomic pipeline (TPP) [4] is an assembly of C++ programs

and Perl scripts to process and statistically validate MS/MS search results from different search

engines and integrate these with quantitative data. Later, TOPP was introduced as a management

system for generic proteomics workflows [5], based on OpenMS [6]. OpenMS contains a well-

designed Application Programming Interface (API), which makes it useful not only as a toolbox but

also as a code base for software developers. ProteoWizard [7] is another C++ open source project

for the conversion of proteomic MS/MS file formats and processing of MS/MS spectra. More

recently, the Java programming language gained popularity in many fields and especially in

bioinformatics due to its portability across different computer platforms and the availability of

powerful and comprehensive class libraries that facilitate and accelerate software development. For

example, the Chemistry Development Kit (CDK, http://sourceforge.net/projects/cdk/) is an open

source library for cheminformatics and computational chemistry [8]. Biojava (http://biojava.org/,

[9]) addresses the bioinformatics community and provides classes and tools for protein structure

comparison, alignments of DNA and protein sequences, analysis of amino acid properties, protein

modifications and prediction of disordered regions in proteins as well as parsers for common file

formats.

A broad range of Java based open source solutions was developed for the proteomics

community as comprehensively reviewed in [3]. Our focus being mainly on MS/MS data

processing, the following refers to such dedicated toolboxes. Compomics is a collection of tools

mainly for MS/MS data analysis [10][11]. It also contains the Compomics-utilities class library

[12], which provides the code base tools. The Java Proteomics Library (JPL,

javaprotlib.sourceforge.net) provides an API to process MS/MS spectra and their annotation. It

served as the code base for several software projects dealing with MS/MS searches [13], spectral

libraries and open modification searches [14], and data-independent quantification [15]. The PRIDE

tool suite (http://pride-toolsuite.googlecode.com) contains a set of pure Java libraries, tools and

packages designed to process and visualize versatile MS proteomics data [3]. It also contains a

well-designed Java API (ms-data-core-api) facilitating the implementation of customized solutions

[16]. In recent years, several open source Java-based laboratory information systems (LIMS)

storing and processing proteomic or glycomic data were described [17],[18],[19].

Glycomics MS data are still seldom produced in high throughput set-ups but this field

evolves quickly and the need for automation is growing. A reference software for glycan MS and

MS/MS annotation is GlycoWorkbench [20]. This tool is modular and mostly known for its

convenient user interface to support glycan structural assignment. Theoretical glycan spectra can be

calculated with its fragmentation tool based on the mechanisms and nomenclature described by

Domon and Costello [21]. Importantly it relies on recognised standard description of

monosaccharides and full structures [22].

The scalability of existing solutions is currently one of the greatest challenges. The ever-

growing size of MS datasets and the need to process spectra by the tens of millions imposes the use

of distributed data processing frameworks such as Hadoop MapReduce [23] (hadoop.apache.org)

and Apache Spark [24] (spark.apache.org). Hadoop is already used in bioinformatics, primarily for

next-generation sequencing analysis [25] but also for proteomics [26][27][28], while Spark was

more recently introduced [29][30]. Hadoop MapReduce is an implementation of the MapReduce

programming model described by Dean and Ghemawat [23]. Spark extends on the functionality and

performance of Hadoop by allowing in-memory data storage and providing additional functions

[24].

We introduce MzJava a Java class library designed to ease the development of custom data

analysis software by providing building blocks that are common to most MS data processing

software. MzJava addresses the scaling issues by adding classes to interface with Hadoop and

Spark. Furthermore, new code was included for processing glycomics data. In fact, MzJava

originates from merging JPL and another unpublished Java MS codebase. During this merge the

code was comprehensively refactored and refined in an effort to produce a consistent and well-

designed API. Best practices in software engineering such as test driven development and

continuous integration were applied during the implementation. Code quality metrics of MzJava are

continuously tracked to maintain high quality standards. These metrics are used to benchmark

MzJava in relation to other packages.

Materials and methods

Development aims

MzJava is mostly centred on MS/MS identification and annotation. This bias towards an

identification-related API reflects our research focus. The use of the MzJava API is intended for

writing software that is capable of processing large data sets. Consequently the API is designed to

be extensible, flexible and efficient. During development we found that flexibility often comes at

the cost of performance. Where we identified performance hot-spots we implemented solutions that

allow either flexible or high performance code to be written, while in non performance critical code

we kept flexibility as a major criterion. Additional design aims were to make the API not only easy

to use, but also hard to misuse as well as prompt to fail whenever there are errors [31].

The development of MzJava entailed refactoring a substantial part of the JPL aiming at

producing high quality and efficient code. The outcome is meant to be structured as a coherent API

as opposed to bundling a collection of code pieces. MzJava follows Java naming and behaviour

conventions and provides builders with fluent interfaces for constructing complex objects

(http://en.wikipedia.org/wiki/Fluent_interface). To help prevent misuse and to make MzJava easy to

use in multithreaded environments, mutable objects are avoided as much as possible. Objects that

need to be mutable were designed to always be in a valid state.

Development methodology

The methodology that was employed to develop MzJava follows best practice for scientific

computing [32][33][34][35] and is influenced by agile software development, especially test driven

development (TDD) [36] and continuous integration (CI) [37]. In brief, TDD describes a short

development cycle for adding improvements or new functionality. First the developer writes an,

initially failing, automated test that defines the improvement or new functionality. Code is then

written to make the test pass. This is followed by refactoring the new code to bring it up to

acceptable quality. Figure 1A summarizes the TDD cycle. Automated tests are written using JUnit

(http://junit.org/) and Mockito (http://mockito.org/). CI is a software engineering practice in which

changes to the code are automatically tested whenever they are added to the codebase. The goal of

CI is to provide rapid feedback so that changes that introduce issues or break the build can be

corrected rapidly. Jenkins (http://jenkins-ci.org/) is used to automate the CI.

Code quality scores are tracked using SonarQube (http://www.sonarqube.org/). Quality

profiles were slightly altered from the Sonar way with Findbugs profiles. SonarQube is also used to

evaluate the quality of comparable libraries such as BioJava, ms-data-core-api, jmzml (a library to

handle mzML files [38]), and compomics-utilities. MzJava is a Maven project developed using

IntelliJ Idea (https://www.jetbrains.com/idea/). Figure 1B provides a more detailed view on the

development cycle and the tools used.

Architecture

The MzJava architecture is modular and consists of three main modules:

1. The core module contains functionality that is common to all MS data

2. The proteomics module contains functionality specific to peptides and proteins

3. The glycomics module contains functionality specific to glycans.

Figure 2 illustrates the organisation of the modules and highlights the central position of the core

module that overlaps with the proteomics and glycomics modules.

Results

The MzJava core consists of three main parts: mol, ms and io (Figure 2). The mol-core

comprises classes to work with chemical compositions and their masses. The Atom class for

example represents the mass and isotopic abundances of a chemical element. The Composition class

deals with assemblies of atoms defined by their stoichiometric chemical formulae. NumericMass is

used to represent objects that have a mass but no known composition. The main classes in ms-core

deal with peak lists (PeakList, list of m/z-intensity pairs) and their associated meta data (Spectrum).

There are a number of Spectrum subclasses to capture the meta data associated with particular types

of spectra. For example, MsnSpectrum contains meta data such as scan number and retention time

and ConsensusSpectrum captures meta data that is associated with a consensus spectrum such as the

ids of the spectra from which the consensus was built, and the structure of the peptide/glycan that

the consensus spectrum represents. The peak list associated with each spectrum is stored in

subclasses of PeakList. There are 5 different flavors of PeakList. This allows the m/z values to be

stored as either 64 or 32 bit numbers and the intensity as 64 bit, 32 bit or as a constant. To provide a

common interface for all the subclasses, the Spectrum class both wraps and implements PeakList.

The only time that the precision needs to be taken into account is when the spectrum is created;

thereafter it is just an instance of Spectrum. In addition to the m/z and intensity values of peaks,

PeakList can also store one or more annotations for each peak. MzJava has three built-in peak

annotations, PepFragAnnotation, GlycanFragAnnotation and LibPeakAnnotation.

PepFragAnnotation and GlycanFragAnnotation are used to annotate peaks with peptide or glycan

fragments and contain information such as the charge and ion type of the fragment.

LibPeakAnnotation is used to annotate peaks in LibrarySpectrum with consensus statistics. We

make use of generics to specify the type of annotation that a PeakList contains.

The ms-core package also contains classes to match spectra and score these matches. The first step

in most spectra matching workflows is to remove noise or to extract features from mass spectra by

applying one or more filters or transformers to the peaks in the peak list. MzJava provides filters to

bin and centroid raw spectra (BinnedSpectrumFilter, CentroidFilter) and to select peaks based on

their m/z range or peak annotation (MzRangeFilter, FragmentAnnotationFilter). Further it includes

processors that simplify spectra and retain only the n most intense peaks of the entire spectrum or

remove peaks that fall below a given threshold (ThresholdFilter). In order to adapt to varying noise

levels other filters only keep a peak if it is among the n most intense peaks in a local bin or sliding

window (NPeaksFilter, NPeaksPerBinFilter, NPeaksPerSlidingWindowFilter). With the exception

of the m/z affine transformer all transformers operate on peak intensities and replace the original

values by their log-, square root-, affine- and arcsinh-transformed values (LogTransformer,

Log10Transformer, AffineTransformer, ArcsinhTransformer). MzJava also has classes to normalize

the total or maximal ion current in a spectrum (IonCurrentNormalizer, UnitVectorNormalizer,

NthPeakNormalizer, RankNormalizer, HighestPeakPerBinNormalizer).

Peak processing is a performance hotspot, since it may be applied to millions of spectra, but

also needs to be flexible so that it is possible to experiment with different filters and transformers.

To achieve both of these requirements, peaks can be processed by applying a PeakProcessorChain

to a PeakList. A PeakProcesorChain is a linked list of objects that implement the PeakProcessor

interface. A PeakList is processed by pushing the m/z, intensity and annotations of each peak

through the chain of PeakProcessor. This way, stateless peak processors such as Log10Transformer

do not have to copy the m/z or intensity arrays. Peak processors that have state, i.e. where the result

for each peak depends on the other peaks present in the peak list, can extend

DelayedPeakProcessor, which reuses m/z and intensity arrays to improve performance. Custom

peak processors can easily be created by extending AbstractPeakProcessor or

DelayedPeakProcessor. For a comprehensive list of peak processors see Table 1.

MzJava has a number of spectrum-spectrum scoring functions such as the normalized dot

product (NdpSimFunc), Pearson’s correlation coefficient (PearsonsSimFunc) and shared peak count

(SharedPeakSimFunc). For a comprehensive list see Supplementary Table S1. Custom scoring

functions can easily be created by implementing AbstractSimFunc. AbstractSimFunc takes care of

peak alignment and supports plugging in peak filters and transformers.

The io-core package provides readers and writers for commonly used spectra and peptide

spectrum matches (PSM) file formats. Spectra are modelled by the MsnSpectrum class, which

contains the most important meta data that the formats support. The PSM readers split the

information into two parts, a part to identify the spectrum (SpectrumIdentifier) and another that

contains the peptide match information (PeptideMatch). This division reflects the diversity in the

spectrum descriptors in the different PSM file formats. A list of PSM readers and their capabilities

can be found in Table 2. The readers have been designed to be easily customized through object

composition and inheritance. Object composition is used where there is a lot of variability in the

format, for example the mgf title or sptxt comment tag. Inheritance is used where data has been

added or removed from the file format. For example the mgf parser can be customized to read new

tags or additional information from the peaks by overriding the parseUnknownTag or

handlePeakLine method. Setting a PeakProcessorChain on spectrum readers allows the peaks to be

transformed and filtered while reading. The list of spectrum readers and their attributes can be

found in Supplementary Table S2 and S3.

Glycomics and proteomics

To support proteomics and glycomics applications MzJava has data structures to store,

manipulate and generate theoretical spectra for proteins, peptides and glycans. Peptides are

represented by the Peptide class which holds an amino acid sequence and one or more post

translational modifications for each residue or terminus. Modifications are defined in the code

either by their chemical composition or mass. They can also be retrieved from the

UnimodModificationResolver which wraps an xml dump of the UniMod database [39]. Peptides can

be generated by digesting a Protein instance using ProteinDigester and associated classes.

ProteinDigester can be configured to output peptides that have fixed and variable modifications.

Support for the most important proteases is built-in and custom proteases can easily be added.

Theoretical peptide spectra can be constructed by using the PeptideFragmenter class.

PeptideFragmenter can be configured to produce spectra that contain backbone and neutral loss

fragment peaks. To generate peaks for custom fragments an implementation of the

PeptidePeakGenerator interface can be added to the PeptideFragmenter.

In MzJava polysaccharides are represented by the Glycan class, which holds a directed

acyclic graph of Monosaccharide and Substituent nodes that are connected by GlycosidicLinkage

edges. Glycan objects can be created by reading glycan structures in the GlycoCT format [40] using

the GlycoCTReader class. The GlycanFragmenter class can be used to generate theoretical glycan

spectra [21]. By default the GlycanFragmenter returns glycosidic, cross ring and neutral loss

fragments, however custom fragments can be generated by implementing the GlycanPeakGenerator

interface. The user can specify the list of Monosaccharides and Substituents in a configuration file.

Glycan classes rely on recognised standard description of monosaccharides and full structures [22].

Hadoop and Spark support

A brief description of the Hadoop [23] and Spark [24] frameworks can be found in the

Supplementary Material Section S1. The efficiency of the serialization can have a large impact on

the performance of a distributed application. MzJava provides an efficient serialization mechanism

for MzJava data classes that is based on Apache Avro (https://avro.apache.org/). Adapter classes are

provided to integrate the MzJava serialization with the mechanisms that are used by Hadoop and

Spark. This allows MzJava to be used within these frameworks directly without requiring any

additional serialization code. Hadoop provides a pluggable API allowing different serialization

frameworks to be used. The MzJavaSerialization class implements this API to allow MzJava data

objects to be automatically serialized by Hadoop.

Spark uses native Java or Kryo (https://github.com/EsotericSoftware/kryo) serialization.

MzJava interoperates with Spark by providing a bridge between its classes and Kryo. In order to

automatically serialize MzJava data objects Spark needs to be configured to use Kryo serialization

and to use MzJavaKryoRegistrator for the registration of serializable MzJava classes. The MzJava

serialization can be extended to handle new classes by implementing the AvroReader and

AvroWriter interfaces and tagging them with the ServiceProvider interface. MzJavaSerialization

and MzJavaKryoRegistrator then automatically use the reader and writer to serialize the new class.

Code quality

At the time of writing the MzJava library contains 26,793 lines of code in 529 classes. Since

comparable libraries such as BioJava or Compomics have different purposes it appears rather

difficult to benchmark performance. However since SonarQube calculates code quality scores,

which are independent of the specific purpose of a library, these scores can be used to compare

different projects. Thus we run SonarQube on some Java libraries and this process is regularly

repeated to provide the time evolution of the scores. The results are displayed on a webpage

(https://glycoproteome.isb-sib.ch/sonar). A subset of the code quality scores for some analysed Java

libraries (BioJava, ms-data-core-api, jmzml, and Compomics) is displayed in Table 3. The scores

are: the number of lines of code, number of classes, code complexity and issues per class,

documentation content, test coverage and level of package tangle. Code complexity is a score

calculated by SonarQube, which evaluates how large the methods are and how many nested code

blocks they contain. Low complexity indicates clear code, which is less prone to error. Code issues

are potential weak points in the code pointed out by SonarQube. MzJava compares well to the other

libraries, and it has the highest test coverage and the lowest package tangle index.

Discussions

Code example MS/MS protein database search

 Figure 3 shows the code required to perform a database search using the normalized dot

product as a scoring function. The components that are required for a database search are: a

database of theoretical spectra, a reader to read the experimental query spectra, a similarity function

to calculate the score and a writer to write the results. First a PeptideFragmenter is created that

generates b and y ion backbone peaks that have an intensity of 50 (line 3) and water loss peak for b

and y ion fragments that contain a S, T, D or E amino acid (line 4 to 6). The generated water loss

peaks have an intensity of 10. The fragmenter is then used while building a PeptideSpectrumDB

that creates tryptic peptides with 6 to 60 amino acids from a fasta file containing protein sequences

(line 9 to 13). Spectra are read from a mgf file using a MgfReader that pre-processes the raw spectra

on the fly (line 15 to 20). The pre-processing is specified by providing a PeakProcessorChain. In

this example the processor chain will process the raw spectra by centroiding (line 17), removing

noise by keeping the most intense 2 peaks in a 10 m/z sliding window (line 18) and then square root

transforming the intensities (line 19). The normalized dot product similarity function is initialized to

require at least 5 peaks and use a tolerance of 0.02 Da when aligning peaks (line 22) and a result

writer is built (line 23). The query spectra are then read one at a time (while loop line 24) and the

similarity score is calculated (line 30) for each database spectrum whose precursor m/z is within

tolerance of the query spectrum precursor mass (for loop line 28). This example could be extended

to calculate a PSM score that is more sophisticated by providing a similarity function that is more

appropriate.

Code example Spark

The next code example illustrates how to use MzJava in the Apache Spark framework in

order to search query spectra against a spectrum library (Figure 4). First we need to configure Spark

to use Kryo and MzJava serialization to serialize MzJava classes automatically (lines 2 and 3). Then

the library spectra are read from a.sptxt file and these spectra are made available to all nodes on the

computer cluster (lines 6-8). Line 10 defines a PairFunction instance to map a query spectrum to a

list of score-peptide pairs; one pair for each library spectrum that is within tolerance of the query

spectrum precursor mass and has a high similarity score. In order to calculate the score of a match

between query and library spectrum, a normalized dot product similarity function is created with a

fragment tolerance of 0.02Da (line 20) and an instance of DefaultSpectrumLibrary (line 21), which

retrieves all broadcasted library spectra within 20 ppm of the query spectrum precursor mass (line

35). For each retrieved library spectrum, the similarity to the query spectrum is calculated and if

this similarity is larger than 0.6, the library spectrum will be added to the list of results (lines 30-

32). On line 41 Spark reads the query spectra from a Hadoop sequence file into a Spark RDD, and

partitions these spectra across the nodes of the cluster. Finally, Spark sends the library search

function to all nodes of the cluster and applies it to the library spectra on these nodes. Line 43 saves

the results to a Spark object file. Supplementary Figure S1 shows an example of how to use MzJava

within the Hadoop map-reduce framework.

Code example glycomics

 Supplementary Figure S2A describes how to build a glycan molecule using the MzJava

Glycan.Builder class. In this example, the N-glycan core, i.e. Man(a1-3)[Man(a1-6)] Man(b1-

4)GlcNAc(b1-4)GlcNAc(b1-, is built. First, monosaccharides and substitutes are read from a

configuration file. The glucose root node is added and a NAcetyl is attached to the second carbon of

glucose. Then one more GlcNAc and three mannoses are added to obtain the N-glycan core

structure. In Supplementary Figure S2B we describe a code example for the fragmentation of

GalNAc(b1-?)Gal. The glycan structure is read from a GlycoCT encoded string using the

GlycoCTReader class. Then the ion types and fragment types are set. A GlycanFragmenter object is

created with the maximal numbers of glycosidic and crossring fragments set to 1. Finally a glycan

fragment spectrum of singly charged fragments is constructed.

Code quality

The SonarQube results show that the MzJava code quality compares favourably to that of

other widely used open source projects. We have found that using SonarQube is an effective

method for discovering problems in the MzJava code before they lead to bugs in research code. We

also use SonarQube to track test coverage, technical debt and documentation coverage. The good

test coverage and low technical debt of MzJava makes the code more robust and maintainable. High

test coverage means that errors introduced during development are more likely to make some test

fail and can therefore be detected. The documentation in MzJava is fairly available and should keep

on growing.

Conclusions

MzJava provides a well-engineered and well-tested API with building blocks commonly

required to write software processing mass spectrometry data in research project. This speeds up the

development of new mass spectrometry software, allows bioinformaticians to focus on writing new

algorithms and innovative solutions and helps avoiding boilerplate code. In terms of code quality it

compares favourably to other open source Java projects. Besides classes to deal with proteomics

data, MzJava also provides new functionality to fragment glycans and annotate glycan spectra.

Interfaces to Hadoop MapReduce and Apache Spark facilitate large scale computing and

parallelization of the code often required in systems biology applications.

API: Application Programming Interface

MS: Mass Spectrometry

LC: Liquid Chromatography

Availability

MzJava is an open-source project distributed under the AGPL v3.0 license. MzJava requires Java

1.7 or higher. Binaries, source code and documentation can be downloaded from

http://mzjava.expasy.org and https://bitbucket.org/sib-pig/mzjava.

Acknowledgments

This work has been and is supported by the Swiss National Science Foundation [SNSF 315230

130830, 31003A 141215 and CRSII3 136282] and EU (FP7-PEOPLE-2012-ITN #316929).

References

[1] R. Aebersold and M. Mann, ―Mass spectrometry-based proteomics,‖ Nature, vol. 422, no.

6928, pp. 198–207, Mar. 2003.

[2] M. Wuhrer, ―Glycomics using mass spectrometry,‖ Glycoconj. J., vol. 30, no. 1, pp. 11–22,

Jan. 2013.

[3] Y. Perez-Riverol, R. Wang, H. Hermjakob, M. Müller, V. Vesada, and J. A. Vizcaíno, ―Open

source libraries and frameworks for mass spectrometry based proteomics: A developer’s

perspective,‖ Biochim. Biophys. Acta BBA - Proteins Proteomics, vol. 1844, no. 1, Part A, pp.

63–76, Jan. 2014.

[4] A. Keller, A. I. Nesvizhskii, E. Kolker, and R. Aebersold, ―Empirical statistical model to

estimate the accuracy of peptide identifications made by MS/MS and database search,‖ Anal.

Chem., vol. 74, no. 20, pp. 5383–5392, Oct. 2002.

[5] O. Kohlbacher, K. Reinert, C. Gröpl, E. Lange, N. Pfeifer, O. Schulz-Trieglaff, and M. Sturm,

―TOPP—the OpenMS proteomics pipeline,‖ Bioinformatics, vol. 23, no. 2, pp. e191–e197,

Jan. 2007.

[6] M. Sturm, A. Bertsch, C. Gröpl, A. Hildebrandt, R. Hussong, E. Lange, N. Pfeifer, O. Schulz-

Trieglaff, A. Zerck, K. Reinert, and O. Kohlbacher, ―OpenMS – An open-source software

framework for mass spectrometry,‖ BMC Bioinformatics, vol. 9, p. 163, Mar. 2008.

[7] D. Kessner, M. Chambers, R. Burke, D. Agus, and P. Mallick, ―ProteoWizard: open source

software for rapid proteomics tools development,‖ Bioinformatics, vol. 24, no. 21, pp. 2534–

2536, Nov. 2008.

[8] C. Steinbeck, Y. Han, S. Kuhn, O. Horlacher, E. Luttmann, and E. Willighagen, ―The

Chemistry Development Kit (CDK):  An Open-Source Java Library for Chemo- and

Bioinformatics,‖ J. Chem. Inf. Comput. Sci., vol. 43, no. 2, pp. 493–500, Mar. 2003.

[9] A. Prlić, A. Yates, S. E. Bliven, P. W. Rose, J. Jacobsen, P. V. Troshin, M. Chapman, J. Gao,

C. H. Koh, S. Foisy, R. Holland, G. Rimša, M. L. Heuer, H. Brandstätter–Müller, P. E.

Bourne, and S. Willis, ―BioJava: an open-source framework for bioinformatics in 2012,‖

Bioinformatics, vol. 28, no. 20, pp. 2693–2695, Oct. 2012.

[10] M. Vaudel, H. Barsnes, F. S. Berven, A. Sickmann, and L. Martens, ―SearchGUI: An open-

source graphical user interface for simultaneous OMSSA and X!Tandem searches,‖

PROTEOMICS, vol. 11, no. 5, pp. 996–999, Mar. 2011.

[11] M. Vaudel, J. M. Burkhart, R. P. Zahedi, E. Oveland, F. S. Berven, A. Sickmann, L. Martens,

and H. Barsnes, ―PeptideShaker enables reanalysis of MS-derived proteomics data sets,‖ Nat.

Biotechnol., vol. 33, no. 1, pp. 22–24, Jan. 2015.

[12] H. Barsnes, M. Vaudel, N. Colaert, K. Helsens, A. Sickmann, F. S. Berven, and L. Martens,

―compomics-utilities: an open-source Java library for computational proteomics,‖ BMC

Bioinformatics, vol. 12, no. 1, p. 70, Mar. 2011.

[13] F. Gluck, C. Hoogland, P. Antinori, X. Robin, F. Nikitin, A. Zufferey, C. Pasquarello, V.

Fétaud, L. Dayon, M. Müller, F. Lisacek, L. Geiser, D. Hochstrasser, J.-C. Sanchez, and A.

Scherl, ―EasyProt — An easy-to-use graphical platform for proteomics data analysis,‖ J.

Proteomics, vol. 79, pp. 146–160, Feb. 2013.

[14] E. Ahrn , F. Nikitin, F. Lisacek, and M. Müller, ―QuickMod: A Tool for Open Modification

Spectrum Library Searches,‖ J. Proteome Res., vol. 10, no. 7, pp. 2913–2921, Jul. 2011.

[15] H. Pak, F. Nikitin, F. Gluck, F. Lisacek, A. Scherl, and M. Muller, ―Clustering and Filtering

Tandem Mass Spectra Acquired in Data-Independent Mode,‖ J. Am. Soc. Mass Spectrom., vol.

24, no. 12, pp. 1862–1871, Dec. 2013.

[16] Y. Perez-Riverol, J. Uszkoreit, A. Sanchez, T. Ternent, N. del Toro, H. Hermjakob, J. A.

Vizcaíno, and R. Wang, ―ms-data-core-api: An open-source, metadata-oriented library for

computational proteomics,‖ Bioinformatics, p. btv250, Apr. 2015.

[17] E. K. Nelson, B. Piehler, J. Eckels, A. Rauch, M. Bellew, P. Hussey, S. Ramsay, C. Nathe, K.

Lum, K. Krouse, D. Stearns, B. Connolly, T. Skillman, and M. Igra, ―LabKey Server: An open

source platform for scientific data integration, analysis and collaboration,‖ BMC

Bioinformatics, vol. 12, no. 1, p. 71, Mar. 2011.

[18] A. Bauch, I. Adamczyk, P. Buczek, F.-J. Elmer, K. Enimanev, P. Glyzewski, M. Kohler, T.

Pylak, A. Quandt, C. Ramakrishnan, C. Beisel, L. Malmström, R. Aebersold, and B. Rinn,

―openBIS: a flexible framework for managing and analyzing complex data in biology

research,‖ BMC Bioinformatics, vol. 12, no. 1, p. 468, Dec. 2011.

[19] J. Häkkinen, G. Vincic, O. Månsson, K. Wårell, and F. Levander, ―The Proteios Software

Environment: An Extensible Multiuser Platform for Management and Analysis of Proteomics

Data,‖ J. Proteome Res., vol. 8, no. 6, pp. 3037–3043, Jun. 2009.

[20] T. Lütteke and M. Frank, Eds., ―Annotation of Glycomics MS and MS/MS Spectra Using the

GlycoWorkbench Software Tool - Springer,‖ Springer New York, 2015.

[21] B. Domon and C. E. Costello, ―A systematic nomenclature for carbohydrate fragmentations in

FAB-MS/MS spectra of glycoconjugates,‖ Glycoconj. J., vol. 5, no. 4, pp. 397–409, Dec.

1988.

[22] M. P. Campbell, R. Ranzinger, T. Lütteke, J. Mariethoz, C. A. Hayes, J. Zhang, Y. Akune, K.

F. Aoki-Kinoshita, D. Damerell, G. Carta, W. S. York, S. M. Haslam, H. Narimatsu, P. M.

Rudd, N. G. Karlsson, N. H. Packer, and F. Lisacek, ―Toolboxes for a standardised and

systematic study of glycans,‖ BMC Bioinformatics, vol. 15 Suppl 1, p. S9, 2014.

[23] J. Dean and S. Ghemawat, ―MapReduce: Simplified Data Processing on Large Clusters,‖

Commun ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[24] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, ―Spark: cluster

computing with working sets.,‖ Proc. 2nd USENIX Conf. Hot Top. Cloud Comput., 2010.

[25] R. C. Taylor, ―An overview of the Hadoop/MapReduce/HBase framework and its current

applications in bioinformatics,‖ BMC Bioinformatics, vol. 11, no. Suppl 12, p. S1, Dec. 2010.

[26] B. Pratt, J. J. Howbert, N. I. Tasman, and E. J. Nilsson, ―MR-Tandem: parallel X!Tandem

using Hadoop MapReduce on Amazon Web Services,‖ Bioinformatics, vol. 28, no. 1, pp. 136–

137, Jan. 2012.

[27] A. Kalyanaraman, W. R. Cannon, B. Latt, and D. J. Baxter, ―MapReduce Implementation of a

Hybrid Spectral Library-Database Search Method for Large-scale Peptide Identification,‖

Bioinformatics, 2011.

[28] C.-L. Hung and G.-J. Hua, ―Cloud Computing for Protein-Ligand Binding Site Comparison,‖

BioMed Res. Int., vol. 2013, 2013.

[29] M. S. Wiewiórka, A. Messina, A. Pacholewska, S. Maffioletti, P. Gawrysiak, and M. J.

Okoniewski, ―SparkSeq: fast, scalable and cloud-ready tool for the interactive genomic data

analysis with nucleotide precision,‖ Bioinformatics, vol. 30, no. 18, pp. 2652–2653, Sep. 2014.

[30] J. Freeman, N. Vladimirov, T. Kawashima, Y. Mu, N. J. Sofroniew, D. V. Bennett, J. Rosen,

C.-T. Yang, L. L. Looger, and M. B. Ahrens, ―Mapping brain activity at scale with cluster

computing,‖ Nat. Methods, vol. 11, no. 9, pp. 941–950, Sep. 2014.

[31] J. Bloch, ―How to design a good API and why it matters.,‖ OOPSLA 06, 2006.

[32] J. T. Dudley and A. J. Butte, ―A Quick Guide for Developing Effective Bioinformatics

Programming Skills,‖ PLoS Comput Biol, vol. 5, no. 12, p. e1000589, Dec. 2009.

[33] G. K. Sandve, A. Nekrutenko, J. Taylor, and E. Hovig, ―Ten Simple Rules for Reproducible

Computational Research,‖ PLoS Comput Biol, vol. 9, no. 10, p. e1003285, Oct. 2013.

[34] G. Wilson, D. A. Aruliah, C. T. Brown, N. P. Chue Hong, M. Davis, R. T. Guy, S. H. D.

Haddock, K. D. Huff, I. M. Mitchell, M. D. Plumbley, B. Waugh, E. P. White, and P. Wilson,

―Best Practices for Scientific Computing,‖ PLoS Biol, vol. 12, no. 1, p. e1001745, Jan. 2014.

[35] F. da V. Leprevost, V. C. Barbosa, E. L. Francisco, Y. Perez-Riverol, and P. C. Carvalho, ―On

best practices in the development of bioinformatics software,‖ Bioinforma. Comput. Biol., vol.

5, p. 199, 2014.

[36] K. Beck, Test-Driven Development: by Example. Addison Wesley, 2003.

[37] P. M. Duvall, S. Matyas, and A. Glover, Continuous integration: improving software quality

and reducing risk. Addison-Wesley Professional, 2007.

[38] R. G. Côt , F. Reisinger, and L. Martens, ―jmzML, an open-source Java API for mzML, the

PSI standard for MS data,‖ PROTEOMICS, vol. 10, no. 7, pp. 1332–1335, Apr. 2010.

[39] D. M. Creasy and J. S. Cottrell, ―Unimod: Protein modifications for mass spectrometry,‖

PROTEOMICS, vol. 4, no. 6, pp. 1534–1536, Jun. 2004.

[40] S. Herget, R. Ranzinger, K. Maass, and C.-W. v. d. Lieth, ―GlycoCT—a unifying sequence

format for carbohydrates,‖ Carbohydr. Res., vol. 343, no. 12, pp. 2162–2171, Aug. 2008.

Figure legends

Figure 1

A) This cycle illustrates the overall development process of MzJava based on unit tests (JUnit) and

subsequent checks to produce robust code. This figure is an adaptation of an image from the blog

http://technicalknowledgeabstracts.blogspot.ch/2014/02/tdd-test-driven-development-in-

practice.html B) This cycle provides details of tasks undertaken in the cycle described in A).

Figure 2

This chart represents the 3 modules composing MzJava. The core module contains the code for MS

data handling and processing. The proteomics and glycomics modules contain the code specific for

peptides/proteins and glycans, respectively. io: input-output, mol: molecules, ms: mass

spectrometry, utils: utilities, stats: statistics

Figure 3

MzJava code example for a MS/MS protein database search.

Figure 4

MzJava code example for a spectrum library search using the Spark framework.

Class Description

Filters

BinnedSpectrumFilter Bins a spectrum. Peaks will still be stored as a PeakList, but the

mz values will be regularly spaced on the centres of the bins

CentroidFilter Selects all peaks that are local maxima and replaces their

mass/intensity values by the centroid values calculated within a

neighbourhood

FragmentAnnotationFilter Select peaks with annotations that fulfil a certain condition

LibraryMergePeakFilter Cluster peaks with similar m/z values

MzRangeFilter Select or exclude peaks in certain m/z ranges.

NPeaksFilter Selects the N most intense peaks

NPeaksPerBinFilter Retains the top N peaks for every fixed m/z bin

NPeaksPerSlidingWindowFilter Retains the top N peaks in a sliding m/z window

ThresholdFilter Removes any peaks that have an intensity that is smaller than a

threshold

Transformers

AffineTransformer Performs affine transformation on the intensities

ArcsinhTransformer Performs first an affine transformation of peak intensities

followed by a arcsinh transformation. This transformation was

shown to stabilize the intensity variance.

ContrastEnhancingTransformer For each peak, the average of all intensities within an m/z

window centred at the peak is subtracted. This can be used for

an efficient calculation of the Sequest XCorr

InverseArcsinhTransformer Performs the inverse of the ArcsinhTransformer

Log10Transformer Takes log10 values of all (intensities+1)

LogTransformer Takes log values of all (intensities+1)

MzAffineTransformer Performs affine transformation on the m/z values

SqrtTransformer Square root transforms all intensity values

Normalizers

IonCurrentNormalizer Sum of all peak intensities is set to 1

UnitVectorNormalizer Euclidian norm of peak intensities is set to 1

NthPeakNormalizer Peak intensities are divided by the intensity of the N-th highest

peak

RankNormalizer Replaces peak intensities by 1- r/N, where N is the number of

peaks and r the rank of the peak intensity (r = 0:highest, …

r = N-1:lowest)

HighestPeakPerBinNormalizer Normalizes peak intensities by dividing the m/z range into bins

and scaling the peaks in each bin such that the most intense

peaks in each bin have the same value

Table 1

Table 1

http://ees.elsevier.com/jprot/download.aspx?id=303007&guid=0e0361df-035f-4146-8d14-7b3a363d54ce&scheme=1

Table 2 PSM Readers

 MaxQuantPsmReader MODaPsmReader MzIdentMlReader PepXmlReader ProteinPilotPsmReader

File Type MaxQuant csv MODa PSI mzIdentML ISB pepXML ProteinPilot csv

Spectrum Name     

Scan numbers     

Retention times     

Precursor neutral mass     

Precursor intensity     

Assumed charge     

Index     

Spectrum source file     

Rank     

Peptide Sequence     

Number matched ions     

Total number of ions     

Mass difference     

Missed cleavages     

Rejected     

Modifications     

Neutral peptide mass     

Protein     

Table 2

http://ees.elsevier.com/jprot/download.aspx?id=303008&guid=2c4ac501-b87a-48e7-99fa-4efcce8bac1f&scheme=1

 mzjava biojava
ms-data-
core-api

jmzml compomics

 1.1.0
4.0.0-

SNAPSHOT
0.11.27-

SNAPSHOT
1.7.2-

SNAPSHOT
3.49.7

Lines of code 26,793 100,734 14,243 6,382 89,866

Classes 529 1,024 126 144 523

Public documented API
(%)

61.0% 48.5% 55.6% 70.6% 79.3%

Duplicated lines (%) 3.1% 5.3% 4.4% 3.8% 7.3%

Complexity / class 12.5 22.2 32.3 8.7 39.4

Issues / class 1 12 5 2 21

Test Coverage 85.0% 36.2% 34.3% 43.4% 11.6%

Package tangle index 0.0% 17.7% 6.4% 4.5% 23.7%

Table 3

Table 3

http://ees.elsevier.com/jprot/download.aspx?id=303009&guid=ff7a06b3-327f-406c-90fe-386cf6e9ed81&scheme=1

Figure 1A

http://ees.elsevier.com/jprot/download.aspx?id=303010&guid=3326d0be-f099-4b18-b583-e7377f825a55&scheme=1

Figure 1B

http://ees.elsevier.com/jprot/download.aspx?id=303011&guid=061db83b-aa70-4ff2-8860-84b980522a65&scheme=1

Figure 2

http://ees.elsevier.com/jprot/download.aspx?id=303012&guid=274a7286-ddad-436c-ac4e-5db240f17ec8&scheme=1

Figure 3

http://ees.elsevier.com/jprot/download.aspx?id=303013&guid=55fe514a-7d4f-4680-ae88-7986d8ae340d&scheme=1

Figure 4

http://ees.elsevier.com/jprot/download.aspx?id=303014&guid=adadcc8e-9f1d-49ca-92b3-e3bc6d6a8ceb&scheme=1

Graphical Abstract (for review)

http://ees.elsevier.com/jprot/download.aspx?id=303002&guid=228c8033-5c89-45bf-b6cc-821d0e6e0368&scheme=1

