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Département de chimie physique Professeur Tomasz A. Weso lowski

Multi-scale Simulations of the UV-Vis
Absorption Spectra of Organic Chromophores

in Condensed Phases

THÈSE
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Abstract

The effect of a condensed-phase environment on the ultraviolet-visible (UV-vis) absorption spec-
tra of chromophores is of fundamental interest in many phenomena, such as color tuning in
photobiology and the solvatochromic shift in chemistry. The experimental measurement of UV-
vis absorption spectra can provide the information on the spectral region of the absorption of
the sample. While computer simulation of the UV-vis absorption spectra can provide the micro-
scopic interpretation of the absorption bands. Moreover, computer simulations can be done for
the cases that are impractical for experimental measurements.

This thesis work aims to develop proper computational strategies to calculate the UV-vis
absorption of organic chromophores in a condensed-phase environment, and to interpret the
experimental results or to tackle problems that are difficult for experimental approaches. Simu-
lation of the UV-vis absorption spectra typically involves modeling of the structure of the target
system and the calculation of its vertical electronic excitation energies and oscillator strengths
of the interesting part of the system. The large size of the condensed phase makes both parts of
the simulation very challenging. In this thesis work, frozen-density embedding theory, one of the
appropriate approaches on the market for tackling large systems, combined with linear-response
time-dependent density-functional theory, is used to calculate the vertical electronic excitation
energies and the oscillator strengths of the chromophores in condensed phases.

This thesis work investigates the effect of condensed-phase environments on the UV-vis ab-
sorption spectra of organic chromophores for several systems, including a functional host-guest
material (fluorenone in zeolite-L channel), a chemical solvation system (coumarin 153 in various
solvents), and fundamental biological systems in the eye (retinal in rhodopsin and in three visual
cone pigments).
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Résumé (Abstract in French)

L’effet de l’environnement en phase condensée sur les spectres d’absorption ultraviolet-visible
(UV-vis) de chromophores sont d’un intérêt fondamental dans de nombreux phénomènes, comme
le réglage de la couleur dans photobiologie et le changement solvatochrome en chimie. La mesure
expérimentale des spectres d’absorption UV-vis peut fournir des informations sur la région spec-
trale de l’absorption de l’échantillon. La simulation par ordinateur de ces spectres peut fournir
une interprétation microscopique des bandes d’absorption. En outre, ce genre de simulations
informatiques peut être utilisée lorsque les mesures expérimentales ne sont pas pratiques.

Ce travail de thèse vise à développer des stratégies de calcul propres à calculer l’absorption
UV-vis des chromophores organiques en phase condensée, dans le but d’interpréter les résultats
expérimentaux ou de s’attaquer aux problèmes qui sont trop difficiles pour une approche
expérimentale, La simulation des spectres d’absorption UV-vis implique typiquement deux par-
ties: la modélisation de la structure du système cible, et le calcul des l’énergies et les forces
oscillatrices d’excitation électroniques du partie système qui nous intéresse. La grande taille de
la phase condensée rend les deux parties de la simulation très difficile. Dans ce travail de thèse,
nous combinons la très prometteuse théorie dite “frozen density embedding” avec la réponse
linéaire de la théorie de la fonctionnelle de la densité dépendante du temps, afin de calculer les
énergies et les forces oscillatrices d’excitation électroniques verticales de chromophores en phase
condensée.

Ce travail de thèse étudie l’effet de l’environnement en phase condensée sur les spectres de
chromophores organiques pour plusieurs systèmes, tels que des matériaux fonctionnels “hôte-
invité” (fluorénone dans un canal zéolite L), des molecules solvatée (coumarine 153 dans divers
solvants), et des systèmes biologiques fondamentaux pour la vision (le rétinal dans l’enzyme
rhodopsine et dans trois pigments de cônes visueles).
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Chapter 1
Introduction

“Everywhere is walking distance if you have the time.”
— Bertrand Russell

1.1 Chromophores in condensed-phase environment

Chromophores are chemical groups with characteristic optical absorptions and their presence is
often responsible for the colors of many substances. The color arises when a molecule absorbs
certain wavelengths of visible light and transmits or reflects others. The absorbed light can result
in a specific electronic transition in which an electron is excited from one molecular orbital to
another. There are three typical types of electronic transitions causing the colors of the molecules
including [1]: (1) d–d transitions in a d-metal complex. In a d-metal complex, the immediate
environment of the metal atom is no longer spherical, the d orbitals are not all degenerate,
and therefore the electrons can absorb energy by making transitions between the d orbitals.
(2) charge-transfer transitions in a d-metal complex, where the transfer of an electron from the
ligands into the d orbitals of the central atom, or vice versa. (3) π → π∗ and n→ π∗ transitions
in a conjugated system. This thesis work focuses on the third type of electronic transitions.

The ability of capturing or detecting light energy of chromophores makes them play an impor-
tant role in some processes in nature. One important example is the photosynthesis that takes
place in the plants. The chromophores (chlorophyll and carotenoids) are responsible for harvest-
ing light energy which is converted into chemical energy stored in carbohydrate molecules that
can be released later to support the organisms’ activities. Another important example is the vi-
sual phototransduction process in the eye of humans and animals. The visual phototransduction
process starts from the light absorption by the retinal chromophore, then the absorbed light is
converted into electrical signals in the rod cells, cone cells, and photosensitive ganglion cells of
the retina of the eyes, which are used by the brain to interprets different colors. These natural
processes have inspired humans to harvest solar energy and transfer it into useful outputs. Chro-
mophores are commonly used as the light harvester in light-to-electricity energy transducers,
such as the dye-sensitized solar cells (DSSCs).

In realistic systems, chromophores are usually in condensed phases (i.e., liquids or solids)
instead of in gas phase. The condensed-phases environment can affect the equilibrium and kinetics
of the molecules as well as distinct electronic states of the molecules. In some cases, the effect
of condensed-phase environments on the chromophores are of fundamental interest. One of the
important cases is color tuning in photobiology, which refers when a photofunctional chromophore
shows a wide variation of photoabsorption or emission energies depending on different protein
environments. This phenomenon can be observed in rhodopsin, human visual cone pigments,
firefly luciferase, and red fluorescent proteins. Retinal is the chromophore in rhodopsin and three
human visual cone pigments (red-, green-, and blue-cone pigments). It absorbs ultraviolet light
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in aqueous solution, while absorbing visible light in vision proteins, which enables the perception
of light and color. Another important case of this effect is solvatochromic shift, which refers to a
strong dependence of absorption and emission spectra of the solvated molecules on the polarity
of the solvent medium. The ability of a molecule to change the color due to a change in solvent
polarity is called solvatochromism. Molecules with significant solvatochromic shift property can
be in principle used in sensors [2] and for the construction of molecular switches in molecular
electronics [3]. In summary, it is very important to understand the interactions between the
condensed-phase environment with the target chromophores as well as the environment induced
changes in the light absorption of the chromophores.

1.2 UV-vis absorption spectroscopy

The color of the molecules can be studied with UV-vis absorption spectroscopy, which refers to the
absorption spectroscopy in the ultraviolet-visible spectral region. UV-vis absorption spectroscopy
can be used to study the relationship between the color and the structure of compounds and it is
routinely used for the quantitative determination of specific chemical species, such as transition
metal ions, highly conjugated organic compounds, and biological macromolecules.

Nowadays, as the development of the computer technology and the increased efficiency of the
electronic structure methods, the simulation of the UV-vis absorption spectra becomes feasible
even for chemical compounds in condensed phase which usually involves systems of large size.
This allows the simulation of the spectra to become a complementary tool to experimental mea-
surements of the spectra when investigating a given phenomena. The measured spectra can serve
as references for the simulation of the spectra, while the simulated spectra can provide additional
information that is difficult to extract from the measured spectra, such as microscopic interpreta-
tion of the absorption bands and the interaction between the chromophore and the environment.
Moreover, to analyze a target problem, some computer simulations can be performed for cases
where the experimental measurements are impractical. For example, the effect of a complex
protein environment on the spectroscopic properties of a chromophore can be decomposed into
components from each individual amino acid by computer simulation.

1.2.1 Measurement of the UV-vis absorption spectra

The intensity of absorption at a given wavelength can be measured by using the incident and
final intensities of a light beam, which is related to the concentration of the absorbing species by
the Beer-Lambert law [1]:

I = I010−ε[J]L, (1.1)

where I0 and I are the incident and transmitted intensities, respectively, L and [J ] is the length
and the concentration of the absorber sample, respectively, and ε is the molar absorption co-
efficient (also referred as extinction coefficient). The dimensionless quantity ε[J ]L is called the
absorbance (A) of the sample.
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The Beer-Lambert law shows that the intensity of the absorption of radiation at a particular
wavelength is proportional to the concentration of the absorbing species in the solution and the
path length. Therefore the measured UV-vis absorption spectra can be used to determine the
concentration of the absorber in a solution.

The maximum value of the molar absorption coefficient, εmax, is an indicator of the intensity
of the transition. However, the absorption band spreads across a range of wavenumbers, so a
single wavenumber may not reflect the true intensity of the transition. The integrated absorption
coefficient, α, is the sum of the molar absorption coefficients over the entire band, and corresponds
to the area under the plot of molar absorption coefficient as a function of wavenumber,

α =

∫
band

ε(ν̃)dν̃. (1.2)

As a crude, but useful approximation, the area of the average absorption band in solution can
be characterized in terms of the half-width of the absorption band, ν̃1/2. This is the width at
which ε = 1/2εmax. Assuming a band is symmetrical about εmax, we have∫

band

ε(ν̃)dν̃ ≈ εmax∆ν̃1/2. (1.3)

1.2.2 Simulation of the UV-vis absorption spectra

The UV-vis absorption spectrum of molecules is characterized by the vertical excitation energies,
according to the classic Franck-Condon principle [1], which states that the nuclear configuration
does not change significantly during the energy absorption process because the rearrangement of
electrons is much faster than the motion of nuclei. The vertical excitation energies corresponds
to the energy difference between the excited state potential energy curve and the ground state
potential energy curve at the minimum point of ground state geometry.

The oscillator strength expresses the probability of the light absorption in electronic transitions
between energy levels of an atom or molecule. It is related to the integrated absorption coefficient
α by [4]

f =
4mecε0 ln 10

NAe2
α =

4mecε0 ln 10

NAe2

∫
band

ε(ν̃)dν̃, (1.4)

where me is the mass of the electron, c is the speed of the light in vacuum, ε0 is vacuum
permittivity, NA is the Avogadro constant, and e is the electric charge of the electron.

From Fermi’s golden rule, within the dipole approximation, the oscillator strength of a elec-
tronic transition is [5]

f =
2

3

me

~2
(Ef − Ei)|µ|2, (1.5)

where (Ef − Ei) is the electronic excitation energy, µ is the transition dipole moment.
Within the Franck-Condon approximation and Born-Oppenheimer approximation (the sep-

aration of the total molecular wave function into an electronic and a nuclear wave function),
neglecting the translation part of the nuclear wave function, the total transition dipole moment
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of an electronic transition from an initial state to a final state in a molecule can be written as [1]

µ = 〈Ψe
f |µ̂e|Ψe

i 〉〈νf |νi〉, (1.6)

where 〈Ψe
f |µ̂e|Ψe

i 〉 is the electronic transition dipole moment; and νi and νf are the nuclear
vibrational wave functions of the initial state and final state, respectively; 〈νf |νi〉 is called the
Franck-Condon factor or Franck-Condon integral. For the simulation of the UV-vis absorption
spectrum of molecules in condensed phases with quantum-mechanical method, the vibrational
progression is often not considered (without computing Franck-Condon integral) to reduce the
computational difficulty.

The simulation of the UV-vis absorption spectrum usually involves two steps:

• modeling the structure of the system, which is often represented by a finite-temperature
structure to include the dynamical effect. The finite-temperature structure is typically
obtained by Monte-Carlo sampling or molecular dynamics trajectory simulation. The en-
ergy minimum geometry is also often used to represent the structure of the system for the
simplification of the calculation.

• calculating the vertical electronic excitation energies and the corresponding oscillator
strengths for each configuration of the finite-temperature structure of the system or the
energy minimum geometry of the system.

1.3 Aims of the thesis work

This thesis work focuses on the theoretical studies of the effect of condensed-phase environment
on the UV-vis absorption spectra of several organic chromophores. The aims of this work are:

• To develop proper computational strategies to calculate the UV-vis absorption of organic
chromophores in various condensed-phase environments (solid, solvent, and proteins) using
existing computational-chemistry methods and taking the experimental data as references.

• Using the validated computational strategies, to interpret the experimental results and to
tackle problems that are impractical for transitional experiments to solve.

1.4 Structure of the thesis

The thesis is organized as follows. Firstly, the theory background of the popular computational-
chemistry methods is briefly reviewed in Chapter 2, including the wave function based and
the density functional based quantum-mechanical methods, molecular-mechanical methods, and
hybrid quantum-mechanics and molecular-mechanics methods. The basic concepts, strengths,
and limitations of each methods are briefly described.
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In Chapter 3, the frozen-density embedding theory is introduced, which is the basis of the
computational methods used in the thesis work for multi-scale simulations for the molecules in
condensed phases.

The original research work of this thesis is presented in Chapter 4, Chapter 5, and Chapter
6. Each chapter presents a research project on molecules in different type of environments, for
which results have been published. Each chapter is organized by including an overall presentation
together with the reprint of the published article.

Finally, the general conclusions of the thesis work and future perspectives are discussed in
Chapter 7.

1.5 Units used in the thesis

Hartree atomic units (a.u.) are used throughout this thesis, except Chapter 1 (introduction).
This convenient system of units is obtained by assigning a value of 1 to the free-electron mass
and charge and to the reduced Planck’s constant, i.e., me = e = ~ = 1.



6 CHAPTER 1. INTRODUCTION



Chapter 2
Theory background: Computational chemistry

“The underlying physical laws necessary for the mathematical theory of a large part of physics
and the whole of chemistry are thus completely known, and the difficulty is only that exact

application of these laws leads to equations much too complicated to be soluble.”
— Paul A. M. Dirac

Computer simulation for realistic system of molecules in condensed phase usually involves var-
ious levels of computational-chemistry methods, due the large size of the models needed for
describing the condensed phase. Therefore, an overview on the popular methods in computa-
tional chemistry related to this thesis work will be given in this chapter. The basic concepts of
these computational-chemistry methods are presented here based upon the book by Jensen (In-
troduction to Computational Chemistry) [6], the book by Cramer (Essentials of Computational
Chemistry: Theories and Models) [7], the book by Ullrich (Time-Dependent Density Functional
Theory: Concepts and Applications) [8], as well as some other cited literature.

2.1 Describing the chemical system

In order to describe a chemical system, we need firstly to choose the fundamental units (“parti-
cles”) of the system. The choice of “particles” is made by what we want to describe. For example,
if we want to describe the overall structure of a protein but not the details of atomic movements,
we may choose amino acids as the building blocks. If we want to describe molecular structures
but not the details of the electron distribution, we can choose atoms as the building blocks. If
we want to describe atoms and molecules, then we need to choose atomic nuclei and electrons as
our building blocks. After choosing the particles and the starting condition, we need to analyze
the interactions between the particles and write the dynamical equations, which determine how
the system evolves in the phase space, and from which we can get the information about the
structure and properties of the system.

2.1.1 Dynamical equations of motion

The dynamical equation of motion can be divided into four regimes depending on the mass
and velocity of the particles. Light particles display both wave and particle characteristics (with
the borderline being approximately the mass of a proton) are described by quantum mechanics.
Heavy particles can be described by classical mechanics. For particles moving at high speed
(comparable with the speed of light), relativistic effects should be considered in both quantum
mechanics and classical mechanics.

7
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In chemistry, atoms and molecules can be treated with classical mechanics because they behave
essentially as classical particles (with a few exceptions such as hydrogen, the lightest nucleus).
Thus Newton’s equation of motion applies:

−∂V
∂r

= m
∂2r

∂t2
, (2.1)

where the l.h.s. (left-hand side of the equation) is the force, the r.h.s. (right-hand side of the
equation) is the mass times the acceleration, and V denotes the potential energy.

For particles with high speed, Newton’s equation is formally unchanged, but the particle mass
becomes a function of the velocity.

m =
m0√

1− v2/c2
(2.2)

The light particles in chemistry is primarily electrons, which should be treated by quan-
tum mechanics. For light particles in low speed, the system is described by the time-dependent
Schrödinger equation:

ĤΨ = i
∂Ψ

∂t
, (2.3)

where Ĥ is the Hamiltonian operator and Ψ is the wave function. The Hamiltonian operator is
the sum of kinetic and potential energy operators,

ĤSchrödinger = T̂ + V̂ = − p2

2m
+ V̂ , (2.4)

where p is the momentum, p = −i~5.
For light particles moving with high velocities, the Dirac equation applies to take into account

the relativistic effect. Its form is analogous to Schrödinger equation (Eq. 2.3), but the Hamiltonian
operator is significantly more complicated. It reads

ĤDirac = (cα · p + βmc2) + V̂ , (2.5)

where the α and β are 4 × 4 matrices. The relativistic wave function consequently has four
components. Traditionally, they are labelled as the large and small components, each having an α
and β spin function. The large component describes the electronic part of the wave function, while
the small component describes the positronic (electron antiparticle) part of the wave function.
The α and β matrices couple these components. In the limit of c → ∞, the Dirac equation
reduces to the Schrödinger equation, and the two large components of the wave function reduce
to the α and β spin-orbitals in the Schrödinger picture. Computational chemists often attempt to
include relativistic effect by adding corrections on non-relativistic Schrödinger equation, instead
of solving the fully relativistic Dirac equation. For example, effective core potentials can be used
to represent relativistic effects, which are largely confined to the core. Both the scalar (spin-free)
relativistic effects and spin-orbit (spin-dependent) relativistic effects may be included in effective
potentials.

In computational chemistry, the methods to solve Newton’s equation of motion (Eq. 2.1) are
called molecular-mechanics (MM) methods; and those solving the Schrödinger equation (Eq. 2.3)
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are referred to quantum-mechanics (QM) or quantum-chemistry methods. The quantum-chemistry
methods include wave function based and density functional based methods which will be in-
troduced in Section 2.2 and Section 2.3, respectively. The MM methods will be introduced Sec-
tion 2.4, and the hybrid methods in Section 2.5.

2.1.2 Foundations for quantum-chemistry methods

The common theory foundations for both wave-function-based and density-functional-based
quantum-chemistry methods is introduced in this sub-section.

For the bound system, the Hamiltonian operator is time-independent and the system remains
stationary. The energy is a constant, depending on only the space variables. The time-independent
Schrödinger equation is written as,

ĤΨ = EΨ. (2.6)

In quantum chemistry, one of the primary goals is to solve the time-independent Schrödinger
equation for molecules (including an atom as possibility), and to determine the electronic struc-
tures of atoms and molecules. Once the electronic structure is known, a wide range of chemically
and physically important properties can be determined. For example, by finding the minimum
of the potential energy surface (PES) of a stable molecule, that is, the electronic energy plus
the nucleus-nucleus repulsion energy, it is possible to calculate its bond lengths and bond angles
in its equilibrium structure. Force constants and vibrational frequencies can also be determined
from gradients of the PES.

2.1.2.1 Electronic Hamiltonian

An essential part of the solution of the time-independent Schrödinger equation for the complete
molecular (atomic) system is separating the electronic and nuclear coordinates by the Born-
Oppenheimer approximation (BOA). In the BOA, electrons are treated as moving in a fixed
nuclear framework, due to the high ratio between nuclear and electronic masses (m/M ≈ 10−4),
i.e., the coupling between the nuclei and electronic motion is neglected. Therefore the electronic
Schrödinger equation can be split from that for the complete system. Firstly, for the convenience,
the molecular time-independent Schrödinger equation is rewritten as:

ĤtotΨtot(R, r) = EtotΨtot(R, r)

Ĥtot = T̂e + T̂n + V̂ee + V̂ne + V̂nn, (2.7)

where R denotes the nuclear coordinates and r denotes the electron coordinates; T̂ is the kinetic
energy operator; V̂ee is the electron-electron interaction operator; V̂ne is the nucleus-electron
interaction operator; and V̂nn is the nucleus-nucleus interaction operator.

The electronic Schrödinger equation separated from Eq. 2.7 by BOA is:
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ĤeΨe(R, r) = Ee(R)Ψe(R, r)

Ĥe = T̂e + V̂ne + V̂ee

T̂e = −
Nelec∑
i

1

2
52
i (2.8)

V̂ne = −
Nnuclei∑

a

Nelec∑
i

Za
|Ra − ri|

V̂ee =

Nelec∑
i

Nelec∑
j>i

1

|ri − rj |

where Ψe is the electronic wave function, Nelec is the total number of the electrons, and Nnuclei
is the total number of nuclei. The convention adopted here does not include V̂nn in the electronic
Hamiltonian operator Ĥe. The nucleus-nucleus repulsion energy Vnn is added as a classical term
to the electronic energy Ee(R) at the end of the calculation, to provide the potential energy of
the total system.

The BOA is an important tool of quantum chemistry, all computations of molecular wave
functions for larger molecules make use of it. It is usually a very good approximation. However,
it breaks down near a point where two electronic states acquire very close energy, for example, the
system in the conical intersection region during a photoreaction. In this case, the non-adiabatic
corrections will be large and the quantum nature of the nuclei may need to be taken into account.
Starting from here, the quantum-chemistry methods mentioned in this thesis refer to methods
for solving the non-relativistic electronic Schrödinger equation.

2.1.2.2 Many-electron wave function

The many-electron wave function in quantum-chemistry methods is generally constructed by
taking the one-electron wave functions as basis. The one-electron wave functions in a molecular
system are called molecular orbitals (MOs). The pure electronic energy eigenvalue associated
with each MO is the energy of the electron in that orbital. A MO is given as the product of a
spatial orbital and a spin function (α or β), also known as spin-orbitals. A guess wave function
of each MO (φi) is constructed as a linear combination of a set of finite number of known basis
functions (χµ), which are conventionally called atomic orbitals (AOs) (though they are generally
not the solutions of atomic Schrödinger equation). This is called the linear combination of atomic
orbitals (LCAO) basis set approximation approach. A MO (φi) is expanded with AOs (χµ) as

φi =

Mbasis∑
µ

Cµiχµ, (2.9)

where µ (numbered 1 to Mbasis) represents which atomic orbital is combined in the term, and
the coefficient Cµi is the weight of the contribution of the atomic orbital χµ to the molecular
orbital. The type of the basis functions can be exponential, Gaussian, polynomial, cube functions,
wavelets, plane waves, etc.
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Slater type orbitals (STO) and Gaussian type orbitals (GTO) are two types of basis functions
commonly used in quantum-chemistry electronic structure calculations. Slater type orbitals are
exponential functions and have the functional form,

χξ,n,l,m(r, θ, ϕ) = NYl,m(θ, ϕ)rn−1e−ξr, (2.10)

where N is the normalisation constant and Yl,m are spherical harmonic functions. Gaussian type
orbitals have the functional form,

χξ,n,l,m(r, θ, ϕ) = NYl,m(θ, ϕ)r2n−2−le−ξr
2

. (2.11)

There are two guidelines for choosing the type of the basis functions for a given problem. The
first one is that the behavior of basis functions should agree with the physics of the problem to
facilitate the convergence, because, the better a single basis function is able to reproduce the
unknown function, the fewer basis functions are necessary for achieving a given level of accuracy.
The second one is that the chosen functions should make it easy to calculate all the required
integrals.

Therefore based on these two guidelines, for molecular systems, exponential functions (STOs)
located on the nuclei is suggested as basis functions because these functions are known to be exact
solutions for the hydrogen atom. However exponential functions are computationally difficult.
Gaussian functions are also commonly used as basis functions for molecular systems because
they are computationally much easier to handle (less computationally demanding for the integrals
required in the calculation of electron-electron interaction), although they are poorer at describing
the electronic structure on a one-to-one basis (wrong behavior near the nucleus and far away
from the nucleus). For periodic systems, plane waves (the exact solutions for a free electron) is
suggested as basis functions due to the infinite nature of the boundary condition to the problem.
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2.2 Wave function based methods

2.2.1 Introduction

In this section, the Hartree-Fock method is firstly introduced, which is the branching point for
wave-function based quantum-chemistry methods. It is the central starting point of most of the
more accurate wave-function based methods, and it can also lead to semi-empirical methods by
invoking additional approximations. Some of the post-Hartree-Fock methods are introduced after
the Hartree-Fock method, but review of the semi-empirical methods is out of the goal of this
thesis. This section is presented based upon the book by Jensen [6].

2.2.2 The Hartree-Fock method

The Hartree-Fock (HF) method is an approximate method for solving the many-electron
Schrödinger equation (see Eq. 2.8). In this method, the electronic Hamiltonian is expressed
as:

Ĥe =

Nelec∑
i

ĥi +

Nelec∑
j>i

ĝij

ĥi = −1

2
52
i −

Nnuclei∑
a

Za
|Ra − ri|

(2.12)

ĝij =
1

|ri − rj |

where ĥi is the one-electron operator describing the motion of electron i in the field of all the
nuclei, ĝij is a two-electron operator giving the electron-electron repulsion.

The total electronic wave function is approximated as a product of one-electron wave functions.
Each one-electron wave function is described by a MO. The antisymmetric character of the total
wave function (it changes sign upon the interchange of any two sets of electron coordinates) is
achieved by a single Slater determinant :

Ψ = ΦSD =
1√
N !

∣∣∣∣∣∣∣∣∣
φ1(1) φ2(1) · · · φN(1)
φ1(2) φ2(2) · · · φN(2)

...
...

. . .
...

φ1(N) φ2(N) · · · φN(N)

∣∣∣∣∣∣∣∣∣ , (2.13)

where φi is the one-electron function that is given as the product of a spatial orbital and a spin
orbital, ΦSD denotes the single Slater determinant.

The total electron energy of the system is thus:
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E = 〈ΦSD|Ĥe|ΦSD〉 (2.14)

The variational principle of quantum mechanics states that any approximate wave function
has an energy above or equal to the exact energy, which is used to optimize the HF wave
function (determine the best set of orbitals giving the lowest energy) within the restriction of the
wave function being a single Slater determinant. This constrained optimization can be handled
by means of Lagrange multipliers with the restriction that that a small change in the orbitals
should not change the Lagrange function. The HF equations can be derived to find the optimized
wave function:

F̂iφ
′

i = εiφ
′

i

F̂i = ĥi +

Nelec∑
j

(Ĵj − K̂j)

ĥi = −1

2
52
i −

Nnuclei∑
a

Za
|Ra − ri|

(2.15)

Ĵj |φi(1)〉 = 〈φj(1)| 1

r1 − r2
|φj(1)〉|φi(2)〉

K̂j |φi(1)〉 = 〈φj(1)| 1

r1 − r2
|φi(1)〉|φj(2)〉

where i and j denote the orbitals; 1 and 2 denote the electrons; F̂i is the one-electron Fock
operator; φ

′

i is a special set of MOs, constructed via unitary transformation from the one-electron

wave function; ĥi is the one-electron part of the Fock operator; Ĵ (Coulomb operator) and K̂
(exchange operator) are the two-electron interaction part of the Fock operator.

The optimized set of MOs can be obtained by the eigensolutions to the Fock operator at the
energy minimum, therefore finding the HF one-electron wave functions is equivalent to solving
the HF equations. The HF equations are a set of pseudo-eigenvalue equations because the Fock
operator depends on their own solutions and must therefore be solved iteratively. Therefore the
HF method is also a type of self-consistent field (SCF) method.

In the HF method, the electron-electron repulsion is approximated with a mean field because
the many-electron wave function is approximated by a single Slater determinant. Therefore the
HF total energy is not exact. The HF wave function can account for around 99% of the total
energy; but the remaining ∼1% is very important for describing chemical phenomena. The dif-
ference in energy between the HF and the “exact” energy (the lowest possible energy in the given
basis set) is called the electron correlation energy. The electron correlation can be classified as
dynamic and static. The dynamic contribution is associated with the “instant” correlation be-
tween electrons, such as between those occupying the same spatial orbital. The static part is
associated with electrons avoiding each other on a more “permanent” basis, such as those occu-
pying different spatial orbitals. To achieve the chemical accuracy (error below 1 kcal/mol), more
accurate methods are developed by including the electron correlation.



14 CHAPTER 2. THEORY BACKGROUND: COMPUTATIONAL CHEMISTRY

2.2.3 Post-Hartree-Fock methods

A set of approaches were developed to improve on HF methods which add electron correlation
to include the electron-electron repulsion more accurately than in the HF method. They are
collectively called post-Hartree-Fock methods (also referred as electron correlation methods [6]).
Usually, post-Hartree-Fock methods give more accurate results than HF calculations. However
the added accuracy comes at the price of dramatically increased computational cost. Currently,
their application is still restricted to very small molecular systems (typically less than 100 atoms).
Therefore they are usually not used to model condensed phase, but they can produce high-quality
results which can be taken as references for benchmarking the lower-level methods.

Møller-Plesset perturbation theory

The Møller-Plesset (MP) perturbation theory takes into account the electron correlation effects
by means of Rayleigh-Schrödinger perturbation theory [9]. In MP theory, the correlation potential
is treated as a perturbation to the unperturbed Hamiltonian which is taken as the sum of the one
particle Fock operators. The zeroth-order (unperturbed) wave function is an exact eigenfunction
of the Fock operator. The total Hamiltonian is written as:

Ĥ = Ĥ0 + λV̂ , (2.16)

where λ is an arbitrary real parameter that controls the size of the perturbation, the correlation
potential operator V̂ is the difference of the exact electron Hamiltonian operator and the Fock
operator.

The energy can therefore be corrected by n-th order MP theory (MPn). The 1st order MP
correction gives the HF energy and the 2nd order perturbations gives the HF energy plus the
second-order MP correction E ≈ EHF + EMP2.

The computational cost scaling of the MPn energy is O(Nn+3), where N is the number
of basis function. MP2 is a relatively cheap form of correlation, but the higher orders become
comparatively very expensive. Perturbation theory also relies on the starting wave function being
close to the exact wave function. For these reasons it can be expected that MP theory will become
less popular.

Configuration Interaction

Configuration interaction (CI) takes account into the electron correlation by using linear combi-
nation of Slater determinants as many-electron wave function,

Ψ =
∑
I=0

cIΦI = c0Φ0 +

occ∑
i

vir∑
a

caiΦai +

occ∑
i<j

vir∑
a<b

cabij Φabij + · · · , (2.17)

where Φ0 is normally HF determinant, the rest of determinants are excitation determinants. The
singly excited wave function Φai is formed by replacing spin-orbital i with spin orbital a in Φ0
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(one electron is excited), The doubly excited wave function Φabij means two electrons are excited
(two spin orbitals differ from those in Φ0), etc.

The set of N spin orbital occupancies in an N-electron Slater determinant is often referred to as
a “configuration”, thus “configuration interaction” method is just the matrix mechanics solution
of the time-independent non-relativistic electronic Schrödinger equation in its most straightfor-
ward implementation. The linear coefficients are determined variationally via diagonalization of
the Hamiltonian in the given subspace of determinants.

If the expansion of Ψ includes all possible determinants of the appropriate symmetry, then this
is a full CI procedure which exactly solves the electronic Schrödinger equation within the space
spanned by the one-particle basis set. Full CI calculations are normally used in benchmarking
approximate quantum-chemistry methods.

The simplest standard CI method is a CI that adds all singly and doubly substituted deter-
minants (CISD) to the reference determinant. The CISD wave function has become less popular
because the quality of truncated CI wave functions degrades for larger molecules. MP2 is a
less expensive alternative which gives results similar to those of CISD for small molecules, but
the quality of MP2 does not degrade for larger molecules. Coupled-cluster singles and doubles
(CCSD), which will be introduced in the following sub-section, is another size-extensive alter-
native. It typically provides significantly more accurate results with only slightly more costly
computations than CISD.

Since the CI eigenvalues are the energies of the ground and some electronically excited states,
it is possible to calculate energy differences (excitation energies) with CI methods. Excitation
energies of truncated CI methods are generally too high, because the excited states are not as
well correlated as the ground state.

Coupled Cluster

Similar to CI, coupled-cluster (CC) also use more complicated many-electron wave functions
than HF to include the effects of electron correlation. However the CC wave function uses an
exponential expansion of the reference wave function instead of the linear expansion used in
CI. For a N-electron system, CC wave function is expressed by the exponential ansatz using an
exponential cluster operator,

Ψ = eT̂Φ0 = (1 + T̂ +
1

2!
T̂ 2 +

1

3!
T̂ 3 + · · · )Φ0

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂N (2.18)

T̂1Ψ =

occ∑
i

vir∑
a

taiΦai

T̂2Ψ =

occ∑
i<j

vir∑
a<b

tabij Φabij ,

where i, j refer the occupied orbitals and a, b refer the virtual orbitals.
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The reference wave function Φ0 is typically a HF Slater determinant. T̂ is the exponential
cluster operator. Inserting the coupled-cluster wave function into the time-independent elec-
tronic Schrödinger equation, the coupled-cluster equations can be obtained, which determine the
coefficients (tai ,tabij ,...) for the solution of Ψ.

For a N-electron system, in the limit of including up to T̂N in the cluster operator, the CC
theory is equal to full CI, thus can also produce the exact energy within the basis set used in
the wave function. The approximate CC methods truncates the expansion of the wave function
by the definition of T̂ (control the highest level of excitations allowed). For examples, coupled-
cluster doubles (CCD) has T̂ = T̂2; coupled-cluster singles and doubles (CCSD) has T̂ = T̂1 + T̂2.
CCSD(T) means the connected triples contribution on CCSD is calculated non-iteratively using
many-body perturbation theory.

The choice of the exponential ansatz guarantees the size extensivity of the solution, but the
complexity of equations and the corresponding computer codes (thus the cost of the computation)
increases sharply with the highest level of excitation. CCSD offers a computationally affordable
method that performs often better than MP2 and CISD, but it doesn’t provide sufficient accuracy
except for the smallest systems (approximately 2 to 4 electrons), and often an approximate
treatment of triples is needed. The most well-known coupled cluster method that provides an
estimate of connected triples is CCSD(T), which is rather expensive for molecules with more
than a dozen heavy atoms or so. However, when this method is affordable, it provides very high
quality results in most cases.

Multi-configurational self-consistent field

For a system with a significant multi-configurational character (where nearly degenerate deter-
minants build the ground state), such as the dissociation process of hydrogen molecule, the HF
determinant is qualitatively wrong and so are the CI wave functions and energies. In this case, it
is better to use the multi-configurational self-consistent field (MCSCF) method. MCSCF can be
considered as the combination of CI and HF, which uses a linear combination of configuration
determinants to approximate the exact electronic wave function, however the coefficients of both
the determinants and the MOs that build the determinants are optimized by the variational
principle (it is simply HF if the “configuration” is only one).

The major issue of MCSCF methods is selecting which configurations are necessary to include
for the property of interest. The particularly important MCSCF method is complete active
space SCF (CASSCF), where the linear combination of determinants includes all that arise
from a particular number of electrons in a particular number of orbitals. Another important
MCSCF method is complete active space 2nd-order perturbation theory (CASPT2), where the
perturbation theory is applied to CASSCF wave function (analogous to the MP2 perturbation
for the HF wave function).

The computational cost of MCSCF calculations increases with the number of configurations
included, therefore the size of MCSCF wave functions that can be treated is smaller than that of
CI methods. But if it is affordable, CASPT2 can usually be used to reliably calculate molecular
ground- and excited states if all other methods fail.
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2.3 Density functional based methods

2.3.1 Introduction

Although post-Hartree-Fock methods are widely used for accurate calculations by quantum
chemists today, they are restricted to small molecular systems due to the computational dif-
ficulties of performing accurate calculations with large basis sets for large systems. Density func-
tional theory (DFT) is a very popular alternative to post-Hartree-Fock methods. It can be used
to do calculations on large molecular systems with acceptable accuracy but in significantly less
time than those post-Hartree-Fock methods. Moreover, for systems with d-block metals, DFT of-
ten yields results which agree more closely with experiment than post-Hartree-Fock calculations
do. [1] The basic concept of DFT is that the properties of an N-electron system can be obtained
from the electron density (depending on 3 spatial variables), rather than the N-electron wave
function (depending on 3N spatial variables) that is even difficult to store if N is large.

Both DFT that deals with ground-state properties and the time-dependent DFT (TDDFT)
that deals with excited-state properties are introduced in this section.

2.3.2 Density-functional theory

The electron density ρ of an N-electron system is related to its wave function as:

ρ(r1) =

∫
|Ψ(r1, r2, · · · , rN )|2dr2 · · · drN . (2.19)

The concept of a density functional for the energy was the basis of some early but useful ap-
proximate models such as the Thomas-Fermi model. Then the Hohenberg-Kohn theorems gave
a formal proof that the ground-state energy and all other ground-state electronic properties are
uniquely determined by the electron density. However it proves only that such a functional exists
but does not provide the form of the energy density functional. The Kohn-Sham method makes
it practical to obtain the ground-state electron density, which treats a fictitious system with
non-interacting electrons having the same exact ground state electron density as that of the real
system.

2.3.2.1 The Thomas-Fermi Model

There were already some early attempts to approximate the electron energy as functional of the
electron density soon after the discovery of the Schrödinger equation in 1926. The most well
known one is probably Thomas-Fermi model developed independently by both Thomas [10] and
Fermi [11] in 1927. They used a homogeneous electron gas (HEG) model (electron distributed
uniformly in phase space) to approximate the distribution of electrons in the atoms. In this
approach, the kinetic energy is approximated as:
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T = 〈Ψ|T̂ |Ψ〉 ≈ TTF [ρ] = CTF

∫
ρ5/3(r)dr, (2.20)

where the constant CTF = 3
10 (3π2)2/3. The electron-electron interaction energy is approximated

by the expression for a classically repulsive gas (including only the classical Coulomb repulsion
energy):

Vee = 〈Ψ|V̂ee|Ψ〉 ≈ J [ρ], (2.21)

where J [ρ] is the classical Coulomb repulsion energy

J [ρ] =
1

2

∫ ∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2. (2.22)

In this expression of electron-electron interaction energy, the electron exchange and electron
correlation are completely neglected. The total energy of the system is then given as:

E = T + Vee + Vext ≈ ETF = TTF [ρ] + J [ρ] +

∫
v(r)ρ(r)dr (2.23)

Later, an exchange energy functional for the electron-electron interaction energy was added
by Dirac in 1928 [12]. However, the Thomas-Fermi-Dirac theory was rather inaccurate for most
applications, which is due to the crude approximation for the kinetic energy, the errors in the
exchange energy, and the complete neglect of electron correlation.

2.3.2.2 The Hohenberg-Kohn Theorems

Although there were already early efforts for finding energy functionals, the basic existence proof
of density functional theory was not given until the publication of a landmark paper by Hohenberg
and Kohn in 1964 [13], which proved two well known theorems, known as the Hohenberg-Kohn
theorems.

Hohenberg-Kohn theorem 1: In a finite, interacting N-elecron system with a given particle-
particle interaction there exists a one-to-one correspondence between the external potential (v(r))
and the ground-state density (ρ(r)), i.e., the external potential is a unique functional of the
ground-state density, up to an arbitrary additive constant.

This theorem can be proved easily by two steps. First, it can be proved that the relation-
ship between the potentials and wave functions is unique. Then the one-to-one correspondence
between the wave function and the electron density can be proved using the Rayleigh-Ritz vari-
ational principle, thus Ψ = Ψ[ρ]. Therefore a unique correspondence exists between potentials
and ground-state densities, which can be written as v[ρ](r).

From the first Hohenberg Kohn theorem, we know that the Hamiltonian is also a functional of
electron density, Ĥ[ρ] (because the kinetic operator and electron-interaction operator are fixed
for a N-electron system). Moreover, we can see that all energy eigenstates of the system become
density functionals as well (not only the ground state wave function). This means all ground-
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and excited-state properties of a given N-electron system are in principle determined entirely by
the ground-state electron density.

Hohenberg-Kohn theorem 2: The total energy functional (EHK [ρ]) reaches minimum at the
non-degenerate ground state density (ρ0).

The second Hohenberg-Kohn theorem provides a variational principle for the energy functional
using the electron density as the variational quantity instead of the wave function, and in principle
this can be used to obtain the ground-state electron density. The Hohenberg-Kohn total energy
functional associated with a given external potential v(r) can be written by

EHKv [ρ] = 〈Ψ[ρ]|T̂ + V̂ee+ V̂ext|Ψ[ρ]〉 = T [ρ] +Vee[ρ] +

∫
ρ(r)v(r)d3r = FHK [ρ] +

∫
ρ(r)v(r)d3r,

(2.24)
where FHK [ρ] is a universal functional (the same for an N-electron system with the same electron-
electron interaction) and is defined as

FHK [ρ] = 〈Ψ[ρ]|T̂ + V̂ee|Ψ[ρ]〉 = T [ρ] + Vee[ρ]. (2.25)

According to the second Hohenberg-Kohn theorem, the exact ground-state density ρ0(r) can
be found from the Euler-Lagrange equation

δEHKv [ρ]

δρ(r)
=
δFHK [ρ]

δρ(r)
+ v(r) = µ, (2.26)

where µ is a Lagrange multiplier which ensures the correct total number of electrons. However
the exact form of FHK [ρ] is unknown, and in practice the variational theorem is only applied
with approximations to it. Besides, there is another difficult problem that the existence of the
energy functional derivative in Eq. 2.26 requires that ρ belongs to some external potential (v-
representability) [14].

The v-representability is still an unsolved problem. Fortunately the constrained search for-
malism proposed by Levy [14] and Lieb [14] overcomes most of the difficulties related to the
functional EHKv [ρ]. In the constrained search, the variational principle is expressed as a two-step
minimization. For a N-electron system, it can be expressed as

E0 = min
Ψ
〈Ψ|T̂ + V̂ee + V̂ext|Ψ〉 = min

ρ
{min

Ψ→ρ
〈Ψ|T̂ + V̂ee + V̂ext|Ψ〉}, (2.27)

which means we first search over all antisymmetric N-electron wave functions (Ψ) that yield a
given density ρ, then determine the ground-state density ρ0 as the density that gives the lowest
energy. This leads to another way of defining the universal functional,

FLL[ρ] = min
Ψ→ρ
〈Ψ|T̂ + V̂ee|Ψ〉. (2.28)

The advantage of the constrained search formalism is that it gives an operational definition of the
universal functional in the form of a constructive procedure. This constrained search procedure
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to search the ground-state electron density is not very practical (needs to search over infinite
number of wave-functions), but it plays an important formal and conceptual role in DFT.

2.3.2.3 The Kohn-Sham formalism

Kohn-Sham (KS) method, which is developed by Kohn and Sham in 1965 [15], transforms DFT
into a practical scheme. It is nowadays the basis of most applications of DFT. The key idea in
the Kohn-Sham method is that the ground-state electron density of an interacting N-electron
system can be obtained by solving a fictitious non-interacting N-electron problem.

For a non-interacting N-electron system, the Hamiltonian is comprised by only the kinetic-
energy operator and the external potential energy operator, and the exact solution to the
Schrodinger equation (the many-body ground-state wave function) can be given as a single
Slater determinant ΦSD composed of (molecular) orbitals, φj . According to HK theorems, its
total-energy functional can be written as

Es[ρ] = Ts[ρ] +

∫
ρ(r)vs(r)d3r, (2.29)

where Ts[ρ] is the kinetic-energy functional of the non-interacting N-electron system, vs(r) is the
external potential of the the non-interacting N-electron system. The ground-state density can be
found either by solving the Euler-Lagrange equation

δE[ρ]

δρ(r)
=
δTs[ρ]

δρ(r)
+ vs(r) = µ, (2.30)

or by solving the single-electron Schrodinger equations(
52

2
+ vs(r)

)
φj(r) = εjφj(r), (2.31)

ρs(r) =

N∑
j=1

|φj(r)|2, (2.32)

where φj(r) is the single-electron wave function in Ψs, and the ground-state density ρs(r) is
obtained from the N lowest (occupied) single-electron orbitals.

For an interacting N-electron system, the total-energy functional E[ρ] can be written in a
clear way (to compare with that for the non-interacting N-electron system):

E[ρ] = T [ρ] + Vee[ρ] +

∫
ρ(r)v(r)d3r

= Ts[ρ] + J [ρ] +

∫
ρ(r)v(r)d3r + Exc[ρ] (2.33)

where J [ρ] is the classical Coulomb energy (also called Hartree energy) defined in Eq. 2.22, v(r)
is the external potential of the interacting N-electron system, and Exc[ρ] is called the exchange-
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correlation energy which is defined as

Exc[ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ]. (2.34)

The Euler-Lagrange equation to obtain ground-state electron density of the interacting N-electron
system is

δE[ρ]

δρ(r)
=
δTs[ρ]

δρ(r)
+
δJ [ρ]

δρ(r)
+ v(r) +

δExc[ρ]

δρ(r)
= µ, (2.35)

Eq. 2.35 is formally identical to Eq. 2.30, if we identify an effective single-particle potential as

vs[ρ](r) =
δJ [ρ]

δρ(r)
+ v(r) +

δExc[ρ]

δρ(r)
=

∫
ρ(r

′
)

|r− r′ |
d3r

′
+ v(r) + vxc[ρ](r), (2.36)

where vxc[ρ](r) is defined as

vxc[ρ](r) =
δExc[ρ]

δρ(r)
. (2.37)

Then solving the Eq. 2.35 for the interacting system is equivalent to solve the single-electron
Schrödinger equation of a fictitious non-interacting system:(

−5
2

2
+ vs[ρ](r)

)
φj(r) = εjφj(r), (2.38)

and the ground-state electron density is obtained by summing the squares of the lowest N occu-
pied orbitals:

ρ0(r) =

N∑
j=1

|φj(r)|2. (2.39)

Eq. 2.38 and Eq. 2.39 are called the Kohn-Sham equations.
In practice, the Kohn-Sham equations are almost always implemented in their spin-resolved

form. For an N-electron system comprised by N↑ spin-up and N↓ spin-down electrons, N =
N↑ + N↓. The total ground-state electron density is a sum of spin-up and spin-down densities.
The Kohn-Sham equations have the form

ρ0(r) = ρ0↑(r) + ρ0↓(r) =
∑
σ=↑,↓

Nσ∑
j=1

|φjσ(r)|2, (2.40)

(
−5

2

2
+ vsσ[ρ↑, ρ↓](r)

)
φjσ(r) = εjσφjσ(r). (2.41)

The Kohn-Sham effective potential is written as

vsσ[ρ↑, ρ↓](r) =

∫
ρ(r

′
)

|r− r′ |
d3r

′
+ vσ(r) + vxcσ[ρ↑, ρ↓](r), (2.42)

where the xc energy and potential are defined as functionals of the individual spin densities,
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vxcσ[ρ↑, ρ↓](r) =
δExc[ρ↑, ρ↓]

δρσ(r)
. (2.43)

In practice, the functional dependence of Exc on the spin-up and spin-down densities is better
suited for the construction of approximations.

Although Kohn-Sham theory is exact in principle, it is approximate in practice because the
exchange-correlation functional is unknown. Kohn-Sham theory makes the unknown contribution
to the total energy (the exchange-correlation energy) as small as possible. In fact it is the smallest
part of the total energy for many systems. However Exc is still extremely important because its
contribution can be significant to the binding energy of some systems. Therefore an accurate
description of exchange and correlation is crucial for the prediction of binding properties.

2.3.2.4 Approximated exchange-correlation functionals

Since the exact form of exchange-correlation (xc) energy functional Exc is unknown, approxi-
mated functionals must be developed for practical calculations. Many approximate functionals
exist. A given xc functional may work very well for some properties and some classes of systems,
but not in other situations. Therefore it is extremely important to choose a proper functional for
the desired properties of a target system. Xc functionals essentially try to model the exchange-
correlation hole, which is a quantum-mechanical zone surrounding every electron in an interacting
system that reduces the probability of finding other electrons within the immediate vicinity. Here
the basic xc functionals and those used in this thesis work are introduced.

The local-density approximation The local-density approximation (LDA) is the oldest ap-
proximation of DFT originally proposed by Kohn and Sham in 1965 [15]. In LDA, the true
exchange-correlation (xc) energy of a system is approximated by the xc energy associated with
a homogeneous electron gas, which is the only system with the form of the xc energy known
precisely. The xc energy in LDA depends on only the local density, and has the form:

ELDAxc =

∫
eHEGxc (ρ(r)) d3r, (2.44)

where eHEGxc (ρ) is the xc energy density (the xc energy per unit volume) that corresponds to a
homogeneous electron gas. The exchange energy in LDA is expressed by the exchange energy of
the homogeneous electron gas which is known exactly:

ELDAx =

∫ (
−3

4
(

3

π
)1/3ρ(r)4/3

)
d3r. (2.45)

The exact expression of the correlation energy of the homogeneous electron gas is unknown but
highly accurate numerical results exist. Based on the available numerical data, high-precision ana-
lytical parametrizations have been developed. Various correlation energy functionals of LDA were
generated with the analytic forms for correlation energy of the homogeneous electron gas, such as
the Vosko-Wilk-Nusair (VWN) [16], Perdew-Zunger (PZ81) [17], and Perdew-Wang (PW92) [18]
parametrizations.
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In practice, the LDA is implemented in its more general spin-polarized form (the LSDA) which
has the form,

ELSDAxc [ρ↑, ρ↓] =

∫
eHEGxc (ρ↑(r), ρ↓(r)) d3r. (2.46)

Despite the simplicity of LDA, it works surprisingly well for many energetic and structural
properties in a wide range of materials. It performs almost always better than the HF approxi-
mations and predicts the right physical trends. But it has also some failings. One must be aware
of the limitations in its application. It has a tendency to favor more homogeneous systems and
over-binds molecules and solids. These errors are exaggerated and bond lengths are too short in
weakly bonded systems (such as hydrogen bond).

The generalized gradient approximation The generalized gradient approximation (GGA)
is a class of xc functionals that depend not only on the local density itself but also its gradients.
The GGA functionals have the general form (spin-polarized form):

EGGAxc [ρ↓, ρ↑] =

∫
eGGAxc (ρ↓(r), ρ↑(r),5ρ↓(r),5ρ↑(r)) d3r, (2.47)

where the arrows indicate the spin directions, and the key idea of GGAs is to construct explicit
mathematical expressions for eGGAxc .

Today there exists hundreds of GGA functionals. The most widely used GGA functionals
include: exchange functional B88 [19] by Becke; correlation energy functionals P86 [20] by Perdew,
and LYP [21] by Lee, Yang and Parr; xc energy functionals BP86 composed of B88 exchange
and P86 correlation, PW91 [22] by Perdew and Wang, and PBE [23] by Perdew, Burke and
Ernzerhof.

The GGAs improve much over the LDAs in several instances. The most notable outcome
was the significant reduction in the LDA overbinding error for solids and molecules. GGAs are
currently the most popular exchange-correlation functionals in condensed matter physics.

Although the successes of LDA and GGA functionals in the calculation of electronic structure
of materials, they are not sufficiently accurate to meet the chemical accuracy required in solving
problems in chemistry, for example, the prediction of chemical reactions. Therefore efforts have
been made to develop more accurate xc functionals, including meta-GGA, hybrid functionals,
double hybrids, etc.

Hybrid functionals The hybrid approach for constructing density functional approximations
was introduced by Becke in 1993 [24]. Hybrid functionals incorporate a portion of exact exchange
from Hartree-Fock theory in the xc energy functionals. The exact exchange energy functional is
expressed in terms of the Kohn-Sham orbitals. They are constructed by mixing a fraction of the
exact exchange energy functional with a standard LDA or GGA and usually have the general
expression:

Ehybridxc = aEexactx + (1− a)Estandardx + Estandardc , (2.48)

where a is a semi-empirical constant. A typical value of a is 0.25. PBE0 is the functional
obtained by substituting the functionals in Eq. 2.48 with PBE functionals.
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The most popular hybrid functional today is the Becke 3-parameter Lee-Yang-Parr (B3LYP)
[25] which is written as:

EB3LY P
xc = aEexactx + (1− a)ELDAx + bEB88

x + cELY Pc + (1− c)ELDAc , (2.49)

where a = 0.20, b = 0.72 and c = 0.81. B3LYP outperforms most GGA functionals and LDA
for the structural and energetic properties of molecules close to equilibrium. It also performs
excellently (the experimental results as reference) for the calculations on the vertical electronic
excitation energies of some organic chromophores. It is nowadays the most successful functional
for chemical applications and accounts for about 80% of DFT applications. [26] It is of course not
perfect. For example, it fails for “free electron like” metallic systems because the LYP correlation
functional does not reproduce the correct limit for homogeneous systems; it fails to describe
the dissociation of the H2 molecule correctly due to the lack of static correlation; it usually
does not work for electronic transitions with change-transfer character in time-independent DFT
calculations.

Range-separated hybrid exchange functionals The range-separated hybrid exchange
(RSHX) functionals were developed to fix the problem of the hybrid functionals in describ-
ing bond dissociation and change-transfer excitations due to their poorly described long-range
electron-electron interaction. Let us consider the exchange energy in terms of the density, ρ(r)
and of the exchange hole, hx(r, r′) as

Ex[ρ] =
1

2

∫ ∫
ρ(r)vee(r, r

′)hx(r, r′)drdr′. (2.50)

The Coulomb interaction (vee(r, r
′) = |r−r

′ |−1) is separated into a short-range and a long-range
part,

vee(r, r
′) = vsree(r, r

′) + vlree(r, r
′) =

f(µ|r− r
′ |)

|r− r′ |
+

1− f(µ|r− r
′ |)

|r− r′ |
, (2.51)

where µ is the range separation parameter, and the function f has the properties f(x→∞) = 0
and f(x→ 0) = 1. The above decomposition of the Coulomb operator leads to an exact partition
of the exchange energy to short and long range components,

Ex[ρ] = Esr,µx [ρ] + Elr,µx [ρ]. (2.52)

At short range, the standard LDA or GGA exchange is proved behaving reasonably. For the
long range component of the exchange energy, the Hartree exchange is used to ensure its correct
asymptotic behavior. The RSHX energy functional is constructed by combining the short and
long range exchange components with a total correlation functional,

ERSHXxc [ρ] = Esr,µ,DFx [ρ] + Elr,µ,HFx [ρ] + EDFc [ρ]. (2.53)

A crude estimate of the range separation parameter can be given as the average distance of the
electrons, i.e. twice the Seitz radius, around 1-2 a.u. for valence electrons.



2.3. DENSITY FUNCTIONAL BASED METHODS 25

The Coulomb-attenuating method corrected B3LYP (CAM-B3LYP) [27] is one of the popular
Range-seperated functionals, which is the long range corrected version of B3LYP. It performs
well for charge transfer excitations in molecules which B3LYP underestimates enormously.

Range-seperated functionals improves significantly properties such as the polarizabilities of
long-chain molecules and bond dissociations. It is particularly important in TDDFT calculations
for Rydberg and charge-transfer excitations.

Other functionals The statistical average of (model) orbital potentials (SAOP) [28] is an
approach on accurate model exchange-correlation orbital-dependent potentials, which uses a
statistical average of different model potentials for the highest occupied Kohn-Sham orbital and
the rest of the occupied Kohn-Sham orbitals to get the proper Coulomb asymptotic behavior of
the xc potential that is very important for calculating the response properties.

SAOP potential can give accurate one-particle eigenspectra and their derived properties such
as electronic excitations and (hyper)polarisabilities, etc. For spectroscopic properties, they usu-
ally give results superior to those obtained with LDA or GGA potentials and it produces results
comparable with to exact (Hartree-Fock) exchange based methods but with higher computational
efficiency for electronic excitations in the condensed phase.

2.3.3 Time-dependent density-functional theory

The properties and dynamics of many-body systems in the presence of time-dependent potentials
(such as electric or magnetic fields) are investigated by the excited state methods. The general
excited state methods include higher roots in MCSCF and CI calculations, propagator method
(also called Green’s function approach or equation-of-motion method), and TDDFT. The linear
response approach in TDDFT (LR-TDDFT) [29], is a very popular approach for extracting
features like excitation energies, frequency-dependent response properties, and photoabsorption
spectra. In this section, the general formalism of TDDFT and its practical scheme LR-TDDFT
are introduced using the book by Ullrich

The conceptual and computational foundations of TDDFT are analogous to those of ground-
state DFT. In TDDFT, it is shown that the time-dependent wave function is equivalent to the
time-dependent electronic density, and then the effective potential of a fictitious non-interacting
system is derived to produces the same density as any given interacting system. But the con-
struction of such a system is more complex than ground-state DFT. Most notably because the
time-dependent effective potential at any given instant depends on value of the density at all
previous times. The development of time-dependent approximations for the implementation of
TDDFT is still far behind that of DFT. In practical calculations, this memory requirement is
usually ignored by invoking the adiabatic approximation (see Eq 2.60).

2.3.3.1 The Runge-Gross existence theorem

The Runge-Gross theorem (1984) [30] is the formal foundation of TDDFT, just like the first
Hohenberg-Kohn theorem to ground-state DFT.
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The Runge-Gross theorem: Two densities ρ(r, t) and ρ
′
(r, t), evolving from a common ini-

tial many-body state Ψ0 under the influence of two different potentials v(r, t) and v
′
(r, t) 6=

v
′
(r, t) + c(t) (both assumed to be Taylor-expandable around t0), will start to become different

infinitesimally later than t0. Therefore, there is a one-to-one correspondence between densities
and potentials, for any fixed initial many-body state.

The Runge-Gross theorem guarantees a rigorous one-to-one correspondence between time-
dependent densities and time-dependent external potentials. The one-to-one correspondence
holds both for fully interacting systems and for non-interacting particles.

2.3.3.2 Time-dependent variational principles

In ground-state DFT, the second Hohenberg-Kohn theorem plays a prominent role by which the
ground state of a system can be obtained by minimizing the expectation value of the Hamil-
tonian using the Rayleigh-Ritz variational principle. In the time-dependent case, the time evo-
lution of the systems can be derived with other variational principles called stationary-action
principles, which are analogous to the ground-state minimum principle. There are several dif-
ferent stationary-action principles established in TDDFT. In 1984, Runge and Gross introduced
a stationary-action principle which is closely related to Dirac-Frenkel principle in quantum me-
chanics. The action A is defined as a functional of the many-body wave function Ψ(t) between
an initial time t0 and a final time t1:

A[Ψ] =

∫ t1

t0

〈Ψ(t)|i ∂
∂t
− Ĥ(t)|Ψ(t)〉dt (2.54)

The true time evolution of the system is that the action is stationary to a small variation of the
wave function:

δA[Ψ] = 0 (2.55)

However this principle later turned out to be conflict with causality (a change in the potential
at a given time can not affect the density at earlier times). To solve this problem, Van Leeuven
[31, 32] later defined an action functional on Keldysh contour. Recently (2008), Vignale [33]
proposed a straightforward alternative formulation of TDDFT action principle. The differences
of these action principles are discussed in Ref. [8].

2.3.3.3 The Van Leeuwen theorem

The time-depedent Kohn-Sham (TDKS) equation and the time-dependent xc potential can be
derived with the Van Leeuwen theorem [31], without recourse to an action-based variational
principle.

The van Leeuwen theorem: For a time-dependent density ρ(r, t) associated with a many-body
system with a given particle-particle interaction v(|r−r

′ |), external potential vext(r, t), and initial
state Ψ0, there exists a different many-body system featuring an interaction v

′
(|r − r

′ |) and a
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unique external potential v
′

ext(r, t) (up to a purely time-dependent c(t)) which reproduces the same
time-dependent density. The initial state Ψ

′

0 in this system must be chosen such that it correctly
yields the given density and its time derivative at the initial time.

The Van Leeuwen theorem guarantees that we can find an auxiliary non-interacting system
that reproduces the same time-dependent density as a given interacting system. This proof of
this theorem is not presented here, for interested readers, it could be found in Ref. [8].

2.3.3.4 The time-dependent Kohn-Sham scheme

According to van Leeuwen theorem, the time-dependent density can be produced by a correspon-
dent non-interacting Kohn-Sham system. The time-dependent density is obtained by summing
over occupied Kohn-Sham single-electron states:

ρ(r, t) =

N∑
j=1

|φj(r, t)|2, (2.56)

The time-dependent Kohn-Sham one-electron equation is written as:(
−5

2

2
+ vs[ρ](r, t)

)
φj(r, t) = i

∂

∂t
φj(r, t), (2.57)

with the initial condition
φj(r, t0) = φ0

j (r), (2.58)

where φ0
j (r) is the ground-state Kohn-Sham orbital. The effective potential veff (r, t) is given by

vs[ρ](r, t) =

∫
ρ(r

′
, t)

|r− r′ |
d3r

′
+ vext(r, t) + vxc[ρ](r, t), (2.59)

where vxc[ρ](r, t) is the time-dependent xc potential. The exact expression of this functional of
the density is unknown and the construction of approximations is needed. In contrast to ground-
state DFT, where very good xc functionals exist, approximations to vxc[ρ](r, t) are still in their
infancy. However, there is a very simple procedure that allows the use of existing xc functionals
for ground-state DFT in the time-dependent theory by using the adiabatic approximation, in
which the time-dependent xc potential is approximated as the ground-state potential at a given
ground-state density which equals to the instant time-dependent density:

vxc[ρ](r, t) ≈ vAAxc (r, t) = v0
xc[ρ0](r)|ρ0(r)=ρ(r,t), (2.60)

where v0
xc[ρ0](r) is the ground-state xc potential functional. The adiabatic approximation work

surprisingly well although most situations of practical interest are nonadiabatic at least to some
degree. However due to the lack of memory (it is a local approximation in time), it has also failures
such as the optical properties of solids and long conjugated molecules, double excitations, and
charge-transfer excitations.
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2.3.3.5 Linear-response time-dependent density-functional theory

The time-dependent Kohn-Sham equation is general and can be applied to essentially any time-
dependent situation. There are two main ways to solve it: real-time propagation and linear-
response theory. If the time-dependent potential is strong (e.g.: the applied field is strong laser
field), the real-time propagation [34] of the system should be used (a full solution of the Kohn-
Sham equations) to describe non-linear phenomena. If the time-dependent external potential is
weak, as in normal spectroscopic experiments, perturbation theory applies and it is thus sufficient
to use to linear-response theory to study the system, through which the electronic excitations
can be extracted (thus the optical absorption spectra). The linear-response approach for the
time-dependent Kohn-Sham equation is introduced in this section.

Linear-response of the Kohn-Sham system In LR-TDDFT, the linear response of the
density to the applied field is a crucial quantity. The linear response of the density of an interact-
ing (real) system (χ) can be derived from that of its corresponding non-interacting (Kohn-Sham)
system (χs), which form can be known from the general linear-response theory. Therefore the
density response related properties can be extracted. This section will show how χ and χs are
related, which is summarized based on Ref. [8] and Ref. [35].

If a time-dependent field (vappl(t)) is applied to an unperturbed interacting system, this will
cause a change in the time-dependent density. The linear changes of the density can be found from
the interacting point-wise density-density response function (χ, also called the susceptibility):

δρ(r, t) =

∫ ∫
χ(r, r

′
, t− t

′
)δvappl(r

′
, t)dt

′
d3r

′
, (2.61)

which means if a small change in the external potential is made at point r
′

and time t
′
, the

density-density response function (χ(r, r
′
, t− t′)) tells how the density will change at point r and

later time t.
When the field vappl(t) is applied to the unperturbed Kohn-Sham system which corresponds

to the interacting system, it will cause a variation in the SCF potential (sum of Hartree potential
and the xc potential), thus the linearized total variation of the Kohn-Sham effective potential is:

δveff (r, t) = δvappl(r, t) + δvH(r, t) + δvxc(r, t) (2.62)

where

δvH(r, t) =

∫
δρ(r

′
, t)

|r− r′ |
d3r

′
, (2.63)

and

δvxc(r, t) =

∫
fxc(r, r

′
, t− t

′
)δρ(r

′
, t

′
)dt

′
d3r

′
(2.64)

The time-dependent xc kernal (fxc) is a key quantity of TDDFT in linear-response regime. It is
a functional of the correspoding ground-state density,

fxc[ρ](r, r
′
, t− t

′
) =

δvxc[ρ](r, t)

δρ(r′ , t′)
. (2.65)
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Then the linearized density variation of the Kohn-Sham system to the applied field can be
calculated via the non-interacting Kohn-Sham response function (χs):

δρ(r, t) =

∫ ∫
χs(r, r

′
, t− t

′
)δveff (r, t

′
)dt

′
d3r

′
. (2.66)

According to Kohn-Sham assumption, the density response in Eq. 2.61 and Eq. 2.66 should be
equal. This will result in an expression connecting χ and χs in real time space. For convenience,
the equation is transformed to the frequency representation via Fourier transform and is written
as:

χ(r, r
′
, ω) = χs(r, r

′
, ω) +

∫ ∫
χs(r, r1, ω)

(
1

|r1 − r2|
+ fxc(r1, r2, ω)

)
χ(r2, r

′, ω)d3r1d
3r2,

(2.67)
where all terms are functionals of the ground-state density. This equation contains the key to
electronic excitations via TDDFT. When the energy frequency of the applied field (ω) matches
a true transition frequency of the system, the response function χ has a pole as a function of ω.

The frequency-dependent, noninteracting Kohn-Sham density response function is known as:

χs(r, r
′
, ω) = 2 lim

η→0+

∑
q

(
ξq(r)ξ∗q (r

′
)

ω − ωq + iη
−

ξ∗q (r)ξq(r
′
)

ω + ωq − iη

)
, (2.68)

where q is a double index (a, i), representing a transition from an occupied Kohn-Sham orbital
(φi) to an unoccupied Kohn-Sham orbital (φa); ωq is transition energy of this transition which
equals the difference of the Kohn-Sham orbital energy,

ωq = εa − εi, (2.69)

and ξq(r) denotes
ξq(r) = φ∗i (r)φa(r). (2.70)

If the Hartree-exchange-correlation effects is absent (when veff = vs), χ = χs, and so the allowed
transitions of χs are exactly those of the interacting system. But in reality, the presence of the
Hartree and xc kernel shifts the transitions away from the Kohn-Sham values to the true values.

The Casida equation Casida (1995) [29] first derived the essential equations to extract the
exact excitation energies of the interacting system from the density-density response function.
He reformulated the calculation of the poles (the transition energies) of χ into a generalized Her-
mitian eigenvalue problem. This approach is nowadays implemented in many electronic-structure
codes, and it is particularly popular for calculating optical properties.

Casida showed that, finding the poles of χ is equivalent to solving the psudo-eigenvalue prob-
lem: ∑

q′

Ωqq′Fq = ω2
IqFq, (2.71)

where q (a, i) and q′ (b, j) are double indexes, q denotes an electronic transition from an occupied
Kohn-Sham orbital φi to an unoccupied Kohn-Sham orbital φa, and q′ denotes an electronic
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transition from an occupied Kohn-Sham orbital φj to an unoccupied Kohn-Sham orbital φb; and
the Ωqq′ matrix is defined as

Ωqq′(ω) = ω2
qδq,q′ + 4

√
ωqωq′Kq,q′(ω). (2.72)

Kq,q′(ω) is the frequency-dependent coupling matrix

Kq,q′(ω) =

∫ ∫
ξ∗q (r)fHxc(r, r

′, ω)ξq(r
′)d3rd3r′, (2.73)

where fHxc(r, r
′, ω) is the response kernel including the Hatree kernal and xc kernel,

fHxc(r, r
′, ω) =

1

|r− r′|
+ fxc(r, r

′, ω), (2.74)

and the frequency-dependent xc kernel is given by:

fxc(r, r
′, ω) =

∫
eiω(t−t′)fxc(r, r

′
, t− t

′
)d(t− t′). (2.75)

The eigenvalues of Eq. 2.72 provide the excitation energies ωI ; and the eigenvectors can be
used to obtain the oscillator strengths (see Eq. 1.5) that are related to the frequency-dependent
polarizability α(ω), and to assign the symmetry of each transition.

2.4 Molecular-mechanics methods

2.4.1 Introduction

The quantum-mechanical methods described in preceding sections are very computationally de-
manding for large systems such as biomolecular systems, solvation systems and material assem-
blies with many thousands of atoms or more. Molecular-mechanics methods are more compu-
tationally efficient and can be used to study larger system with many thousands to millions of
atoms.

The computational efficiency of molecular-mechanics methods comes from their two features.
Firstly, the potential energy of the system is treated as a parametric function of the nuclear co-
ordinates, which is called the force field. Their parameters are defined by fitting to experimental
or higher level computational data. This treatment bypasses the costly computation for solving
the electronic Schrödinger equation to get the electronic energy of a given nuclear configura-
tion. Secondly, the quantum feature of the nuclear motion are neglected, which means that the
dynamics of the atoms is treated by classical mechanics, i.e., Newton’s second law (see Eq. 2.1
in Section 2.1). The discussion on the MM methods in this section is based upon the book by
Jensen [6].
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2.4.2 Force field

In MM methods, each particle is assigned a radius (typically the van der Waals radius), po-
larizability, and a constant net charge. Bonded interactions are treated as “springs” with an
equilibrium distance equal to the experimental or calculated bond length. The force field is used
to calculate the molecular system’s potential energy E (denoted as V in Newton’s equation of
motion) in a given conformation as a sum of individual energy terms. The force field energy has
the form typically as:

EFF = Estretch + Ebend + Etorsion + Evdw + Eelec + Ecross. (2.76)

Each term corresponds the energy required for distorting a molecule in a specific way. The first
three terms describe the bonded atom–atom interactions: Estretch is the energy function for
stretching a bond between two atoms, Ebend represents the energy required for bending an angle,
and Etorsion is the torsional energy for rotation around a bond. While Evdw and Eelec describe
the non-bonded atom–atom interactions. The final term Ecross describes coupling between the
first three terms.

The exact functional form of the force field depends on the particular simulation program
being used. Generally, the Estretch and Ebend terms are modeled as harmonic potentials centered
(written as a Taylor expansion) around the equilibrium bond-length (values derived from exper-
iment or theoretical calculations). The simplest form of Estretch and Ebend can be written as:

Estretch = kr(∆r
AB)2, (2.77)

and
Ebend = kθ(∆θ

ABC)2, (2.78)

where kr is the force constant for bond between atoms A and B, ∆rAB is the deviation of the
distance between atoms A and B from their equilibrium bond length, kθ is the bond angle formed
by three atoms A, B and C , and ∆θABC is the bond angle deviation. For accurate reproduction
of vibrational spectra, the Morse potential can be used for Estretch. The torsional energy Etorsion
typically have multiple minima and thus cannot be modeled as harmonic oscillators and their
specific force field form varies with the implementation.
Evdw is the van der Waals energy describing the repulsion or attraction between atoms that

are not directly bonded. It is very repulsive (positive) at small distances, has a minimum that is
slightly attractive (negative) at a distance corresponding to the two atoms just “touching” each
other, and approaches zero when the distance becomes large. It is typically modeled using a 6–12
Lennard-Jones potential :

ELJ(R) = ε

(
(
R0

R
)12 − 2(

R0

R
)6

)
, (2.79)

where R0 is the minimum energy distance and ε is the depth of the minimum potential well.
The electrostatic terms Eelec is the non-bonded interaction due to internal (re)distribution of

the electrons that create positive and negative parts of the molecule. At the lowest approximation,
this can be modeled by assigning (partial) charges to each atom, or the bond may be assigned a
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bond dipole moment. The interaction between point charges is given by the Coulomb potential.
The multipole moments interaction and atomic polarization is usually neglected.

The first five terms in the general energy expression in Eq. 2.76 are common to all force fields.
The last term Ecross is typically a term to take account into the coupling between bond length
and bond angle.

2.4.3 Solving the Newton’s equation of motion

Once the force field for potential energy is chosen, the Newton’s equation of motion is ready to be
solved. The potential energy is a function of the atomic positions of all the atoms in the system.
There is no analytical solution to the equations of motion due to the complicated nature of the
potential function. There are many numerical algorithms developed for integrating this equation.
Verlet algorithm is one of the frequently used numerical method. It assumes the position, velocity
and acceleration can be approximated by a Taylor series expansion with time as the variable.
Consider a set of particles described by a position vector ri at a given time ti. A small time step
∆t later, the positions can be written by

ri+1 = ri + vi(∆t) +
1

2
ai(∆t)

2 +
1

6
bi(∆t)

3 + · · · . (2.80)

The positions of a small time step ∆t earlier were

ri−1 = ri − vi(∆t) +
1

2
ai(∆t)

2 − 1

6
bi(∆t)

3 + · · · . (2.81)

Addition of these two equations gives a way for predicting the positions a time step ∆t later
from the current and previous positions, and the current acceleration:

ri+1 = (2ri − ri−1) + ai(∆t)
2 + · · · . (2.82)

All odd terms in the Verlet algorithm disappear, i.e., the algorithm is correct to third order in
the time step. The acceleration can be calculated from the force or the potential. The time step
∆t is an important control parameter for a simulation. The largest value of ∆t is determined by
the fastest process occurring in the system, typically being an order of magnitude smaller than
the fastest process. For simulating nuclear motions, the fastest process is the motion of hydrogen
(proton, the lightest nucleus). Hydrogen vibrations occur with a typical frequency of ∼1014 s−1

(corresponding to 3000 cm−1), and therefore the time step should be chosen with the order of
one femtosecond (10−15 s).

2.4.4 Application and limitations

There are numerous types of force fields, which are designed for different purposes. MM2 [36]
was developed by Allinger, primarily for conformational analysis of hydrocarbons and other
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small organic molecules. Consistent force field (CFF) [37] was developed by Warshel, Lifson and
their coworkers as a general method for unifying studies of energies, structures and vibration
of general molecules and molecular crystals. Empirical conformational energy program for Pep-
tides (ECEPP) was developed specifically for modeling of peptides and proteins. AMBER [38],
CHARMM [39] and GROMOS [40] have been developed primarily for molecular dynamics of
macromolecules, although they are also commonly applied for energy minimization. OPLS [41]
(optimized potential for liquid simulations) was developed by Jorgensen, which was optimized
to fit experimental properties of liquids.

The application of MM can be for time-independent or time-dependent phenomena. For the
time-independent case, MM is usually used for energy minimization (geometry optimization),
that is finding the lowest energy conformation of a molecule or identifying a set of low-energy
conformers that are in equilibrium with each other. Determining the conformation associated
with the global minimum is often a challenging task (more difficult than finding the local min-
ima) due to the large number of degrees of freedom in macromolecules. The transition state also
can be optimized by energy minimization, which is actually reduced to calculating the energy at
a given geometry using the force field parameters. Therefore MM can be used to calculate binding
constants, protein folding kinetics, etc. For the time-dependent case, MM can be used to simulate
physical movements of atoms and molecules (to get their trajectory) and this computation sim-
ulation is called molecular dynamics (MD). The application of MD using MM is in several areas.
In biochemistry and biophysics, MD is frequently used to refine three-dimensional structures of
proteins and other macromolecules based on experimental constraints from X-ray crystallogra-
phy or nuclear magnetic resonance (NMR) spectroscopy. In physics, MD is used to examine the
dynamics of atomic-level phenomena that cannot be observed directly, such as thin film growth
and ion-subplantation. It is also used to examine the physical properties of nanotechnological
devices that have not or cannot yet be created.

Although MM (or classical) methods are fast, they suffer from several limitations. They re-
quires extensive parameterization; energy estimates obtained are not very accurate; they cannot
be used to simulate reactions where covalent bonds are broken or formed; and they are limited
in their abilities for providing accurate details regarding the chemical environment.

2.5 Hybrid quantum-mechanics/molecular-mechanics
methods

2.5.1 Introduction

As discussed in the preceding sections, QM method are accurate but expensive thus limiting
application to small systems; while MM methods are fast (cheap) but inappropriate for the de-
scription of bond-making and bond-breaking. There are cases where our interest is in chemical
processes in solution and in proteins, where the environment has important effects thus requir-
ing an explicit representation. This is the motivation for the development of hybrid quantum-
mechanics/molecular-mechanics (QM/MM) methods, which combine the strengths of the QM
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(accuracy) and MM (speed) methods. The QM/MM approach was firstly introduced in the paper
of Warshel and Levitt in 1976. [42] Later, along with M. Karplus, they won the 2013 Nobel Prize
in Chemistry for “the development of multiscale models for complex chemical systems”. In this
section, the basic concept of QM/MM and popular QM/MM approaches are introduced using
the book by Cramer [7] as main reference.

The general idea of QM/MM methods is that large chemical systems may be partitioned into
two regions: an electronically important region (QM region) that is treated quantum chemically,
and the residual part (MM region) which is described with classical methods and acts on the
QM region in a perturbative fashion. The Hamiltonian for the entire system is a hybrid of QM
and MM methodologies:

Ĥtot = ĤQM + ĤMM + ĤQM/MM , (2.83)

where ĤQM accounts for the full interaction energy of all quantum mechanical particles with

one other, ĤMM accounts for the full interaction energy of all classical particles with one other
and it doesn’t act on the electronic wave function, and ĤQM/MM accounts for the energy of all
interactions between one quantum mechanical particle and one classical particle.

The QM/MM methods can be classified by the boundary separating the QM region from the
MM region: it cuts the non-bonded QM/MM regions or bonded QM/MM regions.

2.5.2 Non-bonded QM/MM regions

In the cases that the QM/MM boundary cuts no bonds, the coupling of the QM and MM regions
can be represented in a straightforward way.

Unpolarized QM/MM interactions

If the polarization effect of the MM region is not considered (i.e., the Hamiltonian ĤQM/MM

doesn’t act on the electronic wave function), the QM/MM interaction energy is computed in a
way closely resembling the standard approach for MM non-bonded interactions. Then the total
energy of the system is computed as:

Etot = 〈Ψ|ĤQM |Ψ〉+ EMM + EQM/MM , (2.84)

where Ψ is electronic wave function. An example of this type of method is the AM1/OPLS/CM1
(AOC) method for simulations of molecules in solvent developed by Kaminski and Jorgensen in
1998. Since the polarization effect of the MM region is neglected, this approach it is not very
successful at predicting solvation effects on these equilibria in non-polar solvents.
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Polarized QM/unpolarized MM

To include the polarization effect of the MM region on the QM region, the environment-induced
relaxation of the QM wave function should be taken into account explicitly. This can be included
by taking account the explicit electrostatic interaction between the QM electrons and the MM
atoms. The coupling Hamiltonian can be divided into two parts:

ĤQM/MM = Ĥ1
QM/MM + Ĥ2

QM/MM , (2.85)

where Ĥ1
QM/MM accounts for the Coulomb interaction between the QM electrons and the MM

atoms and it acts on the electronic wave function, and Ĥ2
QM/MM accounts for the Coulomb and

van der Waals interaction between the QM nuclei and the MM atoms and it doesn’t act on the
electronic wave function. Thus the total energy is written as:

Etot = 〈Ψ|ĤQM |Ψ〉+ EMM + 〈Ψ|Ĥ1
QM/MM |Ψ〉+ E2

QM/MM . (2.86)

2.5.3 Bonded QM/MM regions

There are cases where a non-bonded separation for QM/MM regions is not practical, for example,
the QM region consists of the substrate for a large enzyme and at least one atom from a side
chain residue in the active site. Then the coupling term is more complicated. Three popular
approaches are introduced here.

Linear combinations of model compounds

In the linear combination of model compounds scheme, the QM region is capped with hydrogen
atoms (or bulky groups). The energy of the whole system is calculated as a linear combination
of model compounds of different size and at different levels of theory and has the simplest form:

Etot = ElargeMM + (EsmallQM − EsmallMM ), (2.87)

where small denotes the QM region that is computed at both the MM and QM levels, large
denotes the whole system that is usually a macromolecule, which is described at the MM level.
In this strategy, the quantum effects are captured in the small system, and the steric energy1

associated with MM region is captured as an “embedding” energy (the difference between the
MM energy of the small system and the large system).

1Here the steric energy is not considered as its fundamentally meaning (electronic exchange-repulsion),
but as a distinction from more classical electrostatic interactions.
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Link atom method

There are situations that the influence of the MM region on the QM region to which it is bonded
cannot be regarded simply as steric. For example, in a large protein, polar and possibly charged
residues in an MM region will polarize a QM region in the same protein. The link atoms approach
might be used to take account of the strong coupling between the two regions. In this approach,
the QM region is truncated and capped with hydrogen atoms at every bond cut by the QM/MM
boundary. But the QM region and MM region are coupled explicitly via dummy atoms. The
total energy evaluation is more complicated, which can be calculated with Eq. 2.86 plus the
bonds-cutting energy and bonding energy by the QM/MM boundary. However, the link atoms
cause instability in MD simulations at the QM/MM level because of the stiff force constants
maintaining linearity of bonds crossing the boundary and the large electrostatic interactions
involving atoms near the boundary.

Frozen orbital method

The frozen orbital method is developed to overcome the instability in the link atom approach. A
buffer layer is introduced between the polarizable QM region and the point-charge-represented
MM region. This buffer layer is called the auxiliary region, which is represented by a continuous
unpolarizable charge density and characterized by nuclei having their normal nuclear charges,
and electron density expressed in some set of basis functions. The Hamiltonian of the total system
can written as

Ĥtot = ĤQM + ĤMM + ĤQM/MM + Ĥaux + ĤQM/aux + Ĥaux/MM . (2.88)

The Ĥaux and Ĥaux/MM terms are entirely classical classical terms. The former is s simply the
electrostatic interaction within the auxiliary region, while the latter is the electrostatic interaction
between the auxiliary region (the frozen density and its nuclei) and the MM point charges and
non-bonded Lennard-Jones terms between the two regions. The ĤQM/aux term adds two-electron
integrals with the orbitals for one electron being frozen to the Fock operator. Therefore compared
with Eq. 2.86, the total energy of the system contains three new terms

Etot = 〈Ψ|ĤQM |Ψ〉+EMM +〈Ψ|Ĥ1
QM/MM |Ψ〉+E

2
QM/MM +Eaux+〈Ψ|ĤQM/aux|Ψ〉+Eaux/MM .

(2.89)
The QM/MM methods are powerful for their computing efficiency and availability of quantum-

mechanical study for the QM region. However, there are also some challenging problems include:
the parameterization required for the boundary treatment, the choice of the size of the QM
region, the polarization effect of the QM region on the MM region, etc.



Chapter 3
Computational methods in this thesis work

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If it
doesn’t agree with experiment, it’s wrong.”

— Richard P. Feynman

3.1 Introduction

Frozen-density embedding theory (FDET) combined with LT-TDDFT (see Section 2.3.3.5) is
used in this thesis work to study the vertical transitions of organic chromophores in condensed
phase. In this chapter, an introduction to FDET for ground-state electronic structure calculation
is given firstly. Then it is followed by the extension of FDET to excited state calculations. Finally,
the approximations for FDET in practical calculations are introduced.

3.2 Frozen-density embedding theory: for ground states

In FDET, the effect of the environment on the electronic structure of an embedded system is
taken into account by an effective embedding potential, which was introduced by Wesolowski and
Warshel [43]. This embedding potential depends explicitly on electron densities corresponding to
the embedded subsystem and its environment. FDET allows accurate and efficient descriptions
of the coupling between the embedded system and its environment. It is in principle exact
and does not rely on empirical parametrization that is usually needed in QM/MM methods.
Therefore FDET is a proper approach for tackling studies on large systems especially molecules
in condensed-phase environment.

3.2.1 Representation of the electron density of the total system

In FDET, the total system is treated as two subsystems: an embedded system that is the part
of interest (e.g., a solvated molecule), and the environment (e.g., solvent). In this thesis, the
embedded system is referred as subsystem A and the environment is referred as subsystem B.
The electron density of the total system (ρ) is represented as the sum of the electron densities
of the two subsystems,

ρ(r) = ρA(r) + ρB(r). (3.1)

37



38 CHAPTER 3. COMPUTATIONAL METHODS IN THIS THESIS WORK

The electron densities of the two subsystems are allowed to overlap. But they are subject to the
condition that both integrate to an integer number of electrons, and the sum of these two integer
numbers should be equal to the total number of the electrons in the total system. If a N-electron
total system is considered, these conditions can be expressed as:∫

ρA(r)dr = NA (3.2)∫
ρB(r)dr = NB (3.3)

NA +NB = N. (3.4)

The electron density of the embedded system (ρA(r)) is described at quantum-mechanical level.
It is typically represented using one the following auxiliary quantities:

• the occupied orbitals of a non-interacting reference system {φAi (r), i = 1, · · · , NA} (φAi (r)
is the one-electron orbital) , [43]

• the occupied and unoccupied orbitals of a non-interacting reference system, [44]

• the interacting wave function, [45]

• the one-particle density matrix. [46]

In this thesis work, only the first two strategies for ρA(r) are used.
The electron density of the environment (ρB(r)) is called frozen density, as it is a given fixed

function for a given electronic problem.

3.2.2 Total energy functional

FDET concerns minimizing the total energy for the N-electron system in the external potential
v(r) in the presence of the constraint ρ(r) ≥ ρB(r):

Eemb[ρB ] = min
ρ(r) ≥ ρB(r) ≥ 0∫

ρ(r)d~r = N

EHKv [ρ] (3.5)

where EHKv [ρ] is the Hohenberg–Kohn total energy functional (see Eq. 2.24) and ρB is a given
function.

The Hohenberg–Kohn total energy functional can be expressed as the Kohn-Sham total energy
functional (EKSv [ρ]), which can be written as a bi-functional of the densities of the two subsystems
[47]:

EHKv [ρ] = EKSv [ρ]

= E[ρA, ρB ]

= Ts[ρA] + Ts[ρB ] + Tnads [ρA, ρB ] + V [ρA + ρB ] + J [ρA + ρB ] + Exc[ρA + ρB ],(3.6)
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where V [ρ] =
∫
ρ(r)v(r)d3r is the interaction energy with an external potential v(r) (in the case

of no applied field, V is the nuclear attraction energy), J [ρ] is the Coulomb electron-electron
repulsion energy functional defined in Eq. 2.22, and Ts[ρ] is the kinetic energy functional of the
non-interacting electron system and is defined as

Ts[ρ] = min
Ψs→ρ

〈Ψs|T̂ |Ψs〉, (3.7)

where Ψs are single-determinantal wave functions constructed using {φi} yielding the given
electron density ρ. Tnads [ρA, ρB ] is the non-additive kinetic energy defined as:

Tnads [ρA, ρB ] = Ts[ρA + ρB ]− Ts[ρA]− Ts[ρB ]. (3.8)

A non-additive xc energy is also defined in a similar way as the non-additive kinetic energy for
later use:

Enadxc [ρA, ρB ] = Exc[ρA + ρB ]− Exc[ρA]− Exc[ρB ]. (3.9)

3.2.3 Kohn-Sham-like equations

For a given frozen electron density ρB , the electron density of subsystem A (ρA) can be de-
termined by minimizing the total energy bi-functional in Eq. 3.6 with respect to ρA, under
the constraint described in Eq. 3.5. This constrained search can be performed by solving the
Euler-Lagrange equation:

δE[ρA, ρB ]

δρA
= µ. (3.10)

If ρA determined from this minimization is v-representable, it can be obtained from a set of
Kohn-Sham orbitals

ρA =

NA∑
i

|φAi |2, (3.11)

where the orbitals φAi are determined by a set of Kohn-Sham equations with constrained electron
density (KSCED equations),(

−5
2

2
+ vKSeff [ρA](r) + vemb[ρA, ρB ; r]

)
φAi (r) = εAi φ

A
i (r), i = 1, · · · , NA, (3.12)

where vKSeff [ρA](r) is the Kohn-Sham effective potential defined in Eq. 2.36, and vemb[ρA, ρB ; r]
is the effective embedding potential describing the interaction between the subsystem A and the
environment (representing the effect of the environment on the subsystem A) and it reads

vemb[ρA, ρB ; r] = vBext(r) +

∫
ρB(r′)

|r− r′|
dr′ +

δTnads [ρA, ρB ]

δρA(r)
+
δEnadxc [ρA, ρB ]

δρA(r)
, (3.13)
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where vBext(r) is the potential generated by the nuclei in the environment in the absence of
externally applied field. The FDET embedding potential vemb[ρA, ρB ](r) defined in Eq. 3.13 has
the following features:

• it is a local potential,

• it is expressed as a functional of ρB(r),

• it depends on ρA(r).

The last feature is important because it means that the corresponding energy is not a simple
integral of the product of the embedding potential and the density. This distinguishes the FDET
embedding potential qualitatively from the electrostatic potential generated by the environment
that is frequently used as the embedding potential in QM/MM schemes.

3.3 Frozen-density embedding theory: extension to
excited states

FDET is combined with LR-TDDFT to evaluate the environment effect on the electronic excita-
tions of the embedded system. The generalization of FDET for excited states within LR-TDDFT
framework has been derived by Casida and Wesolowski [48]. In this approach, the embedded or-
bitals for subsystem A (φAi ) obtained from Eq. 3.12 are used to construct the response of the
system. The total response kernel includes the terms arising from the embedding potential besides
the Hartree and xc kernel (see Eq. 2.74) and it reads (in frequency-independent from)

f total(r, r′) = ffree(r, r′) + femb(r, r′), (3.14)

where ffree(r, r′) is the response kernel of isolated subsystem A, and femb(r, r′) is the embedding
kernel. Within the neglect of dynamic response of the environment (NDRE) approximation [44]
and the adiabatic approximation in TDDFT, the embedding kernel has the form

femb(r, r′) =
δ2Enadxc [ρA, ρB ]

δρA(r)δρA(r′)
+
δ2Tnads [ρA, ρB ]

δρA(r)δρA(r′)
. (3.15)

FDET with NDRE approximation is referred as uncoupled frozen-density embedding (FDE(u))
in Ref. [49]. This NDRE approximation is valid only for the interfaces where excitations are
localized only on the embedded system and in the cases where the two subsystems does not
absorb in the same spectral range. If NDRE approximation cannot be applied, as in the case
of environment and embedded subsystem absorbing at similar frequency, the method based on
generalization of ground-state subsystem DFT [48] is indispensable as shown comprehensively in
Ref. [49].

If the same approximations are used for Enadxc [ρA, ρB ] and Tnads [ρA, ρB ] in expressions for the
energy, embedding potential, and response kernel, also the excitation energies are self-consistent
with other properties of the embedded system.
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3.4 Approximations in practical frozen-density
embedding calculations

To solve the Kohn-Sham-like equations defined in Eq. 3.12, ρB(r) is given as an input quantity
generated with an adequately chosen method (introduced in detail in Subsection 3.4.2), and the
remaining unknown terms should be approximated:

• the xc functional for vKSeff [ρA](r),

• the non-additive xc energy functional Enadxc [ρA, ρB ] for vemb[ρA, ρB ; r],

• the non-additive kinetic energy functional Tnads [ρA, ρB ] for vemb[ρA, ρB ; r].

The first two terms above can be approximated with the existing xc functionals. Moreover, it is
possible to use different xc approximations for these two terms in practical calculations. The last
term can be approximated with several strategies introduced in the following subsection.

3.4.1 Approximating the non-additive kinetic energy bi-functional

3.4.1.1 Thomas-Fermi approximation

In the original work of Wesolowski and Warshel [43], Tnads [ρA, ρB ] was constructed with several
existing kinetic energy functionals for Ts[ρ]. A simple strategy is to use Thomas-Fermi expression
for kinetic energy functional,

Ts[ρ] ≈ TTF [ρ] = CTF

∫
ρ5/3(r)dr, (3.16)

where the constant CTF = 3
10 (3π2)2/3. The Thomas-Fermi approximation to Tnads [ρA, ρB ] is

written as

Tnads [ρA, ρB ] ≈ Tnad(TF )
s [ρA, ρB ]

= CTF

∫ (
(ρA(r) + ρB(r))5/3 − ρA(r)5/3dr − ρB(r)5/3

)
dr, (3.17)

3.4.1.2 Gradient-dependent approximations

The gradient-dependent approximations to Tnads [ρA, ρB ] are derived from a group of gradient-
dependent approximations to Ts[ρ],

Tnads [ρA, ρB ] ≈ Tnad(GGA)
s [ρA, ρB ] = TGGA[ρA + ρB ]− TGGA[ρA]− TGGA[ρB ]. (3.18)
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The gradient-dependent approximations to Ts[ρ] (TGGA[ρ]) have the general analytic expression

TGGA[ρ] = CTF

∫
ρ(r)5/3F (s)dr, (3.19)

where F (s) is the enhancement factor that depends on a dimensionless quantity s. Various
analytic forms of F (s) are proposed. The enhancement factor proposed by Perdew and Wang for
the as the exchange energy functional [22] and reparametrized for the kinetic energy by Lembarki
and Chermette [50] leads to GGA97 approximation to Tnads [ρA, ρB ], which was considered the
most accurate approximation to Tnads [ρA, ρB ] for small overlap ρA and ρB [51].

3.4.1.3 Non-decomposable-second-derivatives approximation

The non-decomposable second derivatives (NDSD) approximation to δTnads [ρA, ρB ](r) was de-
veloped by Wesolowski and coworkers. [52] This approximation was designed to to improve
the local behavior of the effective embedding potential near the nuclei in the environment. In
its construction, the exact behavior of δTnads [ρA, ρB ](r)/δρA(r) at ρA → 0 and the condition∫
ρB(r)dr = 2 given in Eq. A6 of Ref. [52] are taken into account. It provides the analytical

form of the corresponding approximation to the functional Tnads [ρA, ρB ](r), which has the form

of T
nad(TF )
s [ρA, ρB ] plus the corrections (see Eq. 20 in Ref. [52]). The analysis of the accuracy

of the embedding potential based on this approximation shows that NDSD is of the same or su-
perior quality as GGA97. [52] However, it is non-decomposable, i.e., it cannot be used to obtain
the analytic expression for the kinetic energy functional Ts[ρ]; and the numerical values of only
first- and second derivatives of density are needed, similarly to the GGA approximations. Its
name (non-decomposable second derivatives) reflects these two features.

Thomas-Fermi, GGA97, and NDSD are all semi-local approximations for Tnads [ρA, ρB ] (and
the corresponding δTnads [ρA, ρB ](r)/δρA(r). The potential δTnads [ρA, ρB ](r)/δρA(r) is determined
by the densities ρA and ρB , and their first- and second derivatives at the same point r. Such
potentials were shown to fail if the overlap between ρA and ρB is large [53–55], which are the cases
of an embedded subsystem covalently bound to the environment. For such cases, an alternative
strategy to approximate δTnads [ρA, ρB ](r)/δρA(r) is becoming increasingly popular which is based
on numerical inversion of the Kohn–Sham potential [55–57].

3.4.2 Approximating the electron density of the environment (ρB)

In FDET, any observable evaluated for the embedded species is a functional of the frozen density
corresponding to the environment (ρB). Approximating ρB is a key issue for practical applications
of FDET, because the choice of the method to generate ρB significantly affects the accuracy of
the calculations and the computational efforts required. In this subsection, the popular ways of
generating ρB as well as their strengths and limitations in practical calculations are introduced
based on this thesis work.
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3.4.2.1 Kohn-Sham calculations for the isolated environment

When it is computationally affordable, it is preferable to obtain ρB via solving Kohn-Sham
equations for the entire isolated environment (usually less expensive approximations used than
those for subsystem A). If the subsystem A is neutral, the polarization of subsystem B by the
field generated by subsystem A can be negligible [58]. However, if the subsystem A is charged, the
neglect of the polarization of subsystem B by subsystem A may lead to only qualitatively good
results (see Ref. [59]). In this case, using a pre-polarized ρB [59] or performing the freeze-and-thaw
calculations [60] can be used to get more accurate results.

In this strategy, mutual polarization of molecules in the environment is taken into account.
Ref. [58] shows that ρB generated by inexpensive Kohn-Sham-based methods is usually an ad-
equate approximation for hydrogen-bonded environments. However, this strategy becomes im-
practical when the size of the environment is very large or large amount of FDET calculations
are required. In this thesis work, this strategy is used in highly accurate calculations for the
electronic excitation of retinal in protein environment.

3.4.2.2 Superposition of molecular densities

If the environment consists of many weakly interacting (non-bonded) molecules, approximating
ρB by means of a sum of molecular density (electron density of the molecule) is an appealing
strategy to save the computational efforts. But this strategy neglects the mutual polarization
among the molecules, therefore the accuracy of the obtained results can be affected. The presence
of hydrogen-bonded chains of molecules in the environment is the “worst scenario” as far as the
applicability of this strategy. In fact, to avoid the apparent errors, one can approximate ρB by
the sum of the electron densities of molecular clusters. In this way, the bonded molecules can be
considered as a molecular cluster to avoid the neglect of the mutual polarization among them.
For the constraints in the usage of this strategy, it is less popular than the first one introduced.
However, it can be an efficient and practical strategy for qualitative analysis of the electron
density of the protein environment.

3.4.2.3 Superposition of atomic densities

For ionic-solid environment where the ions are weakly interacted, the sum of atomic densities
(defined below) can be considered as an efficient and reasonable accurate approximation to ρB .
This strategy can expressed as

ρB(r) ≈
NatomB∑
i=1

(niB − ZiB)ρiB(r), (3.20)

where i indicates the atom in subsystem B, NatomB is the number of atoms in subsystem B,
ρiB(r) denotes the spherically symmetric electron density integrating to the total charge equal to
the atomic number ZiB , and niB denotes the net charge of the atom.
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When the effect of the environment on the electronic structure of subsystem A is dominated
by confinement effect, this strategy can be also used to approximate ρB by taking niB = 0.

3.4.2.4 Statistically averaged electron density for solvent environment

For solvation system where the solvent environment has a flexible structure, a statistically av-
eraged electron density (denoted as 〈ρB〉 here) of a solvent can be used in FDET to evaluate
the average effect of the solvent on molecular properties of the embedded solute. This can be
done by replacing ρB and vBext in FDET equations with 〈ρB〉 and

〈
vBext

〉
(the ensemble averaged

potential generated by the nuclei in the environment), respectively. A straightforward way to
obtain 〈ρB〉 and

〈
vBext

〉
is averaging ρB and vBext from explicit atomic level simulations, from a

MD trajectory representing the statistical ensemble of the system, for instance. 〈ρB〉 and
〈
vBext

〉
can be also obtained by a procedure based on a classical statistical-mechanics theory of liquids.
Kaminski et al. [61] introduced such a procedure where the solvatchromism was studied with the
use of 〈ρB〉 and

〈
vBext

〉
in FDET. In this procedure, the three-dimensional reference interaction

site model (3D-RISM) integral equation theory [62] with Hirata-Kovalenko closure [63] is used to
obtain the classical site distributions of a molecular solvent around a solute of arbitrary shape,
that is, the probability of finding a particular atom in a given volume element. From the force-
field parameters for both the solute and the solvent and other primary conditions such as the
number density of the solvent, one can obtain solvent site distributions with this theory. Note
that 3D-RISM site distributions do not represent any snapshot in a trajectory and they are re-
lated to the nuclei rather than the electrons. Kaminski et al. [61] proposed a way to approximate
electron density from 3D-RISM site distributions. The key ideas of 3D-RISM theory and the way
of approximating 〈ρB〉 from 3D-RISM site distributions are introduced below.

The solute-solvent 3D-RISM integral equation can be derived from the six-dimensional, molec-
ular Ornstein-Zernike integral equation for the solute–solvent correlation functions by averaging
out the orientation degrees of freedom of solvent molecules while keeping the orientation of the
solute macromolecule that is described at the three-dimensional level. It is written as,

huv
γ (r) =

∑
α

∫
dr′cuv

α (r− r′)χvv
αγ(r)′. (3.21)

In Eq. 3.21, huv
γ (r) is the 3 dimensional total correlation function of solvent site γ around the

solute macromolecule, where the index γ denotes the solvent interaction sites around the solute
and the superscripts u and v denote the solute and solvent species, respectively. huv

γ (r) gives the
normalized deviation of the solvent density from its bulk value. It is related to the 3 dimensional
solute–solvent site distribution function (guvγ ) as, guvγ (r) = huvγ (r)+1. cuv

α (r) is the 3 dimensional
direct correlation function representing “direct” correlations between the solute and solvent site
α. It has the long-range asymptotic behavior of the 3 dimensional solute-solvent site interaction
potential (uuv), cuv

γ (r) ∼ −βuuv
γ (r), where β = 1/kBT is the inverse temperature with the

Boltzmann constant kB. χvv
αγ is the site-site susceptibility of pure solvent. It gives the response of

site γ to the presence of site α at separation r in terms of the distributions in pure bulk solvent,
χvv
αγ(r) = ωvv

αγ(r)+ρv
α h

vv
αγ(r). ωvv

αγ(r) is the intramolecular matrix that specify the intramolecular
correlations of solvent molecules. ρv

α is the bulk solvent site number density. hvv
αγ(r) is the site-
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site radial correlation functions of pure bulk solvent and it is obtained in advance from the
dielectrically consistent reference interaction site model (DRISM) theory developed by Perkyns
and Pettitt [64] that provides a consistent description of the dielectric properties for ions in polar
solvent.

To solve the 3D-RISM integral equation denoted in Eq. 3.21, a closure for relating huv
γ (r) and

cuv
γ (r) is needed. In the work of Kaminski et al. [61], the closure developed by Kovalenko and

Hirata is used. It is written as

guv
γ (r) =

{
exp
(
duv
γ (r)

)
, for duv

γ (r) ≤ 0

1 + duv
γ (r), for duv

γ (r) > 0
;

duv
γ (r) = −βuuv

γ (r) + huv
γ (r)− cuv

γ (r).

(3.22)

To obtain the average electron density of the solvent, we need a second step called “dressing up”
the site distributions with electrons. 〈ρB(r)〉 is approximated as a sum of spherically symmetric
electron density of each type of atom in the solvent system,

〈ρB(r)〉 =
∑
γ

guvγ (r)qvγρ
v
γ , (3.23)

where guvγ (r) is the 3D solute-solvent site distribution function; qvγ denotes the spherically sym-
metric electron density of an atom in the solvent; and ρvγ is the bulk solvent site number density.

The strategy using 〈ρB〉 in FDET for solvation systems takes account into specific solvent-
solute interactions in a statistical manner. It has been proved as a rather accurate and efficient
way to study solvatochromism. [61] However, it introduces additional computational difficulties
by requiring force-field parameters for both the solvent and solute species in solving the 3D-RISM
integral equations.
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Chapter 4
Absorption band shapes of fluorenone in zeolite-L channel

“Everybody is ignorant, only on different subjects.”
— Will Rogers

4.1 Overall presentation of the article

Zeolite L has arrays of parallel channels with small pore openings and cage diameters imposing
severe space restrictions and geometrical constraints to the molecules in the channel. As a result,
very high concentrations of well-oriented photoactive molecules can be obtained and the entire
system may exhibit peculiar properties (described in the introduction of the original paper).
Therefore it is very interesting to study the zeolite-L environment effect on the properties of the
guest molecules in its channel.

The aims of this work includes: (1) developing the computational strategy for simulating the
UV-vis absorption bands of fluorenone in zeolite-L channel, using the measured absorption bands
as references; (2) analyzing the different components of the environment effects on the absorption
bands of fluorenone via the analysis for the simulated UV-vis absorption spectra; (3) confirming
the orientation of fluorenone in the zelite-L channel via the analysis of the simulated UV-vis
absorption spectra.

Through this work, the zeolite-L and water molecules in the channel were found causing a
redshift in the lowest absorption band of fluorenone. This effect may originated from the changes
in the internal geometry of fluoreone and the orientation of fluoreone with respect to the channel,
and the electrostatic interaction between the zeolite-L framework and the fluorenone molecule.
Moreover, the fluorenone dye is confirmed to orientate with its long axis parallel to the channel
of the zeolite-L channel.

As mentioned in the introduction of the thesis (Chapter 1), the simulation of UV-vis absorption
spectrum usually involves two steps: modeling the structure of the target system, and calculating
the excitation energy and oscillator strength of the vertical transitions where the measured
spectra are often taken as references. This project was completed in a collaborative work. The
finite structures (MD trajectories) of the fluorenone-zeolite-L system were calculated by Gloria
Tabacchi and Ettore Fois. The referent measured spectra were obtained by André Devaux and
Gion Calzaferri. The calculation of the vertical electronic transitions and the simulation of the
absorption band shape were performed by Xiuwen Zhou and Tomasz A. Wesolowski.

47
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4.2 Reprint of the article
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First-principles simulation of the absorption bands of
fluorenone in zeolite L†

Xiuwen Zhou,a Tomasz A. Wesolowski,*a Gloria Tabacchi,b Ettore Fois,*b

Gion Calzaferri*c and André Devauxd

The absorption spectrum of fluorenone in zeolite L is calculated from first-principles simulations. The

broadening of each band is obtained from the explicit treatment of the interactions between the chromophore

and its environment in the statistical ensemble. The comparison between the simulated and measured spectra

reveals the main factors affecting the spectrum of the chromophore in hydrated zeolite L. Whereas each

distinguishable band is found to originate from a single electronic transition, the bandwidth is determined by

the statistical nature of the environment of the fluorenone molecule. The K+� � �OQC motif is retained in all

conformations. Although the interactions between K+ and the fluorenone carbonyl group result in an average

lengthening of the CQO bond and in a redshift of the lowest energy absorption band compared to gas phase

or non-polar solvents, the magnitude of this shift is noticeably smaller than the total shift. An important factor

affecting the shape of the band is fluorenone’s orientation, which is strongly affected by the presence of water.

The effect of direct interactions between fluorenone and water is, however, negligible.

1 Introduction

The one-dimensional channel framework of zeolite L,1,2 acting as a
host for a large variety of guests, has encouraged syntheses of
guest–host composites with remarkable organizational patterns.3–18

These are currently investigated for applications in different fields,
ranging from sensing in analytical chemistry, biology, and
diagnostics,15–18 to applications in optical and electro optical
devices3–5,19–21 and extending to solar energy utilization, e.g. in
the form of luminescent solar concentrators.3,4,22–25 Advanced
optical microscopy techniques have enabled researchers to obtain
detailed information regarding the properties of the guests.11,26–31

However, modeling studies needed for interpreting and
understanding the experimental data remain challenging, mainly
because of the considerable extension of the systems to be
handled in the calculations. We have, nevertheless, recently been
successful in explaining experimental observations by performing

first-principles calculations on systems consisting of hundreds
of atoms.32–34

Important organic molecules used in guest–zeolite-L composites
bear carbonyl groups. Fluorenone was found to be an excellent
probe molecule for studying the behavior and interactions of the
carbonyl group of such guests inside the channels of zeolite L,
both experimentally and theoretically.33,34 The previously reported
computer simulation studies of fluorenone inside dry and
hydrated zeolite L channels focused on the structure and
interactions of fluorenone with the channels and the charge
compensating cations as well as with the water molecules
present as co-guests.32 It was comprehensively shown that the
water molecules were incapable of displacing the fluorenone
out of the zeolite L channel because of the strong interactions
between fluorenone’s carbonyl group and the extra-framework
potassium cations. The K+� � �OQC arrangement was found to
be the leitmotif determining the behavior of fluorenone in the
channel. Without breaking this arrangement, the fluorenone
molecule can, however, adopt various orientations owing to the
sufficiently large diameter of the channel. The ab initio molecular
dynamics simulations revealed that the reorientation time of
fluorenone in hydrated zeolite L is about twice as long as that in
dry zeolite L. Turning to the absorption spectra of fluorenone, the
bands in the 200–420 nm range observed in gas phase and in non-
polar media are rather well understood. They all originate from
four electronic transitions of p - p* character.35 This interpreta-
tion was confirmed by Fois et al.32 The shape of the electronic
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CH-1211 Genève 4, Switzerland. E-mail: tomasz.wesolowski@unige.ch
b Department of Science and High Technology, University of Insubria, and INSTM,

Via Lucini 3, I-22100 Como, Italy. E-mail: fois@fis.unico.it
c Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3,

CH-3012 Bern, Switzerland. E-mail: gion.calzaferri@iac.unibe.ch
d Institute of Inorganic Chemistry, University of Fribourg, CH-1700 Fribourg,

Switzerland

† Electronic supplementary information (ESI) available. See DOI: 10.1039/
c2cp42750h

Received 6th August 2012,
Accepted 16th October 2012

DOI: 10.1039/c2cp42750h

www.rsc.org/pccp

PCCP

PAPER

D
ow

nl
oa

de
d 

on
 2

7 
M

ar
ch

 2
01

3
Pu

bl
is

he
d 

on
 1

8 
O

ct
ob

er
 2

01
2 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
2C

P4
27

50
H

View Article Online
View Journal  | View Issue



160 Phys. Chem. Chem. Phys., 2013, 15, 159--167 This journal is c the Owner Societies 2013

absorption spectrum of fluorenone in zeolite L and in non-polar
solvent (cyclohexane) is similar (see Fig. 5 in ref. 33 and the data
shown in the present work). However, the former is less structured
and the maxima of the bands are red-shifted. It is tempting,
therefore, to assign the observed bands of fluorenone in zeolite L
to the same electronic transitions as the ones in the gas phase and
in cyclohexane. The disappearance of the vibrational features can
be due to the structural fluctuations of the environment of
fluorenone in zeolite L. In contrast to cyclohexane, the zeolite
environment includes components strongly interacting with the
chromophore: water molecules, extra framework cations, and the
zeolite framework. The shifts in the maxima of the absorption
bands could be attributed to the average effect of the interactions
between fluorenone and charged atoms (potassium cations) or
polar molecules (water) as well as to the effect of long-range
interactions between the fluorenone and the zeolite framework.
The overall effect of the environment on the absorption spectrum
can be considered as resulting from two factors: one being electro-
nic and the other structural. Interactions with the environment
affect fluorenone’s electronic structure at any instantaneous geo-
metry. On the other hand, these interactions determine both the
average internal geometry of the chromophore and its relative
orientation in the zeolite channel in a given statistical ensemble.
The orientation of fluorenone is especially interesting as it is
directly related to the properties of fluorenone as a component of
the energy relay system in artificial antennas. Discriminating the
direct effects induced by the presence of water molecules in the
zeolite channel, which are due to the potential they generated at a
given geometry, from the indirect ones such as their impact on the
orientation of fluorenone in the channel, is crucial for under-
standing the experimental data concerning the electronic proper-
ties and excited state dynamics of the composite as well as the
whole energy relay mechanism in artificial antennae systems based
on zeolite L. Experimental estimation of the importance of these
two types of effects is rather difficult.3,4 However, availability of an
adequate sample of instantaneous geometries generated in numer-
ical simulations for the corresponding statistical ensembles makes
it possible to assess directly the relative importance of these two
effects. The electronic effect due to the water molecules can be
easily monitored by means of comparing the spectrum evaluated
from geometries corresponding to the hydrated zeolite L with the
one evaluated from the same set of instantaneous geometries but
with the water molecules removed. Their structural effect on the
other hand, can be also easily monitored once two samples of
instantaneous geometries are available: one for the hydrated and
the other for the dry composite. The difference between the spectra
evaluated without water but for instantaneous geometries corres-
ponding to these two different statistical ensembles provides a
direct measure of the structural effect.

In ref. 32, excitation energies were calculated on molecular
models (clusters) extracted from the minimum energy structures
of the fluorenone–zeolite system containing fluorenone and the
nearest atoms of the zeolite L environment. Due to the statistical
nature of the system, we extend these studies of electronic
excitations for embedded fluorenone by simulating the theoretical
spectra for a model consisting of more than one thousand of

atoms in which the structural fluctuations of both the chromo-
phore and the environment are taken into account. The principal
objective of the present work is a qualitative and quantitative
analysis of the relative significance of the electronic and structural
effects of the environment on the absorption bands of fluorenone
inside the hydrated zeolite. To this aim, the theoretical absorption
spectrum of fluorenone in a hydrated zeolite is obtained as a first
step. Subsequently, the relative importance of structural and
electronic factors is investigated by selectively switching off and
on different effects. The observed broadening of the absorption
bands and the ultimate shape of the absorption spectrum result
mainly from vibrational effects, i.e., fluctuations of the environ-
ment and of the internal geometry of the chromophore. Computer
simulation of the band shapes involves, therefore, a large number
of evaluations of excitation energies for a relatively large system.
In this case, the fluctuation of the absorption energies of the
chromophore should be mainly related to its instantaneous
environment (zeolite framework, water molecules, cations) which
does not absorb light in the investigated spectral range. The
embedding strategy is, therefore, an optimal way to evaluate
reliably the excitation energies for the corresponding statistical
ensemble. In this strategy, the quantum mechanical descriptors
are used only for the chromophore, whereas the effect of the
environment is taken into account by an additional operator.
According to the basic result of Frozen-Density Embedding Theory
(FDET),36–40 such an operator has the form of a local potential,
which is uniquely determined by the charge distribution in
the environment and the electron density of the chromophore.
Moreover, recent benchmarking studies demonstrated that the
precision of the environment-induced shift of the electronic
excitation energy obtained from FDET was remarkable for environ-
ments not interacting covalently with the chromophore. The differ-
ences between the environment-induced shifts of the excitation
energies and their high-quality reference counter-parts are typically
in the 150 cm�1 range, corresponding to 0.02 eV.41,42 Such accuracy
of the shift values is expected to be retained for the case studied here
as the overlap between the electron densities of the chromophore
and its environment is rather small. The secondary objective of the
present work is to assess the usefulness of the used computational
protocol based on FDET as a first-principles method to simulate the
shape of the absorption bands. Currently, in order to simulate the
absorption spectra of organic chromophores in condensed phases,
most of the methods obtain the excitation energies by first-principles
based calculations combined with empirical widening of each
band.43 In the present work, the inhomogeneous widening of
the bands is also obtained from first principles.

2 Computational details
2.1 First-principles molecular dynamics

Density functional theory (DFT) calculations on the dry fluor-
enone–zeolite-L composite (simulation cell stoichiometry:
K18[Al18Si54O144]Fl) and on a hydrated system modeling low
water loading conditions (simulation cell stoichiometry:
K18[Al18Si54O144]Fl�(H2O)4) were performed by adopting the PBE
approximation44 and periodic boundary conditions, as described
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in detail in ref. 32. The simulation cell was twice the hexagonal
experimental unit cell of the zeolite host along c(a = b = 18.466 Å;
c = 2 � 7.476 Å; b = 1201).45 Wavefunctions were expanded in
planewaves up to a 25 Ry cutoff (200 Ry for the density).46–48

Electron–ion cores interactions were calculated with ultra-soft
Vanderbilt pseudopotentials for H, C, O; norm-conserving pseudo-
potentials for Si, Al, K (semi-core).49–52 Such a calculation scheme
for the electronic structure provided a proper description of other
large organic–inorganic systems.53–60

First-principles molecular dynamics (FPMD)61–63 simulations
were performed on both hydrated and dry systems. The room
temperature FPMD trajectory of the dry composite was described in
ref. 32. In the case of the hydrated system, two trajectories were
performed. One (12 ps) was at room temperature, and the fluor-
enone molecular axis was roughly parallel to the channel axis as
described in ref. 32. The other (5 ps) was performed at a 40 K
temperature starting with fluorenone oriented approximately
perpendicular to the channel axis, in order to sample different
fluorenone orientations in the zeolite and to investigate their effect
on the electronic spectrum. The target temperature of 40 K (NVT
ensemble) was chosen because the perpendicular orientation of
fluorenone is not stable under room temperature conditions.
Actually, in a 300 K simulation starting with perpendicular
fluorenone, the molecule was observed to recover in one pico-
second to its energetically favored orientation in the zeolite
channel, i.e. approximately parallel to the zeolite channel axis.
As in ref. 32, a time step of 0.121 fs and an inertia parameter of
500 au for the electronic states coefficients were adopted.

2.2 Excitation energies of embedded fluorenone from Frozen-
Density Embedding Theory based calculations

One of the clusters used for calculating the excitation energies of
fluorenone in the hydrated zeolite taken from the trajectory
representing the statistical ensemble is shown in Fig. 1. The
same cluster size was used to calculate the excitation energies for
fluorenone in the dry zeolite. For each instantaneous geometry
of the system, the excitation energy of fluorenone was calculated
using the method64 combining FDET36–40 with linear-response
time-dependent DFT framework.78 This FDET framework was
implemented38,65 into the ADF code (2009.01 version)67 allowing
for evaluation of various properties of embedded systems and
making possible to introduce additional approximations for the

frozen density as the ones discussed in ref. 38, 66, 74 for instance.
Fluorenone was treated as an embedded system, described by
electron density rA(-r) and embedded orbitals, while the rest of
the system (zeolite L framework, cations and water molecules)
was treated as an embedding system, described by its electron
density rB(-r).

In the excitation energy calculation, the frequency-dependent
response was expanded using only embedded orbitals associated
with the chromophore (neglect of the dynamic response of the
environment, NDRE, called also uncoupled FDE in the litera-
ture68) as described in ref. 38. The STO-type DZP basis set was
applied for all the calculations. The Statistical Averaged Orbital
Potential (SAOP)69–71 model was used to approximate the
exchange–correlation potential evaluated for the density corres-
ponding to fluorenone (embedded or isolated). For the orbital-free
embedding potential (eqn (3) in ref. 72):

veffemb½rA; rB;~r� ¼ vBextð~rÞ þ
Z

rBð~rÞ
j~r�~rjd~rþ

dTnad
s ½rA; rB�
drAð~rÞ

þ dEnad
xc ½rA; rB�
drAð~rÞ

ð1Þ

the following approximations were used:
-NDSD approximation73 for the non-additive kinetic energy

dependent component of the embedding potential;
-Dirac- and Vosko–Wilk–Nusair expressions were used for the

non-additive exchange energy and correlation energy, respectively.
-The choice of rB used in eqn (1) is a key approximation in any

FDET based simulation and lies at the origin of great computa-
tional savings compared to the corresponding Kohn–Sham calcula-
tions for the whole system. The electronic density of the
environment (zeolite L, cations, and water) rB was approximated
by the superposition of spherically symmetric electron densities of
individual atoms each integrating to the following net charge:
silicon +4e, aluminum +3e, oxygen (zeolite) �2e, oxygen (water)
�0.8e, potassium +1e, and hydrogen (water) +0.4e. The net charge
of each spherically symmetric atomic density corresponds to the
formal ionic charges of the zeolitic material. The applied procedure
to generate rB was validated by performing the following test. For a
smaller cluster comprising only the nearest neighbors of fluore-
none (Si50Al16K16O163H62, 307 atoms in total), two sets of rB were
generated. The first one was obtained using the above procedure
(consisting of superposing spherically symmetric atomic densities)
and the other one was obtained from conventional Kohn–Sham
calculations. In the subsequent step, the two frozen densities were
used in FDET based calculations to evaluate the excitation energies
for fluorenone embedded in the small cluster. A graphical repre-
sentation of the small cluster and the calculated values of the
excitation energies are reported in the ESI.† The excitation energies
obtained with the two sets of frozen densities (rB) agree within
about 0.03 eV, validating thus the chosen strategy to generate rB in
the larger system simulation.

2.3 Simulation of the absorption spectra

The simulated spectrum was generated through averaging over
several hundred configurations representing the corresponding

Fig. 1 Left panel: the fluorenone molecule. Right panel: the cluster used for
calculating excitation energies of fluorenone in the hydrated zeolite:
K71[Al108Si324O819]Fl�(H2O)12 (1380 atoms in total). Color code: red, O; white,
H; light blue, Al; grey, Si; yellow, K+; green, C.
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statistical ensemble. For each configuration, a ‘‘stick spectrum’’
was obtained from LR-TDDFT calculations providing vertical
excitation energies and intensities. Each simulated spectrum
reported in this work is just the envelope of a large number of
superimposed ‘‘stick spectra’’. In this way, the inhomogeneous
broadening of each absorption band due to variations of both
internal degrees of freedom and intermolecular ones was taken
into account. This approach is essentially the same as the one
used in ref. 66, which focused on solvatochromism. In the present
work, we attempt to simulate not only the solvatochromic shifts of
the first excited states but rather the whole shape of the absorp-
tion spectrum in the UV/Vis range.

For a given energy point e, the averaged oscillator strength
fav(e) was calculated by summing the oscillator strengths of the
excitations for each instantaneous geometry:

favðeÞ ¼ A
XNconfig

j

XNexcit

i

f ðeijÞwðeijÞ; ð2Þ

where A is the normalization factor; i is the index of the
excitations (Nexcit = 10); j is the index of the configurations;
Nconfig is the total number of the instantaneous configurations
in the sample, and w(eij) is the indicator function defined as

wðeijÞ ¼
1 if eij 2 e� 1

2
a; eþ 1

2
a

� �

0 if eij=2 e� 1
2
a; eþ 1

2
a

� �
8<
:

The summation range a was set to be 0.08 eV. The simulated
spectra considered in the present work were obtained for Nconfig

in the range of 600. Numerical experience with the considered
system shows that an ensemble of such size obtained from the
equilibrated molecular dynamics trajectory assures a stable
shape of the simulated spectrum. Spectra obtained using
trajectories with different lengths are provided in ESI.† For
samples of this size, the chosen value of a = 0.08 eV ensures
smoothness of the spectrum without losing finer features of the
bands. Varying the value of the parameter a from 0.06 to 0.14 eV
marginally changes the overall shape of the spectrum (see ESI†).
This procedure corresponds to finding the envelope of a stick
spectrum such as the one shown in Fig. 8 in the Results section.
We notice that eqn (2) corresponds to essentially the same
procedure to simulate spectra as the one applied in ref. 75, in
which the parameter a was set to be 0.01 eV for studies of gas and
condensed phase spectra of amides. The narrower width of the
energy bin used in ref. 75 was needed because gas-phase spectra of
amides are much more structured than the spectra considered in
the present work. In this context, it is worthwhile pointing out that
the used value of the parameter a exceeds the natural width of the
absorption band due to the finite lifetime of the excited state. The
shape function for each line in the ‘‘stick spectrum’’ is, therefore,
not considered explicitly in such averaging procedures.

In our strategy for simulating the shape of the absorption
bands, the excitation energy of the embedded species is obtained
as the sum of the excitation energy of the isolated chromophore
and of the environment induced shift. For fluorenone embedded

in the environment at a given instantaneous geometry { %Ri}, its
excitation energy is obtained as:

ecalc
emb({ %Ri}) = ecalc

iso ({ %Ri}) + DeFDET({ %Ri}) (3)

The accuracy of each of these two components is determined by
different factors. Concerning the term ecalc

iso ({ %Ri}), LR-TDDFT
excitation energies for small organic chromophores are known
to lead to errors in the range of 0.1–0.5 eV if semilocal approxima-
tions are used for the exchange–correlation potential.76,77 As far as
DeFDET({ %Ri}) is concerned, the benchmark calculations show that
the errors of the FDET calculated environment induced shifts
are about 0.02 eV (the relative errors of the FDET shifts lie
around 10%).41 It can be expected, therefore, that the shape of
the absorption bands of fluorenone in a fluctuating environ-
ment can be described rather accurately by means of FDET
shifts evaluated for a large number of configurations representing
the considered statistical ensemble, whereas the position of the
center of the bands depends on the method used to evaluate ecalc

iso

({ %Ri}). Using LR-TDDFT/FDET excitation energies to simulate the
absorption spectra by means of eqn (3) involves also another
approximation, namely the neglect of the difference between the
position of the maximum of the absorption band and the corres-
ponding vertical excitation energy. Obtaining the numerical value
of such a difference from the theoretical model exceeds the scope
of the present work. By taking into account these factors affecting
the accuracy of the simulated band shapes, the values of ecalc

emb({ %Ri})
needed in eqn (2) were evaluated not by using eqn (3) but by
adopting its empirically corrected formulation:

ecalc
emb({ %Ri}) = eSAOP

iso ({ %Ri}) + Deiso + DeFDET({ %Ri}) (4)

The constant shift Deiso = 0.8 eV was used for all the simulated
spectra presented in this work. This value takes into account
both inaccuracies of the LR-TDDFT/SAOP excitation energies of
fluorenone in the gas phase and the difference between the true
vertical excitation energy and the maximum of the corresponding
absorption band. Such a value was chosen to reproduce the
experimental position of the maximum of the lowest energy
band of fluorenone in hydrated zeolite L.

2.4 Excitation energies of fluorenone in gas phase

The geometry of fluorenone in the gas phase was optimized at the
MP2/6-311++g(d,p) level. Excitation energies were calculated using
the LR-TDDFT methodology78 with a STO-type DZP basis set and
the SAOP69–71 exchange–correlation potential. Note that all the
parameters in the reported calculations were set in such a way that
the gas-phase excitation energies from LR-TDDFT calculations are
the same as the FDET/LRTDDFT energies obtained when the
embedding potential in eqn (1) is set to zero.

3 Results and discussions

The Results section is organized as follows. The characterization of
the excited states of isolated fluorenone in its equilibrium geometry
is followed by the analysis of the simulated absorption spectrum.
Different factors which may affect the shape of the absorption
bands of fluorenone in hydrated zeolite L are discussed in the
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subsequent sections. In particular, the effect of water molecules
on the calculated absorption spectrum of the composite is
analysed in detail by decomposing it into a component due to the
fluorenone–water direct interactions at each instantaneous geometry
and a component due to the effect of water on fluorenone’s
orientation in the channel. Additionally, the effect of fluctuations
in the internal geometry of fluorenone due to interactions with
its environment is analyzed in detail.

3.1 Electronic transitions for isolated fluorenone in its
equilibrium geometry

The results of LR-TDDFT calculations for isolated fluorenone in
its equilibrium geometry and the corresponding results
reported in the literature are collected in Table 1. The n - p*
transitions are symmetry forbidden and the observed bands
correspond to p - p* transitions. The energies of the allowed
transitions are systematically lower than their LRTDDFT/B3LYP
and PPP counterparts. Such an underestimation is in line with the
literature that the SAOP approximation underestimates the energy
of the lowest transitions in organic chromophores.77 For this
reason, the LR-TDDFT and semiempirical PPP results are expected
to be better estimates of the exact excitation energies of the
isolated fluorenone. Compared to PPP excitation energies, which
are most likely the best estimate, the LR-TDDFT/SAOP excitation
energies are underestimated by 0.3 to 0.58 eV (see Table 1).

3.2 Absorption spectra of fluorenone in hydrated zeolite L

Fig. 2 shows the absorption spectra of fluorenone measured in
cyclohexane and in hydrated zeolite L as reported originally in
ref. 33. Due to the small values of the molecular extinction
coefficient at long wavelengths, the intensities are shown on
the logarithmic scale in all the figures subsequently discussed
in this work.

The simulated spectrum of fluorenone in the hydrated zeolite
together with its experimental counterpart is shown in Fig. 3.

The simulated and measured spectra of fluorenone in
hydrated zeolite L feature four intense bands in the low-energy
part of the spectrum. The shapes of the two spectra match quite
well. The position of the lowest energy band was built into our
model to simulate spectra by means of the chosen value of Deiso

in eqn (4). The correct positions and relative intensities of the
three subsequent clearly distinguishable bands indicate the
strength of the used strategy to simulate absorption band
shapes using the FDET embedding potential given in eqn (1)
in LR-TDDFT calculations of excitation energies combined with
the non-empirical treatment of line broadening (eqn (2)).

The non-shifted (eqn (3)) excitation energies for embedded
fiuorenone are collected in Table 2. The analysis of electronic
excitations in the instantaneous geometries shows that each
electronic transition generates only one peak in the spectrum.
The width of each band results from the different excitation
energy values due to the fluctuating environment of fluorenone in
hydrated zeolite L. Table 2 collects also the range at which each
type of excitation occurs in the analyzed sample of conformations.

Table 1 Calculated excitation energies (e, in [eV]) and oscillator strengths (f) of
isolated fluorenone. The excitation energies of the corresponding transitions
reported in the literature are also given

Type of excitation ea fa eb ec

p - p* 2.75 0.29 � 10�2 3.09 3.26
n - p* 3.04 0.35 � 10�9 3.13 —
2p - p* 3.56 0.31 � 10�1 4.00 4.00
3p - p* 3.98 0.19 � 10�1 4.44 4.28
n - 2p* 4.06 0.74 � 10�10 4.82 —
4p - p* 4.38 0.23 � 10�1 5.07 4.96
p - 2p* 4.62 0.69 4.89 —
3p - 2p* 4.78 0.17 � 10�2 — —
2p - 2p* 4.90 0.18 � 10�1 — —
n - 3p* 4.95 0.26 � 10�3 — —

a This work (LR-TDDFT/SAOP). b Ref. 32 (LR-TDDFT/B3LYP). c Ref. 35
(PPP semi-empirical calculations).

Fig. 2 Absorption spectra of fluorenone measured in cyclohexane (dashed curve)
and in hydrated zeolite L (solid curve). The extinction coefficients are scaled to 1
at the absorption maximum. The inset shows an enlargement of the weak band
at 375 nm in cyclohexane.

Fig. 3 Top: experimental spectra of fluorenone in cyclohexane solution (dashed
curve) and in hydrated zeolite L (solid curve). Bottom: simulated spectrum of
fluorenone in hydrated zeolite L. The intensity is given on the logarithmic scale in
both measured and simulated spectra to visualize the weak bands.
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The good agreement between the simulated and observed
absorption spectra suggests a more detailed analysis of the
factors affecting band shapes. Such analyses are reported in the
subsequent sections.

3.3 Absorption spectra of fluorenone in hydrated and dry
zeolites

In this section, the spectrum of fluorenone in the dry zeolite is
analyzed. Such a spectrum was obtained by using a different
sample of configurations corresponding to a different statisti-
cal ensemble. In this case, the electronic density of the environ-
ment rB used to evaluate the embedding potential from eqn (1)
did not include the contributions from water molecules
because they were absent in the corresponding FPMD
simulation.

Fig. 4 shows the simulated absorption spectra of fluorenone
in hydrated and in dry zeolite L. The overall effect (structural

and electronic) of the water molecules is significantly smaller
than that of the zeolite framework and the counter ions. This is
in line with the analysis given in ref. 32 pointing out that the
zeolite environment affects fluorenone’s excitations primarily
by the direct interaction between K+ cations and fluorenone’s
carbonyl group. The lowest energy band is broader in the dry
zeolite, indicating that the structural fluctuations in the system
are reduced upon hydration.

The differences between the absorption spectra of fluore-
none in dry and wet zeolites might originate from direct
interactions between fluorenone and water, but also from
differences in the overall geometry of the dye–zeolite system
in the two statistical ensembles. To distinguish between these
two effects, the following computational experiment was made.
The spectra were evaluated using the trajectory corresponding
to the hydrated zeolite, but with the embedding potential
(eqn (1)) evaluated without contributions from water mole-
cules. Both spectra are shown in Fig. 5.

The two spectra appear to be almost identical, indicating
therefore that the direct interactions between water and fluor-
enone hardly affect the electronic structure of fluorenone.
Actually, during the simulation, water molecules are not
directly hydrogen bonded to the fluorenone carbonyl group,
but rather preferentially coordinated to other potassium
cations in the zeolite channel.32 The differences between the
absorption spectra of fluorenone in hydrated and in dry zeolite
L shown in Fig. 4 should, therefore, arise from structural
factors, i.e., changes of the fluorenone’s preferential orienta-
tion and average geometry due to the presence of water
molecules.

3.4 The effect of the environment on the internal geometry of
fluorenone and its consequences on the absorption bands

The absorption spectrum of fluorenone in zeolite L is affected
by both fluctuations in the environment and changes of the
internal geometry of fluorenone. As highlighted in Fig. 6, the
internal geometry of fluorenone fluctuates following the fluc-
tuating environment during the FPMD trajectory. The fact that

Table 2 Excitation energies (in [eV]) calculated from eqn (3) for the lowest
symmetry allowed transitions of fluorenone in gas phase and hydrated zeolite L

State eiso epeak
zeo emin

zeo � emax
zeo

1 2.75 2.07 1.61–2.63
2 3.04 2.89 2.37–3.27
3 3.56 3.15 2.67–3.53
4 3.98 3.69 3.25–3.97
5 4.06 3.81 3.41–4.11
6 4.38 3.95 3.61–4.35
7 4.62 4.25 3.71–4.47
8 4.78 4.31 3.91–4.53
9 4.90 4.35 4.17–4.75
10 4.95 4.53 4.27–5.01

The order of the excited states corresponds to the LR-TDDFT result for
isolated fluorenone. The correspondence of the transitions obtained for
fluorenone in different environments is arbitrary because of the large
number of single-electron excitations contributing to a given transition
in LR-TDDFT based methods. Such attribution is unambiguous only if
there is a clear dominant excitation, as it is the case in the lowest
transition. eiso is the calculated excitation energy of isolated fluorenone.
epeak

zeo is the position of the peak of the simulated absorption band for
fluorenone in the hydrated zeolite; emin

zeo and emax
zeo are the lowest and

highest values of the calculated excitation energy of a given transition in
the sample, respectively.

Fig. 4 Simulated absorption spectra of fluorenone in dry (dashed curve) and
hydrated (solid curve) zeolite L. The vertical line indicates the calculated
wavelength of the lowest excitation for isolated fluorenone in its equilibrium
geometry.

Fig. 5 Simulated absorption spectrum for an artificial system comprising only
fluorenone, counterions and the zeolite L framework with geometries taken from
the FPMD of fluorenone in hydrated zeolite L (dashed curve). The simulated
spectrum for fluorenone in hydrated zeolite L is also shown for comparison (solid
curve).
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the instantaneous environment changes in the sampled simu-
lation time is evidenced by the time evolution of the K+� � �OQC
distances, indicating that the carbonyl oxygen of fluorenone
switches coordination between two distinct nearest neighbor
potassium cations. As an effect, the average CQO bond length,
1.250 Å, is greater than that of isolated fluorenone at the
equilibrium geometry (1.220 Å),32 fluctuates between 1.180 Å
and 1.325 Å, and the oscillation amplitude is correlated with
the shortest K+� � �OQC distances. It is instructive, therefore, to
estimate the importance of such fluctuations compared to the
other factors discussed in the previous sections. To this aim,
yet another artificial absorption spectrum of fluorenone was
generated following a strategy similar to the one adopted to
investigate the significance of the direct electronic effects of
water molecules. In this case, the FPMD trajectory corres-
ponding to the hydrated zeolite was used, but the embedding
potential was switched off. The obtained spectrum is shown in
Fig. 7 together with the positions of the excitation levels in the
gas phase. The simulated spectrum of fluorenone in hydrated
zeolite L is shown as well for reference purposes. Fig. 8 shows
the stick spectrum, i.e., the distribution of the narrow absorp-
tion lines corresponding to the lowest excitation arising from

the instantaneous geometries. The fluctuation of the fluorenone’s
internal geometry results in the broadening of the band and in
a shift of the band maximum for the lowest excitation. In Fig. 8,
the spectrum changing from a single line (excitation energy
and intensity at equilibrium geometry) to a band (distribution
of intensities for the isolated chromophore with fluctuating
geometry), can be attributed to vibronic broadening, as the
distribution of oscillator strengths correlates with the fluctua-
tions of the CQO bond length. However, both broadening and
shift effects are much smaller than those induced by the full
hydrated zeolite L environment. Interestingly, the histograms
in Fig. 8 correlate well with the histograms of the CQO bond
length and of the shortest K+� � �OQC distances sampled along
the trajectory, reported in Fig. 9. Indeed, the fluctuating CQO
bond length mirrors the band broadening due to the fluctuating
internal geometry of fluorenone, while the K+� � �OQC distance
distribution reproduces the multipeak shape of the calculated

Fig. 9 Left: shortest K+� � �OQC distance histogram; right: CQO distance
histogram.

Fig. 6 Top: fluorenone CQO distance vs. simulation time. Bottom: K+� � �OQC
distances vs. time for the two K+ closest to the fluorenone carbonyl group.

Fig. 7 Simulated absorption spectra of an artificial system comprising only
fluctuating fluorenone. The geometries are taken from the FPMD of fluorenone
in hydrated zeolite L (dashed curve). The simulated spectrum of fluorenone
in hydrated zeolite L is also shown for comparison (solid curve). The vertical
lines indicate the calculated wavelengths of the excitations of isolated
fluorenone in its equilibrium geometry. The forbidden weak transitions are
not shown.

Fig. 8 Distribution of the lowest excitation energies for the artificial system of
fluctuating fluorenone (dashed boxes) and for fluorenone in hydrated zeolite
L (solid boxes) corresponding to the spectra in Fig. 7. The black vertical line
indicates the calculated lowest excitation energy for isolated fluorenone in
its equilibrium geometry.
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absorption band for embedded fluorenone. In summary, the
changes in fluorenone’s internal geometry provide a minor contri-
bution to the whole effect of the hydrated zeolite L environment on
fluorenone’s absorption spectrum.

3.5 The effect of the environment on the orientation of
fluorenone and its consequences on the absorption bands

The relatively large diameter of the channels in zeolite L leaves
some degrees of freedom for fluorenone’s orientation. In
hydrated zeolite L, however, the fluorenone molecule has a
strong preference to orient along the channel instead of
perpendicular to the channel.32 In particular, in the case of
the hydrated system, a distribution centered at 211 was
obtained from the FPMD trajectory for the angle formed by
fluorenone’s long axis with the zeolite channel axis.32 In order
to investigate the effect of fluorenone’s preferential orientation
on the absorption spectrum, we also calculated the spectrum of
fluorenone with its long axis perpendicular to the channel from
a 5 ps trajectory. The FPMD simulation of this trajectory was
performed at the temperature of 40 K starting with fluorenone
oriented approximately perpendicular to the channel. As men-
tioned in Section 2.1, such a low temperature is needed because
the perpendicular orientation is not stable under room tem-
perature conditions.

Fig. 10 shows the spectra of fluorenone with different
orientations in hydrated zeolite L. The spectrum of fluorenone
with perpendicular orientation is redshifted by around 0.2 eV
with respect to that of fluorenone with parallel orientation,
although the band shapes of the two spectra are not much
different. This finding is easily rationalized by taking into
account that along the trajectory with fluorenone perpendicular
to the channel, the carbonyl oxygen of fluorenone is not bound to
potassium cations, but directly interacts with a water molecule via
a hydrogen bond. Therefore both the calculated spectra and
FPMD results indicate that fluorenone has an orientation pre-
ference in the hydrated zeolite and that the coexistence of parallel/
perpendicular arrangements should rather be excluded. Such
coexistence would result in the appearance of additional bands
not visible in the experimental spectrum.

4 Conclusions

The simulated absorption spectrum reproduces all the main
features of the measured spectrum of fluorenone in zeolite L in
the region of 250–550 nm. Each distinguishable band in the long
wavelength part of the absorption spectrum of fluorenone in
zeolite L can be attributed to a single electronic excitation with
its width determined by fluctuations of the geometry of the whole
system. The adopted computational model provides, therefore, an
adequate tool for simulating and interpreting the shape of the
absorption bands in such systems. The overall effect of the
fluorenone environment on its absorption bands can be decom-
posed into geometrical factors (orientation of the fluorenone with
respect to the zeolite framework, mobility of counter ions and
water, and variations of the internal geometry of fluorenone) and
the direct electronic effect. The adopted strategy allows one to
estimate the relative significance of these factors by selectively
switching them off and on. Results obtained using such modified
models lead to the following key observations:

(i) The overall redshift of the spectrum observed in hydrated
zeolite L compared to cyclohexane originates mainly from
the interactions between the counter-ions of the zeolite and
the carbonyl group of fluorenone. These interactions lie at the
origin of the rather conservative arrangement of the K+� � �OQC
motif in the statistical ensemble.

(ii) The direct effect of water molecules on the excitation
energies of fluorenone is negligible at any instantaneous geome-
try. Water molecules rather affect fluorenone’s orientation inside
the zeolite channel by stabilizing the parallel arrangement.

(iii) The fluctuations of the internal geometry of fluorenone
along FPMD trajectories provide a minor effect on the shape of
the absorption bands.

In summary, the simulated absorption bands and the analysis of
the factors affecting their position and width support the interpreta-
tion that the preferential orientation of fluorenone in hydrated
zeolite L is parallel to the zeolite channel. The coexistence of
parallel/perpendicular arrangements is rather to be excluded.

Finally, the present study shows that the FDET based simula-
tions of the absorption band shapes can provide an accurate model
of the experimental band shapes of chromophores in condensed
phases. Such a model is based on first principles except for the
offset on the energy scale (Deiso), which is empirically adjusted due
to the intrinsic inaccuracy of the method used to evaluate the
vertical excitation energies and the difference between the vertical
excitation energy and the absorption energy of the chromophore in
the gas phase. The first contribution to Deiso is strongly dependent
on the computational method and the chromophore in question
whereas the first-principles based computation part of the second
contribution represents a major computational challenge.
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Fig. 10 Simulated absorption spectra of fluorenone in hydrated zeolite L with its
long axis perpendicular (dashed curve) and parallel (solid curve) to the zeolite L
channel. The vertical line indicates the calculated wavelength of the lowest
excitation for isolated fluorenone in its equilibrium geometry.
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2. Test of the value  “a” (summation range) used in Equation 2

3.  The effect of the choice of ρB  in Equation 1 on calculated excitation energies 
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1. Test of the value of “Nconfig” (the total number of instantaneous configurations in the sample) used in 

Equation 2,  Nconfig =200, 300, 400, 500, 600, 650.

Figure 1.  Spectra simulated from different numbers of configurations.

2. Test of the value  “a” (summation range) used in Equation 2, a = 0.06 eV, 0.08 eV, 0.10 eV, 0.14 eV. 

Figure 2. Spectra simulated using different values of the parameter a in Equation 2.
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3. The effect of the choice of ρB  in Equation 1 on calculated excitation energies

Model:

Fluorenone: C13H8O (22 atoms),

Environment: Si50Al16K16O163H62 (307 atoms),

Total net charge=0. 

The cut bonds are saturated by hydrogen atoms.

The method to generate electron density of

 the Si50Al16K16O163H62 cluster. 

a) ρB  from Kohn-Sham calculations

b) ρB as superposition of spherically symmetric atomic densities 

  

Figure 3.   Structure of the cluster  Si50Al16K16O163H62(Fl)
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Excitation energies of fluorenone embedded in the small cluster:

a) ρB  from Kohn-Sham calculations for the Si50Al16K16O163H62 cluster

For each excitation: excitation energies E in a.u. and eV, oscillator strengths f in a.u., dE wrt previous cycle

 

 no.  E/a.u.        E/eV            f             dE/a.u. 

 ---------------------------------------------------------------------------------------------------- 

   1 0.85125E-01  2.3164    0.16012E-02  0.54E-08 

   2 0.11786     3.2072    0.26010E-02 0.32E-08 

   3 0.12334     3.3562    0.26969E-01 0.17E-07 

   4 0.13718      3.7328    0.57932E-02 0.25E-07 

   5 0.15105      4.1102    0.46147E-01 0.46E-07 

   6 0.16029      4.3616 0.20362     0.22E-07 

   7 0.16272     4.4279   0.37489    0.23E-07 

   8 0.16615      4.5211   0.11445E-01 0.26E-07 

   9 0.17526       4.7690     0.46239E-02  0.45E-06 

  10 0.17772     4.8361    0.30761E-01  0.20E-06 

b) ρB as superposition of spherically symmetric atomic densities in the Si50Al16K16O163H62 cluster

 For each excitation: Excitation energies E in a.u. and eV,  oscillator strengths f in a.u., dE wrt previous cycle

 no.  E/a.u.        E/eV            f             dE/a.u. 

 ------------------------------------------------------------------------------------------------------ 

   1 0.86309E-01 2.3486 0.21357E-02  0.17E-08 

   2 0.11683      3.1791 0.67695E-02  0.60E-08 

   3 0.12151      3.3066     0.30147E-01  0.21E-07 

   4 0.13774      3.7480     0.64472E-02  0.14E-07 

   5 0.15148      4.1220     0.77947E-01 0.39E-07 

   6 0.15773      4.2921     0.71092E-01  0.12E-07 

   7 0.16021     4.3596     0.21680E-01  0.37E-07 

   8 0.16306      4.4371     0.42017      0.13E-07 

   9 0.17292     4.7054     0.56213E-02  0.50E-08 

  10 0.17882      4.8660     0.47209E-01  0.48E-06 
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Chapter 5
Solvatochromic shifts in the absorption of coumarin 153

“Experience is what you get when you don’t get what you want.”
— Dan Stanford

5.1 Overall presentation of the article

The solvatochromic shift refers to a strong dependence of absorption or emission spectra with
the solvent polarity. A change in the solvent polarity may lead to a change in the energy gap
between these electronic states due to different stabilization of the ground and excited states,
since the polarities of the ground and excited state of a chromophore are different.

The solvatochromic shift in absorption can be investigated by simulating the position and
intensity of the maximum of the absorption band, via calculating the excitation energy and
oscillator strength of the corresponding electronic transition. This type of simulation in general
involves modeling the structure of the solvation system and calculate the vertical excitation
energy and oscillator strength of the corresponding electronic transitions using a proper electronic
structure method that can be QM/MM methods or fully QM methods.

There are typically three strategies to model the solute-solvent system: (1) Implicit model,
where the solvent is represented by a structureless polarizable uniform continuous medium, and
the solute is placed in a cavity in this medium. This model is referred as uniform continuum model
in this work. This strategy of treating solute-solvent system is computationally efficient but it is
sensitive to the cavity size and shape and does not take account into specific solute-solvent inter-
actions. (2) Explicit model, where the solvent is represented by explicit solvent molecules. The
solute-solvent structure is usually represented by Monte-Carlo sampling or molecular dynamics
trajectories (generated by solution of Newton’s equations of motion). This strategy accounts for
explicit solute-solvent interactions but it is computationally demanding. (3) Reference interaction
site model (RISM), an intermediate level between explicit and implicit models. In this model,
the solvent is represented by an average structure described by pair correlation functions. The
solvent is still treated as a continuum but the specific solvent-solvent interactions are treated
in a statistical manner. This model is referred as non-uniform continuum model in this work.
This strategy is appealing because it describes the solvent more accurately than the uniform
continuum model while with moderate computational efforts.

RISM strategy is used in this work for obtaining the statistically averaged structure of the
solvent around the solute, and FDET/LR-TDDFT is used to investigate the electronic excitations
of the solvated solute molecule.

The strategy used in this work is advantageous for studying solvatochromic shift by taking
account into specific solute-solvent interactions in a statistical way with moderate computational
efforts. However it is limited to the study of the solute molecules with relative rigid structure,
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because the structure of the solute is assumed unchanged in the solvent. Besides, the force field
parameters for both the solvent and the solute are needed in the RISM calculation.

In this work, the calculations were performed by Xiuwen Zhou with the guide of Jakub W.
Kaminski and Tomasz A. Wesolowski.

5.2 Reprint of the article
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Multi-scale modelling of solvatochromic shifts from frozen-density

embedding theory with non-uniform continuum model of the solvent:
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For nine solvents of various polarity (from cyclohexane to water), the solvatochromic shifts of the

lowest absorption band of coumarin 153 are evaluated using a computational method based on

frozen-density embedding theory [Wesolowski and Warshel, J. Chem Phys., 1993, 97, 9050, and

subsequent articles]. In the calculations, the average electron density of the solvent hrB(~r)i is used
as the frozen density. hrB(~r)i is evaluated using the statistical-mechanical approach introduced in

Kaminski et al., J. Phys. Chem. A, 2010, 114, 6082. The small deviations between experimental

and calculated solvatochromic shifts (the average deviation equals to about 0.02 eV), confirm the

adequacy of the key approximations applied: (a) in the evaluation of the average effect of the

solvent on the excitation energy, using the average density of the solvent instead of averaging

the shifts over statistical ensemble and (b) using the approximant for the bi-functional of the

non-electrostatic component of the orbital-free embedding potential, are adequate for

chromophores which interact with the environment by non-covalent bonds. The qualitative

analyses of the origin of the solvatochromic shifts are made using the graphical representation

of the orbital-free embedding potential.

1. Introduction

Multi-scale computational methods, which are often included

under the label QM/MM (for representative overviews see

ref. 1–4 for instance), are used frequently to target such

quantities as: equilibrium structures, transition states, con-

formational equilibria. The quality of the type of properties

obtained in QM/MM simulations depends on the approximations

used for the embedding operator (see eqn (2) below) as well as

on the various corrections added a posteriori to the total

energy to account for exchange–repulsion, charge-transfer effects,

for instance. Including the non-electrostatic contributions to

the total energy as a posteriori corrections and not as components

of the embedding operator results, however, in the lack

of self-consistency between the energy and the embedded

wavefunction.w The overall quality of the potential-energy

surface obtained in such calculations results from many simplifi-

cations and approximations and the lack of self-consistency is

just one of them. If, however, the modelling targets the effects

of the environment on properties which are directly related to

the electronic structure such as UV/Vis-, NMR-, or ESR

spectra, the quality of the obtained results is determined only

by the approximation for the embedding operator. The most

common approach in simulation such properties consists also

of adding the non-electrostatic contributions to the energy as

a posteriori corrections and retaining only the electrostatic

component of the embedding operator. Such an approach

leads to efficient computational methods especially if small

basis sets are used (see ref. 5–9 for instance), but which are

prone to numerical instabilities if the basis sets extend to the

environment.10–12 In methods based on the frozen-density

embedding theory (FDET),13–17 however, both the energy

and the embedding operator are evaluated self-consistently,

which makes them especially suitable for studies of the effects

of the environment on the electronic structure of the solute. In

FDET, the environment of the embedded species is charac-

terized exclusively by the nuclear and charge densities which

determine the exact embedding operator.z The FDET based

methods are, therefore, especially suited for multi-scale modelling.

The electron density of the environment (rB) is a well-defined

and observable quantity at any length-scale. In the present

work, we provide an extensive analysis of the applicability

of FDET with a particular method to generate the frozenDepartment of Physical Chemistry, University of Geneva,
30 quai Ernest-Ansermet, 1211 GENEVE, Switzerland.
E-mail: tomasz.wesolowski@unige.ch
w Note that self-consistency between the embedding operator and the
embedded wavefunction is usually assured in QM/MM calculations
regardless the form of the embedding operator.

z Note that the charge density also suffices to generate the approxi-
mated embedding operator obtained by neglecting all terms beyond
electrostatics.
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electron density (rB(~r)), on which all FDET results depend

parametrically. The frozen density is not obtained from any

quantum-mechanical treatment of the solvent but from a

model based on classical statistical theory of liquids. Instead

of treating the electronic structure of the solvent explicitly, i.e.,

using a statistical ensemble of instantaneous electron densities

of the environment rB(i) (where i denotes the configurations of
the solvent) in repetitive evaluation of instantaneous excitation

energies (conventional strategy applied for instance in our

previous works18,19), the excitation energy is evaluated only

once in calculations performed for hrBi—average electron

density of the solvent surrounding a chromophore. The solute

molecule considered in this study is coumarin 153 (see Fig. 1).

Coumarins are widely used as laser dyes.20 Coumarin 153 is

considered as a very good probe to study solute–solvent

interfaces as it has a rigid structure and is characterized by a

single low-lying excited state.21,22 Nine solvents ranging in polarity

from cyclohexane to water are included in the present study.

2. Methods

The computational method applied in this work was introduced

in ref. 23. The basic equations of FDET, which depend

parametrically on the density rB assumed for the environment,

are solved using the ensemble averaged electron density of the

solvent (denoted with hrBi in the present work). For the sake

of completeness, the key elements of the applied theoretical

frameworks are given in separate sections below.

2.1 Frozen-density embedding theory

The frozen-density embedding theory13–17 provides the formal

basis for computational methods (see also other representative

papers19,24–27 besides our own work), in which both the energy

as well as electronic properties are evaluated in a self-consistent

manner as the effective potential and the total energy are

related by simple functional derivation. Below, we outline the

basic elements of the frozen-density embedding theory:

� Basic variables: The total investigated system is charac-

terized by two quantities: the density rB(~r), which for a given

electronic problem is a given function, and the density rA(~r),
which is represented using auxiliary quantities: occupied

orbitals of non-interacting reference system {ji
A(~r)},

13 occupied

and unoccupied orbitals of non-interacting reference system,15

interacting wave-function,16 or one-particle density matrix.17

� Constrained search: The optimal electron density rA(~r) is
obtained by performing the following search:

Eemb½rB� ¼ min
rA�0

EHK ½rA þ rB� for
Z

rAðr
!Þdr! ¼ NA

¼ min
r�rB�0

EHK ½r�

ð1Þ

where rB is a given electron density such that
R
rB(~r)d~r = NB

� Performing the constrained search by modifying the

external potential: The search for the optimal rA defined in

eqn (1) is conducted in practice by the following equation:

(Ĥo + V̂emb)C = EembC (2)

in which Ĥo is the environment-free Hamiltonian Ĥo and the

V̂emb(~r) has the form of a local potential (veffemb(~r), which is

determined by the pair of densities rA(~r) and rB(~r) hence

orbital-free embedding potential.

� Orbital-free embedding potential: The relation between the

embedding potential on the densities rA(~r) and rB(~r) depends
on the choice of the quantum mechanical descriptor used to

generate rA(~r) in the search procedure given in eqn (1).13,16,17

For the following descriptors, orbitals of non-interacting

reference system, a wavefunction of the full Configuration

Interaction form, and one-particle density matrix, the orbital-

free embedding potential reads:

veffemb½rA; rB; r
!� ¼ vBextðr

!Þ þ
Z

rBðr
!0Þ

jr!0 � r
!j
dr
!0

þ dExc½r�
dr

����
r¼rAþrB

�dExc½r�
dr

����
r¼rA

þ dTs½r�
dr

����
r¼rAþrB

�dTs½r�
dr

����
r¼rA

ð3Þ

The correspondence given in eqn (3) involves density functionals

known in the Kohn–Sham formulation28 of density functional

theory:29 the functional of the exchange–correlation energy

(Exc[r]) and the functional of the kinetic energy in a non-

interacting system (Ts[r]). The pair of functional derivatives of
the functional Ts[r] arises from the non-additivity of this

functional and represents a potential denoted as vnadt [rA,rB](~r)
in the present work.

In this context, it is useful to relate the frozen-density

embedding theory to the subsystem formulation of density

functional theory (SDFT)30,31 and to the recently developed

partition density functional theory (PDFT).32 Both SDFT and

PDFT lead to the exact ground-state electron density and

energy of the whole investigated system in an alternative way

to the conventional Kohn–Sham framework. In SDFT, the

charges of each subsystem are assumed to be integral (similarly

as in FDET), whereas fractional charges of subsystems are

allowed in PDFT. The FDET targets not the ground-state

electron density of the total system but the density minimizing

the Hohenberg–Kohn energy functional for the total system

Fig. 1 Coumarin 153.
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with presence of constraints. FDET, therefore, can lead to the

same total ground-state density as SDFT, Kohn–Sham DFT,

or PDFT, only for particular constraints14 (see also below).

In the case of two subsystems, SDFT is based on the

following variational principle:

Eo ¼ min
rA�0;rB�0

EHK ½rA þ rB� ð4Þ

where the search is performed among subsystem densities

which are pure-state non-interacting v-representable densities

rA and rB such that
R
rA(~r)d~r = NA and

R
rB(~r)d~r = NB.

The sufficient condition for reaching the exact ground-state

density in SDFT, it is that it can be decomposed as a sum of

two pure-state non-interacting v-representable densities comprising

integer number of electrons NA and NB (see the discussions in

ref. 14). FDET does not target the ground-state of the total

system but the density, which minimizes the total ground-state

energy in presence of the following constraint:

r Z rB (5)

which is given in advance. The total density obtained in FDET

(i.e., in eqn (1)) is, therefore, not equal to the exact ground-state

density except for a particular case, i.e., when the difference

between rtoto (~r) and the assumed rB(~r0) is representable using

one of the auxiliary descriptors mentioned above: orbitals of the

non-interacting reference system,13 interacting wavefunction,16

or one particle-density matrix.17 On the virtue of Hohenberg–

Kohn theorems, FDET can lead only to the upper bound of the

ground-state energy:

Eemb[rB] Z Eo (6)

We underline that the choice for rB is the essential feature

of any multi-level type of calculations based on FDET.

Compared to empirical QM/MM type of methodologies,

which involve many parameters describing the interactions

between the quantum mechanical subsystem and its environ-

ment, the only subjective choice in constructing the FDET

model is the used rB. The procedure to generate rB must

reflect, therefore, the physical and chemical properties of the

subsystems and might involve various computational costs.

Obviously, the number of the electrons in each subsystem must

be chosen accordingly to what is known about the systems

under investigation. Using the fully variational FDET calculations

to attribute the number of electrons to each subsystem is not

practical as it would involve costly calculations comparable to

DFT treatment of the whole system. Note also that multiple

solutions of fully variational and exact FDET calculations are

possible.14 Once the number of electrons is properly assigned

to each subsystems, the choice for actual shape of rB must be

made. The simplest procedure, which was applied in our

first multi-level simulation based on FDET33 consisted on

superposing individual electron densities of isolated solvent

molecules. On the other hand, the completely relaxed rB
taking into account also the electronic polarization of the

subsystem B by the embedded species can be obtained in costly

freeze-and-thaw calculations.33 This is especially relevant if the

embedded species are charged. But even in such a case,

the costly freeze-and-thaw calculations can be avoided

without noticeable deterioration of the accuracy. In the studies

on embedded lanthanide cations, we demonstrated that fully

variational treatment of both the cation and the environment

can be replaced by much simpler procedure consisting of

superposing pre-polarized individual atoms in the environment.34

In the present study, the applied procedure to construct rB does

not take into account explicitly the electronic polarization of the

environment by the embedded (uncharged) species.

Any numerical implementation of FDET can be easily

converted to a method for solving coupled Kohn–Sham-like

equations in SDFT. In fact, the first numerical implementation

of SDFT for intermolecular complexes used the ‘‘freeze-and-thaw’’

cycle35 which was applied in a number of subsequent studies

(see for instance36–38). In the original numerical studies based

on SDFT concerning atoms in solids,30,31 and in the recent

numerical implementation of SDFT for molecular liquids,39

the coupled Kohn–Sham equations are solved simultaneously.

We have also shown recently that the ‘‘freeze-and-thaw’’ cycle

can be performed simultaneously with displacing nuclear position

accelerating the SDFT based geometry optimization.40

The ‘‘freeze-and-thaw’’ cycle to solve the coupled Kohn–

Sham like equations is used by us in methodological studies on

approximants to the bi-functional of the non-additive kinetic

potential vnadt [rA,rB] (see for instance41–43) or in preparation

stages for large-scale simulations, in which the search given in

eqn (1) is performed for smaller model systems in order to

establish the adequacy of the simplified rB(~r) in large-scale

simulations. It should be noted that the relaxation of rB is

accompanied by the errors introduced by the approximant

to the bi-functional of the non-additive kinetic potential

vnadt [rA,rB] and when the expected polarization effect is small

the relaxation should be avoided.

If a non-interacting reference system is used to perform the

search given in eqn (1), the corresponding orbitals (fA
i ) are

obtained from the following Kohn–Sham-like equations

(eqn (20)–(21) in ref. 13):

[�1
2
r2 + vKS

eff [rA,~r] + veffemb[rA,rB;~r]]f
A
i = eAi f

A
i i= 1,NA (7)

where veffemb[rA,rB;~r] is given in eqn (3).

The effectiveness of methods based on eqn (7) for the

calculation of the shifts in the electronic structure arising

due to the interactions between the embedded system and

its environment, was demonstrated for: vertical excitation

energies,15,44 ESR hyperfine coupling constants,45,46 ligand-

field splittings of f-levels in lanthanide impurities,34 NMR

shieldings,47 dipole and quadrupole moments and electronic

excitation energies and frequency dependent polarizabilities.48

Eqn (7) can be easily used in the general framework

of linear-response time-dependent density functional theory

(LR-TDDFT)49 to obtain excitation energies of a system

embedded in a frozen electron density rB. The total effective

potential in eqn (7) is an explicit functional of rA which makes

the evaluation of its functional derivative with respect to rA
straightforward leading to efficient computational method

introduced in ref. 15. The calculations following such frame-

work, however, represent an additional approximation of

neglecting the dynamic, i.e., frequency-dependent response

of electron density of the environment (rB) to the external
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time-dependent field (Neglect of Dynamic Response of

the Environment-NDRE approximation). NDRE is a very

adequate approximation in cases of small spectral overlap

between the embedded species and the molecules in the

environment.15,18,50,51 On the formal level, using atomic orbitals

localized in the environment to construct the occupied and

unoccupied embedded orbitals would take into account also

the dynamic response of the environment to some extent. But

such expansion is hardly attractive from the practical point of

view as the computational effort of such calculations would

be comparable to full LR-TDDFT treatment of the whole

system. The Casida-Wesolowski generalization53 of Cortona’s

subsystem formulation of DFT30 to excited states provides a

formal framework going beyond NDRE as it allows for all

parts of the total system to respond dynamically. Calculations

following the Casida-Wesolowski framework without further

approximations such as NDRE are not practical because they

would be even more costly than conventional LR-TDDFT

calculations for the whole system. Neugebauer introduced

a formal framework allowing for a compromise solution

lying between NDRE (localized dynamic response) and

Casida-Wesolowski cases (no limits on the dynamic response

localization) in which selected transitions localized in different

subsystems are coupled. Such calculations were shown to

efficiently overcome the deficiencies of NDRE approximation

in several cases where similar or identical chromophores are

localized in different subsystems.52

It is worthwhile to underline that in FDET based methods,

the effect of the environment on the electronic structure of the

embedded species is taken into account by means of modifying

the effective Kohn–Sham potential without changing the

number of quantum particles treated explicitly (see eqn (7)).

As a result, the FDET based approaches are particularly

suitable for evaluation of environment-induced shifts on any

property depending directly on the embedded orbitals such as

the solvatochromic shifts investigated in the present work.

2.2 Classical site distributions from the 3D-RISM-KH theory

The classical site distributions for a molecular solvent around

a solute of arbitrary shape are obtained by using the

3D-RISM-KH molecular theory of solvation.54,55 This method

as well as its combination with orbital-free embedding formalism

are described in detail in our previous work.23 Here we will

outline the most important points.

The 3D-RISM integral equation can be derived from the

six-dimensional, molecular Ornstein-Zernike integral equation56

for the solute–solvent correlation functions by averaging out

the orientation degrees of freedom of solvent molecules while

keeping the orientation of the solute macromolecule described

at the three-dimensional level.54,55 It has the form

huvg ðr
!Þ ¼

X
a

Z
dr
!0cuva ðr

! � r
!0Þwvvagðr0Þ; ð8Þ

where huva (~r) is the 3D total correlation function of solvent site

g around the solute macromolecule (the superscripts ‘‘u’’ and

‘‘v’’ denoting the solute and solvent, respectively) giving

the normalized deviation of the solvent density from its

bulk value, which is related to the 3D solute–solvent site

distribution function gg(~r) = hg(~r) + 1, and cuva (~r) is the 3D

direct correlation function representing ‘‘direct’’ correlations

between the solute and solvent site g, which has the long-range

asymptotic behavior of the 3D solute–solvent site interaction

potential: cuvg (~r) B buuvg (~r), where b = 1/kBT is the inverse

temperature with the Boltzmann constant kB. The site-site

susceptibility of pure solvent wvvag(r) = ovv
ag(r) + rvah

vv
ag(r) gives

the response, in terms of the distributions in pure bulk solvent,

of site g to the presence of site a at separation r. It consists

of the intramolecular matrix ovv
ag(r) = d(r � lvvag)/(4p(l

vv
ag)

2)

specifying the intramolecular correlations of solvent molecules

with the geometry given by the z-matrix of site separations lvvag,

and the intermolecular part given by the bulk solvent site

number density rva times the site-site radial correlation functions

of pure bulk solvent hvvag(r). The latter is obtained in advance to

the 3D-RISM calculations from the dielectrically consistent

RISM theory (DRISM) developed by Perkyns and Pettitt57

which provides a consistent description of the dielectric properties

for ions in polar solvent.

To solve eqn (8), it needs to be complemented with the

closure relating functions huvg (~r) and cuvg (~r). In literature many

different approximate closure relations have been proposed,

which application depends on the studied system and/or

property. In our work we use closure developed by Kovalenko

and Hirata (KH) which is appropriate and successful in the

description of the solvation structure and thermodynamics of

various inorganic and organic solutes and macromolecules

with multiple partial charges in different non-polar and polar

liquids, mixtures, and electrolyte solutions, as well as solid–

liquid interfaces:54,55

guvg ðr
!Þ ¼

expðXuv
g ðr

!ÞÞ for Xuv
g ðr

!Þ � 0

1þXuv
g ðr

!Þ for Xuv
g ðr

!Þ40

8<
: ;

Xuv
g ðr

!Þ ¼ �buuvg ðr
!Þ þ huvg ðr

!Þ � cuvg ðr
!Þ;

ð9Þ

where guvg (~r) = 1 + huvg (~r) is the radial distribution function.

To account for the solute–solvent coupling in the

3D-RISM-KH calculations aimed at obtaining the site distri-

butions guv, we adopt the same approach as the one introduced

in our previous work on embedding a Kohn–Sham system in

the average solvent potential generated by the 3D-RISM-KH

method.58,59 In this approach the electronic structure of the

solute is calculated applying KS-DFT formalism, with the

presence of the solvent included in the effective Kohn–Sham

potential. The whole system is thus described by means of the

Helmholtz free energy functional

hAi[hrAi,{rvg}] = hEAi[hrAi,hrBi] + DmKH
solv[{r

v
g}] (10)

of the mean electronic density of the embedded molecule

hrA(~r)i and the set of the classical 3D solvent site density

distributions rvg(~r) = rvgg
uv
g (~r) for all solvent sites g. At this

stage, assuming the coupling between the embedded subsystem

A and environment B to be weak enough we apply the same

above-described FDET functionals to the mean densities

hrA(~r)i and hrB(~r)i. For simplicity, we will drop the ensemble

averaging brackets in all notations below, keeping in mind that

all quantities are mean values averaged over the ensemble of

the environment.
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2.3 ‘‘Dressing up’’ classical site distributions in electron

density

The 3D-RISM-KH method is used to obtain the equilibrium

density distributions of their classical interaction sites g. Such
distributions do not suffice to evaluate the orbital-free embedding

potential as they are essentially related to nuclei and not

electrons. For this reason, the new additional approximation,

namely the procedure to ‘‘dress up’’ the site distributions with

the electrons is introduced.

First of all, it is assumed that the electron density attributed

to each site (qvg(~r)) is ‘‘rigid’’. This assumption was used

already in the first application of the orbital-free embedding

potential in simulating solvated system33 where it was assumed

that a ‘‘rigid’’ electron density cloud moves together with the

nuclei. In other words, the inhomogeneous average electron

density of solvent around the solute molecule is obtained as the

convolution of the inhomogeneous probability density of the

solvent nuclei and the electron density around each of them.

Note that the electron density around each nucleus is assumed

to be translationally and rotationally invariant. Therefore,

inhomogeneities of the average solvent charge density arise

due to inhomogeneities of the nuclear distributions. Such

construction of hrB(~r)i neglects, therefore, any instantaneous

fluctuations of the electron density of each solvent molecule

due to fluctuations of its induced dipole moments. Note,

however, that the ‘‘rigid’’ density used for each solvent molecule

does not correspond to the gas phase but to the liquid. The

averaged electron density of the solvent is obtained thus as:

hrBðr
!Þi ¼

X
g

Z
dr
!0qvgðjr

! � r
!0jÞrvgguvg ðr

!0Þ; ð11Þ

where the angle brackets h. . .i denote the statistical ensemble

average, and guvg (~r) is the 3D solute–solvent site distribution

function obtained from the 3D-RISM-KH theory described in

the previous section.

Such simplified construction of the electron density of the

environment was used in a number of our subsequent applications

in liquids.18,19 In the present work, a further simplification is

introduced: the ‘‘rigid’’ electron densities are orientationally

averaged, spherically symmetric distributions centered at

atoms (O, H in the case of water, for instance) or groups of

atoms (O, H, and CH3, in the case of methanol, for instance).

The additional approximation made in the procedure to

dress-up the RISM site distributions concerns the evaluation

of the convolution (eqn (11)). We note that the functions qvg(~r)

are short ranged whereas the spacing of the RISM grid, at

which the site distributions are evaluated, is large (0.5 Å).

Therefore, to a good approximation, the integration can be

replaced by summation involving only diagonal elements,

with the weights corresponding to the number of electrons

associated to each site (8.8 e for oxygen in water and 0.6 e for a

hydrogen in water for instance). This assumption means that

the weights represent the average charge distribution in the

solvent molecule which is not affected by the instantaneous

configuration of the solvent. Lifting this simplification by

using an orientation-dependent charge density qvg(r,O) would
involve the orientation-dependent site distributions guvg (~r,O).
As a consequence, solving 3D-RISM equations would become

significantly more involved. It is important to underline that

the average charge distribution differs, however, from its

gas-phase counterpart.

The above assumptions lead to the following expression for

hrB(~r)i at the 3D-RISM grid, which reads:

hrBðr
!Þi ¼

X
g

qvgr
v
gg

uv
g ðr

!Þ: ð12Þ

The environment electron density obtained from the

3D-RISM theory in the form of eqn (12) can be used right away

to calculate the non-electrostatic components vnadxc [rA,rB](~r) and
vnadt [rA,rB](~r) of the embedding potential vKSCED

emb [rA,rB;~r] defined
in eqn (3). Furthermore, the electrostatic terms in the embedding

potential vKSCED
emb [rA,rB;~r] explicitly dependent on the positions

of the environment nuclei in the original FDET are replaced in

our ensemble approach by the statistical-mechanical average of

the electrostatic potential of solvent sites acting on the solute,

defined as a variational derivative of the system free energy

eqn (10) with respect to the embedded density rA(~r):

velecsolvðr
!Þ �

A½rA; frvgg�
drAðr

!Þ
¼
X
g

rvg

Z
dr
!0velg ðjr

! � r
!0jÞhuvg ðr

!0Þ;

ð13Þ

where velg (~r) is the electrostatic potential created by the site

electronic charge density qvg(~r), and huvg (~r) = guvg (~r) � 1 is the

3D solute–solvent site total correlation function obtained from

the 3D-RISM-KH theory. Note that the expression (13) is

obtained by definition with the variational differentiation of the

expression for the solvation chemical potential of the embedded

molecule with respect to its electronic density rA(~r).
55

The RISM method has been previously coupled with

electronic structure methods to study the solvent effects on

the electronic structure of solute. Such combinations include

SCF-RISM approach introduced by Kato,60–62 where RISM

is used to embed Hartree–Fock or MC-SCF wavefunction,

as well as proposed by Gusarov et al.58,59 self-consistent

combination of statistical-theory of liquids with Kohn–Sham

formulation of density functional theory. In both of this

approaches, the Fock matrix of the isolated solute is augmented

by the solvent terms, which constitute only terms arising from

electrostatic interactions in the solute–solvent interface. The

embedding potential given in eqn (3), used in present work,

accounts also for Pauli repulsion terms, which where shown to

be of a great importance to correctly describe the environment

of the chromophore.51

2.4 Evaluation of the solvatochromic shifts at averaged

electron density of the environment hqBi

The basic approximation introduced in ref. 23 and used also in

the present work is given in eqn (14):

IðoÞ ¼
X
i

fi½rBðfR
BðnÞ
j gÞ�dðo� oi½rBðfR

BðnÞ
j gÞ�Þ

* +
n

�
X
i

fi½hrBi�dðo� oi½hrBi�Þ

ð14Þ
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For each instantaneous geometry of the solvent, LR-TDDFT

leads to excitation energies and the corresponding intensities

which are determined by the electron density of the solvent at

this geometry (rB). Averaging the excitation energies and the

intensities over the ensemble leads to absorption bands

of large width depending on the fluctuation of the solvent.

The second line in eqn (14) represent an approximation as the

averaging is made for at the level of the density rB. The

same type of approximation is known in the QM/MM

methods where instead of density and the orbital-free

embedding potential, the electrostatic potential generated by

the solvent is averaged (see ref. 63 and 64). In either cases

(averaging the whole the orbital-free embedding potential or

only its electrostatic component) results in neglecting any

instantaneous coupling between the structure of the environ-

ment and the electronic structure of the embedded species.

Such approximation-if applicable-leads to the enormous

computational savings as the LR-TDDFT calculations are

performed only once. One cannot, however, obtain any realistic

band-shapes but only the shifts of the absorption bands as the

excitation energies and the intensities are calculated at only

only one density rB denoted with hrBi for obvious reasons. The
absorption bands in such a case is represented as a series of

spikes at resonance frequencies oi. It is worthwhile to notice

that hrBi is an observable quantity. Although hrBi cannot

be associated with ground-state density of a system in Born–

Oppenheimer approximation it can be used as a parameter in

all FDET equations for both ground and excited states.

3. Computational details

The same geometry was used for both isolated and solvated

coumarin 153 optimized in Kohn–Sham calculations using the

Becke–Perdew (BP)65,66 exchange–correlation functional.

To obtain the solvent distributions and solute atomic

charges, the Kohn–Sham DFT/3D-RISM-KH scheme was

used as implemented in ADF program package58,67,68 using

the following main options: (i) the partial charges used for the

solute are taken from the multipole derived population analysis

(labeled as mdc-q in ADF output)69 calculated applying

STO(TZP) basis set with modified fit functions to give better

multipole moments,69 (ii) the local-density approximation70–72

(LDA) was used for the exchange–correlation energy, (iii) the

integration parameter was set to 6.0, (iv) the size of the

3D-FFT grid to calculate solvent distributions was chosen to

64 	 64 	 64 points in cell size of 32 Å 	 32 Å 	 32 Å, (v)

the van der Waals parameters for solvents required to solve

3D-RISM-KH equations were taken from ADF manual and,

if not available, the OPLS force field73,74 was used with

charges from mdcm-q population analysis.

The effective embedding potential given in eqn (3) is

evaluated for the pair of densities, rA(~r) and hrB(~r)i, using
expressions derived from the local density approximation for

each of its non-electrostatic components: the Thomas–Fermi

expression for the kinetic energy,75,76 the Dirac expression for

the exchange energy,70 and the Vosko-Wilk-Nusair expression

for the correlation energy.71,72 The electrostatic component

was evaluated using the monomer expansion of the 3D-RISM

potential using all the centers of the 3D-RISM grid (see eqn (13)).

The exchange–correlation component of the total effective

potential in eqn (7), which is generated by the embedded density

rA, i.e.,
dExc½rA �

drA
, is approximated using the SAOP potential.77,78

Such hybrid treatment of the total exchange–correlation potential

is motivated by the fact that SAOP potential has correct

asymptotic behavior and, as a consequence, is applicable to

wider class of excitations in isolated molecules. Note that

SAOP cannot be used for approximating the corresponding

component of the orbital-free embedding potential because it

depends explicitly on orbitals which are not available for rA+ rB.

4. Results and discussions

4.1 Net-charge densities from dressed RISM probabilities

Fig. 2 and 3 show the net average charge density of the solvent

for water and diethyl ether, respectively. The average net

charge is the sum of the average nuclear charge obtained as

a direct results of 3D-RISM and the average electron hrBi. It is
evaluated as:

hrnetB ðr
!Þi ¼

X
g

qv;netg rvgg
uv
g ðr

!Þ: ð15Þ

where qv,netg is the net charge localized on the given site g. In the

case of water, qv,netg of the oxygen is equal to �0.8476e and

0.4238e for hydrogen. For water, the positive charge concen-

trates in the vicinity of the carbonyl group of coumarin 153

(three blue contours on the density map shown in Fig. 2).

These localized positively charged domains correspond to

hydrogens (the only atoms in the solvent with a positive net

charge). The position of these three areas correspond to three

possible geometries of water molecules hydrogen bonded to

the carbonyl group: one water molecule forming a linear hydrogen

bond, two simultaneously bound water molecules forming

bent hydrogen bonds, or an occurrence of three water molecules

simultaneously bound to the carbonyl group by three hydrogen

bonds. The statistical nature of 3D-RISM theory does not

make it possible to distinguish among these three possibilities.

The extend of these positive regions near the carbonyl group,

although localized, indicates that the hydrogen bonded water

molecules possess certain degree of structural flexibility. There

are no other regions (even around the CF3 group) featuring

Fig. 2 Net-charge solvent density: coumarin 153 in water.
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such localization of the positive charge. The second shell,

adjacent to the hydrogen shell, is composed of the oxygen

sites as the net charge is negative (shown in red). With the

increasing distance from coumarin 153, the positively and

negatively charged domains occur alternatively revealing thus

the structural order in the solvent.

The net-charge of the diethyl ether solvent is shown in

Fig. 3. Due to the fact that two different sites in the diethyl

ether molecule are negatively charged, the correspondence

between the sign of the net charge and the atoms of the solvent

molecule is not direct as the one in the case of water (the net

charges qv,netg are �0.148961, 0.7206805, �1.143440 for CH3,

CH2 and O, respectively.) The positively charged CH2 groups

are located in the vicinity of the carbonyl group. The large

negative peak is located on the opposite side of the coumarin

153. As it is rather unlikely that the solvent CH3 groups

interact directly with the chromophore, the negatively charged

areas represent rather the oxygen atoms. The identification of

the groups constituting the second solvation shell is impossible

from the net charge maps. The arrangement of the contour

lines indicates, nevertheless, that the structure of the solvent is

highly ordered. Such interpretation of the positively and

negatively areas around the carbonyl group is corroborated

by the fact that the positively charged domains are located

further from the carbonyl group than those in the case of

water. Compared to water (see Fig. 2), the net charge for the

diethylether solvent is more structured. This organization

reflects the fact that diethyl ether is a larger molecule than

water and the structure of the net-charge reflects intramolecular

correlations.

4.2 Correspondence of net-charge densities and orbital-free

embedding potential

The net-charge density provides information on the structure

of the solvent molecules around the solute. A more direct

quantity related to the solvatochromism is the orbital-free

embedding potential which is determined by the averaged

charge of the environment (nuclear and electron) shown in

Fig. 4 and 5 for water and diethyl ether, respectively. Before

discussing the shape of the orbital-free embedding potential,

which determines the solvatochromic shifts, it is useful to

indicate the form of the orbitals of coumarin 153 mainly

involved in the studied electronic transition: the highest occupied

molecular orbital (HOMO) and the lowest unoccupied

molecular orbital (LUMO). For the isolated coumarin 153,

these orbitals are of the p type and are shown in Fig. 8 and 9.

HOMO is localized in the carbonyl group of the coumarin

153 but extends also over the whole molecule. LUMO, however,

is more localized near the carbonyl group.

We start the analysis with the embedding potential for

coumarin 153 in water (Fig. 4 and 5). It can be clearly seen,

that the embedding potential is attractive in the vicinity of

the carbonyl group. As a consequence, it stabilizes LUMO

localized in this attractive region. Fig. 4 and 5 feature also the

zero line (shown in orange) which divides the part of the

molecule where the orbitals are stabilized from that where

the orbitals are destabilized by the solvent. The zero line passes

through the center molecule and on the left side of coumarin 153.

As a consequence, HOMO can be expected to be destabilized

by the solvent whereas LUMO is expected to be even

more stabilized. This results in the overall reduction of the

HOMO–LUMO gap.

Immediately outside the exclusion volume, the orbital-

free embedding potential features strongly attractive areas.

According to our previous analyses of the net charge density

(Fig. 2), these areas are due to the hydrogen atoms of water in

the first solvation shell. The potential veffemb[rA,rB;~r] is attractive
near the CF3 group (see Fig. 5 where it is shown in the plane

comprising the fluorine atoms). The possible stabilizing effect

on LUMO is, however, not strong enough to notably enhance

the stabilizing effects near the carbonyl group.

In the case of coumarin 153 solvated in diethyl ether, the

embedding potential differs significantly from that of water

(see Fig. 6 and 7). In the vicinity of the carbonyl group,

veffemb [rA,rB;~r] is weakly attractive and is weakly repulsive at

the opposite end of the chromophore. The zero line passes

through the center of the chromophore. This behavior results

in a smaller effect on the orbital energy for either HOMO or

LUMO than the one in the case of water solvent The solvato-

chromic shift can be, therefore, expected to be smaller.

For other solvents considered in the present work, a

similar qualitative analyze of the relation between the shape

Fig. 3 Net-charge solvent density: coumarin 153 in diethylether.

Fig. 4 Orbital-free embedding potential for coumarin 153 in water

represented with hrBi (projection on the plane of the molecule).

View Online



10572 Phys. Chem. Chem. Phys., 2011, 13, 10565–10576 This journal is c the Owner Societies 2011

of the orbital-free embedding potential and the orbitals

involved in the studied electronic transition reveal that the

solvatochromic shifts involve stabilization of LUMO. The

quantitative discussion of the calculated solvatochromic shifts

is made in the subsequent section.

4.3 Solvatochromic shifts

The experimental reports22 indicate, that the lowest transition

in this chromophore is of p - p* character and it is red-

shifted upon interaction with the polar environment. The

qualitative analysis for the two solvents presented in the

previous section confirms the experimental picture. The calculated

solvatochromic shifts are in excellent agreement with the

experimental data (see Table 1). The maximum deviations

do not exceed 0.05 eV (calculations for coumarin 153 in

2-propanol using the STO TZ2P basis set). Addition of the

diffuse function to the basis set (STO augmented TZP) does

not significantly affect the calculated shifts. The magnitude of

this effect is about 0.01 eV for most of the solvents except

for those water and acetonitrile, for which the effect reaches

0.02 eV (see Table 2).

The small deviations between the calculated and the experi-

mental solvatochromic shifts (relative errors in the 10% range)

call for further analysis of the factors determining the shifts.

According to our previous numerical experience15,51 this

indicates that the non-electrostatic component of the orbital-

free embedding potential is indispensable. The non-additive

exchange–correlation and kinetic components represent the Pauli

Fig. 5 Orbital-free embedding potential for coumarin 153 in water

represented with hrBi (projection on the plane comprising the fluorine

atoms).

Fig. 6 Orbital-free embedding potential for coumarin 153 in diethyl-

ether represented with hrBi (projection on the plane of the molecule).

Fig. 7 Orbital-free embedding potential for coumarin 153 in diethyl-

ether represented with hrBi (projection on the plane comprising the

fluorine atoms).

Fig. 8 LUMO of isolated coumarin 153.

Fig. 9 HOMO of isolated coumarin 153.
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exclusion principle.79 It assures that the chromophore is not

over-polarized by the polar environment. Neglecting the non-

electrostatic component, leads to numerical instabilities

especially if the basis set is flexible enough to scan the areas

near the nuclei in the environment.42,80,81 In the present work,

the environment electric charge (both nuclear and electronic)

are not as localized as in the case of the explicit solvent models.

hrBi is actually smeared over the space around the chromo-

phore. Neglecting the non-electrostatic component (two last

terms in eqn (3)) can be expected to be acceptable. Indeed,

neglecting this component and retaining only the electrostatic

(classical Coulomb) terms (see Table 1 and 2) does not seem to

affect noticeably the calculated shifts for the smaller considered

basis set (STO TZ2P). For the larger among the considered

basis sets (STO augmented TZP), however, neglecting the role

of the non-electrostatic term affects the calculated shifts more

significantly. Moreover, the electrostatic-only embedding

leads to larger deviations from experimental shifts especially

for the most polar solvents. These tendencies reflect the

variational nature of the FDET based methods.

The specific interactions and the structuring of the solvent

are reflected as positive or negative domains in the average net

charge plots discussed in the previous sections. In this way,

although the solvent molecules are not represented explicitly,

the specific interactions are taken into account in the model

applied in this work. The global effect of electric polarization,

including both specific solvent-chromophore interactions,

long-range polarization due to reorientation of the solvent

molecules, as well as the electronic polarization, is taken into

account by the average net charge distributions as well. It is

tempting, therefore, to compare two continuum models: the

one applied in this work where the solvent is represented by a

non-uniform continuum of electric charge and the uniform

dielectric continuum one, commonly used in modelling

solvatation effects.82–84 In dielectic-continuum types of models,

the embedding potential includes, however, only electrostatic

component.y Since the Coulomb embedding was shown in the

previous section leads to reasonable shifts, comparison of

shifts obtained with Coulomb embedding to that derived with

the uniform continuum dielectric models is expected to

reveal the role of specific interactions. To this end, the shifts

obtained using commonly used Conductor-like Screening

Model (COSMO)84 are also given in Table 1 and 2. The

standard implementation of COSMO into the same code

(ADF) as the one used for FDET calculations applying the

same exchange–correlation functionals and basis sets was used

for this purpose. Comparing the COSMO and FDET results,

is made here to identify the importance of replacing the

uniform continuum description (COSMO) of the solvent by the

non-uniform one (this work) keeping the same electrostatic-

only embedding potential. The uniform continuum dielectric

model leads to the correct trends as far as the dependence of

the solvatochromic shift on the solvent polarity is concerned.

Taking into account the uniformity of the solvent is, however,

crucial for quantitative description of the solvatochromism at

two extreme cases. For most polar solvents, for instance, the

shifts derived from the uniform dielectric model tend to

saturate and do not change much if the dielectric constant

increases from 20 to 80.

Turning back to explicit solvent models, reliability of any

observable depends critically on two factors: the number of the

molecules representing the solvent and the representability of

the sample of configuration used in averaging.19 The relative

importance of each of these factors depends on the solvent and

the strength of the solute–solvent interactions. In the case of

the considered solvents, reducing the solvent model to the

nearest neighbors (1–3molecules) and the sample of configuration

to just one the local minimum provides a very poor model of

the solvent (see Table 3). The considered conformations

include solvent molecules hydrogen bonded to the carbonyl

group of the coumarin 153. The solvatochromic shift critically

depends on the number of explicitly treated solvent molecules

Table 1 Solvatochromic shiftsa,b,e (De in [eV]) of p - p* absorption
band of coumarin 153. The corresponding excitation energy for
isolated coumarin 153 is 2.80 eV

Solvent ediel DeFDET DeCoul DeCOSMO Deexp

Water 78 �0.29 �0.30 �0.20 �0.27
Methanol 33 �0.24 �0.24 �0.19 �0.24
Ethanol 25 �0.21 �0.21 �0.19 �0.24
1-Propanol 20 �0.20 �0.20 — �0.23
2-Propanol 20 �0.18 �0.20 �0.19 �0.23
Acetone 21 �0.21 �0.21 �0.19 �0.19
Acetonitrile 38 �0.17 �0.17 �0.19 �0.20
Diethylether 4 �0.14 �0.14 �0.14 �0.10
Cyclohexane 2 0 0 �0.08 —
ADc 0.007 0.001 0.072
AADd 0.024 0.020 0.043

a Calculated and measured shifts are given with respect to corresponding

value for isolated chromophore. b All calculations apply the STO

TZ2P basis sets. c AD is the average deviation between calculated

and experimental solvatochromic shifts. d AAD is the average absolute

deviation between calculated and experimental solvatochromic shifts.
e Experimental data taken from ref. 22 and 85.

Table 2 Solvatochromic shiftsa,b,e (De in [eV]) of p - p* absorption
band of coumarin 153. The corresponding excitation energy for
isolated coumarin 153 is 2.86 eV

Solvent ediel DeFDET DeCoul DeCOSMO Deexp

Water 78 �0.31 �0.33 �0.24 �0.27
Methanol 33 �0.25 �0.26 �0.24 �0.24
Ethanol 25 �0.22 �0.23 �0.23 �0.24
1-Propanol 20 �0.21 �0.21 — �0.23
2-Propanol 20 �0.19 �0.21 �0.23 �0.23
Acetone 21 �0.22 �0.22 �0.23 �0.19
Acetonitrile 38 �0.19 �0.19 �0.24 �0.20
Diethylether 4 �0.15 �0.15 �0.17 �0.10
Cyclohexane 2 0 0 �0.10 —
ADc �0.005 �0.011 �0.012
AADd 0.022 0.022 0.035

a Calculated and measured shifts are given with respect to the corres-

ponding values for isolated chromophore. b All calculations apply the

STO augmented TZ2P basis sets. c AD is the average deviation

between calculated and experimental solvatochromic shifts. d AAD

is the average absolute deviation between calculated and experimental

solvatochromic shifts. e Experimental data taken from Ref. 22 and 85.

y Note that the non-electrostatic components to the energy are
obviously inclued in such models by means of a posteriori added
corrections to the energy (cavitation energy, dispersion energy, etc.)
but they are not taken into account in the embedding potential.
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in this case. Such trend is in agreement with earlier studies

by Neugebauer et al.,18 where convergence of the solvent

shift in acetone as the function of number of water molecules

in environment was examined. In that case, the effect of the

bulk solvent was reached including at least 50 H2O molecules.

Finally, it is worthwhile to notice that the FDET shifts are

less affected by the change of the basis set than the absolute

values of the excitation energy. For the isolated chromophore,

addition of diffuse functions affects the calculated vertical

excitation energy by 0.06 eV shifting it from 2.80 to 2.86 eV,

whereas the effect on the shifts is significantly smaller. It does

not exceed 0.02 eV (see Table 1 and 2). A more detailed

discussion of the stability of the FDET results with respect

to the choice of the basis sets is addressed elsewhere.51 The

calculated LR-TDDFT vertical excitation energy for the

isolated chromophore (either 2.80 or 2.86 eV) is, however,

lower than the estimates for this quantity reported in the

literature. Goerigk and Grimme8 reported the value of 3.51 eV

based on a combined analysis of experimental energy of the

0–0 excitation in solavted aminocoumarine 153 and theoretical

estimates for various contributions due to the solvent. The

value reported by Improta et al.9 (3.18 eV) is also higher than

the vertical excitation energy of the isolated chromophore

obtained in the present work. This suggests that the absolute

values of all vertical excitation energies for isolated and embedded

chromophore are underestimated due to deficiencies of the used

approximations in the LR-TDDFT calculations.

5. Conclusions

The underlying approximation used in this work consists of

the simplification made in averaging instantaneous excitations

over the statistical ensemble introduced in our previous

work.23 Instead of the conventional strategy, in which the

instantaneous excitations for each conformation are averaged

over the statistical ensemble, the average excitation energy

is evaluated only once for the solvent represented by a non-

uniform average charge density (hrB(~r)i). This approximation

is given in eqn (14) and has a clear interpretation owing to the

fact that all the equations in the frozen-density embedding

theory13–17,53 for both ground and excited states depend

parametrically on the electron density of the environment

rB. Opposite to most of other applications of frozen-density

embedding theory based methods,19,24–27 the frozen density

used in the present work hrB(~r)i does not correspond to

the ground-state electron density of any molecular system.

hrB(~r)i is the ensemble (or time) average of the electron density

of the solvent surrounding the chromophore—a quantity

observable at both microscopic and macroscopic scales.

It is comprehensively shown that the used method leads

to accurate solvatochromic shifts. The average absolute

deviation between the calculated and measured shifts amounts

to about 0.02 eV. The calculated values are numerically stable

and are not significantly affected even by inclusion of diffuse

functions in the atomic basis sets. The plots of the net charge

density of the solvent reveal the ordering effect of the chromo-

phore on the solvent molecules. The topology of the positively

and negatively charged regions around the chrompohore

derived from ‘‘dressed up’’ 3D-RISM site probabilities reflects

the structure of the solvatation shells. In the case of solvents

capable of hydrogen-bonding to the chromophore, the solvent

is highly structured around the carbonyl group of the coumarin,

which shows as strongly localized positively charged regions,

which in turn stabilize the LUMO. For all studied solvents,

stabilizing LUMO appears to lie at the origin of the redshift in

the lowest-energy absorption band. Interestingly, the solvent

charge density is less structured near the -CF3 the group of

coumarin 153.

The non-uniformity of the average charge density of the

solvent leads to strong variations of the embedding potential

(the orbital-free embedding potential), which includes both

electrostatic and non-electrostatic component. The plots of

this highly non-uniform potential combined with the analysis

of the localization of HOMO and LUMO are shown to be

very useful in qualitative analyses of the effect of the solvent

on the excitation energies.

Calculations using explicit models of the solvent (clusters

including 1–3 solvent molecules most tightly bound to the

chromophore) made for water and for methanol, lead also to

the red-shifted excitation energies but the magnitude of the

shifts varies strongly with the number and geometry of explicit

solvent molecules.

The results of the present work indicate clearly that the

statistical nature of the solvatochromc shifts has to be taken

into account in modelling the solvatochromic shifts. The

proposed approach to deal with the flexible solvents is closely

related to that used by Galvan et al.63,64 Opposite, however,

to the approach by Galvan et al., where only electrostatic

component of the whole embedding operator is averaged,

whereas the whole orbital-free embedding potential is averaged

in this work. This involves more costly calculations as due its

additional non-electrostatic component which is a bi-functional

of two electron densities: that of the solvent and that of the

solute. As a result, it changes if the solute density changes

which leads to an additional contribution to the response kernel

in LR-TDDFT calculations. This expense, does not affect the

numerical results significantly if a small basis sets are used for

the solute. It results, however, with increased stability of the

calculated shifts with respect to the basis sets reflecting thus

the variational origin of the frozen-density embedding theory.

Finally, we notice that the approximants for the non-additive

components of the orbital-free embedding potential (exchange–

correlation and kinetic) in the present work are derived from

local density approximation. If rB is an atomic or molecular

electron density, such approximants for the non-additive

Table 3 Solvatochromic shiftsa,b (De in [eV]) of p - p* absorption
band of coumarin 153

Model of solvent De(water) De(methanol)

Explicit:1molecule �0.03 �0.09
Explicit:2molecules �0.11 �0.12
Explicit:3molecules �0.04 �0.06
3D-RISM �0.31 �0.25
Experimentc �0.27 �0.24
a Calculated and measured shifts are given with respect to the corres-

ponding values for isolated chromophore. b All calculations apply the

STO TZ2P basis sets. c Experimental data taken from ref. 22 and 85.
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kinetic energy (and potential) are known to be less adequate

than the ones involving electron density gradients.42,86 The

averaged density hrBi used in the present work is much more

uniform than any molecular electron density as it is smeared

all over around the solute and does not include nuclear cusps

causing particular concern in FDET based methods.42,80,87 If

rB corresponds to the ground-state electron density for some

polyatomic system in Born–Oppenheimer approximation,

this problem can be avoided either by enforcing the total

emebedding potential to the desired asymptotic behavior88

or designing an approximation for the non-additive kinetic

potential42 fulfilling the known exact condition of relevance near

nuclear cusps. The advantages of using local density approxi-

mation for this purpose is both practical (small computational

effort) and formal (the orbital-free embedding potential is

obtained from the first principles as a functional of a pair of

electron densities).
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Chapter 6
Spectral tuning of rhodopsin and visual cone pigments

“If I have seen farther, it is by standing on the shoulders of giants.”
— Sir Isaac Newton

6.1 Overall presentation of the article

As described in the introduction of this thesis work (Chapter 1), the spectral tuning of the retinal
chromophore in different protein environments (rhodopsin pigment, red-, green-, and blue-cone
pigments) provides the basis of the visual perception of human. This work aims to understand
the origin of the spectral tuning by investigating the π → π∗ vertical electronic excitations of
retinal for different models of retinal in the protein environments, and to investigate the effect
of amino acid mutation in rhodopsin thus to provide a basis for rational photobiological design
of proteins with specifically tuned absorption properties.

In this work, global/local energy minimum structures for each models are used for the calcu-
lating the vertical electronic excitations. The modeling of the structures were performed by Ville
Kaila and Dage Sundholm. The calculation of the vertical electronic excitations were done by
Xiuwen Zhou and Tomasz A. Wesolowski.
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6.2 Reprint of the article
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ABSTRACT: Retinal is the light-absorbing biochromo-
phore responsible for the activation of vision pigments and
light-driven ion pumps. Nature has evolved molecular
tuning mechanisms that significantly shift the optical
properties of the retinal pigments to enable their
absorption of visible light. Using large-scale quantum
chemical calculations at the density functional theory level
combined with frozen density embedding theory, we show
here how the protein environment of vision pigments
tunes the absorption of retinal by electrostatically
dominated interactions between the chromophore and
the surrounding protein residues. The calculations
accurately reproduce the experimental absorption maxima
of rhodopsin and the red, green, and blue color pigments.
We further identify key interactions responsible for the
color-shifting effects by mutating the rhodopsin structure
in silico, and we find that deprotonation of the retinyl is
likely to be responsible for the blue-shifted absorption in
the blue cone vision pigment.

Retinal is a conjugated polyene that occurs in the light-
capturing unit of several photobiological systems. In vision

pigments1 and bacterial light-driven proton pumps,2 retinal is
covalently linked to the protein by a lysine residue, forming a
Schiff base (SB). The protein environment shifts the absorption
maximum of retinal from 365−430 nm (2.80−3.40 eV) in
aqueous solution to 420−560 nm (2.20−2.95 eV) in the vision
proteins,1 enabling their absorption of visible light. The exact
molecular mechanism of the spectral shift has remained elusive
for more than half a century. It has been suggested that the tuning
may arise from an altered conjugation of the polyene,3 by specific
electrostatic interactions between protein residues and the
retinal,4 and by charge transfer and polarization effects.5 The
development of accurate electronic structure theory methods
open up new ways of addressing the molecular mechanism of
spectral tuning.
In this study, we investigate the protein-induced spectral shifts

of retinal in rhodopsin and its homologous color cone pigments
using large-scale quantum chemical calculations. Rhodopsin is a
protein in the rod cells of the vertebrate eye, responsible for dim
vision.1 Color vision takes place in the cone cells and is catalyzed
by three color pigment proteins, responsible for the absorption of
red, green, and blue photons, respectively.1b Light absorption by
these G-protein coupled receptors leads to an 11-cis to all-trans

isomerization of the retinyl side chain, activating a G-protein-
mediated signaling cascade that triggers the vision process.1

Photobiological systems face unique computational challenges
due to their complex chromophore−protein environment, which
must be explicitly considered using large computational models.6

Although ab initio methodologies can accurately predict optical
transitions in molecules, most such methods are inapplicable to
photobiology due to their high computational costs. Recent
developments, such as the restricted virtual space approach in
combination with low-order correlation methods, increase the
possibility of treating large photobiological systems.4c,7 However,
due to the high computational scaling of such methods, extensive
studies of the chromophore−protein interactions beyond the
immediate chromophore vicinity are demanding.
We use here a frozen-density embedding theory (FDET)8

based method to compute the vertical excitation energies of
retinal embedded in large protein surroundings, within the
linear-response time-dependent density functional theory
(TDDFT)9 framework. In these calculations, we treat the
chromophore region as an active system that is quantum
chemically embedded in a frozen electron density of surrounding
protein residues. Due to the large computational savings
introduced by treating the surroundings as a frozen electron
density, the FDET approach allows the modeling of the
chromophore−protein interactions at full quantum mechanical
level, using system sizes comprising ∼400 atoms, usually beyond
the capabilities of conventional TDDFT methods, especially
when a large number of calculations are necessary, as in this work.
Molecular models of rhodopsin and of the red, green, and blue

cone pigments were constructed on the basis of coordinates of
the crystal structure from Bos taurus11 and the homology models
obtained from Brookhaven Protein Data Bank (PDB IDs: 1U19,
1KPX, 1KPN, 1KPW).12 The models comprised 329−370
atoms, with the retinal surrounded by 25−30 residues nearest to
the chromophore binding pocket (see SI Table 1, SI Figures 1
and 2). All amino acid residues were cut at the Cβ atoms, which
were saturated by hydrogen atoms. The models were structure
optimized using the BP86 functional with the RI-MARIJ
approximation and def2-SVP basis sets.13 The retinal side
chain and hydrogen atoms in the surrounding residues were
allowed to fully relax in the structure optimization. To study the
saturation of these models, the CHARMM27 force field14 was
used to embed the quantum chemical models in the point charge
surroundings of the protein residues beyond the QM model
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systems. Based on structural alignment, sequence comparison
(SI Figure 1, SI Table 1), and the X-ray structure of rhodopsin,11

we also constructed blue (Rh:Δblue) and red mutant (Rh:Δred)
models to probe the function of key residues responsible for the
tuning process.1b The Rh:Δblue model comprised the in silico
mutations W265Y, Y191W, E122L, H211C, G90C, A124T,
A292S, A295S, and A299C, whereas the Rh:Δred model
comprised E181H, E122L, F208M, H211C, F212C, and
optimized similar to the rhodopsin and cone pigment models
(Cartesian coordinates are given in the SI). To study alternative
protonation states of the retinal, we performed local
optimizations of the SB proton with the proton constrained to
reside either on Glu-113 or on the retinyl side chain. The
optimizations were performed using a hybrid quantum/classical
mechanics (QM/MM) approach at the B3LYP/def2-SVP/
CHARMM27 level of theory.14,15 Only the Glu-113/SB retinal
was modeled for the QM system, and the remaining system was
treated classically. After the QM/MMoptimization, the structure
of the Glu-113/SB pair was incorporated back into the large full-
QM models. For computation of vertical excitation energies, the
optimized structures were separated into an embedded active
system and an environment region. The embedded active system
comprised (i) the retinyl chromophore or (ii) the retinal and
Glu-113, which were studied using the B3LYP functional15 and
Slater-type orbitals (STO) of double-zeta quality augmented
with polarization functions (DZP).16 The frozen density of the
environment is generated by a Kohn−Sham calculation for the
isolated environment at the BP86/DZP level. The electron
density of the embedded subsystem, ρA, and the charge density of
the embedding protein subsystem, ρB and ρB

pos, indicating
electrons and nuclei, respectively, uniquely determine the
embedding potential (vemb), within the FDET framework:8
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The nonadditive exchange-correlation component of the
embedding potential was approximated using the local-density
approximation for Exc[ρ],

17 whereas the nonadditive kinetic
component was approximated using the NDSD bifunctional.18

This leads to a robust computational protocol that reduces
possible errors due to the approximations in the nonadditive
kinetic energy.19 For FDET/TDDFT calculations beyond the
Neglect of Dynamic Response of the Environment approx-
imation, the reader should consult the recent comprehensive
review by Neugebauer.20 Since the charge-transfer excitations are
more sensitive to the choice of frozen density in FDET
calculations than local excitations, additional calculations were
performed using the CAM-B3LYP21 functional as implemented
in ADF.22 We did not observe noticeable TDDFT charge-
transfer problems for any of studied systems with retinal
comprising the embedded active region (see also SI Table 2).
Moreover, test calculations on a cis-retinal model at the coupled-
cluster approximate singles and doubles (CC2) level23 (SI Table
3) suggest that the long-range corrected density functional
CAM-B3LYP consistently overestimates the excitation energies
by ∼0.3 eV in comparison to the CC2 and experimental data (SI
Tables 2−4). We thus treated the chromophore at the B3LYP
level in all reported calculations. The electronic excitation
energies of the embedded retinal subsystem were obtained using

the FDET/TDDFT method implemented24 in ADF22 versions
2012.01 and 2013.01. The structure optimizations were
performed using TURBOMOLE25 version 6.3 and
CHARMM/Q-Chem version 4.0.26

The computed absorption spectra for the isolated and protein
embedded retinal models are shown in Figure 1. We obtain an
excitation energy of 2.54 eV (488 nm) for retinal embedded in
rhodopsin, which agrees well with the experimental absorption
maximum of 2.49 eV (498 nm).29 For the red and green
pigments, we obtain excitation energies of 2.36 eV (525 nm) and
2.30 eV (540 nm), respectively, whereas the blue pigment
absorbs at 2.91 eV (426 nm), which is obtained by deprotonation
of the SB, consistent with our previous study.4c We also explored
different embedding strategies; the results are shown in SI Table
2. We find that the red pigment model has the largest apparent
error of ∼0.16 eV in the excitation energy, within the expected
error limit of TDDFT/B3LYP calculations.7c However, it is likely
that uncertainties in the excitation energies may originate from
the use of homology models for the cone pigments, for which
there are uncertainties in the exact position of residues. Our
excitation energies for rhodopsin obtained at the FDET/CAM-
B3LYP level of theory are similar to values obtained in a recent
detailed QM/MM study (see SI Table 2).30

The FDET calculations suggest that the protein surroundings
of rhodopsin and the cone pigments absorbing red and green
light electrostatically blue-shift the retinyl absorption by 0.3−0.45
eV (Table 1) relative to the absorption maximum of retinal in
vacuum (2.27 eV/546 nm). The protein induced excitation-
energy shift (ΔEtot) is obtained as the difference between the
energies calculated for the completely relaxed chromophore in
vacuum and in the protein. The electrostatic shift (Eelec) is
determined by removing the frozen electron density of the
surrounding protein residues and keeping the chromophore
structure unchanged. This also removes the small Pauli
repulsion, which must be included in the FDET embedding
potential to obtain meaningful interaction energies.24 The steric
tuning contribution (Esteric) is obtained by subtracting the
electrostatic contribution from the total protein shift. The steric
contribution red-shifts the absorption energies by 0.07−0.27 eV
in all models, due to a destabilization of the ground state relative
to the excited state. This suggest that electrostatic effects

Figure 1. Computed absorption spectra of retinal models in vacuum
(SBH+/SB), and embedded in the protein surroundings of rhodopsin
(Rh), the red, green, and blue photopigments (red/green/blue), and in
silico constructed red and blue mutant pigments of rhodopsin
(Rh:Δred/Δblue). The vertical excitation energies and oscillator
strengths were obtained using FDET/TDDFT calculation at the
B3LYP/DZP level. The intensities are Lorentz broadened with a width
that is 0.5% of the frequency range and based on computed oscillator
strengths.
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dominate the spectral tuning of the protonated SB retinal,
consistent with earlier results by Coto et al.31 and Hasegawa et
al.32 However, our calculations indicate that the steric
contribution becomes dominating for the blue-cone model,
which is electrostatically tuned by only 0.01 eV due to
deprotonation of the SB retinal.
The electrostatic tuning mechanism originates from the

photophysical properties of the retinal chromophore. The
frontier orbitals involved in the excitation, shown in Figure 2,
suggest that the retinal excitation has a π→π* character and
results in a redistribution of the charge with the positive charge of
the SB transferred toward the β-ionine ring (SI Table 5), a well-
known property for retinal.4,33 This charge transfer makes the
retinyl susceptible for electrostatic stabilization by charges and
dipoles in the surrounding protein residues. Positive charges or
dipoles near the SB, or negative charges near the β-ionine group
are found to cause a red shift by stabilizing the excited state with
respect to the ground state. In contrast, negative charges and
dipoles near the SB, or positive charges near the β-ionine group
lead to a blue shift by stabilizing the ground state. Consistent with
these findings, we observe that in the in silico mutated Rh:Δred
model, an increased number of cystein and methionine residues
near the β-ionine ring has a red-shifting effect of 0.21 eV, shifting
the absorption maximum from 488 to 532 nm. Consistently, we
find in the in silico mutated Rh:Δblue model that replacing
nonpolar residues (G90, A292, A295) near the SB with polar
serine and threonine residues has a blue-shifting effect of 0.32 eV,
shifting the absorption maximum from 488 to 434 nm.
The blue-shifting effect is strengthened by removing polar

residues near the β-ionine and decreasing the aromatic stacking
of the retinyl by the W265Y substitution, which may lead to a
decreased π-cation interaction in the excited state. However, the
interpretation of the tuning effects in Rh:Δblue is more complex
as compared to the Rh:Δred model. Similarly to the blue cone
pigment, the retinyl SB in the Rh:Δblue becomes deprotonated
in the geometry optimization, which most likely has the largest

blue-shifting effect. The excitation in the deprotonated SB retinal
leads to a significantly smaller charge separation than that for the
protonated retinal (SI Table 5). Thus, the deprotonated retinal is
less sensitive to electrostatic tuning effects, consistently with the
larger steric tuning contribution shown in Table 1. The red and
blue shifts achieved by substituting the adjacent amino acids are
consistent with the spectral shifts observed in previous site-
directed mutagenesis experiments.1b,28 Moreover, the observed
spectral shifts and tuning effects of the red-pigment model are
also consistent with the retinal−charge/dipole model calcu-
lations of the protonated SB retinal shown in SI Figure 2.
To better understand the balance between red- and blue-

shifting effects in the tuning process, we performed additional
FDET calculations on protein models with Glu-113 removed. In
agreement with the pioneering study of rhodopsin tuning by
Coto et al.,31 we find that Glu-113 imposes a blue-shifting effect,
while the remaining protein environment causes a red shift (SI
Table 6). Our FDET calculations suggest that the blue-shifting
effect of Glu-113 varies between 0.2 and 0.4 eV (SI Table 6), thus
indicating that the remaining protein environment tunes the
blue-shifting effect of this residue. We analyzed the electrostatic
potential (ESP) charges of Glu-113 in the different models, and
found a variation of up to 0.2e (SI Figure 3), suggesting that the
remaining protein environment indeed imposes a secondary
polarization effect, which may in turn modulate the blue-shifting
effect of Glu-113. Different electrostatic polarization of the
retinyl side chain was previously described for the pigment
models by Hasegawa et al.,32 who suggested that the polarization
of the ESP along the retinyl backbone causes a shift in the LUMO
energy, thus changing the excitation energy. They found a
somewhat higher blue-shifting effect of 0.7 eV for Glu-113, but

Table 1. Calculated (EFDET) and Experimental (Eexp)
3,34

Vertical Excitation Energies (VEE, in eV) and Protein-
Induced Shift (ΔE) of Models of Rhodopsin, the Red, Green,
and Blue Cone Pigments, and the Blue- (Rh:Δblue) and Red-
Shifted (Rh:Δred) in Silico Mutant Models of Rhodopsina

system state EFDET Eisol Eexp

ΔEtot
[Eelec/Esteric]

Rh SBH+/E− 2.54
(488)

2.09
(593)

2.49
(498)

+0.27
[+0.45/−0.18]

red SBH+/E− 2.36
(525)

2.04
(608)

2.21
(560)

+0.09
[+0.32/−0.23]

green SBH+/E− 2.30
(539)

2.00
(620)

2.32
(534)

+0.03
[+0.30/−0.27]

blue SB/EH 2.91
(426)

2.90
(428)

2.92
(425)

−0.14
[+0.01/−0.15]

Rh:Δred SBH+/E− 2.33
(532)

2.20
(564)

− +0.06
[+0.13/−0.07]

Rh:Δblue SB/EH 2.86
(434)

2.86
(434)

− −0.19
[+0.00/−0.19]

retinal SBH+ − 2.27
(546)

2.03
(610)

−

retinal SB − 3.05
(407)

− −

aThe calculated values are obtained at the FDET/TDDFT (B3LYP/
DZP) level for protein models, with retinal in the embedded active
system. Eisol is the VEE of the protein-environment-free chromophore,
at TDDFT level. SH+ and S refer to the protonated and deprotonated
Schiff base retinal, and E−/EH to the protonation state of Glu-113.

Figure 2. Frontier orbitals involved in the π→π* photoexcitations of
retinal models in vacuum (SBH+/SB), and embedded in the protein
surroundings of rhodopsin (Rh), the red, green, and blue photopig-
ments (red/green/blue), and in silico constructed red and blue mutant
pigments of rhodopsin (Rh:Δred/Δblue). The figure was prepared
using VMD.27
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only a small variation in this effect among the different cone
pigments, which may relate to the smaller QM region used in
their calculations.
In summary, we discuss here a molecular basis for under-

standing the mechanism of the spectral tuning in vision
pigments. Using large-scale quantum chemical FDET calcu-
lations and the TDDFT formalism, our computed vertical
excitation energies are in quantitative agreement with exper-
imental absorption maxima. We find that the protein-induced
shifts are dominated by electrostatic interactions for the models
with a protonated SB retinal, and that for them the observed
tuning effects can be explained in terms of an electrostatic
interactionmodel. We find that negative charges and dipoles near
the β-ionine ring stabilizes the excited state causing a red-shifting
effect, and that negative protein charges and dipoles near the SB
stabilize the ground state relatively to the excited state leading to
a blue shift on the absorption spectrum. We also find that the
strongly blue-shifting effect of Glu-113 is modulated by the
remaining protein environment in the different visual pigments.
Moreover, the calculations predict that a deprotonated
chromophore is responsible for the photon absorption of the
blue-cone pigment. The presented large-scale quantum chemical
calculations may form a basis for a rational photobiological
design of proteins with specifically tuned absorption proper-
ties.35
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SI Table 1. Protein residues included in the computational models of rhodopsin (Rh), and the Red (R), Green (G) and Blue 
(B) cone pigments.  

 

Rh G90 E113 G114 A117 T118 G121 E122 L125 C167 Y178 
R A106 E129 G130 V133 S134 G137 I138 L141 W183 Y194 
G A106 E129 G130 V133 S134 G137 I138 L141 Y194 H197 
B S87  E110 G111 G114 T115 G118 L119 G122 V164 F175 
 
Rh E181 S186 C187 G188 I189 Y191 M207 F208 H211 F212 
R S202 C203 G204 P205 Y219 M220 L223 M224 C227 C228 
G S202 C203 G204 P205 L223 M224 C227 C228 L232 F277 
B E178 S183 C184 P186 W188 L204       F205 C208 F209 
 
Rh L216 F261 W265 Y268 A269 A272 A292 F293 A295 K296 
R L232 Y277 W281 Y284 T285 A288 A308 Y309 A311 K312  
G  W281 Y284 A285 A288 A308 F309 F310 A311 K312 
B  F258 Y262 Y265 A266 A269 S289 F290 S292 K293 
 

	
    



 

SI Table 2. Sensitivity of system embedding and saturation of the FDET calculations. The table also shows how the first 
bright excitation energy is affected by the long-range corrected functional, CAM-B3LYP,21 and alternative protonation states 
of the retinyl chain. For systems with both the protonated retinal and Glu in the embedded region, low-lying charge transfer 
states appear below the first bright excited state. SBH+ and SB refer to protonated and deprotonated Schiff base retinals, 
respectively.  
System State Embedded system Excitation energy 

(eV) 
Natoms 
 

Exp. excitation 
energy (eV) 

Method 

Rhodopsin SBH+/Glu- SBH+ 2.54 366 2.49 B3LYP/DZP 
 SBH+/Glu- SBH+, point charges 2.54   B3LYP/DZP/MM 

 SBH+/Glu- SBH+  2.73   CAM-B3LYP/DZP 

 SBH+/Glu- SBH+, Glu- 2.66    B3LYP/DZP 

 SB/GluH SB 2.85   B3LYP/DZP 

 SB/GluH SB, point charges 2.82   B3LYP/DZP/MM 

 SB/GluH SB  3.04   CAM-B3LYP/DZP 

Blue cone SB/GluH SB 2.91 356 2.92 B3LYP/DZP 
 SB/GluH SB, point charges 2.95   B3LYP/DZP/MM 

 SB/GluH SB 3.17   CAM-B3LYP/DZP 

 SB/GluH SB, GluH 2.83    B3LYP/DZP 

 SBH+/Glu- SBH+ 2.52   B3LYP/DZP 

 SBH+/Glu- SBH+, point charges 2.60   B3LYP/DZP/MM 

 SBH+/Glu- SBH+  2.82   CAM-B3LYP/DZP 

Red cone SBH+/Glu- SBH+ 2.36 370 2.10 B3LYP/DZP 
 SBH+/Glu- SBH+, point charges 2.37   B3LYP/DZP/MM 

 SBH+/Glu- SBH+  2.67   CAM-B3LYP/DZP 

 SBH+/Glu- SBH+, Glu- 2.63    B3LYP/DZP 

 SB/GluH SB 2.82   B3LYP/DZP 

 SB/GluH SB, point charges 2.82   B3LYP/DZP/MM 

 SB/GluH SB  3.11   CAM-B3LYP/DZP 

Green cone SBH+/Glu- SBH+ 2.30 329 2.32 B3LYP/DZP 
 SBH+/Glu- SBH+, point charges 2.30   B3LYP/DZP/MM 

 SBH+/Glu- SBH+  2.66   CAM-B3LYP/DZP 

 SBH+/Glu- SBH+, Glu- 2.50    B3LYP/DZP 

 SB/GluH SB 2.85   B3LYP/DZP 

 SB/GluH SB, point charges 2.82   B3LYP/DZP/MM 

 SB/GluH SB  3.16   CAM-B3LYP/DZP 

	
  
	
  
	
  
SI Table 3. Benchmarking the performance of TDDFT on a truncated 11-cis retinal model (PSB11) calculated at the coupled-
cluster approximate singles and doubles level (CC2)23 and using Becke’s three parameter functional, B3LYP,13 and the long-
range corrected CAM-B3LYP functional.21   

	
  
System Basis CC2a B3LYP CAM-B3LYP 

 
Experimentb 

PSB11+ def2-SVP 2.24 2.29 2.42 2.03 

 def2-TZVP 2.17 2.27 2.40  

 def2-QZVP 2.16 2.26 2.39  
a) Ref.7  (main text)  
b) Ref.34 (main text) 
 



SI Table 4. Excitation energies of the isolated chromophore in their fixed protein structures used in the embedding 
calculations at the TDDFT/DZP level of theory using Becke’s three parameter functional, B3LYP,13 and the long-range 
corrected CAM-B3LYP functional.21   
 
Model State B3LYP CAM-B3LYP 
Rh SBH+ 2.09 2.34 
Red SBH+ 2.04 2.35 
Green SBH+  2.00 2.34 
Blue SB 2.90 3.16 
Rh:Δred SBH+ 2.20 2.35 
Rh:Δblue SB 2.86 3.09 
SBH+ (BP86 optimization)  SBH+ 2.27 2.36 
SB (BP86 optimization) SB 2.90 3.15 
SBH+ (B3LYP optimization) SBH+ 2.27 2.40 
SB (B3LYP optimization) SB 3.05 3.33 
 
 
SI Table 5. Ground (GS) and excited state (ES) charge distribution of the retinal obtained from TDDFT calculations. SBH+ 
and SB refer to protonated and deprotonated Schiff base retinals, respectively.  
 
 
System Schiff base  Retinyl β-ionine 
 GS ES GS ES GS ES 
Retinal (SBH+) 0.15 0.14 0.78 0.61 0.07 0.25 
Retinal (SB) 0.14 0.11 -0.02 0.02 -0.12 -0.13 
 
 
SI Table 6. Calculated FDET shifts of retinal VEEs (in eV) due to Glu-113. 

 
System Complete 

model  
Glu 
removed 

ΔE 

Rh 2.54 2.26  0.28 
Red 2.36 1.98 0.38 
Green 2.30 1.93  0.37 

Rh:Δred 2.33 2.14 0.19 

Retinal 2.45 2.27  0.18 
 
 
 

 

 

 

 
 
 



 
 
 
SI Figure 1. Molecular models of Rhodopsin (top), the Blue-, Red, and Green-cone pigments (center), as well as Blue- and 
Red-mutant models (bottom). Residues in blue and red are expected to have blue- and red-shifting effect on the excitation 
energy, respectively (see text).  

 
 
 
 
 



 
 
SI Figure 2. An electrostatic tuning model of retinal. A) TDDFT/B3LYP/def2-SVP calculations of the excitation energies of 
retinal interacting with a scaled point charge (q) or dipole (µ) place 4 Å from Schiff-base or β-ionine group. A negative 
point-charge or a dipole with its negative end oriented perpendicular to the retinal plane, blueshift the excitation energy, 
whereas a negative point-charge at the β-ionine end has a red-shifting effect. B) Negative charges near the Schiff base 
stabilizes the ground state (GS, blue filled circles) relatively to the excited state (ES, red filled circles), leading to a blueshift, 
whereas negative charges at the β-ionine end stabilize the ES (red open cicles) relatively to the GS (blue open circles), which 
leads to a redshift of the excitation energy.  

	
    



 

 

 
 
  
SI Figure 3. Polarization of Glu-113 in different visual pigment models. The figure shows the Electrostatic Potential 
Charges (ESP) of Glu-113 in vacuum, and when bound to retinal, and rhodopsin (top row), and in the Red, Green and ΔRed 
models (bottom row). The strong polarization of Glu-113 suggests that the remaining protein environment tunes the 
blueshifting properties Glu-113 as indicated by FDET excitation energies of retinal in Table 2 (main text).  
 
 
 
 
  



Chapter 7
Conclusions and perspectives

“Unless we change directions, we will end up where we are headed.”
— Confucius

Conclusions

This thesis work is about the theoretical studies of the effect of condensed-phases environment
on the UV-vis light absorption of organic chromophores. Three distinct types of systems have
been investigated, including a functional host-guest material (fluorenone in zeolite-L channel),
a prototype of solvated chemical species (coumarin 153 in various solvents), and fundamental
biological systems present in the eye (retinal in rhodopsin and in three visual cone pigments).

There are two main challenges in general for this type of research. The first one is modeling the
structure of molecules in condensed phases, since the size of the involved system is usually very
large that commonly comprises thousands of atoms or more. Therefore simulation methods should
be carefully chosen and a lot of computational effort is required. Moreover, modeling different
target systems requires related knowledge and experiences. Some of the work on structure simu-
lation reported in this thesis was done by collaborators. The second challenge is calculating the
electronic excitation energy and oscillator strength of a target system, which becomes very chal-
lenging if the system is large, because quantum-mechanical methods are needed to describe the
electronic excitations that are known to be limited to small systems. In this thesis work, a multi-
scale method, frozen-density embedding theory, is applied to describe the electronic structure of
the molecules in condensed phases. The interesting part of the total system (usually the chro-
mophore molecule, sometimes together with its covalently bonded molecules in the environment)
is treated quantum-mechanically, whereas the rest part of the system is generally described with
a lower level of theory and it is characterized by its electronic density that can be approximated
flexibly with various strategies according to the need of the targeted problem. Frozen-density em-
bedding theory combined with linear-response time-dependent density-functional theory allows
an accurate inclusion of the environment effect on the electronic excitations of the chromophore
molecule.

For fluorenone zeolite-L system, we found that the zeolite-L frame together with the water
molecules in the zeolite-L channel cause a significant red shift on the UV-vis absorption bands
(around 0.6 eV for the lowest band). The red shift is found to originate from both the envi-
ronment induced structural changes in fluorenone (mainly due to the elongation of C=O bond
in fluorenone) and electrostatic interactions of the environment with fluorenone. For solvated
coumarin 153, solvents with different polarity were shown to lead to different stabilization of
the highest occupied molecular orbital and lowest unoccupied molecular orbital of coumarin 153,
and thus lead to different shifts in π → π∗ transition energies of coumarin 153. For retinal in
the four biological pigments, the protein environments enable retinal absorb visible light mainly
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via a lysine residue covalently linked to retinal and forming a Schiff base. In different pigments,
the protonation state of the Schiff base and the electrostatic interaction between retinal and its
neighboring amino acids are found to play important roles in shifting the absorption of retinal
to different visible light spectral regions.

This thesis work confirms that frozen-density embedding theory is a successful multi-scale
approach for studying molecules embedded in condensed phases. It is advantageous for several
factors. First, it can treat the entire system quantum-mechanically and thus the condensed-phase
effect on the electronic excitation of the embedded species can be included accurately. Second,
much computational effort is saved by treating the environment as a frozen electron density. In
addition, when frozen-density embedding theory is combined with LR-TDDFT, it simplifies the
analysis and interpretation of the calculated results by limiting the LR-TDDFT calculations on
the embedded species, which removes spurious chromophore-environment charge-transfer excita-
tions due the approximations in exchange-correlation potential and the corresponding kernel in
LR-TDDFT.

Despite the accuracy and efficiency of the approaches based on frozen-density embedding
theory, we must pay careful attention to the approximations used in practical calculations. Firstly,
the NDRE approximation, which leads to the reduction in the number of occupied and unoccupied
Kohn–Sham orbitals for solving LR-TDDFT equations, is applicable only for systems that have
little overlap in the energy levels of the two subsystems. Secondly, semi-local approximations
for the non-additive kinetic energy are not applicable for embedded subsystem covalently bound
to the environment, that is, the overlap between ρA and ρB is large. Thirdly, approximating
the electron density of the environment should be considered as a key issue in practical frozen-
density embedding theory calculations. Several summaries on this subject are made based on
this thesis work since it covers several types of environment including ionic solids, solvents, and
proteins. The Kohn-Sham electron density is a reliable strategy for representing the solvents and
proteins but it may be very expensive for large systems. The superposition of atomic densities
can be a practical and reliable strategy for generating the electron density of the ionic solids.
The superposition of molecular density can be an efficient and practical strategy for qualitative
analysis of the electron density of the protein environment. The statistically averaged electron
density for solvents is an efficient but rather accurate way of representing the solvents for studying
solvatochromism. The issue on generating ρB in frozen-density embedding theory calculations is
comprehensively discussed in a paper [58] by the author and coworkers that is included as an
appendix of this thesis. Finally, frozen-density embedding theory can account for the environment
induced shift in excitation energy, but the absolute value of the excitation energy is dependent
on the approximations of the functional used in LR-TDDFT. B3LYP is found to perform well
for studying local excitations of the conjugated molecules investigated in this thesis work.

Perspectives

Emission is one of the ways for the excited electrons in atoms and molecules to fall back to
the ground state. One of the author’s on-going projects is about the solvatochromic shift in
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the emission energy and the Stokes shift, which is the difference between positions of the band
maxima of the absorption and emission spectra of the same electronic transition.

Modeling the structure of the molecules in condensed-phase environment is very important,
because it is the prerequisite for simulating the UV-vis absorption spectra, understanding the
equilibrium and energetics of the entire system, and for the analysis of the interaction between
the molecules and the environment, etc. Therefore it is one of the areas in which the author
would like to pursue researches in the future.
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Appendix

“The whole of science is nothing more than a refinement of everyday thinking.”
— Albert Einstein

How to choose the frozen density in Frozen-Density-
Embedding-Theory-based numerical simulations for local
excitations?

In Section 3.4.2, we have discussed a key issue for practical applications of FDET, that is, ap-
proximating the electron density of an environment (ρB). In the article by Marie Humbert-Droz,
Xiuwen Zhou, Sapana V. Shedge, and Tomasz A. Wesolowski, several strategies to generate ρB
for calculating local excitations were discussed. In this work, the environment effects on the local
excitation of various systems were investigated. Xiuwen Zhou studied the solvatochromic shift in
the absorption of a realistic solvation system, a 4-hydroxybenzylidene-2,3-dimethylimidazolinone
anion in water cluster that comprises 50 water molecules (see Section 3.2.3 in the following reprint
of this article).
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Abstract According to Frozen-Density Embedding The-

ory, any observable evaluated for the embedded species is

a functional of the frozen density (qB—the density asso-

ciated with the environment). The environment-induced

shifts in the energies of local excitations in organic chro-

mophores embedded in hydrogen-bonded environments are

analyzed. The excitation energies obtained for qB, which is

derived from ground-state calculations for the whole

environment applying medium quality basis sets (STO–

DZP) or larger, vary in a narrow range (about 0.02 eV

which is at least one order of magnitude less than the

magnitude of the shift). At the same time, the ground-state

dipole moment of the environment varies significantly. The

lack of correlation between the calculated shift and the

dipole moment of the environment reflects the fact that, in

Frozen-Density Embedding Theory, the partitioning of the

total density is not unique. As a consequence, such con-

cepts as ‘‘environment polarization’’ are not well defined

within Frozen-Density Embedding Theory. Other strategies

to generate qB (superposition of densities of atoms/mole-

cules in the environment) are shown to be less robust for

simulating excitation energy shifts for chromophores in

environments comprising hydrogen-bonded molecules.

Keywords Frozen-Density Embedding Theory �
Linear-response time-dependent density functional

theory � Solvatochromism � Molecular clusters �
Multi-level simulations

1 Introduction

The use of local potentials to couple a system described at

quantum mechanical level with its environment has a long

history in quantum chemistry. A large majority of methods

use electrostatic potentials to this end (for review see Refs.

[1–5]). The energy components not represented in the

embedding potential are added as a posteriori corrections

known under the name as exchange-repulsion. The use of

electrostatic-only embedding potential leads, however, to

well known problems such as spurious leak of charge

density from the embedded subsystem to environment [6,

7] or erratic behavior of the results if the basis set changes

[8, 9]. This problem originates from the fact that limiting

the embedding potential to its electrostatic component

neglects the Pauli exclusion principle (Pauli repulsion or

confinement effects). These formal deficiencies of elec-

trostatic-only embedding potentials, which show up in fully

variational calculations (see for instance Refs. [8, 9]), are

usually dealt with in a pragmatic manner. Atomic basis sets

are centered only on the atoms of the embedded systems

not the environment (Refs. [1–5]). As a result, the quality

of the embedding potential near the nuclei of the envi-

ronment plays a secondary role. Moreover, the net atomic

charges (or sometimes multipoles) are used to generate the

electrostatic potential. The use of net charges instead of

exact total electric charge (negative) and the total nuclear

charge (singular and positive) results in less attractive

electrostatic potential near the nuclei in the environment.

As a result, the possible unphysical distribution of the

electron density between the embedded system and its
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environment is less likely to take place. In the structurally

flexible environment, the non-physical solutions due to the

neglect of the Pauli repulsion in the embedding potential

can be avoided by using the statistically averaged elec-

trostatic potential [10–12]. Averaging of the fluctuating

position of positively charged centers in the environment

results in the electrostatic potential being smeared out over

extended larger space. The averaged electrostatic potential

is less attractive and leads to better numerical stability of

the results with respect to the basis set used in variational

calculations. An alternative solution to the problem of

numerical instabilities originating from the neglect of Pauli

repulsion consists of attenuating the Coulomb terms near

the nuclei of the atoms in the environment [7] or imposing

that the electron density near nuclei in the environment

disappears [6]. The resulting additional terms in the

embedding potential in such methods can be seen as simple

local pseudopotentials (see below). Last but not least, most

applications of methods applying electrostatic-only

embedding potential aim at obtaining the key parameters of

the ground-state potential energy surface of relevance to

reactivity and/or conformational equilibria. In such a case,

the energy of the system is corrected by terms added a

posteriori [1–5], which are usually associated with

exchange-repulsion, dispersion, and/or charge transfer

represented by empirically parametrized energy contribu-

tions or terms derived from first principles [13–15]. As a

result, the energy of the embedded system and its wave-

function (or a similar quantum mechanical descriptor such

as a wavefunction of the reference non-interacting system

used in DFT-based methods) are not self-consistent.

At the formal level, there are two ways to go beyond

electrostatic-only embedding potentials in order to take

into account the fermion statistics of electrons and obtain

both the energy and the wavefunction which are self-con-

sistent. Either by the use of projection operators (con-

structed as pseudopotentials or frozen orbitals) enforcing

Pauli exclusion principle for all electrons in the whole

system [5, 6, 16–19] or by the use of the non-electrostatic

components in the coupling potential terms derived in

Frozen-Density Embedding Theory1 (FDET) [20–23]. The

first strategy involves non-local operators and requires that

the quantum mechanical descriptors, i.e., pseudopotentials

or frozen orbitals, are used also for the environment. The

FDET strategy, on the other hand, involves approximating

some terms in the embedding potentials by means of bi-

functionals depending on the charge densities associated

with the embedded subsystem and the environment.

Additional key issue in FDET-based simulations, which is

dealt with in detail in the present work, is the choice of the

frozen electron density associated with the environment

(throughout this work, qBðrÞ denotes this component of the

total electron density). Each of these two strategies has its

optimal domains of applicability. The pseudopotential

strategy is commonly applied to represent an environment

which is a solid. For each element and oxidation state, a

transferable pseudopotential can be constructed [18, 19].

For environment, which consists of molecules, the pseud-

potential or frozen orbital strategies require constructing

transferable pseudopotentials for each molecule (or

molecular fragment) [5, 16, 17]. Concerning the FDET

strategy, however, the domain of possible applications is

determined by the availability of acceptable approximation

for the bi-functionals by means of which the embedding

potential is expressed and by the availability of an adequate

inexpensive procedure to generate an adequate electron

density of the environment (qB).

In view of the increasing interest in using FDET-based

numerical simulation methods [24–29, 31–33], this work

focuses on the dependence of FDET results on qBðrÞ (for a

recent comprehensive review see [30]). Some information

about the dependency of the properties of embedded sys-

tem on qB can be found in the literature [34–43]. A com-

prehensive and systematic investigation of such

dependencies was, however, not reported so far. Here we

focus on the evaluation of environment-induced shifts in

the energies of local excitations evaluated following the

method based on generalization of the linear-response

time-dependent DFT strategy [44] for responding systems

embedded in a frozen density [37]. Within Neglect of

Dynamic Response of the Environment (NDRE) approxi-

mation, the quality of such shifts is entirely determined by

the accuracy of the embedding potential. If NDRE

approximation cannot be applied, as in the case of envi-

ronment and embedded subsystem absorbing at similar

frequency, the method based on generalization of ground-

state subsystem DFT [45] is indispensable as shown com-

prehensively in Ref. [46]. The systems considered in the

present work concern environments and chromophores,

which do not absorb in the same spectral range, i.e., cases

where NDRE approximation can be applied. Note that

FDET calculations in which NDRE approximation is

applied are also referred to as uncoupled FDE or FDE(u) in

the literature [46]. The other approximation made in any

FDET-based calculations concerns the non-additive kinetic

potential (see the next section). The present work does not

concern this approximation. We build up upon the gathered

numerical experience reported in the literature. The

investigated systems are the same or very similar to the

ones for which the adequacy of the used approximations

was already put to scrutiny.

1 In the present work any reference to Density Functional Theory

(DFT), subsystem DFT, Kohn–Sham DFT, and Frozen-Density

Embedding Theory (FDET), concerns the exact formalisms and not

approximate methods based on such formalisms.
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The present work is organized as follows. We start with

a nutshell presentation of Frozen-Density Embedding

Theory which is followed by the overview of the literature

concerning the dependence of the FDET results on the

choice of the frozen density. A dedicated section deals with

the issue of electronic polarization of the environment seen

from the FDET perspective. The results section deals with

the dependence on energies of local excitations on the

chosen qB. In the first part, clusters consisting of cis-7-

hydroxyquinoline (7HQ) and from one-to three hydrogen-

bonded molecules are used to test three strategies to gen-

erate qB (superposition of atomic densities, superposition

of molecular densities, ground-state Kohn–Sham calcula-

tions for the whole environment). For these clusters, shifts

of the excitation energies obtained in gas-phase experi-

ments, benchmark quality EOM–FDET (for the smallest

ones only) and FDET/LR-TDDFT calculations are avail-

able (see data collected in Refs. [8, 47]). These three types

of shifts do not differ from each other significantly and

provide reference data to investigate the effect of the

choice of qB in the FDET/LR-TDDFT calculations. The

second part of the results section concerns larger systems,

for which the third strategy to generate the frozen density is

applied extensively and the effect of varying qB on the

calculated shifts is investigated in detail.

1.1 Frozen-Density Embedding Theory

Frozen-Density Embedding Theory [20–23] concerns

minimizing the total energy for a system comprising NAB

electrons in the external potential vðrÞ in the presence of

the constraint q� qB:

Eemb½qB� ¼ min
qðrÞ� qBðrÞ� 0R

qðrÞdr¼NAB

EHK
v ½q� ð1Þ

where EHK
v ½q� is the Hohenberg–Kohn functional of the

total energy [48] and qB is a given function.

There are no other constraints for qBðrÞ than the ones

given in Eq. 1. If the integral
R

qBðrÞdr is an integer

(denoted by NB) then the difference NA ¼ NAB � NB is also

an integer, and the above definition can be written

alternatively:

Eemb½qB� ¼ min
qAðrÞ� 0R
qAðrÞdr¼NA

EHK
v ½qA þ qB� ð2Þ

We mention here the closely related formal framework

of partition DFT [49, 50], in which the integrals
R

qAðrÞdr

and
R

qBðrÞdr can be fractional numbers which add up to an

integer (NAB). In FDET, the integral
R

qBðrÞdr can be also a

fractional number. In such a case, however, the definition of

Eemb½qB� given in Eq. 2 is not applicable and Eemb½qB� is

only defined in Eq. 1. FDET provides a practical strategy to

perform such a search by constructing an appropriate

embedding potential (vembðrÞ) assuring satisfaction of the

constraint q� qB. The embedding potential is determined

uniquely by the following quantities: electron density of the

environment (denoted as qB throughout this work), electron

density of the embedded system (qAðrÞ ¼ qðrÞ � qBðrÞ� 0

by construction), and the density of the positive charge of

the environment (qpos
B ðrÞ is usually the sum of nuclear

charges) which generates the electrostatics potential

vBðrÞ ¼
R qpos

B
ðr0Þ

jr0�rj dr0. The form of this correspondence was

derived for embedding various quantum mechanical

systems: reference system of non-interacting electrons

(the Kohn–Sham system [51]) [20, 21], interacting

wavefunction [22], and one-particle reduced density

matrix [23] and reads:2

vemb½qA; qB; vB�ðrÞ ¼ vBðrÞ þ
Z

qBðr0Þ
jr0 � rj dr0

þ dEnad
xc qA; qB½ �
dqAðrÞ

þ dTnad
s qA; qB½ �
dqAðrÞ

ð3Þ

The non-additive bi-functionals occurring in the last two

terms in the above equation are defined through the

functionals for the exchange-correlation energy Exc½q� and

for the kinetic energy in the non-interacting reference

system Ts½q� known in Kohn–Sham formulation of Density

Functional Theory [48, 51]. In particular, the constrained

search definition [53, 54] of the bi-functional Tnad
s ½qA; qB�

reads:

Tnad
s ½qA; qB� ¼ min

Ws!qAþqB

Ws T̂
�
�
�
�Ws

� �

� min
Ws!qA

Ws T̂
�
�
�
�Ws

� �
� min

Ws!qB

Ws T̂
�
�
�
�Ws

� �

ð4Þ

where, Ws denotes a trial function of the form of a single-

determinant. The index s used in Ts½q� and all subsequently

defined quantities is used to indicate that the concerned

definitions involve the reference system of non-interacting

electrons for which the ground-state wavefunction has this

form.

In practice, the quality of calculated environment-

induced shifts of a given property of the embedded system

obtained from FDET-based multi-level simulations, which

is calculated either as the expectation value of the operator

associated to this property or from response theory-based

calculations using embedded wavefunction (like FDET/

2 In the case of embedded interacting wavefunction of the truncated

Configuration Interaction form, an additional term in the embedding

potential is needed [22] but it is a matter of convention whether this

term is considered a part of the embedding potential or the potential

for subsystem A (see also the relevant discussion in Ref. [52]).
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LR-TDDFT calculations reported in the present work)

hinges on the following factors: (1) choice of qBðrÞ
(electron density of the environment), (2) approximation

for the bifunctional
dEnad

xc qA;qB½ �
dqAðrÞ

(the exchange-correlation

part in the RHS of Eq. 3 denoted by vnad
xc ½qA; qB�ðrÞ in the

present work), (3) approximation for the bifunctional
dTnad

s qA;qB½ �
dqAðrÞ denoted by vnad

t ½qA; qB�ðrÞ in the present work. It

is worthwhile noticing that the quality of the energy, on the

other hand, depends additionally on the error in the func-

tionals used to generate the embedding potential (for the

detailed discussion see Ref. [55]).

This work focuses on the first issue. Concerning

approximating vnad
t ½qA; qB�ðrÞ, a short overview of the sit-

uation is given below. In the original and subsequent works

by us and others, the bi-functional Tnad
s ½qA; qB� (and the

corresponding functional derivative—vnad
t ½qA;qB�ðrÞ) was

approximated by means of one of the known approxima-

tions for the functional Ts½q�.

Tnad
s ½qA; qB� � ~TnadðdecomposableÞ

s ½qA; qB�
¼ ~Ts½qA þ qB� � ~Ts½qA� � ~Ts½qB� ð5Þ

We refer to such approximations as ‘‘decomposable’’ for

obvious reasons. In our original work on FDET [20], local-

density approximation (Thomas–Fermi functional [56, 57])

and second-order [58] gradient expansion [59] for the

kinetic energy was used to construct a decomposable

approximation for the bi-functional vnad
t ½qA; qB�ðrÞ. One of

the surprising results reported in Ref. [20] was that the

improvement in approximation to Ts½q� by adding to the

Thomas–Fermi functional the second-order gradient-

expansion correction worsens the FDET interaction

energies which are determined rather by the accuracy of

the bifunctional Tnad
s ½qA; qB�. This observation was

investigated further [60] showing that worsening the

interaction energies can be attributed to the errors

introduced into the potential vnad
t ½qA; qB�ðrÞ. These

observations lead us to the GGA97 bi-functional [61, 62],

which is currently the most commonly used approximation

for Tnad
s ½qA; qB� in FDET-based numerical simulations. The

GGA97 approximation for the bifunctional for Tnad
s ½qA; qB�

(and the corresponding vnad
t ½qA; qB�ðrÞ) is obtained directly

from the Lembarki–Chermette approximation for Ts½q�
[63]. In the Lembarki–Chermette approximation for Ts½q�,
the second-order gradient-expansion contribution is

attenuated locally depending on the magnitude of the

reduced density gradient. This eliminates to some extent

the errors in vnad
t ½qA; qB�ðrÞ originating in the second-order

term in gradient-expansion approximation for Ts½q�. NDSD

approximation (non-decomposable bi-functional using on

up to second derivatives of density [64]) for Tnad
s ½qA; qB�,

which does not have the decomposable form given in

Eq. 5, is constructed to satisfy the exact asymptotic

conditions for the bi-functional vnad
t ½qA; qB�ðrÞ of the

greatest relevance near nuclear cusps. It has to be

underlined that LDA, GGA97, and NDSD are all semi-

local approximations for Tnad
s ½qA; qB� (and the

corresponding vnad
t ½qA; qB�ðrÞ). At each point r, the

potential vnad
t ½qA; qB�ðrÞ is determined by the densities

qAðrÞ and qBðrÞ and their first- and second derivatives at

the same point. Such potentials were comprehensively

shown to fail if the overlap between qA and qB is large [42,

60, 62, 65–67] as it is the case of an embedded subsystem

covalently bound to the environment. For such cases an

alternative strategy to approximate vnad
t ½qA; qB�ðrÞ is

becoming increasingly popular which is based on

numerical inversion of the Kohn–Sham potential [32, 33,

68, 69]. This work does not deal with such methods and

aims at obtaining the exact properties based on semi-local

approximation to Tnad
s ½qA; qB�, which are known to be

applicable in case where the embedded subsystem is not

covalently bound to the environment.

1.2 Interpretation of the electronic polarization

of the environment in Frozen-Density Embedding

Theory

Let us consider two choices for qB : qð1ÞB and qð2ÞB . In such a

case,

Eemb½qð1ÞB � ¼ min
qA � 0R

qAðrÞdr¼NA

EHK
v ½qA þ qð1ÞB �

¼ EHK
v ½q

ð1Þ
AðoptÞ þ qð1ÞB � ð6Þ

Eemb½qð2ÞB � ¼ min
qA � 0R

qAðrÞdr¼NA

EHK
v ½qA þ qð2ÞB �

¼ EHK
v ½q

ð2Þ
AðoptÞ þ qð2ÞB � ð7Þ

where qð1Þ
AðoptÞ and qð2Þ

AðoptÞ are the optimized densities of

subsystem A obtained for these two choices for qB. On the

virtue of the first Hohenberg–Kohn theorem [48],

Eemb½qð1ÞB � ¼ Eemb½qð2ÞB � if qð1Þ
AðoptÞ þ qð1ÞB ¼ qð2Þ

AðoptÞ þ qð2ÞB .

Such situation is not uncommon. Let us consider qð1ÞB and

qB
(2) chosen in such a way that qB

(1) B qtot and qB
(2) B qtot,

where qtot is the ground-state density of the whole system.

Either Eq. 6 or 7 lead to the same total density (actually it

is a ground-state density because the constraint q C qB is

automatically satisfied for the chosen qB
(1) and qB

(2)). The

difference qB
(1) - qB

o , where qB
o is the density of the isolated

subsystem B, represents the electronic polarization of

subsystem B due to interactions with subsystem A. But
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since qB
(1) and qB

(2) are different, also qð2ÞB � qo
B differs from

qð1ÞB � qo
B! Despite the fact that they lead to the same total

density, the two choices for qB
o lead to different polariza-

tion (measured as the difference qB - qB
o). As a result, the

term ‘‘electronic polarization of the environment’’ is not

defined uniquely in FDET.

Even for such qB
(1) and qB

(2), for which Eemb[qB
(1)] and

Eemb[qB
(2)] are not the same, the difference cannot be

attributed only to different representation of electronic

polarization of subsystem B. In FDET, it can originate from

the fact that imposing the condition q C qB
(1) and q C qB

(2)

involves different energy penalties, which is not directly

related to the way the polarization is reflected in the choice

for qB. The same consideration apply for the interpretation

of electronic polarization in subsystem A by switching the

roles of A and B in the above considerations. The lack of

unique definition of the ‘‘electronic polarization of the

environment’’ in FDET makes FDET-based embedding

methods different from empirical QM/MM type of

approaches, in which the electronic polarization enters as a

well defined contribution in the total energy expression

which is frequently essential for accuracy (for a recent

review see Ref. [5]).

The situation is quite different if approximate density

functionals are used. We will discuss the differences in the

case of subsystem densities optimized for both subsystems

as it is made in Cortona’s formulation of DFT [70]:

Eo ¼ min
qA � 0R

qAðrÞdr¼NA

min
qB � 0R

qBðrÞdr¼NB

EHK
v ½qA þ qB� ð8Þ

The possibility of existence of several pairs yielding the

same total energy has been long recognized [21, 71]. The

same concerns FDET, where qA is optimized whereas qB is

not. The analytical examples of such pairs are provided in

Refs. [66, 71–73] whereas numerical examples for

molecular systems are provided in Ref. [74]. It is useful

to point out here the partition DFT formalism [49, 50],

which can be seen as generalization of Cortona’s

subsystem DFT [70] allowing for a unique partitioning

based on chemically motivated additional constraints.

If, however, approximations are used (denoted by tildes

in the formulas below), the search given in Eq. 8 is not

performed (see also the detailed discussion of this issue

given by Gritsenko in Ref. [75]). Instead, another func-

tional is minimized:

~Eo¼ min
qA�0R

qAðrÞdr¼NA

min
qB�0R

qBðrÞdr¼NB

EHK
v ½qAþqB�þD~Exc½qAþqB�

�

þD~Tnad
s ½qA;qB�

�
ð9Þ

where D denotes the error of a given functional (the dif-

ference between the exact functional and its approximated

counterpart). Among all possible pairs yielding the same

total electron density, the above search picks up that pair

~qopt
A and ~qopt

B which minimizes the error (D ~Tnad
s ½qA; qB�) in

the used approximation to the non-additive kinetic energy.

The partitioning is thus unphysical. Note that the use of

approximations into the exchange-correlation density

functional cannot lead to uniqueness of partitioning

because this energy component (and its errors) depends on

the total density regardless how it is decomposed. The

numerical practice using the freeze-and-thaw procedure

[65] to perform minimization given in Eq. 9 shows that the

use of ~Tnad
s ½qA; qB� instead of Ts

nad[qA, qB] leads to a unique

partitioning (for the overview see the articles quoted in

Ref. [21]). In contrast with the situation in the formal

framework of partition DFT [49, 50], partitioning obtained

from Eq. 9 is unphysical.

If an approximation is used for Ts
nad[qA, qB], qB which is

optimized in the freeze-and-thaw procedure [65], the

unique optimized qB might differ from the density of the

isolated subsystem B not only due to electronic polarization

but also to the error on the non-additive kinetic potential.

This error might result in artificial charge-redistribution

between subsystems or qualitatively wrong polarization of

subsystems [41, 60, 64, 76]. For this reason, we make a

distinction between ‘‘polarization of subsystem B due to

interactions with subsystem A’’ and ‘‘variational relaxation

of subsystem B’’ in subsystem DFT calculations. The latter

includes both the physical effect and the effect due to the

error in the approximation used for the non-additive kinetic

potential. The numerical importance of the two effects

cannot be distinguished in practice. Based on our numerical

experience, we believe that the error in currently used

approximations for the non-additive kinetic potential

affects the qB optimized in the freeze-and-thaw procedure

[65] more than neglecting the electronic polarization in the

case of non-charged subsystem A non-covalently linked to

subsystem B. The situation is different if subsystem A is

charged. In such a case the relaxation can be attributed

mainly to the electronic polarization (see also the discus-

sion in the following section).

1.3 Previous studies of the dependence of molecular

properties derived from FDET-based calculations

on the choice for qB

There are a practically infinite number of strategies to

generate qB in any multi-scale simulations based on FDET.

They can be made based on ‘‘chemical intuition’’ or on

dedicated tests made for model systems. In the previous

section, the possible pitfalls associated with the notion of

electronic polarization were identified on the formal

grounds. The most straightforward strategy to generate qB
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is to use ground-state density obtained with some (usually

less expensive) quantum mechanical method applied for

the environment. Such calculations can be made in the

absence of the embedded species or can take into effect the

modification of the electron density of the environment by

interactions with the embedded species. Numerical exam-

ples reported in the literature show frequently that opti-

mizing the environment electron density (qB) by means of

the freeze-and-thaw cycle does not improve the calculated

properties of non-charged embedded species. In the case of

chromophores hydrogen bonded to the molecules in the

environment, relaxing qB results in the relative change of

the excitation energy shift which does not exceed 25 %

(the worst detected case) [37, 47, 77]. Moreover, the FDET

hydrogen-bonding-induced shifts evaluated with non-

relaxed qB agree very well (i.e., within 200 cm-1 or better)

with high-level wavefunction-based benchmark values [47,

77]. This suggests that the change in qB following the

‘‘freeze-and-thaw’’ energy minimization is rather an effect

due to the error in the bi-functional for the non-additive

kinetic potential than to the physical effect of the polari-

zation of the environment by the chromophore (see the

discussion in the introduction section).

The use of non-relaxed qB is, therefore, expected to be

an adequate approximation for this type of weak interac-

tions with the environment. Some properties are insignifi-

cantly affected by the relaxation of qB even for charged

embedded species. The shifts of the isotropic component of

the hyperfine tensor Aiso of Mg? cation due to embedding

in the noble gas matrix, evaluated for the freeze-and-thaw

optimized and non-optimized qB differ by less than 10 %

[34]. This indicates that the effect of the noble gas matrix

on the hyperfine tensor of embedded Mg? cation originates

from the intermolecular Pauli repulsion (confinement

effect) rather than from the electric polarization of the

matrix by the cation. Concerning the notion of ‘‘polariza-

tion of the environment’’, there are cases where it might be

helpful in constructing a good approximation for qB such as

a highly charged species embedded in highly polarizable

environment. The ligand-field splitting of f-levels for a

trivalent rare-earth cation impurity in a host lattice (chlo-

roelpasolite) might be considered as an extreme example.

The nearest ligands of the impurity are Cl- anions and the

use of non-relaxed qB to represent the six ligands seems a

very crude approximation in FDET calculations. Indeed,

only the qualitative trends for the ligand-field splitting

parameters along the lanthanide series are reproduced

using non-relaxed qB in KSCED calculations [36]. The

FDET splittings calculated at non-relaxed qB are, however,

underestimated by a factor of about two. The use of freeze-

and-thaw optimized qB results in about twofold increase of

the splittings, which brings them close to experimental

values. Ref. [36] shows also how the rather expensive

freeze-and-thaw calculations can be avoided even in such

extreme case (highly charged subsystem A and highly po-

larisable subsystem B) by means of ‘‘pre-polarized’’ qB.

Generating the ‘‘pre-polarized’’ qB is quantitatively less

expensive than the freeze-and-thaw relaxation because it

involves just a simple calculation of the ligands in the

electric field generated by the embedded cation. The

splittings obtained using freeze-and-thaw optimized qB and

‘‘pre-polarized’’ qB are almost the same (they agree within

10 cm-1).

The above examples taken from the literature indicate

that the choice of qB in FDET-based calculations is the

issue calling for a special attention especially since the

notion of ‘‘polarization’’ and ‘‘relaxation’’ are not equiv-

alent in FDET as discussed in the previous section. It is a

crucial issue in multi-level simulations in which qB rep-

resents a system of significantly larger size than subsys-

tem A for which quantum mechanical descriptors (orbitals

or the non-interacting reference system [20, 21], embed-

ded interacting wavefunction [22], or one-particle reduced

density matrix [23]) are constructed. It is, therefore,

desirable that generation of an adequate qB involves

smaller computational costs than the optimization of qA

and the subsequent evaluation of quantum mechanical

observables for subsystem A. Even in the cases, for which

avoiding the optimization of qB is an acceptable approx-

imation, it is highly desirable to use a protocol to generate

qB which involves the smallest computational effort.

The aim of the present work is a systematic analysis

of strengths and weaknesses of possible practical strate-

gies to generate non-relaxed qB for FDET calculations

for chromophores in hydrogen-bonded molecular

environments.

2 Computational details

2.1 Strategies to generate the frozen electron

density—qB

For each considered system, the excitation energies are

evaluated using densities of the environment (qB) obtained

by means of different computational techniques. The

approximations and technical parameters concerning sub-

system A remain, however, unchanged: (1) approximations

for Exc[qA], Ts
nad[qA, qB], and Exc

nad[qA, qB]; (2) atomic

basis set used for subsystem A; and (3) parameters of

technical nature (grids, fitting functions, convergence cri-

teria, etc.) as in the reference calculations. This approach

provides direct information concerning the dependence of

the FDET calculated excitation energies on qB.

The following simplified methods to generate qB are

considered:
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(A) Superposition of atomic densities

The simplest approximation for the electron density of

the environment qB is to use a superposition of atomic

densities.

qBðrÞ ¼
XNatomB

i¼1

ðni
B � Zi

BÞqi
BðrÞ ð10Þ

where i indicates the atom in subsystem B, NatomB is the

number of atoms in subsystem B, qi
BðrÞ denotes the

spherically symmetric electron density integrating to the

total charge equal to the atomic number ZB
i , and nB

i denotes

the net charge of the atom. The above approximation for qB

can be expected to take into account Pauli repulsion

between electrons, which are localized in closed shells of

atoms in the environment, and the electrons in subsystem

A even if {nB
i = 0} (electrically neutral atoms in the

environment). In the case when the effect of the environ-

ment on the electronic structure is dominated by confine-

ment, choosing {nB
i = 0} can be expected an adequate

approximation. For a polar or charged molecule in the

environment, taking {nB
i = 0} is most likely a very poor

approximation because it would neglect the dominant (i.e.

electrostatic) term in the FDET embedding potential at

long range. The choice of nB
i becomes, in such case, the key

issue. This approximation for qB was already applied for

chromophores in ionic solids [38]. In such a case, a natural

choice for nB
i , is to use the formal ionic charges. Indeed, the

numerical tests made for fluorenone embedded in zeolite L

reported in Ref. [38] confirm the adequacy of the approx-

imation given in Eq. 10 in the case of the environment

being an ionic solid.

(B) Superposition of molecular densities

Approximating qBðrÞ by means of a sum of molecular

densities seems to be a particularly appealing strategy if the

environment consists of many weakly interacting mole-

cules. In such a case, qBðrÞ is obtained as:

qBðrÞ ¼
XNmolecB

i¼1

qi
BðrÞ ð11Þ

where NmolecB is the number of molecules in subsystem

B, qi
BðrÞ denotes the electron density of the isolated ith

molecule.

Approximation given in Eq. 11 was used in the first

multi-scale simulations based on FDET concerning

ground-state properties of solvated molecules [78, 79]. The

adequacy of this approximation for simulating the hydro-

gen transfer reaction in carbonic anhydrase was investi-

gated in Ref. [35].

Increasing the strength of the interactions between the

molecules in subsystem B might invalidate the

approximation given in Eq. 11. In the present work, the

applicability of Eq. 11 to molecular environment is

investigated using complexes of cis-7-hydroxyquinoline

and several molecules which are hydrogen bonded to the

chromophore but also interact via hydrogen bonds among

themselves. If the molecules in the environment form a

hydrogen-bonded chain, the mutual polarization of the

neighboring molecules in the chain, leads to non-additive

increase of the total dipole moment. The obtained results

can, therefore, be considered as good estimate of maximum

error made due to the neglect of such cooperative effects in

hydrogen-bonded molecular environments. The presence

of hydrogen-bonded chains of molecules in the environ-

ment is the ‘‘worst scenario’’ as far as applicability of

Eq. 11 is concerned.

(C) Less expensive Kohn–Sham calculations for the

whole environment

In practice, it is appealing to use less expensive

approximations to solve Kohn–Sham equations for the

entire environment (subsystem B) than for subsystem A. In

contrast with the approximations given in Eqs. 10 and 11,

mutual polarization of molecules in the environment is

taken into account.

2.2 Miscellaneous computational details

All reported results are obtained using the ADF code [80]

into which the ground-state and linear-response time-

dependent excited-state FDET calculations were imple-

mented as described in Refs. [37, 81] with subsequent

improvements described in detail in Refs. [82]. Slater type

orbitals (STO) [83] are used for both subsystems (A and B).

Unless specified otherwise, STO–aug-TZP basis set is used

for the embedded subsystem (subsystem A). The use of

diffuse functions for subsystem A increases the sensibility

of the FDET results in change of the embedding potential

which might occur as a consequence of changes in qB. For

qB or for its components, the basis sets are ranging from

STO–SZ to STO–aug-TZ2P and they are specified in each

case. The following approximations for density (or orbital)

functionals are used: (1) SAOP [84, 85] for vxc½qA�ðrÞ, i.e.,

the exchange-correlation potential in subsystem A, (2) the

decomposable approximation using the PW91 [86]

exchange-correlation functional for vnad
xc ½qA; qB�ðrÞ, i.e., the

non-additive exchange-correlation bi-functional in Eq. 3,

(3) either NDSD functional [64] or the decomposable

approximation GGA97 [61] obtained from the Lembarki–

Chermette functional for the kinetic energy [63] for

vnad
t ½qA;qB�ðrÞ, the non-additive kinetic potential in Eq. 3.

In the case of other approximations, they are specified in

the relevant part of the ‘‘Results’’ section. The technical
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parameters used in the present study are not optimized for

speed of calculations but are set up to eliminate or to keep

constant other factors (than the choice for qB), which affect

the FDET results. In particular, the exchange-correlation-

and the non-additive components of the embedding

potential are evaluated at ‘‘exact’’ densities, i.e., electron

densities evaluated from orbitals without the use of fitting

functions.

3 Results

This section comprises two parts. The first one concerns the

same chromophore—cis-7-hydroxyquinoline—in environ-

ments comprising up to three hydrogen-bonded molecules.

The three strategies to generate qB are applied and the

corresponding environment-induced shifts of the p! p�

excitation energies are discussed in order to select the most

robust strategy to generate qB in large-scale multi-level

simulations for similar chromophores in soft condensed

matter. In the second part, the most robust strategy (Kohn–

Sham calculations for the whole environment) is applied

for larger environments of other chromophores in order to

verify the applicability of this strategy.

3.1 cis-7-Hydroxyquinoline in hydrogen-bonded

complexes

These systems are ideal objects for studying the dependence

of the calculated complexation induced shifts of the exci-

tation energy on the choice made for qB in FDET/LR-

TDDFT calculations. The studied excitations are local.

They fall, therefore, in the domain of applicability of FDET.

The molecules do not absorb noticeably within the con-

sidered spectral range, which makes the NDRE approxi-

mation applicable. Moreover, benchmark quality excitation

energies obtained from high-level wavefunction methods

are available for the smallest of these complexes [47, 77]. It

was shown that FDET calculations reproduce very accu-

rately both the reference benchmark shifts of the excitation

energy and the experimental shifts, provided qB is obtained

from Kohn–Sham calculations for the isolated environment

[47, 77]. These FDET excitation energy shifts are used as a

reference for the present work in which qB is generated by

means of alternative (simpler) methods. The geometries of

the considered ‘‘microsolvated’’ cis-7-hydroxyquinoline

clusters are also taken from Refs. [47, 87].

3.1.1 Superposition of atomic densities

for the environment

The applicability of approximation given in Eq. 10 is

studied for the complexes cis-7-hydroxyquinoline-H2O and

cis-7-hydroxyquinoline-NH3. In the considered complexes,

the search of the optimal nB
i is especially straightforward

because once the net atomic charge on the non-hydrogen

atom is fixed, the charges on hydrogens are uniquely

determined by the condition of neutrality of the whole

molecule (nB
H = - nB

O/2 for H2O and nB
H = - nB

N/3 for

NH3). The search for the optimal nB
i can be performed,

therefore, in one dimension by varying the net charge on

non-hydrogen atom from 0 (neutral atom) to -1 e (com-

plete charge transfer from hydrogens). The principal orbi-

tals contributing to the lowest excitation are shown in

Fig. 1.

Figures 2 and 3 show the excitation energy shifts cal-

culated for the considered range of atomic net charges. The

shifts depend critically on the chosen values of nB
i in Eq. 10

in both complexes. The increase of the polarity of the

molecule in the environment increases also the magnitude

of the red shift. The benchmark results for the 7HQ ? H2O

complex are reproduced at the net charge at oxygen of

about -0.7 e. Interestingly, the oxygen net charge obtained

from the Mulliken population analysis lies within this

range. The use of any other common methods to decom-

pose the molecular charge into atomic contributions leads

to slightly worse shifts but seems also to be a reasonable

choice.

Unfortunately, none of the common methods to obtain

the net charges in ammonia seems to be useful to generate

qB by means of Eq. 10. The best agreement with the ref-

erence values for the shift occurs for nB
N \ -1.0 e. None of

the standard methods to partition the molecular electron

density into atomic contributions considered here leads to

such a value of the net charge. Similar conclusions can be

drawn using smaller basis sets for subsystem A such as

STO–DZP, STO–TZP (data available from the authors

upon request). Most likely, using the spherical atomic

charges is too crude as an approximation to represent

properly the electric field generated by the lone pair of

nitrogen. A universal procedure to generate net atomic

charges to be used in Eq. 10 is hardly in view. Obtaining

Fig. 1 The pair of molecular orbitals in isolated cis-7-hydroxyquin-

oline, which provides the dominant contribution to the lowest

excitation (HOMO on the left side and LUMO on the right side)
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Fig. 2 Dependence of the complexation induced shift (in cm-1) of

the lowest p! p� excitation in the complex of cis-7-hydroxyquin-

oline with water on the net atomic charges used in Eq. 10 for

generating the frozen density qB = qH2O � nB
O is the net charge on

oxygen and the charge on each hydrogen equals to -nB
O/2. The

wavefunction and FDET reference values taken from Ref. [47] are

indicated as horizontal lines. Results obtained using common

methods for generating net atomic charges: Mulliken population

analysis [88], Hirschfeld population analysis [89], Voronoi charges

[90], multipole derived [91] are also indicated. STO–DZP basis set is

used for generation of qB

Fig. 3 Dependence of the complexation induced shift (in cm-1) of

the lowest p! p� excitation in the complex of cis-7-hydroxyquin-

oline with ammonia on the net atomic charges used in Eq. 10 for

generating the frozen density qB = qNH3
� nB

N is the net charge on

nitrogen and the charge on each hydrogen equals to -nB
N/3. The

wavefunction and FDET reference values taken from Ref. [47] are

indicated as horizontal lines. Results obtained using common

methods for generating net atomic charges: Mulliken population

analysis [88], Hirschfeld population analysis [89], Voronoi charges

[90], multipole derived [91] are also indicated. STO–DZP basis set is

used for generation of qB
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qB from Eq. 10 is, therefore, not practical for environments

comprising polar molecules despite its usefulness in the

case of ionic solids [38].

Turning back to the dependence of the shift on the net

charge, we notice that the calculated shifts are very small (a

few cm-1 for 7HQ ? NH2O and less than 100 cm-1 for

7HQ ? NH3) at the neutral atom limit (nB
i = 0) at which

the long-range electrostatic component of the embedding

potential disappears. This indicates that confinement is a

minor factor determining the shifts. The non-electrostatic

components of the embedding potentials are present

regardless of which value of the net atomic charge is used

whereas the electrostatic component is proportional to the

magnitude of the net atomic charges (see Eqs. 3, 10). It is

also worthwhile noticing the almost linear dependence of

the shifts on the net charge supporting the electrostatic

interpretation of the origin of the shift.

3.1.2 Superposition of molecular densities

The results obtained in the previous section indicate that

the simplest strategy (superposition of atomic densities)

Fig. 4 cis-7-Hydroxyquinoline

(7HQ) in complexes

investigated in this work:

a 7HQ–H2O, b 7HQ–2H2O,

c 7HQ–3H2O, d 7HQ–NH3,

e 7HQ–2NH3, f 7HQ–3NH3,

g 7HQ–CH3OH, h 7HQ–

2CH3OH, i 7HQ–3CH3OH,

j 7HQ–NH3–H2O–NH3,

k 7HQ–NH3–NH3–H2O,

l 7HQ–NH3–H2O–H2O
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might lead to erratic FDET shifts if the environment is a

polar molecule. The results are very sensitive to the arbi-

trary choice of the procedure to generate net atomic char-

ges. As the ammonia example shows, it might even not be

possible to generate appropriate net charges.

For environments consisting of several polar molecules

the second strategy (Eq. 11) appears as the only option. It

is investigated for complexes comprising cis-7-hydroxy-

quinoline embedded in such environments as:

2H2O, 3H2O, 2NH3, 3NH3, 2CH3OH, and 3CH3OH. The

complexes are shown in Fig. 4. The geometries of these

complexes are taken from Refs. [47, 87], which provide

also reference benchmark shifts from EOM-CC and FDET

calculations. The chosen systems represent well the worst

scenario as far as the approximation introduced in Eq. 11 is

concerned. In each case, the molecules in the environment

form chain-like structures (see Fig. 4) and the effect of

mutual polarization can be expected to be large. Indeed,

according to our own studies reported in Ref. [8], this

mutual polarization lies at the origin of the positive

cooperativity in the solvatochromic shift if the hydrogen-

bonded chains consists of more than two hydrogen-bonded

molecules.

Using qB as the superposition of electron densities of

isolated individual molecules from the environment instead

of the Kohn–Sham density obtained for the whole envi-

ronment affects the shifts noticeably—from 67 cm-1 in the

case of two ammonia molecules to as much as 369 cm-1 in

the case of three water molecules forming a chain (see

Tables 1, 2). The relative errors in the shifts due to the

approximation given in Eq. 11 can reach up to 25 % (the

case of three membered chains). Therefore, it can not be

considered as a generally adequate approximation.

However, in some cases, generating qB using Eq. 11 is

an acceptable approximation. The following computational

experiment concerns such a case. The shifts are calculated

for the longest chains (three molecules in the environment)

but with the central molecule removed to break the chain.

The mutual polarization of the molecules in the environ-

ment is reduced as the result. As expected, the differences

between shifts obtained using superposition of molecular

densities and densities derived from Kohn–Sham

Table 1 Environment-induced shifts (Dep�p� ) of the lowest p! p�

excitation energy for cis-7-hydroxyquinoline in various environments

evaluated using either the reference qB (Kohn–Sham calculations for

the whole environment) or qB obtained as superposition of molecular

densities (Eq. 11). The differences between the excitation energies

obtained at these two choices for qB (e½qEq:11
B � - e½qKS

B �) are given in

parentheses. STO–aug-TZ2P basis set is used for qA generation.

STO–DZP basis set is used for qB generation

Environment

Choice for qB Dep�p� (cm-1)

2H2O 3H2O 2NH3 3NH3 2CH3OH 3CH3OH

qB = qB
Eq.11 -1493 -1176 -1158 -1154 -1309 -1275

qB = qB
KS -1614 -1545 -1225 -1392 -1450 -1625

(121) (369) (67) (238) (141) (350)

Table 2 Environment-induced shifts (Dep�p� ) of the lowest p! p�

excitation energy for cis-7-hydroxyquinoline in various environments

evaluated using either the reference qB (Kohn–Sham calculations for

the whole environment) or qB obtained as superposition of molecular

densities (Eq. 11). The differences between the excitation energies

obtained at these two choices for qB (e½qEq:11
B � - e½qKS

B �) are given in

parentheses. STO–aug-TZ2P basis set is used for qA generation.

STO–DZP basis set is used for qB generation

Environment

Choice for qB Dep�p� (cm-1)

NH3–H2O–NH3 NH3–NH3–H2O NH3–H2O–H2O

qB = qB
Eq.11 -1483 -1716 -1636

qB = qB
KS -1735 -1817 -1856

(252) (101) (220)

Table 3 Environment-induced shifts (Dep�p� ) of the lowest p! p�

excitation energy for cis-7-hydroxyquinoline environments compris-

ing broken-hydrogen chains evaluated using either the reference qB

(Kohn–Sham calculations for the whole environment) or qB obtained

as superposition of molecular densities (Eq. 11). The differences

between the excitation energies obtained at these two choices for qB

(e[qB
Eq.11] - e[qB

KS]) are given in parentheses. STO–aug-TZ2P basis

set is used for qA generation. STO–DZP basis set is used for qB

generation

Environment

Choice for qB Dep�p� (cm-1)

2H2O 2NH3 2CH3OH

qB = qB
KS -899 -900 -1010

qB = qB
Eq.11 -881 -888 -993

(17) (12) (18)
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calculations for the whole environment are negligible (see

Tables 3, 4).

The results indicate clearly that the computationally

attractive strategy in which qB is approximated as a sum of

electron densities in the isolated molecules is a very good

pragmatic solution for hydrogen-bonded clusters in the

absence of direct hydrogen bonding between the molecules

in the environment. Replacing one Kohn–Sham calculation

for the whole environment by several less expensive cal-

culations for each individual molecule in the environment

affects the excitation energies by at the most 20 cm-1. In

the case of direct hydrogen bonding between the molecules

in the environment, the errors due to neglect of mutual

polarization between the molecules in the environment are

significantly larger (up to 400 cm-1). Such errors might be

considered acceptable for some applications (they still do

not exceed 25 % of the total shifts). If a better accuracy is

needed and the presence of the hydrogen-bonded chains

cannot be excluded, the mutual polarization of the mole-

cules in the environment must be taken into account. The

subsequent section concerns such a case.

Although the principal interest of the present work lies

in the dependency of FDET excitation energies on qB,

Tables 10, 11, 12 and 13 in the Supporting Information

collect also the excitation energy shifts obtained using

other basis sets for subsystem A. The approximation given

in Eq. 11 leads to the effect on the shifts which is practi-

cally independent on the basis set used for subsystem

A. This justifies attributing the difference between the

excitation energy obtained with Eq. 11 and with full Kohn–

Sham treatment of subsystem B to a physical effect—

mutual polarization of the molecules in the environment.

Data collected in Tables 10 and 11 of Supporting Infor-

mation demonstrate remarkable numerical stability of the

shifts with respect to the changes of the basis set used for

subsystem A. Upon changing the basis set for subsystem A,

the shifts vary within about 20 cm-1. Such small variation

is negligible compared to the magnitude of the shifts,

which are about one order of magnitude larger. This sta-

bility of the shifts reflects the variational origin of the

FDET embedding potential and the adequacy of the used

approximation for the non-additive kinetic potential.

3.1.3 Kohn–Sham calculations for the whole environment

As shown in the previous section, neglecting the mutual

polarization of the molecules in the environment (approx-

imation made in Eq. 11) leads to significant errors in the

complexation induced shifts of excitation energy (up to

25 % of the total shift) if the molecules in the environment

form longer hydrogen-bonded chains. The errors are not

significant in the absence of such chains. This suggests

that, in order to generate qB in the case of modeling

chromophores in hydrogen-bonded environments such as

liquid water, the whole environment should be treated at

the molecular orbital level of description. The chosen

method should be inexpensive and take into account the

mutual polarization of the molecules in the environment

properly. Ground-state Kohn–Sham calculations for the

whole environment can be, therefore, considered as a

practical option. Depending on the choice of the functional

and the basis set, such calculations lead to different qB,

which in turn leads to different dipole moment of the

environment. In the present section, the effect of these

choices on the calculated excitation energy shifts is

investigated. For each among the five clusters 7HQ -

(H2O)n (for n = 1–3) and 7HQ - (NH3)n (for n = 1–2)

three series of qB were generated by means of Kohn–Sham

calculations for the whole environment. In each series, a

different approximation for the exchange-correlation

potential was used (LDA [92, 93], PBE [94], or SAOP [84,

85]) and the following slater type atomic basis sets: STO–

SZ, STO–DZP, STO–TZP, STO–TZ2P, and STO–aug-TZP

[83]. In all calculations, the same basis set was used for

subsystem A (STO–aug-TZ2P) and the same approxima-

tion for the exchange-correlation energy of subsystem

A (SAOP [84, 85]). Figure 5 shows that the complexation

induced shifts are almost independent on the dipole

moment of subsystem B.

The shifts show remarkable stability in each case. In the

H2O case, changing the basis set and the approximation for

the exchange-correlation potential results in variation of

the magnitude of the dipole moment from 1.77 to 1.94

Debye which is accompanied by a small variation of the

excitation energy (from 3.7062 to 3.7123 eV). Since the

excitation energy for the isolated chromophore is the same

in each case (the same basis set and approximation for the

exchange-correlation potential for subsystem A) the varia-

tion of the shifts is the same (they vary within 0.0061 eV).

Table 4 Environment-induced shifts (Dep�p� ) of the lowest p! p�

excitation energy for cis-7-hydroxyquinoline environments compris-

ing broken-hydrogen chains evaluated using either the reference qB

(Kohn–Sham calculations for the whole environment) or qB obtained

as superposition of molecular densities (Eq. 11). The differences

between the excitation energies obtained at these two choices for qB

(e[qB
Eq.11] - e[qB

KS]) are given in parentheses. STO–aug-TZ2P basis

set is used for qA generation. STO–DZP basis set is used for qB

generation

Environment

Choice for qB Dep�p� (cm-1)

NH3–NH3 NH3–H2O NH3–H2O

qB = qB
KS -1172 -1545 -1309

qB = qB
Eq.11 -1161 -1529 -1297

(11) (16) (12)
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Fig. 5 Complexation induced shifts of the excitation energy (Dep�p� )

in cis-7-hydroxyquinoline (7HQ) in hydrogen-bonded clusters evalu-

ated at frozen densities (qB) differing in the dipole moment (lB). qB

generated in Kohn–Sham calculations for isolated environment apply-

ing LDA (squares), PBE (circles), and SAOP (triangles) exchange-

correlation potentials and basis sets ranging from STO–SZ to STO–aug-

TZP): a 7HQ–NH3, b 7HQ–(NH3)2, c 7HQ–H2O, d 7HQ–(H2O)2, and

e 7HQ–(H2O)3. The results obtained with minimal basis set (STO–SZ)

are indicated with full symbols. The zero line, i.e., De ¼ 0, corresponds

to the isolated chromophore, i.e., vemb½qA;qB; vB�ðrÞ ¼ 0
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The change of the dipole moment of the environment by

0.17 Debye (10 % relative change) is followed by the

change of the excitation energy by 0.0061 eV (which is

only 3 % of the shift). Calculations for other environments

show a similar trend. Despite the fact that it is electro-

statics, which provides the dominant contribution to the

shifts, hardly any correlation between the dipole moment of

the environment and the calculated shift in the excitation

energy can be observed.

The results obtained for embedded cis-7-hydroxyquin-

oline suggest the optimal strategy to generate qB consisting

of using a low-end Kohn–Sham calculations for the whole

isolated subsystem B which assures taking properly into

account the mutual polarization of the molecules in the

environment. Among the two factors determining the

shifts: neglecting the mutual polarization of the molecules

in the environment (the physical approximation) and the

use of medium quality basis set (implementation related

effect), the first one appears to be clearly more significant.

In the following two sections, this recommendation is put

to scrutiny using other hydrated chromophores.

3.2 Dependence of the environment-induced shifts

of the excitation energies on qB obtained

from the Kohn–Sham calculations for the whole

environment

In computational studies on solvatochromism, a large

number of molecules of the solvent is explicitly included.

The issue of inexpensive generation of qB is critical for

saving computation time. This section deals with the issue:

How far one can go in simplifying the Kohn–Sham calcu-

lations for the whole environment without deteriorating the

FDET calculated shifts in the energies of local excitations?

3.2.1 Microsolvated keto-7-hydroxy-4-methylcoumarin

The excited-state properties of keto-7-hydroxy-4-methyl-

coumarin (7H4MC) are widely studied experimentally and

Fig. 6 The cluster of keto-7-hydroxy-4-methylcoumarin and four

water molecules

Table 5 Excitation energies (e) and environment-induced spectral

shifts (De) of the three lowest excitations obtained using different

choices for qB (Kohn–Sham calculations with three choices for

exchange-correlation potentials and four choices for the basis sets)

for the 7-hydroxy-4-methylcoumarin complex with four H2O

molecules. The corresponding excitation energy for isolated chromo-

phore are: ep!p�ð1Þ = 2.9245 eV, ep!p�ð2Þ = 4.4061 eV, and en!p� =

2.7340 eV. The corresponding dipole moment (in Debye units) of the

environment is also given

Generation of qB Excitation Energy (eV) Spectral shift (cm-1) lB (Debye)

Xc-potential Basis set ep!p�ð1Þ ep!p�ð2Þ en!p� Dep!p�ð1Þ Dep!p�ð2Þ Den!p�

SAOP STO–SZ 2.7376 4.4058 3.3832 -1507 -2 5236 5.23

STO–DZ 2.9824 3.4543 3.7178 466 -462 5810 7.62

STO–DZP 3.0243 4.5178 3.4349 805 901 5653 5.44

STO–TZP 3.0155 4.5113 3.4232 734 848 5559 5.39

STO–TZ2P 3.0233 4.5168 3.4196 797 893 5530 5.42

STO–aug-TZP 3.0241 4.5118 3.4184 803 852 5520 5.25

PBE STO–SZ 2.8288 4.4252 3.3404 -772 154 4891 4.68

STO–DZ 3.0106 3.7320 3.4047 694 -384 5410 7.09

STO–DZP 3.0206 4.5109 3.4003 775 845 5374 4.94

STO–TZP 3.0066 4.5004 3.3880 662 761 5275 4.99

STO–TZ2P 2.9935 4.4993 3.3822 556 751 5228 5.03

STO–aug-TZP 3.0119 4.4992 3.3712 705 751 5139 5.06

LDA STO–SZ 2.9231 4.4632 3.3585 -11 460 5037 4.94

STO–DZ 3.0086 3.4250 3.7256 677 -399 5573 7.50

STO–DZP 3.0167 4.5142 3.4081 744 872 5437 5.13

STO–TZP 3.0183 4.5111 3.3986 793 847 5360 5.19

STO–TZ2P 3.0185 4.5114 3.3935 758 849 5319 5.22

STO–aug-TZP 3.0152 4.5087 3.3838 732 827 5241 5.25
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theoretically [95–97] due to its remarkable photophysical

properties. The theoretical investigations of this molecules

have helped to solve the ambiguity of nature of excitation

[98]. The keto form of 7H4MC in a cluster comprising four

water molecules is shown in Fig. 6. The ground-state

geometry of the complex is chosen from Ref. [98] to study

the sensitivity of the FDET excitation energy shifts for the

choice for qB. Three lowest transitions (two p! p� and

one n! p� excitations) are reported in Table 5. For sub-

system A, STO–aug-TZP basis set and the SAOP [84, 85]

approximation for the exchange-correlation potential is

Fig. 7 The molecular orbitals in isolated keto-7-hydroxy-4-methyl-

coumarin, which provide the dominant contributions to the lowest

excitations: a HOMO, b LUMO, c HOMO-1, d LUMO?1,

e HOMO-2, and f LUMO?2

Fig. 8 The embedded orbitals in keto-7-hydroxy-4-methylcoumarin-

(H2O)4 complex, which provide the dominant contributions to the

lowest excitations: a HOMO, b LUMO, c HOMO-1, d LUMO?1,

e HOMO-2, and f LUMO?2

Fig. 9 P-Nitro aniline-(H2O)6 complex

Fig. 10 The pair of molecular orbitals in isolated P-nitro aniline,

which provides the dominant contribution to the lowest excitation:

a HOMO, b LUMO

Fig. 11 The pair of molecular orbitals in the P-nitro aniline–6H2O

complex, which provides the dominant contribution to the lowest

excitation: a HOMO, b LUMO
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used for all calculations in this subsection. qB on the other

hand is generated using several STO type atomic basis sets

and three different approximations for the exchange-cor-

relation potential.

The orbitals for isolated and embedded chromophore are

shown in Figs. 7 and 8, respectively. The analyzed exci-

tations are dominated by the following transitions: p!
p�ð1Þ (HOMO to LUMO), p! p�ð2Þ (HOMO to LUMO-

1), and n! p� (HOMO-1 to LUMO). In line with the

trends observed for embedded cis-7-hydroxyquinoline

reported in the previous section, the shifts of the excitation

energies depend weakly on the dipole moment of the

environment provided the STO–DZ or larger basis set is

used in generation of qB (see Table 5).

3.2.2 Microsolvated P-nitro aniline

For P-nitro aniline (PNA) in six water molecules three

local excitations are analyzed: the lowest singlet (S), and

triplet (T) p! p�. The geometry of the complex was taken

Table 6 Excitation energies (e) and environment-induced spectral

shifts (De) of a lowest singlet and triplet excitations obtained using

different choices for qB (Kohn–Sham calculations with three choices

for exchange-correlation potentials and four choices for the basis sets)

for the PNA with six H2O molecules. The corresponding excitation

energy for isolated chromophore are: ep!p�ðSÞ = 3.3622 eV,

ep!p�ðTÞ = 2.5086 eV, and the corresponding dipole moment (in

Debye units) of the environment is also given

Generation of qB Excitation energy (eV) Spectral shift (cm-1) lB (Debye)

Xc-potential Basis set ep!p�ðSÞ ep!p�ðTÞ Dep!p�ðSÞ Dep!p�ðTÞ

SAOP STO–SZ 3.2549 2.3546 -865 -1242 2.52

STO–DZ 3.2245 2.3292 -1111 -1447 3.39

STO–DZP 3.2678 2.3611 -761 -1190 2.54

STO–TZP 3.2653 2.3624 -782 -1179 2.56

STO–TZ2P 3.2631 2.3615 -799 -1186 2.57

STO–aug-TZP 3.2576 2.3603 -844 -1196 2.58

PBE STO–SZ 3.2639 2.3647 -793 -1161 2.29

STO–DZ 3.2265 2.3198 -1095 -1523 3.18

STO–DZP 3.2523 2.3703 -886 -1115 2.35

STO–TZP 3.2647 2.3700 -786 -1118 2.39

STO–TZ2P 3.2676 2.3688 -763 -1127 2.40

STO–aug-TZP 3.2668 2.3727 -769 -1096 2.41

LDA STO–SZ 3.2523 2.3604 -886 -1195 2.41

STO–DZ 3.2227 2.3280 -1125 -1457 3.35

STO–DZP 3.2672 2.3736 -766 -1089 2.44

STO–TZP 3.2626 2.3731 -803 -1093 2.48

STO–TZ2P 3.2481 2.3723 -920 -1099 2.49

STO–aug-TZP 3.2688 2.3760 -753 -1069 2.48

Fig. 12 Isolated (left) and

hydrated by 49 water molecules

(right) 4-hydroxybenzylidene-

2,3-dimethylimidazolinone

anion
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from Ref. [99] and is shown in Fig. 9. The p and p* orbitals

are shown in Figs. 10 and 11 for isolated chromophore and

complex respectively. These are HOMO and LUMO for

both isolated and embedded PNA. Table 6 collects the

excitation energies and solvatochromic shifts for singlet

and triplet p! p� transition. The excitation energies and

solvatochromic shifts for both the transitions do not vary

significantly with the change of basis set or exchange

correlation functional. The FDET shifts evaluated using qB

obtained with the STO–DZP or any larger basis set are

numerically equivalent.

3.2.3 Hydrated 4-hydroxybenzylidene-2,3-

dimethylimidazolinone anion

In this subsection, the estimation of the sensitivity of the

calculated shifts on qB is made for a realistic model of a

chromophore in water solvent, following the same proce-

dure as the one used in the previous subsection. The

chromophore investigated is 4-hydroxybenzylidene-2,3-

dimethylimidazolinone (HBDI) anion, which is the chro-

mophore in green fluorescent protein. The cluster used for

the calculations consists of the HBDI anion in the cis

conformation and 49 water molecules (see Fig. 12), which

geometry is taken from Ref. [100]. The water molecules in

the cluster represents the complete first solvation shell.

STO–DZP basis sets are used for the HBDI anion. The

non-additive kinetic potential in Eq. 3 is approximated

using the NDSD bi-functional [64]. qB is obtained from

Kohn–Sham calculations for isolated subsystem B applying

the LDA exchange-correlation functional and various types

of STO orbitals (SZ, DZ, DZP, TZP, TZ2P, and aug-TZP).

Table 7 shows the dependence of the two lowest elec-

tronic excitation energies (e1 and e2) and the corresponding

spectral shifts (De1 and De2) on the basis set choices for

generating the Kohn–Sham electronic density of the sol-

vent. The corresponding dominant molecular orbital (MO)

transitions are HOMO-1 ! LUMO for e1 and HOMO !
LUMO for e2. The involved orbitals (both isolated and

solvated HBDI anion) are shown in Fig. 13.

The results collected in Table 7 indicate that, starting

from STO–DZP, increasing further the basis sets does not

affect significantly the calculated spectral shifts.

The solvated 4-hydroxybenzylidene-2,3-dimethylimi-

dazolinone anion is the largest system investigated in the

present work. The CPU timings of the FDET calculations

for this system are collected in Table 8 to illustrate the

main computational advantage of the FDET-based meth-

ods. Solving LR-TDDFT equations for getting excitation

energies requires the same time regardless which method is

used to generate qB (The exceptions for the last two lines in

Table 8 originate from different number of iterations in the

Davidson procedure to diagonalize the largest matrix in

LR-TDDFT calculations. In this particular case, qB is

Fig. 13 The molecular orbitals,

which provide the dominant

contributions to the lowest two

excitations. a HOMO-1,

b HOMO, and c LUMO for the

isolated 4-hydroxybenzylidene-

2,3-dimethylimidazolinone

(HBDI) anion; d HOMO-1,

e HOMO, and f LUMO for the

embedded HBDI anion

Table 7 Dependence of the two lowest electronic excitation energies

(e1 and e2) and the corresponding spectral shifts (De1 and De2) on the

basis set choices for generating the Kohn–Sham electronic density of

the solvent. The corresponding electronic excitation energies of iso-

lated chromophore are: e1 = 2.3827 eV and e2 = 2.9291 eV. The

corresponding dominant molecular orbital (MO) transitions are

HOMO-1 ! LUMO for e1 and HOMO ! LUMO for e2. The mag-

nitude of the dipole moment of the environment is also given

Basis set for qB Excitation energy

(eV)

Spectral shift

(cm-1)

lB (Debye)

e1 e2 De1 De2

STO–SZ 2.7907 3.0142 3291 686 11.72

STO–DZ 3.0054 3.0508 5022 982 13.24

STO–DZP 2.9742 3.0340 4771 846 10.66

STO–TZP 2.9605 3.0318 4660 828 10.78

STO–TZ2P 2.9556 3.0306 4621 819 10.81

STO–aug-TZP 2.9415 3.0289 4507 805 10.79
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obtained by using ground-state Kohn–Sham calculations

whereas the excited-state calculations involve the same

space of occupied and unoccupied orbitals). In contrast

with solving Casida’s equations for excited-state FDET

calculations, the time needed for ground-state FDET cal-

culations increases with the basis set size for qB. This is

rather a specific feature of the ADF program concerning

the evaluation of the Coulomb terms, the timing of which

depends on the site of the orbital- and auxiliary- basis sets

used for qB. Concerning the generation of qB, its scaling

reflects the conventional implementation of the Kohn–

Sham calculations.

4 Conclusions

According to FDET, every observable calculated at a given

choice for qB is a functional of qB. The unique corre-

spondence between the observable of interest and qB

involves the embedding potential defined in Eq. 3 which

changes if qB changes. The present work concerns these

correspondences for a particular case of energies of local

excitations which are evaluated by means of applying

FDET within LR-TDDFT framework. In such calculations,

the shifts are determined by the embedding potential (and

its functional derivative with respect to qA). The examples

provided in the present work form a series constructed to

address the issue: How simple can be the method to gen-

erate qB in hydrogen bonded clusters without significant

deterioration of the calculated shifts in energies of local

excitations? The following conclusions/recommendations

emerge from the reported studies on various organic

chromophores, excitations, and hydrogen-bonded

environments. Generating qB as a superposition of spheri-

cally symmetric atomic charges, which was shown to be

adequate in environments being ionic crystals, does not

seem to be robust enough for environments consisting of

molecules. The FDET excitation energies results depend

critically on the choice of net atomic charges. The example

of ammonia-7HQ complex shows that none of the com-

monly used techniques to assign atomic net charges in a

molecule is applicable. This originates probably from the

fact that such simple approximation is incapable of repro-

ducing the directional character of atoms with lone pairs.

Generating qB as a superposition of molecular densities is a

more reliable strategy but still might lead to relative errors

in the shifts exceeding 25 %. Such errors occur if the

molecules within the environment interact strongly with

each other as in the shown examples of environments

consisting of hydrogen-bonded chains of molecules. The

most robust strategy to generate qB emerging from the

present study consists of using less expensive Kohn–Sham

calculations for the whole environment (or at least for all

molecules near the chromophore). STO–DZP basis set or

larger and any among the three investigated exchange-

correlation potentials (LDA, PBE, or SAOP) lead to similar

results. The relative shift vary usually less than 0.02 eV (or

about 150 cm-1) whereas the relative excitation energy

shifts change by no more than 10 % regardless which

approximation for the exchange-correlation potential is

used or which basis set (STO–DZP or larger) is used. These

results can be considered as estimations of errors made due

to arbitrary choices of qB made in multi-scale computer

simulations based on FDET.

The embedding potential given in Eq. 3 applies not only

for embedding a non-interacting reference system, which is

considered in the present work, but also for methods using

other quantum mechanical descriptors for qA as shown in

Ref. [22, 23]. Such FDET-based simulations are gaining

increasing popularity [24–29, 31–33]. The effect of varying

qB on the embedding potential and subsequently for shifts

in excitation energies (and other observables directly

related to the electronic structure of subsystem A) can be

expected to be similar for such methods.

Concerning the relative stability of FDET calculated

shifts in energies of local excitations with respect to the

choices for qB, we underline that in the commonly used

methods of the QM/MM type, the embedding potential

comprises ONLY electrostatic component. Therefore, the

embedded wavefunction or other quantum mechanical

descriptor obtained in such calculations depends critically

on the distribution of charges and higher electric moments

in the environment. Including or not the electrostatic field

generated by the induced dipole moments on atoms in the

environment might affect the results significantly. The

present work shows that, in the FDET calculations which

Table 8 The dependence of the CPU timea (hour:minute) of FDET

calculations on the choice of basis sets used to generate qB for

4-hydroxybenzylidene-2,3-dimethylimidazolinone anion in the envi-

ronment consisting 49 water molecules

Basis set for

qB

Generation of

qB

FDET

(ground

state)

FDET/LR-

TDDFT

(excited state)

Total

STO–SZ 00:03 00:18 00:17 00:39

STO–DZ 00:05 00:33 00:16 00:55

STO–DZP 00:13 01:22 00:17 01:54

STO–TZP 00:17 01:36 00:16 02:10

STO–TZ2P 00:33 02:06 00:51b 03:30

STO–aug-

TZP

01:28 03:03 00:25 04:56

a Each calculation is run on one node consisting of eight 3.0 GHz

cores
b The CPU time is proportional to the number of iterations in the

Davidson procedure to diagonalize the largest matrix in LR-TDDFT

calculations
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are based on variational principle, the results depend less

on the choice for qB. Several cases, where two choices for

the density of the environment differing in the dipole

moment by more than 10 % lead to almost identical shifts

in the excitation energy, are reported in the present work.

We interpret this robustness of the FDET calculated exci-

tation energy shifts with respect to the choice of the density

of the environment (qB) as originating in the variational

character of FDET and the existence of multiple pairs of qA

and qB adding up to the same total density in the case of

exact theory. This numerical result shows that the use of

the notion of ‘‘polarization of the environment by the

embedded subsystem’’ might be misleading in the FDET

calculations at least for such weak interactions as the

hydrogen bond between the chromophore and the molecule

in the environment.

Finally, it is worthwhile noticing that performing

FDET-based simulations for excited states of embedded

chromophores as an alternative to treat the whole system at

the same quantum mechanical level leads to significant

computational savings which result from two approxima-

tions: (a) neglect of dynamic response of the environment

and (b) the use of inexpensive methods to generate the

qB—a ground-state Kohn–Sham electron density for

instance. None of them is general. The first approximation

leads to the reduction of the number of Kohn–Sham

orbitals (occupied and unoccupied) in solving LR-TDDFT

equations and is applicable in the absence of overlap in the

energy levels in the two subsystems. In such cases going

beyond NDRE is indispensable [46]. The second approx-

imation is also not general. The present work, indicates

that using inexpensive Kohn–Sham-based methods to

generate qB such as using local-density approximation for

exchange-correlation potential and STO–DZP basis set,

seems a universally adequate approximation for hydrogen-

bonded environments. This general recommendation

complements our conclusions emerging from studies con-

cerning other environments such as ionic solids [38] or

cases where confinement dominate the environment-

induced shifts of properties of embedded molecules [34],

for which it was found that approximating the density of

the solid by a sum of ionic densities is an adequate

approximation.

5 Supporting information

Results obtained with other basis sets, numerical values of

excitation energies.
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