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We explore the ground-state physics of two-dimensional spin-1=2 U(1) quantum link models, one of the
simplest nontrivial lattice gauge theories with fermionic matter within experimental reach for quantum
simulations. Whereas in the large mass limit we observe Neél-like vortex-antivortex and striped crystalline
phases, for small masses there is a transition from the striped phases into a disordered phase whose
properties resemble those at the Rokhsar-Kivelson point of the quantum dimer model. This phase is
characterized on ladders by boundary Haldane-like properties, such as vanishing parity and finite string
ordering. Moreover, from studies of the string tension between gauge charges, we find that, whereas the
striped phases are confined, the novel disordered phase present clear indications of being deconfined. Our
results open exciting perspectives of studying highly nontrivial physics in quantum simulators, such as
spin-liquid behavior and confinement-deconfinement transitions, without the need of explicitly engineering
plaquette terms.
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Driven by tremendous progresses in the manipulation
and control of ultracold quantum gases, this field is entering
the era of the quantum simulation of lattice gauge theories
(LGTs) [1], with the long term goal of studying open
problems of the early universe, dense neutron stars, nuclear
physics, or condensed-matter physics [2–4]. Many theo-
retical proposals [5–18] and recent seminal experiments
with trapped ions [19], quantum dimer models in Rydberg
atoms arrays [20], lattice modulation techniques [21–23],
or atomic mixtures [24] have shown first building-blocks of
dynamical gauge fields and quantum link models (QLMs),
a generalization of LGT to spin-like link variables [25].
However, the implementation of some building blocks
of LGT, such as the ring exchange corresponding to
magnetic field dynamics in analogue implementations of
quantum electrodynamics, requires further theoretical and
experimental breakthroughs, although there has been
progress on isolated plaquettes [26] and recent promising
proposals [27,28].
In this Letter we show how already the simplest midterm

experimental realizations, without plaquette terms, may be
able to explore a wide area of nontrivial phenomena of
LGTs. In particular, we report in this Letter that the two-
dimensional (2D) QLM is characterized by the emergence
of a quantum phase transition between confined crystalline
phases and an exotic deconfined disordered phase with
certain resemblance to Rokshar-Kivelson (RK) states [29]
or resonating valence bond liquids [30–33]. Hence, these
relatively simple systems provide a pristine test-bed for
the study of highly nontrivial physics, such as spin
liquids, confinement-deconfinement transitions, and exotic
dynamical or thermalization properties [20,34,35], such

as the formation of quantum many-body scars in con-
strained systems [36] and their fundamental link to
confinement. Interestingly, QLMs may be experimentally
realized in quantum gases within the next years. Whereas
several proposals using Fermi-Bose mixtures have been
reported [8,9,11,14,15,17,24], we recently discussed [16] a
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FIG. 1. (a) Sketch of the QLM model on a square ladder (gray
spins depict staggered boundary conditions) or on a torus
(associating opposite gray spins at the two edges). (b)–(f) Sketches
of the phases discussed in the text: for μ ¼ 0.8 striped phases
(b) Jy ¼ 2.4Jx (Sy), (c) Jy ¼ 0.2Jx (Sx); for μ ¼ −0.8 vortex-
antivortex phases (d) Jy ¼ 2.4Jx (VA), (e) Jy ¼ 0.2Jx (VA0), and
the (f) deconfined disorderedD phase for μ ¼ 0 and Jx ¼ Jy. The
size of the bullets depicts hnri, the arrow size hSzr;r0 i, and the
plaquette colors the vorticity hQri. The arrow sizes of (f) has been
scaled up by a factor of 2 for clarity.

PHYSICAL REVIEW LETTERS 124, 123601 (2020)

0031-9007=20=124(12)=123601(5) 123601-1 © 2020 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.124.123601&domain=pdf&date_stamp=2020-03-23
https://doi.org/10.1103/PhysRevLett.124.123601
https://doi.org/10.1103/PhysRevLett.124.123601
https://doi.org/10.1103/PhysRevLett.124.123601
https://doi.org/10.1103/PhysRevLett.124.123601


minimalistic realization of QLMs with a single fermionic
species that simulates the spin-1=2 links using multiorbital
physics in optical superlattices [37]. We note, however, that
the latter may be analogously replaced by hyperfine or
spatial degrees of freedom allowing for a large flexibility of
the proposal.
2D QLM.—We consider in the following a QLM on a

square lattice described by the Hamiltonian

H ¼ −
X

r;r0
Jr;r0 ðψ†

rSþr;r0ψ r0 þ H:c:Þ þ
X

r

μrnr; ð1Þ

where ψ†
r is the fermionic operator at site r, and nr ¼ ψ†

rψ r.
In our case the gauge field is given by spin-1=2 operators
Sþr;r0 placed at the link between two neighboring sites r and
r0. The amplitudes Jr;r�x ¼ Jx and Jr;r�y ¼ Jy character-
ize, respectively, the hops along the x and y directions
[Fig. 1(a)]. We enforce at each site the Gauss law
½H;Gr� ¼ 0 with Gr ¼ εr − nr þ

P
k∈x;yðSzr;rþk − Szr;r−kÞ,

with εr∈A ¼ 1 and εr∈B ¼ 0. The staggered potential,
μr∈A ¼ μ and μr∈B ¼ −μ can be interpreted as the mass
of particles on B sites and antiparticles on A sites.
We focus on the ground-states of the QLM at half

fermion filling and gauge vacuum (Gr ¼ 0) on square
ladders and cylinders. We study up to Lx ¼ 100 rungs and
Ly ¼ 4 legs by means of density matrix renormalization
group (DMRG) techniques [38] adapted to the local gauge
symmetry [39–42]. We introduce at this point the ring-
exchange operators Rþ

r ¼ Sþr;rþxS
−
rþx;rþxþyS

−
rþxþy;rþyS

þ
rþy;r

and R−
r ¼ ðRþ

r Þ†. These operators characterize plaquette
states: R−

r (Rþ
r ) flips a vortex (antivortex) into an antivortex

(vortex), being zero otherwise, andQr¼ðRþ
r R−

r −R−
r Rþ

r Þ¼
1 (−1) for vortex (antivortex) and Qr ¼ 0 otherwise [43].
Large mass limit.—First insights are obtained from the

limit jμj ≫ Jx;y, which, in contrast to the two-leg QLM
[44], is different for μ > 0 and μ < 0. For μ > 0, particles
are pinned in B sites [Figs. 1(b) and 1(c)]. Local states
are characterized by the expectation value of two spin-1

operators, SzkðrÞ¼Szðr−k;rÞþSzðr;rþkÞ, with k ¼ x, y.
For Jx < Jy, second-order terms select a ground-state
manifold of two states with SzyðrÞ ¼ 0. Fourth-order
ring-exchange ∝ J2xJ2y=jμj3 [16] favors a configuration of
columns of flippable vortex-antivortex and nonflippable
plaquettes [Fig. 1(b)]. We denote this striped phase Sy. In a
2D model, a corresponding striped phase Sx of alternating
flippable and non-flippable rows of plaquettes is expected
for Jy < Jx. However, on the finite-size cylinders we study,
the translational symmetry along the y direction results in
blurred spin averages [Fig. 1(c)]. Correlations of the
flippability operators reveal the Sx character [Fig. 2(a)]:
whereas hQ2

rQ2
rþyi vanishes, hQ2

rQ2
rþ2yi remains finite.

Staggered boundary spins stabilize the Sx ordering in
ladders [44].
For large negative mass, −μ ≫ Jx;y, particles are pinned

to the A sites, reducing the local Hilbert space to a six-
dimensional manifold of spin configurations satis-
fying Gauss’s law. Second-order processes favor states
with hSzxðrÞi ¼ hSzyðrÞi ¼ 0, leading to a checkerboard
ground-state pattern of vortex-antivortex (VA) plaquettes
[Figs. 1(d) and 1(e)]. For Jx < Jy we dub this phase VA,
and VA0 for Jy < Jx. These two phases are uniquely
defined and do not exhibit any spontaneously broken
translational symmetry like in a Neél-like phase.
Emerging disordered phase.—At low μ, particle fluctu-

ations become important, leading to a particularly intrigu-
ing physics. For μ ∼ 0 we observe three distinct phases as a
function of Jy=Jx, as can be seen in Fig. 2(b) for the four-
leg cylinder by the distinct diverging peaks in the fidelity
susceptibility χFS ¼ limJy−J0y→0½ð−2 ln jhΨ0ðJyÞjΨ0ðJ0yÞijÞ=
ðJy − J0yÞ2�, where jΨ0i is the ground-state wave function.
We observe a similar behavior for three- and four-leg
ladders [44]. Whereas for μ ¼ 0 for Jy ≪ Jx (Jy ≫ Jx)
the system is in the Sx (Sy) phase, for Jx ∼ Jy an
intermediate gapped phase occurs characterized by vanish-
ing hQri and hQ2

ri, but a large expectation value of the ring
exchange hRþ

r i.
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FIG. 2. Four-leg cylinder at μ ¼ 0: (a) Nearest and next-nearest neighbor flippability correlations, staggered flippability
OðSyÞ ¼ P

rð−ÞxhQ2
ri, as well as the expectation value of the ring exchange hRþ

r i. (b) Fidelity susceptibility with L ¼ 12, 24,
and 36 rungs. (c) Local Hilbert space distribution νk of the central rung (see text). (d) Sketched phase diagram of the QLM. Color codes
depict the von-Neumann bipartite entanglement entropy SvN of the central rung. Points depicts the estimated phase transition points, by
extrapolating the peak positions of the fidelity susceptibility evaluated along the cuts indicated by the dotted lines (DMRG data).
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A crucial insight on the physics of the intermediate phase
is provided by the analysis of the reduced density matrix
ρc ¼ TrjΨ0ihΨ0j for the central rung (where the trace runs
over all other rungs) in the (Fock-like) eigenbasis ϕk of S

z
r;r0

and nr. In Fig. 2(c) we show its diagonal elements
νk ¼ hϕkjρcjϕki, an effective local Hilbert space distribu-
tion, sorted by amplitude, for the case of a four-leg cylinder.
The Sx and Sy phases are strongly localized in Fock space,
i.e., νk has most weight for few basis states. The inter-
mediate phase, however, exhibits a drastically different,
much flatter distribution, where many local Fock states
contribute with similar weight. The disordered character of
the intermediate phase is also witnessed by the entangle-
ment entropy SvN ¼ −Trðρc ln ρcÞ, which we depict in
Fig. 2(d).
The intermediate phase thus closely resembles the

Rokhsar-Kivelson (RK) point, which contains an equal
superposition of all dynamically connected states. We also
show in Fig. 2(c) the corresponding distribution of νk for a
classical RK state, which compares well to the ground state
obtained by the DMRG simulation. We estimate the over-
lap between the two states to be 0.97 [see the Supplemental
Material [44] for a more detailed comparison between the
DMRG simulation of the intermediate phase and the
classical RK state, which also reproduces the spin and
density configuration pattern of Fig. 1(f)]. We hence
characterize the intermediate gapped phase as a disordered
(D) phase. Note, that due to the different Gauss’s law on A
and B sites, this phase still exhibits a slight particle
imbalance between A and B sites, as well as finite link-
variable expectation values, as shown in Fig. 1(f).
Edge Haldane order.—We focus at this point on the

edges of a QLM ladder, where the physics can be
well understood from a mean-field-like strongly sim-
plified 1D model in which we fix the upper boundary
links for each site in a staggered configuration, and allow
the lower spins to fluctuate with an amplitude Jy. Six
local states are possible: ,

, , and
. Gauss’s law imposes further restrictions

on the allowed sequence of these local states: 0 may be
followed at its right by 0 or β (0 → 0; β); 0̃ → 0̃; α;
α → β; 0; and β → α; 0̃ (we remove the � index). By
construction, Gauss’s law enforces a Neél-like order of α
and β states diluted by an arbitrary number of intermediate
0 or 0̃ states. The model Hamiltonian, given by

H1D ¼ −Jx
X

x

ψ†
xSþx;xþ1ψxþ1 − Jy

X

x

ψ†
xSþx þ H:c: ð2Þ

exhibits three ground-state phases (here we neglect a
staggered potential term). For Jy ≪ Jx the ground state
is � � � jαijβijαijβi � � �, whereas for Jy ≫ Jx the states
� � � j0−ij0−i � � � and � � � j0̃−ij0̃−i � � � have the lowest

energy. Interestingly, for Jx ∼ Jy an intermediate phase
with Haldane-like diluted Neél order emerges, that
resembles the SPT phase of Ref. [16]. We may describe
this intermediate phase by a minimal AKLT-like [45]
state with a twofold degenerate entanglement spec-
trum and a nonvanishing string order O2

S ¼
limjx−x0j→∞hSzxeiπ

P
x<k<x0 S

z
kSzx0 i, while parity order O2

P ¼
limjx−x0j→∞heiπ

P
x<k<x0 S

z
ki is exponentially suppressed [44].

While being a drastically simplified description, it
captures essential ingredients of ladder QLMs. In particu-
lar, fixing in a ladder the boundary spins to a staggered
configuration enforces the dilute Neél order on the boun-
dary leg. We, hence, plot in Fig. 3(a) the string and parity
order measured along the boundary leg of a four-leg ladder.
Indeed the D phase is characterized by a finite string order
and a vanishing parity order, resembling closely the SPT
phase discussed for the above mentioned 1D model or the
two-leg QLM of Ref. [16]. However, for Ly > 2 the parity
order remains finite in theD phase if measured on the inner
legs, and the phase is not topological. The entanglement
spectrum is no longer strictly twofold degenerate.
Interestingly, however, we observe a robust gap in the
entanglement spectrum of theD phase between a low-lying
manifold and the rest.
String tension.—Finally, we discuss the properties of

gauge charges on top of the vacuum state. We insert two
charges by locally adjusting Gauss’s law to Gr ¼ �1 on
two sites separated by a distance LD in the x direction, and
study the string formation for the case of a four-leg cylin-
der. Example configurations are shown in Figs. 4(a)–4(c)
for Sy, Sx, and D phases after subtracting the spin and
fermion configuration of the charge-free system.
Comparing the energy EðLDÞ with the energy E0 of the
charge-free state, we obtain the string tension, STðLDÞ ¼
EðLDÞ − E0 [Fig. 4(d)], which characterizes the confining
properties [40].
Only Sy shows a clear string formation [Fig. 4(a)]. The

tension increases linearly in a staggered way due to the
broken symmetry, as depicted in Fig. 4(d). This is a clear
signature of the confinement of excitations. For the Sx

(a) (b)

FIG. 3. (a) Parity and string order along the boundary legs of a
four-leg ladder, obtained using DMRG for Lx ¼ 100 rungs and
μ ¼ 0; (b) largest eigenvalues of the entanglement spectrum,
obtained after dividing the system into two parts along the central
rung.
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phase the increase of potential energy is also linear and very
large compared to the other phases. Here, however, after
some distance the string breaks and is wrapped around the
cylinder in the y direction [see Fig. 4(b)]. Also the string
tension flattens after this point as shown in Fig. 4(d) for
Jy=Jx ¼ 0.4. Interestingly, the two charges become, hence,
effectively deconfined due to the finite size of the system in
the y direction.
In the D phase the tension grows slowly with LD and

potentially finally saturates, indicating charge deconfine-
ment. Contrary to the Sx phase we observe in Fig. 4(c) the
formation of a symmetric broad but localized perturbation
of the spin and charge background around the defects. Even
though due to the limited system size we cannot distinguish
the saturation of the string tension from a further slow (e.g.,
logarithmic) growth, these results show that Sx, Sy, and D
phases exhibit drastically different confinement and decon-
finement properties.
Conclusions.—We studied the ground state of a 2D spin-

1=2 QLM, which may be realizable in quantum gas lattice
gauge simulators in the foreseeable future. Despite the
absence of plaquette terms, 2D QLMs are characterized by
a highly nontrivial physics. As a main result, we have found
an emergent deconfined disordered phase for μ ∼ 0 and
Jx ∼ Jy, which closely resembles an RK phase. On finite
ladder systems with staggered boundary spins this phase
exhibits Haldane-like ordering at the edge legs. While

being limited to small transversal lengths Ly ≤ 4, the
observed features qualitatively remain robust over two-,
three-, and four-leg ladders and four-leg cylinders, strongly
hinting that the intermediate disordered phase may survive
in more general 2D lattices, which might inspire further
numerical efforts in this direction.
Our results open the interesting possibility to study a

wealth of phenomena such as deconfinement-confinement
transition and RVB-like physics in quantum gas lattice
gauge simulators, without the need of explicitly realizing
ring-exchange and RK terms. The dynamics of these
systems may be particularly interesting. Further experi-
mental and theoretical studies should reveal the potentially
unconventional thermalization properties [35,36] of con-
strained systems with fermionic matter.
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