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Abstract

Brain function involves the activity of neuronal populations. Much recent
effort has been devoted to measuring the activity of neuronal populations in
different parts of the brain under various experimental conditions. Popula-
tion activity patterns contain rich structure, yet many studies have focused on
measuring pairwise relationships between members of a larger population—
termed noise correlations. Here we review recent progress in understand-
ing how these correlations affect population information, how information
should be quantified, and what mechanisms may give rise to correlations. As
population coding theory has improved, it has made clear that some forms of
correlation are more important for information than others. We argue that
this is a critical lesson for those interested in neuronal population responses
more generally: Descriptions of population responses should be motivated
by and linked to well-specified function. Within this context, we offer sug-
gestions of where current theoretical frameworks fall short.
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INTRODUCTION

Technological innovation has provided us with the ability to monitor the activity of many neurons
simultaneously in intact neural circuits. It is now quite common to record from a hundred neurons
at a time. A major focus of the Brain Research through Advancing Innovative Neurotechnologies
(BRAIN) Initiative is to increase this capability further ( Jorgenson et al. 2015).

The spiking activity of neuronal populations is coordinated, producing seemingly complex
activity patterns. A rich and diverse description of these patterns already exists, including traveling
waves of activity (Sato et al. 2012), rhythmic fluctuations in different frequency bands (Buzsaki
2006), complex higher-order patterns (Ohiorhenuan et al. 2010), and many others.

One form of coordination that has received considerable attention is the relationship between
the firing of pairs of neurons—termed correlations. Given our ability to measure large populations,
it may seem odd to distill their activity to quantification of pairwise relationships: Understanding
this second-order statistical structure is unlikely to capture fully the rich patterns of neuronal
population activity observed (but see Schneidman et al. 2006). However, the focus on correlations
is not an inappropriate simplification. Rather, it arises because correlations have a strong impact
on the information encoded by a neuronal population, particularly on the portion of information
that can be extracted with simple and biologically realizable algorithms.

Our understanding of how correlations affect information has evolved considerably. We believe
this progress is important for two reasons. First, it represents an achievement in its own right:
We now understand much better what limits the representation of sensory and cognitive variables
in neuronal populations. This is critical for understanding the neural basis of behavior, as nearly
any behavior involves the activity of many neurons. Second, and perhaps equally important, this
progress has shown the importance of grounding physiological measurements in quantitative
theory. Correlations can be driven by many underlying processes and take many distinct forms.
But theory has shown that some correlations may be more functionally relevant than others.
We believe this is a critical lesson for studying population activity more generally. Rather than
seeking to describe activity patterns more and more richly, progress will require understanding
the relationship between activity and computation through theory.

Here we provide a brief review of how correlations affect population information and how
this influence can, and cannot, be quantified. We also discuss progress in understanding how
correlations arise. Because our focus is on understanding the relationship between information
and correlations, we touch only briefly on the study of correlations more generally—in this sense,
our work by no means attempts a complete review of the field. We conclude with thoughts about
some clear shortcomings in current theoretical frameworks. We focus on populations of cortical
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neurons, particularly those in visual cortex, which have been studied extensively, but the issues we
review and discuss are broadly applicable.

DIFFERENT TYPES OF CORRELATIONS

Correlation is a simple statistical measure of association among variables. It is thus not surprising
that the term is used to refer to distinct types of associations, or relationships, among the activities
of neurons.

Correlations are sometimes used to quantify the degree to which neurons have similar func-
tional properties. For instance, the similarity of the orientation tuning of two neurons in primary
visual cortex (V1) can be quantified as the correlation between the pairs’ tuning functions. Measur-
ing these correlations—termed signal correlations—requires presenting a range of stimuli to assess
functional properties, averaging responses across trials, and computing the correlation between
the resultant mean responses (i.e., tuning functions).

Influential work by Barlow and others has argued that an efficient representation involves, in
part, minimizing correlations between encoding units (i.e., decorrelation; Barlow 2001, Simoncelli
& Olshausen 2001). These theories address how tuning functions should be arranged to reduce
representational redundancy. These are thus theories of signal correlations, although the optimal
arrangement is also known to depend on the properties of encoding units’ response variability
(Atick & Redlich 1990, Ganguli & Simoncelli 2014).

Correlations are also used to quantify the similarity in the response of a population of neurons to
two different stimuli (e.g., two odors)—termed pattern correlations. Whereas signal correlations
quantify the similarity between mean responses of two neurons across multiple stimuli, pattern
correlations capture the similarity of activity patterns distributed across multiple neurons for two
stimuli (Friedrich & Laurent 2001, Friedrich 2013).

Our focus here is on yet another type of correlation, which captures the degree to which
response variability is shared between pairs of neurons. Neurons typically show substantial re-
sponse variability, evident as fluctuations in the number of spikes evoked by a stimulus across
multiple presentations (Tolhurst et al. 1983, Shadlen & Newsome 1998). A small portion of this
variability is shared between neighboring neurons in cortex. This can be quantified with the Pear-
son correlation of the pairs’ spike counts to repeated presentations of the same stimulus. These
correlations—often termed spike count correlations (rsc) or noise correlations—usually have mean
values of 0.01–0.2, with their magnitude depending on a broad range of factors (Cohen & Kohn
2011). For brevity, we refer hereafter to these correlations in trial-to-trial variability simply as
correlations.

CORRELATIONS AND INFORMATION: A BRIEF HISTORY

In a seminal study, Zohary and colleagues (1994) measured correlations between pairs of neurons
in area MT of macaque monkeys. Their measurements were motivated by a desire to explain why
monkeys’ performance on a discrimination task was not considerably better than the performance
afforded by the most sensitive MT neuron recorded. Although the variable responses of individual
neurons limit the information they provide about the external stimulus, the responses of many
neurons could be pooled or averaged to arrive at a precise estimate of the stimulus if the variability of
each neuron were independent. Zohary et al. (1994) found, however, that MT response variability
was correlated for neurons with similar functional properties. This shared variability cannot be
averaged away, limiting the benefit of pooling signals over greater numbers of neurons. This
limited benefit holds true for any positive level of correlation.
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Averaging neuronal responses is conceptually simple and provides helpful intuition, but it is
not always a sensible strategy for extracting information from a neuronal population. Neurons
have a range of functional properties and sensitivities. Rather than weighting all neurons equally
by averaging, it makes sense to weight evidence from some neurons more than others for a
particular task (Pouget & Thorpe 1991, Foldiak 1993, Seung & Sompolinsky 1993, Sanger 1996,
Butts & Goldman 2006, Jazayeri & Movshon 2006). There are many algorithms, or decoders, for
combining signals encoded across neurons (Pouget et al. 2000). Of particular interest are linear
decoders, which compute their estimates based on a simple weighted sum of the response of each
neuron. These decoders are attractive because they can be learned and implemented easily in
a biological circuit (Widrow & Hoff 1960, Rescorla & Wagner 1972, Pouget & Thorpe 1991,
Foldiak 1993, Seung & Sompolinsky 1993, Salinas & Abbott 1994, Sanger 1996, Deneve et al.
1999, Jazayeri & Movshon 2006), where the weights assigned to each neuron might correspond
to its synaptic weight in driving a downstream readout neuron.

To quantify the accuracy of a linear decoder, it is useful to consider a measure termed lin-
ear Fisher information. Intuitively, linear Fisher information measures the smallest change in
the stimulus that can be discriminated reliably with an optimal linear decoder of the neuronal
population response. Higher linear Fisher information means less variance in the optimal linear
decoder’s estimates, or better discrimination performance. Formally, linear Fisher information is
defined as

I = f ′�Q−1f ′,

where f ′ is the derivative of the tuning curve with respect to the stimulus variable of interest
and Q is the response covariance matrix. The derivative of the tuning curve captures the signal
provided by changes in mean response with changes in the stimulus; the covariance matrix captures
the influence of each neuron’s response variance (diagonal elements) and the variance shared
with other neurons (off-diagonal elements). Note that, for brevity, we refer to the relationship
between correlations and information, but information is in fact related to response covariance.
The correlations reported in physiological studies—the ratio of covariance to variance (standard
deviations)—confound two distinct factors that can affect information in distinct ways. Additional
details on linear Fisher information and its relationship to full Fisher information are provided in
the sidebar, Linear and Full Fisher Information; additional details about linear Fisher information
and its relationship to fine and coarse discrimination tasks are provided in the sidebar, Linear
Fisher Information for Fine and Coarse Discrimination.

Abbott & Dayan (1999) were among the first to explore the effect of correlations on Fisher
information (Sompolinsky et al. 2001, Wu et al. 2001, Wilke & Eurich 2002, Averbeck et al. 2006;
see also Paradiso 1988 for prescient work on populations of independent neurons). They con-
sidered a homogeneous neuronal population—one consisting of neurons with identically shaped
tuning functions except that each neuron has a distinct preference. For a homogeneous popula-
tion, Fisher information is reduced by correlations that are strongest between pairs of neurons
with similar preferences, termed limited-range correlations. More precisely, not only is informa-
tion reduced, but it saturates: It reaches a finite value even when the population size continues to
grow. Numerous experimental studies have shown that correlations in cortex have a limited-range
structure, including work in V1 (Kohn & Smith 2005, Smith & Kohn 2008, Ecker et al. 2010),
V4 (Cohen & Maunsell 2009, Smith & Sommer 2013), and MT (Zohary et al. 1994, Bair et al.
2001, Huang & Lisberger 2009, Solomon et al. 2014) of nonhuman primates; V1 of cats (Martin
& Schroder 2013); visual cortex of rodents (Denman & Contreras 2014); and many others.

Why do limited-range correlations make information saturate in populations of homoge-
neously tuned neurons? Consider a homogeneous population with Gaussian tuning functions
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LINEAR AND FULL FISHER INFORMATION

Linear Fisher information places a bound on the variance of the estimates of any unbiased linear decoder, which
must be equal to or larger than the inverse of the Fisher information (Paradiso 1988, Seung & Sompolinsky
1993, Abbott & Dayan 1999). Linear Fisher information is a component of the full Fisher information. The full
Fisher information can be substantially larger than the linear Fisher information for some response distributions.
However, extracting this additional information requires more sophisticated, nonlinear decoding (e.g., Shamir &
Sompolinsky 2004), which may be more difficult to implement or learn in biological circuits. Furthermore, linear
Fisher information is equivalent to the full Fisher information for any response distribution of the exponential
family with linear sufficient statistics (Beck et al. 2011). Evidence suggests that V1 responses to stimulus orientation
(Graf et al. 2011, Berens et al. 2012) and medial superior temporal area (MSTd) responses to heading direction
(Fetsch et al. 2011) fall under this description, and there is no evidence that responses in other sensory areas do not.
Thus, linear Fisher information is a reasonable and useful way to measure population information.

(Figure 1a). A stimulus presentation will evoke a population response, which is also Gaussian,
when the neurons are arranged by their preferred stimulus (Figure 1c). Because neurons’ responses
are variable, the population response will be a noisy one. Now consider the effect of making all
neurons equally correlated, regardless of preference (uniform correlations; Figure 1b). This will
cause the population response to fluctuate up and down on each trial without altering its shape or
position (Figure 1c, red compared to blue). Because the estimate of the stimulus depends on the
shape and position of the population hill of activity rather than its magnitude (i.e., comparing the
relative responses of different neurons), these fluctuations have little effect on a decoder’s estimate.
Therefore, the variance of the estimate will continue to decrease—and information to increase—
as the population size grows (Figure 1f, black line). Limited-range correlations (Figure 1d ), by

LINEAR FISHER INFORMATION FOR FINE AND COARSE DISCRIMINATION

In a typical discrimination task, the subject is asked to distinguish two similar stimuli s + = s + ds and s − = s − ds .
Given neuronal population responses, one can construct a linear estimator of the stimulus that is unbiased for the
two presented stimuli, a locally optimal linear estimator (LOLE). Given a neuronal response pattern r, the LOLE
is given by

ŝw(r) = s + wT · (r − f (s +) + f (s −)
2

); w = Q̄−1f ′

f ′T Q̄−1f ′ ,

where ŝw is the estimate of the stimulus and f ′ = (f (s +)− f (s −))/(2ds ) and Q̄ = (Q(s +)+Q(s −))/2 are the difference
quotient of the tuning curves and the average covariance matrix, respectively. Linear Fisher information is defined
as the inverse of the average variance of the LOLE for the true presented stimuli (Series et al. 2004),

I = 2
Var(ŝw(r) | s +) + Var(ŝw(r) | s −)

= f ′Q̄−1f ′.

Note that one can always construct the LOLE explicitly. As a consequence, linear Fisher information is always
attainable, unlike the full, nonlinear Fisher information.

It is common to distinguish fine and coarse discrimination tasks depending on whether ds is small or large. The
definition of the LOLE and the expression for linear Fisher information above does not assume that ds is small; it
is valid for both fine and coarse discrimination.
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Figure 1
How different forms of correlations affect information. (a) A homogeneous neuronal population, having identical tuning except for the
preferred stimulus value (arbitrary units). (b) Uniform correlation structure, in which all neurons are equally correlated regardless of
preference. (c) Population activity in two individual trials (red and blue circles) in response to a stimulus value of 0. Neurons are sorted by
their preferred stimulus value (abscissa). The trial-averaged response is shown by the black line. Additive noise that is positively
correlated across all units produces vertical shifts of the population hill of activity. In a large population, such fluctuations can be
averaged out entirely by using the optimal decoder; therefore, in each trial, the decoded stimulus value is identical to the true value.
(d ) Limited-range correlation structure, in which neurons with similar preferences are more strongly correlated. Note that correlation
magnitude is unrealistically large to visualize clearly its effect on population activity. (e) Limited-range correlations distort the
population activity profile in a way that cannot be averaged out, leading to variable estimates of the stimulus value. Conventions as in
panel c. ( f ) Fisher information as a function of population size for uniform (black) and limited-range ( gray) correlations. ( g) A neuronal
population with heterogeneous tuning. (h) The activity of two neurons, plotted against each other. The black line indicates the average
responses evoked in these neurons by a range of stimuli, defined by their tuning; the gray arrow indicates the derivative of this tuning.
Differential correlations correspond to variability that changes the neural responses across trials (red and blue circles) along the direction
parallel to the tuning curve derivative (red and blue arrows). For these two neurons, the derivatives have the same sign; hence, the
differential correlations are positive. (i ) Same as panel h, but for neurons that have derivatives with opposite signs; hence, the
differential correlations are negative. (j) A graphical representation of the fact that linear Fisher information increases linearly with the
number of neurons in an independent population (dashed line) and with some types of nondifferential correlations (black, continuous line),
but with different slopes. Information saturates to a finite value with differential correlations ( gray line).
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contrast, will cause subsets of neighboring neurons to fluctuate together. This is because a partic-
ularly weak or strong response of a neuron on a given trial will be shared by neurons with similar
preferences but much less so by neurons with different preferences. These local, shared fluctuations
distort the population response on each trial. For instance, for the two trials shown in Figure 1e,
there is enhanced responsivity in subsets of neurons slightly offset from those that prefer the
presented stimulus (preferred stimulus of 0). These distortions cause the decoder’s estimates to
deviate from the true stimulus and thus will cause information to saturate (Figure 1f, gray).

Although linear Fisher information saturates with limited-range correlations in homogenous
populations, this is not always the case in populations with heterogeneous tuning (Shamir &
Sompolinsky 2006, Ecker et al. 2011)—that is, if the tuning of neurons differs in amplitude or
shape (Figure 1g), as it does in most brain areas. In heterogeneous populations with limited-range
correlations, information can grow with population size, much as it does in populations of inde-
pendent neurons. If limited-range correlations do not make information saturate in populations
of heterogeneously tuned neurons, then what—if anything—does?

Moreno-Bote et al. (2014) recently showed the answer is beguilingly simple. It can be appre-
ciated by reexamining the equation for linear Fisher information provided above: The aspect of
response covariance that influences information is that which is related to the derivative of the
tuning functions (specifically, proportional to the product of the derivatives of the tuning). Corre-
lations with this structure—termed differential correlations—cause information to saturate. This
is true regardless of the shape of the tuning functions. Differential correlations also cause informa-
tion to saturate in homogeneous populations; it is simply that in these populations, limited-range
correlations contain differential correlations.

To understand why differential correlations make information saturate, consider an observer
performing the perceptual task of estimating stimulus orientation. If in each trial we perturb the
stimulus slightly by a small rotation, we will hamper the subject’s performance artificially. The
subject’s estimates will be less accurate because our stimulus manipulation will alter the responses
of orientation-selective neurons in a way predicted by the derivative of the tuning curve (by
definition, the derivative indicates how responses change for small perturbations). Now consider
the more typical scenario in which the stimulus is fixed but the neural representation varies
across repeated trials of the task. The variability that will limit performance is that which causes
fluctuations in the same manner as variations in the external signal. This is precisely the definition of
differential correlations—they indicate response cofluctuations that cause population responses to
fluctuate in the same manner as the fluctuations that would be caused by perturbing the signal itself
(Figure 1h,i).

Critically, although differential correlations cause information to saturate, their contribution to
overall correlations may be negligible (Moreno-Bote et al. 2014, Kanitscheider et al. 2015b). Thus,
measuring the relationship between correlations and the tuning functions’ derivative directly may
not allow one to assess the presence or influence of differential correlations accurately. The next
best way to test for their presence would be to test whether information saturates as population
size increases. This would perhaps require recording from thousands of neurons simultaneously
(Kanitscheider et al. 2015b), which may soon be possible. Yet another possibility is to examine the
relationship between an animal’s behavioral report and the fluctuations of a single neuron across
trials. Using this approach, Pitkow et al. (2015) found evidence recently that vestibular areas use
a code containing differential correlations.

Although differential correlations cause information to saturate (Moreno-Bote et al. 2014), the
total information in a sensory population can also be affected by nondifferential correlations (those
that are not related to the tuning curve derivative). Consider a population of independent neurons.
Information in this population is proportional to its size—adding neurons causes information
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to grow, without bound (Figure 1j, dotted line). This description also applies to heterogeneous
populations with some kinds of nondifferential correlations (e.g., uniform additive noise; Abbott
& Dayan 1999), but information grows more slowly with population size (Figure 1j, black line). If
information grows five times more slowly, for instance, the correlated population will contain only
20% of the information of an equivalently sized independent population. Thus, nondifferential
correlations can lower information significantly. However, differential correlations have a much
bigger effect because information saturation means that the percentage of information compared
to an independent code goes to zero as population size grows (Figure 1j, gray line). As discussed
below, nondifferential correlations can also affect strongly information in small populations and
the information at saturation in large populations through their interactions with differential
correlations.

In summary, the study of population information is marked by an evolution in our under-
standing of which correlations matter. The work of Zohary and colleagues (1994) posited that
neuronal responses should be pooled to arrive at an accurate estimate of population firing rate;
in this scenario, the existence of any correlations within the pool are detrimental. The introduc-
tion of Fisher information and its application to homogeneous populations led to the suggestion
that limited-range correlations make information saturate. Finally, the incorporation of heteroge-
neous tuning led to the realization that only differential correlations cause information saturation.
Thus, as theory has improved, it has fundamentally altered our understanding of which forms of
correlation are functionally important for limiting information.

ESTIMATING LINEAR FISHER INFORMATION

Linear Fisher information is a central quantity for understanding how correlations influence
population information. Computing linear Fisher information is thus critical for understanding
whether the information provided by a neuronal population is sufficient to underlie a particular
function or behavior. We therefore briefly review several approaches to estimating information
and highlight pitfalls to be avoided.

The form of linear Fisher information suggests that calculating it directly from measured
population responses should be straightforward. It requires estimating just two quantities: the
tuning function (and then taking its derivative with respect to the stimulus variable of interest) and
the response covariance matrix (and then inverting it). Unfortunately, linear Fisher information
calculated this way is highly inaccurate. Although estimates of tuning function derivatives and
covariance matrices based on finite data are unbiased, the nonlinear transformations involved
in computing linear Fisher information result in a substantial overestimation of information.
Fortunately, this bias can be corrected for analytically (Kanitscheider et al. 2015a), allowing for
fast and accurate direct estimation of linear Fisher information from limited experimental data, as
long as the number of trials exceeds the number of recorded neurons (Figure 2a).

A conservative alternative to computing linear Fisher information directly is to evaluate the
performance of a linear decoder trained on the data (Series et al. 2004, Moreno-Bote et al. 2014).
Because a model fit to finite data will always fit noise (overfitting), it is critical to assess performance
through cross-validation—leaving out a fraction of trials from the training set and evaluating
performance on these. The cross-validated performance of the decoder will provide a lower bound
on the true information (Figure 2b). Several studies have used this approach to quantify the effect
of correlations on information in neuronal populations (e.g., Graf et al. 2011, Berens et al. 2012,
Jeanne et al. 2013, Adibi et al. 2014, McDonald et al. 2014). In fact, cross-validated decoding
and direct estimation provide complementary ways to quantify linear Fisher information. Direct
estimation with current techniques (such as the one described in the previous paragraph) is not
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Figure 2
Estimating Fisher information from population recordings. Two estimators of Fisher information are shown
that accurately capture the information present in a neuronal population. Simulations are based on
50 neurons and 200 experiments; each experiment involves a different set of parameters for the filters
representing each neuron. (a) The direct estimator with analytical bias correction (blue line) provides an
unbiased estimate of the true information (dotted line). Shaded areas represent ± 1 standard deviation of the
estimate. (b) The performance of a trained decoder on left-out data (test set) provides a lower bound on the
true information and approaches the true information when there are a sufficient number of trials. Both
panels adapted with permission from Kanitscheider et al. 2015a.

feasible when there are fewer trials than neurons available, and it can underestimate information in
small and uninformative populations; in these regimes, decoding is the best option. Conversely, in
large and informative populations, decoding can underestimate information significantly, whereas
the direct method is extremely accurate (Kanitscheider et al. 2015a).

Importantly, linear Fisher information in neural data cannot be estimated accurately through
simulation. Numerous studies have measured correlations in cortex and then used parametric
approximations to the observed structure to estimate information either analytically or by decoding
synthesized responses (e.g., reporting that correlations have roughly a limited-range structure and
then creating a covariance matrix with smoothly varying values; Gutnisky & Dragoi 2008, Smith &
Kohn 2008, Ecker et al. 2010). This approach is prone to profound errors. As discussed above, the
differential correlations that limit information may be tiny. If one captures only general trends in
correlations through simulation, the impact of differential correlations can be lost easily, and one
could conclude erroneously that the population contains much more information than it truly does
(Figure 3a). To avoid these problems, it is critical to estimate information using the measured
responses of a simultaneously recorded population. Likewise, linear Fisher information cannot be
assessed accurately with suboptimal decoders. For instance, it is possible to design a neural code
in which information grows with the number of neurons but for which the information estimated
by a factorized decoder saturates (Figure 3b). A factorized decoder is a suboptimal decoder whose
weights depend only on individual neuronal response statistics, ignoring correlations. Factorized
decoders, and other suboptimal decoders, can lead to the erroneous conclusion that a population
contains much less information than it truly does.

A closely related point is that one should not draw general conclusions about the impact of
correlations by quantifying their effect in small neuronal populations (i.e., populations that can be
recorded with current technology). The impact of correlations is typically quantified by comparing
the information in the recorded, or simulated, data to that obtained after removing correlations
(namely, setting the off-diagonal entries of the covariance to zero; this is called shuffled informa-
tion). The relation between the two can change drastically between small and large populations.
For instance, consider a code that contains differential correlations. In small populations, one
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Figure 3
Common errors in estimating information. (a) Information in neural data can be severely misestimated when based on simulated data
that approximate measured responses. Consider a synthetic population with differential correlations. For each population size N
(abscissa), the true information is computed from the full population (dashed line) and shows clear saturation for large populations. The
information estimated using an approximation to the true covariance matrix ( green line) shows no saturation, yielding estimates that
vastly exceed the true information. The estimated covariance matrix is constructed as in Moreno-Bote et al. (2014), figure 7a. Briefly,
half the entries in the matrix are set to the measured value; the remaining entries are filled in by resampling the measured coefficients
and enforcing that the resulting matrix is a covariance and that it has the same limited-range structure as the original data.
(b) Suboptimal decoding can severely underestimate the true information in the population. Consider a heterogeneous population
without differential correlations (model of Ecker et al. 2011). The true information grows with population size (dashed line); the
information estimated by a suboptimal, factorized decoder ( green line) saturates, underestimating the true information. The factorized
decoder is the correlation-blind decoder of Pitkow et al. (2015). (c) Conclusions about the importance of correlations based on small
populations do not always apply to larger populations. Consider a synthetic population with homogeneous tuning and multiplicative
global fluctuations (model and parameters of Lin et al. 2015, figure 8E, with a coefficient of variation of 0.4), plus a small amount of
differential correlations. For each population size (abscissa), the true information (black line) is computed from the true tuning and
covariance matrix; the shuffled information ( gray line) is computed after removing correlations (i.e., setting the off-diagonal entries of
the covariance matrix to zero). For populations of tens of neurons, removing correlations reduces information, suggesting that
correlations are helpful (brown shaded area). For larger population sizes, the true information saturates while the shuffled information
grows linearly, showing correlations are harmful ( purple shaded area). Thus, the conclusion that correlations increase information does
not apply when considering populations that are likely to underlie function.

could find a small difference between information and shuffled information and conclude that
correlations have little effect on information. However, as population size increases, the shuffled
information will grow without bound while the true information will saturate owing to differential
correlations, showing that these correlations have an enormous effect on information. Even worse,
in some cases, one can reach opposite conclusions about how correlations affect information when
analyzing small rather than large populations. For instance, Lin et al. (2015) considered a code in
which correlations are beneficial rather than detrimental for small populations. However, in their
code, correlations reduce information when a larger population is considered (Figure 3c).

There is thus an unfortunate paradox: Information can be evaluated only by measuring it in
a recorded population (either by decoding or by direct estimation), but the effect of correlations
on these populations may be different from their effect on larger, more functionally relevant
population sizes. Clearly, we need a better understanding of the relevant population size for a
given behavior or computation, measurements from larger populations, and theoretical develop-
ments that allow us to draw correct inferences from the data we can record. For the time being, it
remains very much unclear whether documented changes in correlations, such as those that occur
with behavioral or stimulus manipulations, have a meaningful effect on population information.
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SOURCES OF CORRELATIONS

So far we have discussed which correlations affect information without discussing how they arise.
We now consider the possible sources of correlations, beginning with differential correlations be-
cause these cause information to saturate. We then consider other sources and how the correlations
they generate affect information.

There are at least two potential sources of differential correlations. The first source is repre-
sentational expansion: Fewer neurons exist in sensory organs than in downstream structures. For
instance, in the visual system, there are considerably more V1 neurons than retinal ganglion cells
or cells in the lateral geniculate nucleus. This expansion implies that the information available
in the retina is small compared to the coding capacity downstream (Kanitscheider et al. 2015b).
Because the information in V1 cannot exceed that provided by the retina, information in V1 can-
not be proportional to the number of cortical neurons; information must saturate, implying the
existence of differential correlations. The second source of differential correlations is suboptimal
computation. Imagine that a variable is encoded by many independent neurons but that only one
neuron projects downstream—an extreme form of suboptimal computation. Clearly, information
downstream would not grow with the number of neurons there but would instead saturate to a
finite value corresponding to, at most, the information conveyed by the sole input neuron. This
implies that the downstream network contains differential correlations that arise from suboptimal
read out. Although this example is contrived, our point is general: Suboptimal computation always
reduces information (in fact, this is true by definition). And because many complex computations
in the brain are suboptimal (Beck et al. 2012a), suboptimal computation is likely a major source
of differential correlations.

What sources contribute to correlations more generally? An obvious and oft-cited source is
shared or common input (Shadlen & Newsome 1998, Kanitscheider et al. 2015b). However,
the relationship between shared inputs and correlations is not straightforward: Shared inputs
do not necessarily generate strong correlations. For instance, in randomly connected networks
of excitatory and inhibitory neurons (balanced networks) (van Vreeswijk & Sompolinsky 1996),
fluctuations in excitatory drive are tracked rapidly by fluctuations in the activity of inhibitory
neurons (Renart et al. 2010). When two neurons receive correlated excitatory drive, correlated
inhibitory signals (i.e., inhibitory inputs that are correlated with each other and with the excitatory
pool) largely cancel their impact on postsynaptic responses (see also Salinas & Sejnowski 2000,
Graupner & Reyes 2013). This mechanistic insight can explain why correlations in cortex—a
highly recurrent network in which nearby neurons likely receive massive shared input—can be
weak. Indeed, this architecture has been cited as a basis for the decorrelated or asynchronous
cortical state (Ecker et al. 2010, Renart et al. 2010, Tan et al. 2014, but see also Bujan et al. 2015).

Notably, however, decorrelation via a balance of excitation and inhibition cannot always re-
move all correlations. For a network that receives limited information (i.e., less information than
would be available from a population of N independent neurons), full decorrelation would make
information grow linearly with network size and thus exceed the information in the inputs. This
would violate the data-processing inequality, which states that processing a signal cannot increase
its information. In Renart et al. (2010), correlations do disappear altogether for large networks, but
this is because the input is composed of N independent neurons, in which case the data-processing
inequality is not violated. The input information grows linearly with the population size, and the
full decorrelation achieved by the recurrent network (in the limit of an infinitely large population)
amounts to preserving all the input information.

Although the asynchronous activity produced by balanced networks provides an important in-
sight, these models clearly do not represent connectivity in cortical networks accurately. In cortex,
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connectivity is not random but clustered: Neurons receive preferential inputs from other neurons
with similar functional properties (Bosking et al. 1997, Cossell et al. 2015), and connections are
much stronger between some neurons than between others (Song et al. 2005, Yoshimura et al.
2005). If the assumption of random connectivity is relaxed, quite different network dynamics are
revealed. For instance, in networks with clustered connections, the firing of tightly interconnected
neurons waxes and wanes together (Rasch et al. 2011, Litwin-Kumar & Doiron 2012), produc-
ing strong correlations within a local pool. Some empirical evidence suggests that correlations
are stronger in networks with clustered connectivity than in networks with more homogeneous
architecture (Hansen et al. 2012, Smith et al. 2013, Calabrese & Woolley 2015). Strengthen-
ing the coupling between randomly connected neurons can also result in transitions from the
asynchronous state to complex network activity with strong cofluctuations (Ostojic 2014).

The preceding models emphasize the role of local connectivity patterns in generating correla-
tions. A substantial portion of correlations may also be explained by global fluctuations in which
the firing of many neurons increases or decreases together on each trial (Ecker et al. 2014, Goris
et al. 2014, Pachitariu et al. 2015, Schölvinck et al. 2015). The widespread cofluctuations of corti-
cal activity were first observed using voltage-sensitive dye imaging of macaque V1, which revealed
spatially extensive regions of coherent hyper- and depolarization (Arieli et al. 1996). Building on
this observation, more recent work has attempted to explain correlations as arising from a single,
common cofluctuation in either an additive (Ecker et al. 2014) or multiplicative (Schölvinck et al.
2015) manner. Others have argued that the shared fluctuations involve more local shared gain
factors (Goris et al. 2014) or several distinct factors distributed across the population (Yu et al.
2011, Rabinowitz et al. 2015).

The source of global fluctuations is not clear. One possibility is that they are driven by top-down
or feedback inputs from higher cortex. Consistent with this possibility, several studies have shown
that correlations are not hardwired by network architecture but are highly sensitive to behavioral
context and brain state. For instance, the correlations between pairs of MT neurons change with
task instructions: Correlations are stronger when a task requires the animal to combine a pair’s
signals than when a task requires the two neurons to contribute signals to distinct outcomes
(Cohen & Newsome 2008; see also Roelfsema et al. 2004, Ramalingam et al. 2013 for related
results in V1). Similarly, the allocation of attention can reduce correlations strongly (Cohen &
Maunsell 2009, Mitchell et al. 2009, Harris & Thiele 2011, Herrero et al. 2013) but in other
contexts may increase correlations (Ruff & Cohen 2014). Recent models have also shown how
top-down signals from decision areas that integrate sensory evidence could inject correlations
into the sensory representation (Haefner et al. 2014, Wimmer et al. 2015).

Although global fluctuations may contribute strongly to correlation magnitude, theory makes
clear that this contribution is not equivalent to having an important role in limiting information.
Two recent studies have reported that information is affected by global fluctuations, based on sim-
ulating (Lin et al. 2015) or analyzing (Pachitariu et al. 2015, Arandia-Romero 2016; using Shannon
information) small ensembles. However, in large populations, only differential correlations can
make information saturate. Global fluctuations do not create correlations of this type for most
variables, except perhaps for variables such as visual contrast, which modulate the firing of most
neurons in the same direction, as global fluctuations do. Although global fluctuations cannot make
information saturate, multiplicative global fluctuations can lower the value at which information
saturates if a population contains differential correlations (Kanitscheider et al. 2015b). This could
allow top-down signals such as attention to increase information by reducing global fluctuations
(Rabinowitz et al. 2015); of course, information could not increase past the saturation imposed by
differential correlations. Another possibility is that top-down signals do not induce truly global
fluctuations but instead modulate specific subsets of neurons (e.g., as in feature-based attention).
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In this case, top-down signals may introduce differential correlations (Ecker et al. 2015). Of course,
if global fluctuations are driven by top-down inputs, it is also possible that downstream decoding
circuits are aware that these signals have been injected. This would allow these circuits to negate
entirely any influence of the injected signals on population coding accuracy.

In summary, numerous mechanisms determine the strength and properties of correlations (see
Doiron et al. 2016 for review). These include feedforward, local, or recurrent connections, as well
as top-down signals. Importantly, there may be a strong dissociation between the contribution of
these mechanisms to the magnitude of correlations and their effect on information.

OTHER INTEREST IN CORRELATIONS

Our focus has been on progress in understanding how correlations limit population information.
This progress has shown that just quantifying correlations, without considering their exact pattern,
provides little insight into population information. However, measuring correlations may be useful
for understanding other aspects of brain function and organization.

First, correlations appear exquisitely sensitive to cognitive and behavioral factors (Kohn et al.
2009). They are reduced strongly by the allocation of attention (Cohen & Maunsell 2009, Mitchell
et al. 2009, Herrero et al. 2013) and arousal (Poulet & Petersen 2008), even when the effect of these
inputs on single-neuron firing rates is difficult to detect. Correlations are also affected strongly by
adaptation (Gutnisky & Dragoi 2008, Adibi et al. 2013) and learning (Komiyama et al. 2010, Gu
et al. 2011, Jeanne et al. 2013). Thus, correlations may be a sensitive indicator of brain state and
a useful metric for quantifying the efficacy of behavioral manipulations (e.g., the level of arousal).
However, it must be understood that these changes in mean correlations do not necessarily indicate
that population information has been altered (Series et al. 2004, Bejjanki et al. 2011, Gu et al.
2011).

Second, correlations can be used to infer functional connectivity from measurements of spiking
activity (Stevenson et al. 2008). Such inferences were first based on measuring the correlation in
spike timing of neuronal pairs (Moore et al. 1970), a form of correlation that is mathematically
related to the count correlations that we have emphasized (Bair et al. 2001). Pairwise timing
correlations have been used to infer connectivity between the thalamus and cortex (Reid & Alonso
1995) and between stages of the temporal visual processing pathway (Hirabayashi et al. 2013).
Detailed anatomical measurements have shown that correlation magnitude can be indicative of
the interconnectedness of neurons (Gerhard et al. 2013, Cossell et al. 2015, Okun et al. 2015).

However, the relationship between correlations and network architecture is complex. Mod-
eling work has highlighted some of the difficulties of using correlations to infer connectivity
(Ginzburg & Sompolinsky 1994, Ostojic et al. 2009). For instance, weak or absent correlations do
not indicate a lack of shared inputs (Renart et al. 2010), as discussed previously. Similarly, a timing
relationship between two spike trains does not indicate an anatomical connection between the
pair of neurons (Yu & Ferster 2013). New analytical approaches are under development to fit full
population responses, allowing more accurate inferences about connectivity (Okatan et al. 2005,
Pillow et al. 2008, Gerwinn et al. 2010, Masud & Borisyuk 2011). Ultimately, the use of spik-
ing correlations—or of response dependencies, more generally—to infer connectivity may have
the greatest success in systems for which there is already substantial anatomical knowledge (e.g.,
paired with connectomics), for which one can sample from most of the constituent elements (Pillow
et al. 2008), or for which computational models make predictions about compelling patterns of
correlations (Baker & Bair 2012).

Third, understanding correlations among neurons is critically important for understanding the
relationship between each neuron’s activity and behavioral decisions (Nienborg et al. 2012). In
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recent work, Haefner and colleagues (2013) derived the relationship between a single neuron’s
response fluctuations and a perceptual decision (often termed choice probability), assuming a
linear readout of sensory population activity (see also Pitkow et al. 2015). When large neuronal
populations contribute to behavior, the weight assigned to each neuron by the readout contributes
negligibly to this relationship. Instead, the relationship is dominated by the correlation between the
neuron’s fluctuations and the rest of the relevant pool (and the weights assigned to the neurons
in that pool). Thus, understanding the structure of correlations within a population is critical
for interpreting how each individual neuron contributes to a behavioral choice and how neural
representations are read out.

Fourth, correlations can provide a diagnostic signature of network organization and the proper-
ties of a neural representation. For instance, just as reproducing individual neuronal response statis-
tics places strong constraints on network models (van Vreeswijk & Sompolinsky 1996, Shadlen
& Newsome 1998, Vogels & Abbott 2005, Vogels et al. 2005), capturing the magnitude and pat-
tern of correlations under different stimulus and behavioral regimes may provide important clues
about network architecture. A second, less mechanistic example is the suggestion that cortical
populations represent not only point estimates of a quantity of interest but also the uncertainty
associated with such estimates (Ma et al. 2006). Different proposals exist for how such probabilis-
tic representations can be achieved, and these may create different patterns of correlations (see
Pouget et al. 2013 for a review). A final example is the proposal that early cortical processing
relies on probabilistic generative models of the natural sensory environment (Barlow 2001, Dayan
& Abbott 2001, Simoncelli & Olshausen 2001, Fiser et al. 2010, Berkes et al. 2011). Patterns of
correlations may be related to dependencies among the variables represented in such models.

SHORTCOMINGS

Given what we have learned about correlations, what are the obvious shortcomings in our current
understanding? Arguably, the most pressing issues are theoretical. Much theory has been devoted
to understanding how correlations affect the ability of linear decoders to estimate the value of a
one-dimensional variable, such as stimulus orientation. This is an important question. It involves
a clearly defined computation; performance is also easily quantified and can be related to a broad
perceptual literature involving the estimation of a sensory quantity or the discrimination between
stimuli. By understanding the factors that limit the sensory representation, we gain important
insight into the neural constraints on perceptual performance.

However, estimating a one-dimensional variable is a gross simplification of computation in the
brain. Visual processing, for example, involves a hierarchical sequence of computations, some non-
linear, with robust top-down control. Although we have some understanding of how the properties
of downstream circuitry influence information loss in feedforward and simple recurrent networks
(Beck et al. 2011, Renart & van Rossum 2012), we have a poor understanding of how the compu-
tations involved in sensory processing are affected by correlations. Similarly, understanding the
role of correlations in higher cognitive functions—for example, classifying stimuli into categories
such as aversive versus appetitive—may require a different mathematical treatment (Da Silveira
& Berry 2014).

We note that there is, in fact, a striking gap in theoretical and computational neuroscience: One
community focuses on the computations that build sensory representations or underlie cognitive
function, neglecting variability and correlations; another focuses on variability and correlations,
but in the context of limited and simple computation (but see Beck et al. 2012b, Grabska-Barwińska
et al. 2014, Hennequin et al. 2014). Recent work has shown the problems that can arise because
of this gulf. An oft-cited strategy for untangling sensory information (Friedrich & Laurent 2001,
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DiCarlo et al. 2012) is to feed the activity of a small neuronal population into a much larger
one—termed representational expansion (Cortes & Vapnik 1995). But such an expansion is not
necessarily beneficial when the information in the small input representation is limited, as several
studies have demonstrated (Series et al. 2004, Bejjanki et al. 2011, Babadi & Sompolinsky 2014).

A second issue is that visual processing requires relaying spiking activity through distributed
networks, in which a cortical area may receive input from multiple competing sources. Modeling
work has shown that relaying spiking activity reliably through such distributed networks can be
surprisingly difficult (Salinas & Sejnowski 2000, Litvak et al. 2003, Vogels et al. 2005, Kumar
et al. 2010, Zandvakili & Kohn 2015). This imposes an entirely different functional constraint on
correlations—determining their potency in driving downstream networks, which may have their
own rich, internal dynamics.

Ultimately, understanding the influence of correlations on brain function will require the
study of spiking networks with an architecture that captures essential features of the biology and
which implement the rich computations performed by those networks. The picture that would
emerge from such an effort will surely build on the insights we have gained from studying the
decoding of one-dimensional variables but will undoubtedly also raise entirely new sets of issues
and constraints.

SUMMARY

Work in the past few decades has greatly advanced our understanding of how neuronal popu-
lation information is influenced by correlations. Theoretical work has been instrumental in this
progress. It has shown us that some forms of correlations limit information, whereas others do
not. At least in the context of population information, theoretical progress has also revealed that
simply characterizing response statistics can have limited value: Describing correlations does not
translate into understanding information, as the largest correlations do not necessarily have the
strongest effect on information. We view this progress as a cautionary tale because we are entering
an era when our power to measure brain activity is exploding, while our conceptual frameworks
remain underdeveloped. Our situation is perhaps analogous to pre-Newtonian physics, which
attempted to understand the movements of the stars and planets through extremely careful and
detailed measurements. Ultimately, however, orbits were understood in a straightforward way
with Newtonian physics. We see a risk that we—like pre-Newtonian physicists, but abetted by
much more powerful instrumentation—will drown in a sea of description, measuring and char-
acterizing population activity patterns rather than understanding the computations and functions
they underlie.
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