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Abstract 

Mass Spectrometry (MS) is a widely used and evolving technique for the high-throughput 

identification of molecules in biological samples. The need for sharing and reuse of code among 

bioinformaticians working with MS data prompted the design and implementation of MzJava, an 

open-source Java application programming interface (API) for MS related data processing. MzJava 

provides data structures and algorithms for representing and processing mass spectra and their 

associated biological molecules, such as metabolites, glycans and peptides. MzJava includes 

functionality to perform mass calculation, peak processing (e.g. centroiding, filtering, 

transforming), spectrum alignment and clustering, protein digestion, fragmentation of peptides and 

glycans as well as scoring functions for spectrum-spectrum and peptide/glycan-spectrum matches. 

For data import and export MzJava implements readers and writers for commonly used data 

formats. For many classes support for the Hadoop MapReduce (hadoop.apache.org) and Apache 

Spark (spark.apache.org) frameworks for cluster computing was implemented. The library has been 

developed applying best practises of software engineering. To ensure that MzJava contains code 

that is correct and easy to use the library’s API was carefully designed and thoroughly tested. 

MzJava is an open-source project distributed under the AGPL v3.0 license. MzJava requires Java 

1.7 or higher. Binaries, source code and documentation can be downloaded from 

http://mzjava.expasy.org and https://bitbucket.org/sib-pig/mzjava. 

  



Introduction 

Mass spectrometry (MS) has become a central analytical technique to characterise proteins, 

lipids, carbohydrates and metabolites in complex samples [1] [2]. The diversity of biological 

questions possibly addressed with MS is reflected in a wide range of experimental workflows. 

Analysing data generated through these workflows is automated though most of the time, the 

variability of applications requires software customisation and/or extension. This situation is well 

described in a recent review [3] and justifies the development of libraries of MS related software to 

facilitate code reuse. Software libraries are meant to benefit the developers’ own group and 

collaborators as well as the wider computational proteomics and glycomics communities.  

Many early open source contributions dedicated to the automated analysis of proteomic data 

were coded in C++ or Perl. The trans-proteomic pipeline (TPP) [4] is an assembly of C++ programs 

and Perl scripts to process and statistically validate MS/MS search results from different search 

engines and integrate these with quantitative data. Later, TOPP was introduced as a management 

system for generic proteomics workflows [5], based on OpenMS [6]. OpenMS contains a well-

designed Application Programming Interface (API), which makes it useful not only as a toolbox but 

also as a code base for software developers. ProteoWizard [7] is another C++ open source project 

for the conversion of proteomic MS/MS file formats and processing of MS/MS spectra. More 

recently, the Java programming language gained popularity in many fields and especially in 

bioinformatics due to its portability across different computer platforms and the availability of 

powerful and comprehensive class libraries that facilitate and accelerate software development. For 

example, the Chemistry Development Kit (CDK, http://sourceforge.net/projects/cdk/) is an open 

source library for cheminformatics and computational chemistry [8]. Biojava (http://biojava.org/, 

[9]) addresses the bioinformatics community and provides classes and tools for protein structure 

comparison, alignments of DNA and protein sequences, analysis of amino acid properties, protein 

modifications and prediction of disordered regions in proteins as well as parsers for common file 

formats.  



A broad range of Java based open source solutions was developed for the proteomics 

community as comprehensively reviewed in [3]. Our focus being mainly on MS/MS data 

processing, the following refers to such dedicated toolboxes. Compomics is a collection of tools 

mainly for MS/MS data analysis [10][11]. It also contains the Compomics-utilities class library 

[12], which provides the code base tools. The Java Proteomics Library (JPL, 

javaprotlib.sourceforge.net) provides an API to process MS/MS spectra and their annotation. It 

served as the code base for several software projects dealing with MS/MS searches [13], spectral 

libraries and open modification searches [14], and data-independent quantification [15]. The PRIDE 

tool suite (http://pride-toolsuite.googlecode.com) contains a set of pure Java libraries, tools and 

packages designed to process and visualize versatile MS proteomics data [3]. It also contains a 

well-designed Java API (ms-data-core-api) facilitating the implementation of customized solutions 

[16]. In recent years, several open source Java-based laboratory information systems (LIMS) 

storing and processing proteomic or glycomic data were described [17],[18],[19]. 

Glycomics MS data are still seldom produced in high throughput set-ups but this field 

evolves quickly and the need for automation is growing. A reference software for glycan MS and 

MS/MS annotation is GlycoWorkbench [20]. This tool is modular and mostly known for its 

convenient user interface to support glycan structural assignment. Theoretical glycan spectra can be 

calculated with its fragmentation tool based on the mechanisms and nomenclature described by 

Domon and Costello [21]. Importantly it relies on recognised standard description of 

monosaccharides and full structures [22]. 

The scalability of existing solutions is currently one of the greatest challenges. The ever-

growing size of MS datasets and the need to process spectra by the tens of millions imposes the use 

of distributed data processing frameworks such as Hadoop MapReduce [23] (hadoop.apache.org) 

and Apache Spark [24] (spark.apache.org). Hadoop is already used in bioinformatics, primarily for 

next-generation sequencing analysis [25] but also for proteomics [26][27][28], while Spark was 

more recently introduced [29][30].  Hadoop MapReduce is an implementation of the MapReduce 



programming model described by Dean and Ghemawat [23]. Spark extends on the functionality and 

performance of Hadoop by allowing in-memory data storage and providing additional functions 

[24].  

We introduce MzJava a Java class library designed to ease the development of custom data 

analysis software by providing building blocks that are common to most MS data processing 

software. MzJava addresses the scaling issues by adding classes to interface with Hadoop and 

Spark. Furthermore, new code was included for processing glycomics data. In fact, MzJava 

originates from merging JPL and another unpublished Java MS codebase. During this merge the 

code was comprehensively refactored and refined in an effort to produce a consistent and well-

designed API. Best practices in software engineering such as test driven development and 

continuous integration were applied during the implementation. Code quality metrics of MzJava are 

continuously tracked to maintain high quality standards.  These metrics are used to benchmark 

MzJava in relation to other packages. 

 

Materials and methods 

Development aims 

MzJava is mostly centred on MS/MS identification and annotation. This bias towards an 

identification-related API reflects our research focus. The use of the MzJava API is intended for 

writing software that is capable of processing large data sets. Consequently the API is designed to 

be extensible, flexible and efficient. During development we found that flexibility often comes at 

the cost of performance. Where we identified performance hot-spots we implemented solutions that 

allow either flexible or high performance code to be written, while in non performance critical code 

we kept flexibility as a major criterion. Additional design aims were to make the API not only easy 

to use, but also hard to misuse as well as prompt to fail whenever there are errors [31].  

The development of MzJava entailed refactoring a substantial part of the JPL aiming at 

producing high quality and efficient code. The outcome is meant to be structured as a coherent API 



as opposed to bundling a collection of code pieces. MzJava follows Java naming and behaviour 

conventions and provides builders with fluent interfaces for constructing complex objects 

(http://en.wikipedia.org/wiki/Fluent_interface). To help prevent misuse and to make MzJava easy to 

use in multithreaded environments, mutable objects are avoided as much as possible. Objects that 

need to be mutable were designed to always be in a valid state.   

 

Development methodology 

The methodology that was employed to develop MzJava follows best practice for scientific 

computing [32][33][34][35] and is influenced by agile software development, especially test driven 

development (TDD) [36] and continuous integration (CI) [37]. In brief, TDD describes a short 

development cycle for adding improvements or new functionality. First the developer writes an, 

initially failing, automated test that defines the improvement or new functionality. Code is then 

written to make the test pass. This is followed by refactoring the new code to bring it up to 

acceptable quality. Figure 1A summarizes the TDD cycle. Automated tests are written using JUnit 

(http://junit.org/) and Mockito (http://mockito.org/). CI is a software engineering practice in which 

changes to the code are automatically tested whenever they are added to the codebase. The goal of 

CI is to provide rapid feedback so that changes that introduce issues or break the build can be 

corrected rapidly. Jenkins (http://jenkins-ci.org/) is used to automate the CI. 

Code quality scores are tracked using SonarQube (http://www.sonarqube.org/). Quality 

profiles were slightly altered from the Sonar way with Findbugs profiles. SonarQube is also used to 

evaluate the quality of comparable libraries such as BioJava, ms-data-core-api, jmzml (a library to 

handle mzML files [38]), and compomics-utilities. MzJava is a Maven project developed using 

IntelliJ Idea (https://www.jetbrains.com/idea/). Figure 1B provides a more detailed view on the 

development cycle and the tools used. 

 

Architecture 



The MzJava architecture is modular and consists of three main modules:  

1. The core module contains functionality that is common to all MS data 

2. The proteomics module contains functionality specific to peptides and proteins 

3. The glycomics module contains functionality specific to glycans. 

Figure 2 illustrates the organisation of the modules and highlights the central position of the core 

module that overlaps with the proteomics and glycomics modules. 

 

Results  

The MzJava core consists of three main parts: mol, ms and io (Figure 2). The mol-core 

comprises classes to work with chemical compositions and their masses. The Atom class for 

example represents the mass and isotopic abundances of a chemical element. The Composition class 

deals with assemblies of atoms defined by their stoichiometric chemical formulae. NumericMass is 

used to represent objects that have a mass but no known composition. The main classes in ms-core 

deal with peak lists (PeakList, list of m/z-intensity pairs) and their associated meta data (Spectrum). 

There are a number of Spectrum subclasses to capture the meta data associated with particular types 

of spectra. For example, MsnSpectrum contains meta data such as scan number and retention time 

and ConsensusSpectrum captures meta data that is associated with a consensus spectrum such as the 

ids of the spectra from which the consensus was built, and the structure of the peptide/glycan that 

the consensus spectrum represents. The peak list associated with each spectrum is stored in 

subclasses of PeakList. There are 5 different flavors of PeakList. This allows the m/z values to be 

stored as either 64 or 32 bit numbers and the intensity as 64 bit, 32 bit or as a constant. To provide a 

common interface for all the subclasses, the Spectrum class both wraps and implements PeakList. 

The only time that the precision needs to be taken into account is when the spectrum is created; 

thereafter it is just an instance of Spectrum. In addition to the m/z and intensity values of peaks, 

PeakList can also store one or more annotations for each peak. MzJava has three built-in peak 

annotations, PepFragAnnotation, GlycanFragAnnotation and LibPeakAnnotation. 



PepFragAnnotation and GlycanFragAnnotation are used to annotate peaks with peptide or glycan 

fragments and contain information such as the charge and ion type of the fragment. 

LibPeakAnnotation is used to annotate peaks in LibrarySpectrum with consensus statistics. We 

make use of generics to specify the type of annotation that a PeakList contains. 

The ms-core package also contains classes to match spectra and score these matches. The first step 

in most spectra matching workflows is to remove noise or to extract features from mass spectra by 

applying one or more filters or transformers to the peaks in the peak list. MzJava provides filters to 

bin and centroid raw spectra (BinnedSpectrumFilter, CentroidFilter) and to select peaks based on 

their m/z range or peak annotation (MzRangeFilter, FragmentAnnotationFilter).  Further it includes 

processors that simplify spectra and retain only the n most intense peaks of the entire spectrum or 

remove peaks that fall below a given threshold (ThresholdFilter). In order to adapt to varying noise 

levels other filters only keep a peak if it is among the n most intense peaks in a local bin or sliding 

window (NPeaksFilter, NPeaksPerBinFilter, NPeaksPerSlidingWindowFilter). With the exception 

of the m/z affine transformer all transformers operate on peak intensities and replace the original 

values by their log-, square root-, affine- and arcsinh-transformed values (LogTransformer, 

Log10Transformer, AffineTransformer, ArcsinhTransformer). MzJava also has classes to normalize 

the total or maximal ion current in a spectrum (IonCurrentNormalizer, UnitVectorNormalizer, 

NthPeakNormalizer, RankNormalizer, HighestPeakPerBinNormalizer).  

Peak processing is a performance hotspot, since it may be applied to millions of spectra, but 

also needs to be flexible so that it is possible to experiment with different filters and transformers. 

To achieve both of these requirements, peaks can be processed by applying a PeakProcessorChain 

to a PeakList. A PeakProcesorChain is a linked list of objects that implement the PeakProcessor 

interface. A PeakList is processed by pushing the m/z, intensity and annotations of each peak 

through the chain of PeakProcessor. This way, stateless peak processors such as Log10Transformer 

do not have to copy the m/z or intensity arrays. Peak processors that have state, i.e. where the result 

for each peak depends on the other peaks present in the peak list, can extend 



DelayedPeakProcessor, which reuses m/z and intensity arrays to improve performance. Custom 

peak processors can easily be created by extending AbstractPeakProcessor or 

DelayedPeakProcessor. For a comprehensive list of peak processors see Table 1. 

MzJava has a number of spectrum-spectrum scoring functions such as the normalized dot 

product (NdpSimFunc), Pearson’s correlation coefficient (PearsonsSimFunc) and shared peak count 

(SharedPeakSimFunc). For a comprehensive list see Supplementary Table S1. Custom scoring 

functions can easily be created by implementing AbstractSimFunc. AbstractSimFunc takes care of 

peak alignment and supports plugging in peak filters and transformers. 

The io-core package provides readers and writers for commonly used spectra and peptide 

spectrum matches (PSM) file formats. Spectra are modelled by the MsnSpectrum class, which 

contains the most important meta data that the formats support. The PSM readers split the 

information into two parts, a part to identify the spectrum (SpectrumIdentifier) and another that 

contains the peptide match information (PeptideMatch). This division reflects the diversity in the 

spectrum descriptors in the different PSM file formats. A list of PSM readers and their capabilities 

can be found in Table 2. The readers have been designed to be easily customized through object 

composition and inheritance. Object composition is used where there is a lot of variability in the 

format, for example the mgf title or sptxt comment tag. Inheritance is used where data has been 

added or removed from the file format. For example the mgf parser can be customized to read new 

tags or additional information from the peaks by overriding the parseUnknownTag or 

handlePeakLine method. Setting a PeakProcessorChain on spectrum readers allows the peaks to be 

transformed and filtered while reading. The list of spectrum readers and their attributes can be 

found in Supplementary Table S2 and S3. 

Glycomics and proteomics 

To support proteomics and glycomics applications MzJava has data structures to store, 

manipulate and generate theoretical spectra for proteins, peptides and glycans. Peptides are 



represented by the Peptide class which holds an amino acid sequence and one or more post 

translational modifications for each residue or terminus. Modifications are defined in the code 

either by their chemical composition or mass. They can also be retrieved from the 

UnimodModificationResolver which wraps an xml dump of the UniMod database [39]. Peptides can 

be generated by digesting a Protein instance using ProteinDigester and associated classes. 

ProteinDigester can be configured to output peptides that have fixed and variable modifications. 

Support for the most important proteases is built-in and custom proteases can easily be added. 

Theoretical peptide spectra can be constructed by using the PeptideFragmenter class. 

PeptideFragmenter can be configured to produce spectra that contain backbone and neutral loss 

fragment peaks. To generate peaks for custom fragments an implementation of the 

PeptidePeakGenerator interface can be added to the PeptideFragmenter. 

In MzJava polysaccharides are represented by the Glycan class, which holds a directed 

acyclic graph of Monosaccharide and Substituent nodes that are connected by GlycosidicLinkage 

edges. Glycan objects can be created by reading glycan structures in the GlycoCT format [40] using 

the GlycoCTReader class. The GlycanFragmenter class can be used to generate theoretical glycan 

spectra [21]. By default the GlycanFragmenter returns glycosidic, cross ring and neutral loss 

fragments, however custom fragments can be generated by implementing the GlycanPeakGenerator 

interface. The user can specify the list of Monosaccharides and Substituents in a configuration file. 

Glycan classes rely on recognised standard description of monosaccharides and full structures [22]. 

Hadoop and Spark support 

A brief description of the Hadoop [23] and Spark [24] frameworks can be found in the 

Supplementary Material Section S1. The efficiency of the serialization can have a large impact on 

the performance of a distributed application. MzJava provides an efficient serialization mechanism 

for MzJava data classes that is based on Apache Avro (https://avro.apache.org/). Adapter classes are 

provided to integrate the MzJava serialization with the mechanisms that are used by Hadoop and 

Spark. This allows MzJava to be used within these frameworks directly without requiring any 



additional serialization code. Hadoop provides a pluggable API allowing different serialization 

frameworks to be used. The MzJavaSerialization class implements this API to allow MzJava data 

objects to be automatically serialized by Hadoop.  

Spark uses native Java or Kryo (https://github.com/EsotericSoftware/kryo) serialization. 

MzJava interoperates with Spark by providing a bridge between its classes and Kryo. In order to 

automatically serialize MzJava data objects Spark needs to be configured to use Kryo serialization 

and to use MzJavaKryoRegistrator for the registration of serializable MzJava classes. The MzJava 

serialization can be extended to handle new classes by implementing the AvroReader and 

AvroWriter interfaces and tagging them with the ServiceProvider interface. MzJavaSerialization 

and MzJavaKryoRegistrator then automatically use the reader and writer to serialize the new class.  

Code quality 

At the time of writing the MzJava library contains 26,793 lines of code in 529 classes. Since 

comparable libraries such as BioJava or Compomics have different purposes it appears rather 

difficult to benchmark performance. However since SonarQube calculates code quality scores, 

which are independent of the specific purpose of a library, these scores can be used to compare 

different projects. Thus we run SonarQube on some Java libraries and this process is regularly 

repeated to provide the time evolution of the scores. The results are displayed on a webpage 

(https://glycoproteome.isb-sib.ch/sonar). A subset of the code quality scores for some analysed Java 

libraries (BioJava, ms-data-core-api, jmzml, and Compomics) is displayed in Table 3. The scores 

are: the number of lines of code, number of classes, code complexity and issues per class, 

documentation content, test coverage and level of package tangle. Code complexity is a score 

calculated by SonarQube, which evaluates how large the methods are and how many nested code 

blocks they contain. Low complexity indicates clear code, which is less prone to error. Code issues 

are potential weak points in the code pointed out by SonarQube. MzJava compares well to the other 

libraries, and it has the highest test coverage and the lowest package tangle index. 



Discussions  

Code example MS/MS protein database search  

 Figure 3 shows the code required to perform a database search using the normalized dot 

product as a scoring function. The components that are required for a database search are: a 

database of theoretical spectra, a reader to read the experimental query spectra, a similarity function 

to calculate the score and a writer to write the results. First a PeptideFragmenter is created that 

generates b and y ion backbone peaks that have an intensity of 50 (line 3) and water loss peak for b 

and y ion fragments that contain a S, T, D or E amino acid (line 4 to 6). The generated water loss 

peaks have an intensity of 10. The fragmenter is then used while building a PeptideSpectrumDB 

that creates tryptic peptides with 6 to 60 amino acids from a fasta file containing protein sequences 

(line 9 to 13). Spectra are read from a mgf file using a MgfReader that pre-processes the raw spectra 

on the fly (line 15 to 20). The pre-processing is specified by providing a PeakProcessorChain. In 

this example the processor chain will process the raw spectra by centroiding (line 17), removing 

noise by keeping the most intense 2 peaks in a 10 m/z sliding window (line 18) and then square root 

transforming the intensities (line 19). The normalized dot product similarity function is initialized to 

require at least 5 peaks and use a tolerance of 0.02 Da when aligning peaks (line 22) and a result 

writer is built (line 23). The query spectra are then read one at a time (while loop line 24) and the 

similarity score is calculated (line 30) for each database spectrum whose precursor m/z is within 

tolerance of the query spectrum precursor mass (for loop line 28). This example could be extended 

to calculate a PSM score that is more sophisticated by providing a similarity function that is more 

appropriate.  

 

Code example Spark 

The next code example illustrates how to use MzJava in the Apache Spark framework in 

order to search query spectra against a spectrum library (Figure 4). First we need to configure Spark 

to use Kryo and MzJava serialization to serialize MzJava classes automatically (lines 2 and 3). Then 



the library spectra are read from a.sptxt file and these spectra are made available to all nodes on the 

computer cluster (lines 6-8). Line 10 defines a PairFunction instance to map a query spectrum to a 

list of score-peptide pairs; one pair for each library spectrum that is within tolerance of the query 

spectrum precursor mass and has a high similarity score. In order to calculate the score of a match 

between query and library spectrum, a normalized dot product similarity function is created with a 

fragment tolerance of 0.02Da (line 20) and an instance of DefaultSpectrumLibrary (line 21), which 

retrieves all broadcasted library spectra within 20 ppm of the query spectrum precursor mass (line 

35). For each retrieved library spectrum, the similarity to the query spectrum is calculated and if 

this similarity is larger than 0.6, the library spectrum will be added to the list of results (lines 30-

32). On line 41 Spark reads the query spectra from a Hadoop sequence file into a Spark RDD, and 

partitions these spectra across the nodes of the cluster. Finally, Spark sends the library search 

function to all nodes of the cluster and applies it to the library spectra on these nodes. Line 43 saves 

the results to a Spark object file. Supplementary Figure S1 shows an example of how to use MzJava 

within the Hadoop map-reduce framework. 

Code example glycomics 

 Supplementary Figure S2A describes how to build a glycan molecule using the MzJava 

Glycan.Builder class. In this example, the N-glycan core, i.e. Man(a1-3)[Man(a1-6)] Man(b1-

4)GlcNAc(b1-4)GlcNAc(b1-, is built. First, monosaccharides and substitutes are read from a 

configuration file. The glucose root node is added and a NAcetyl is attached to the second carbon of 

glucose. Then one more GlcNAc and three mannoses are added to obtain the N-glycan core 

structure. In Supplementary Figure S2B we describe a code example for the fragmentation of 

GalNAc(b1-?)Gal. The glycan structure is read from a GlycoCT encoded string using the 

GlycoCTReader class. Then the ion types and fragment types are set. A GlycanFragmenter object is 

created with the maximal numbers of glycosidic and crossring fragments set to 1. Finally a glycan 

fragment spectrum of singly charged fragments is constructed.   

 



Code quality 

The SonarQube results show that the MzJava code quality compares favourably to that of 

other widely used open source projects. We have found that using SonarQube is an effective 

method for discovering problems in the MzJava code before they lead to bugs in research code. We 

also use SonarQube to track test coverage, technical debt and documentation coverage. The good 

test coverage and low technical debt of MzJava makes the code more robust and maintainable. High 

test coverage means that errors introduced during development are more likely to make some test 

fail and can therefore be detected. The documentation in MzJava is fairly available and should keep 

on growing.  

 

Conclusions 

MzJava provides a well-engineered and well-tested API with building blocks commonly 

required to write software processing mass spectrometry data in research project. This speeds up the 

development of new mass spectrometry software, allows bioinformaticians to focus on writing new 

algorithms and innovative solutions and helps avoiding boilerplate code. In terms of code quality it 

compares favourably to other open source Java projects. Besides classes to deal with proteomics 

data, MzJava also provides new functionality to fragment glycans and annotate glycan spectra. 

Interfaces to Hadoop MapReduce and Apache Spark facilitate large scale computing and 

parallelization of the code often required in systems biology applications. 

 

 

API: Application Programming Interface 

MS: Mass Spectrometry 

LC: Liquid Chromatography 

 



Availability 

MzJava is an open-source project distributed under the AGPL v3.0 license. MzJava requires Java 

1.7 or higher. Binaries, source code and documentation can be downloaded from 

http://mzjava.expasy.org and https://bitbucket.org/sib-pig/mzjava. 
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Figure legends 

Figure 1 

A) This cycle illustrates the overall development process of MzJava based on unit tests (JUnit) and 

subsequent checks to produce robust code. This figure is an adaptation of an image from the blog 

http://technicalknowledgeabstracts.blogspot.ch/2014/02/tdd-test-driven-development-in-

practice.html  B) This cycle provides details of tasks undertaken in the cycle described in A).  

 

Figure 2 

This chart represents the 3 modules composing MzJava. The core module contains the code for MS 

data handling and processing. The proteomics and glycomics modules contain the code specific for 

peptides/proteins and glycans, respectively. io: input-output, mol: molecules, ms: mass 

spectrometry, utils: utilities, stats: statistics 

 

Figure 3  

MzJava code example for a MS/MS protein database search. 

 

Figure 4  

MzJava code example for a spectrum library search using the Spark framework. 

 



Class Description 

Filters 

BinnedSpectrumFilter Bins a spectrum. Peaks will still be stored as a PeakList, but the 

mz values will be regularly spaced on the centres of the bins 

CentroidFilter Selects all peaks that are local maxima and replaces their 

mass/intensity values by the centroid values calculated within a 

neighbourhood 

FragmentAnnotationFilter Select peaks with annotations that fulfil a certain condition 

LibraryMergePeakFilter Cluster peaks with similar m/z values 

MzRangeFilter Select or exclude peaks in certain m/z ranges. 

NPeaksFilter Selects the N most intense peaks 

NPeaksPerBinFilter Retains the top N peaks for every fixed m/z bin 

NPeaksPerSlidingWindowFilter Retains the top N peaks in a sliding m/z window 

ThresholdFilter Removes any peaks that have an intensity that is smaller than a 

threshold 

Transformers 

AffineTransformer Performs affine transformation on the intensities 

ArcsinhTransformer  Performs first an affine transformation of peak intensities 

followed by a arcsinh transformation. This transformation was 

shown to stabilize the intensity variance. 

ContrastEnhancingTransformer For each peak, the average of all intensities within an m/z 

window centred at the peak is subtracted. This can be used for 

an efficient calculation of the Sequest XCorr  

InverseArcsinhTransformer Performs the inverse of the ArcsinhTransformer 

Log10Transformer Takes log10 values of all (intensities+1) 

LogTransformer Takes log values of all (intensities+1) 

MzAffineTransformer Performs affine transformation on the m/z values 

SqrtTransformer Square root transforms all intensity values 

Normalizers 

IonCurrentNormalizer Sum of all peak intensities is set to 1 

UnitVectorNormalizer  Euclidian norm of peak intensities is set to 1 

NthPeakNormalizer Peak intensities are divided by the intensity of the N-th highest 

peak 

RankNormalizer Replaces peak intensities by 1- r/N, where N is the number of 

peaks and r the rank of the peak intensity (r = 0:highest, …  

r = N-1:lowest) 

HighestPeakPerBinNormalizer Normalizes peak intensities by dividing the m/z range into bins 

and scaling the peaks in each bin such that the most intense 

peaks in each bin have the same value 

 

Table 1  

Table 1

http://ees.elsevier.com/jprot/download.aspx?id=303007&guid=0e0361df-035f-4146-8d14-7b3a363d54ce&scheme=1


 

Table 2 PSM Readers 

 MaxQuantPsmReader MODaPsmReader MzIdentMlReader PepXmlReader ProteinPilotPsmReader 

File Type MaxQuant csv MODa PSI mzIdentML ISB  pepXML ProteinPilot csv 

Spectrum Name      

Scan numbers      

Retention times      

Precursor neutral mass      

Precursor intensity      

Assumed charge      

Index      

Spectrum source file      

Rank      

Peptide Sequence      

Number matched ions      

Total number of ions      

Mass difference      

Missed cleavages      

Rejected      

Modifications      

Neutral peptide mass      

Protein      

Table 2
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 mzjava biojava  
ms-data-
core-api 

jmzml compomics 

 1.1.0 
4.0.0-

SNAPSHOT 
0.11.27-

SNAPSHOT 
1.7.2-

SNAPSHOT 
3.49.7  

Lines of code 26,793 100,734 14,243 6,382 89,866 

Classes 529 1,024 126 144 523 

Public documented API 
(%) 

61.0% 48.5% 55.6% 70.6% 79.3% 

Duplicated lines (%) 3.1% 5.3% 4.4% 3.8% 7.3% 

Complexity / class 12.5 22.2 32.3 8.7 39.4 

Issues / class 1 12 5 2 21 

Test Coverage 85.0% 36.2% 34.3% 43.4% 11.6% 

Package tangle index 0.0% 17.7% 6.4% 4.5% 23.7% 

 

Table 3 

Table 3
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Figure 1A
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