

Archive ouverte UNIGE

https://archive-ouverte.unige.ch

Poster	2023

Open Access

This version of the publication is provided by the author(s) and made available in accordance with the copyright holder(s).

Privacy-enhancing threat analysis and risk assessment for connected and automated vehicles

Benyahya, Meriem; Lenard, Teri; Collen, Anastasija; Nijdam, Niels Alexander

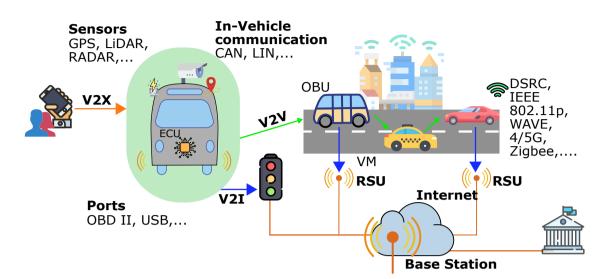
How to cite

BENYAHYA, Meriem et al. Privacy-enhancing threat analysis and risk assessment for connected and automated vehicles. In: The 23rd Privacy Enhancing Technologies Symposium (PETs´23). Lausanne. 2023.

This publication URL: https://archive-ouverte.unige.ch/unige:171903

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

July 10-15, 2023 Lausanne, Switzerland


Privacy-Enhancing Threat Analysis and Risk Assessment for Connected and Automated Vehicles

Background

CAVs' cutting edge technologies represent advantageous conditions for cyber attacks and data breaches.

Personal Identifiable Information (PII) data is likely to be collected and processed (eg route taken, stop points) in the CAV's environment.

TARA was manadated by ISO/SAE 21434 and UNECE R155 to ensure acceptable level of risk with regard to cybersecurity requirements.

Problem

Privacy threats and their related impacts are not adequatly addressed in TARA.

Threat scenarios are derived using STRIDE but not based on a privacy oriented threat modeling tool.

Unlike safety and financial impacts, privacy and operations impacts are underestimated:

$$i_{sum} = 10(i_s + i_f) + i_o + i_p$$

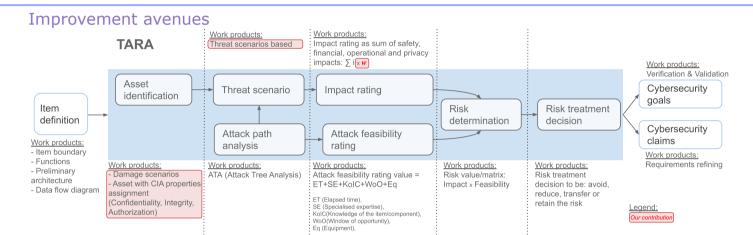
Methods

Identifying improvement avenues for a granular privacy assessment.

Extending CIA properties to include privacy goals.

Associating STRIDE and LINDDUN threat classes to the GDPR for threat scenarios identification.

Enhancing the privacy impact by assigning a weight reflecting data sensitivity, linkability and the mitigation techniques in place.


Future Orientations

Analyse the relationship between the privacy risks evolvment and the vehicle SAE level.

Define a computation method for Privacy Assurance Level (PAL) similar to the Cybersecurity Assurance Level (CAL) but dedicated to data privacy.

Consider privacy threats in assessing the residual risk (the risk of unknown threats) within the TARA process.

Results

Extended CIA triad properties

For ganular analysis of the damage scenarios, the ISO 27000 CIA triad is extended to consider: (i) identification tracking and profiling attacks, (ii) system or data users' responsabilities and (iii) overall compliance to GDPR or other legislations.

Security goals	Designation	Description
Confidentiality	С	Assuring that information is accessed only by authorized users
Integrity	1	Ensuring that information is accurate and complete
Availability	Α	Making data accessible when needed by authorized users
Unlikability	U	Protecting from associating an identifier or a pseudonym with an individual
Accountability	Ac	Assuring that actions can be traced back to a specific individual
Compliance	Com	Achieving an alignment with the GDPR data processing principles

Merging STRIDE & LINDDUN to GDPR for an improved threat modelling

STRIDE	Security goal	GDPR principle		Lawfulness,	
Spoofing Tampering Repudation Information disclosure Denial-of-service	A I Ac C A	Security Security Accountability Security Lawfulness, transparency and fa	iirness	Accountability Accountability Accountability Purpose limitation	-
(+) automated (-) not adapted		urity threats modelling vacy threats		Data Processing Principles 6 Principles 3	
				Security (integrity and confidentiality)	

LINDDUN	Security goal	GDPR principle
<u>L</u> inkability	U	Data minimization
<u>I</u> dentifiability	U	Data minimization
Non-repudation	Ac	Accountability
<u>D</u> etectability	Ac	Accountability
Disclosure of information	C	Security
<u>U</u> nawareness	A	Lawfulness, transparency and fairness
Non-compliance	Com	Lawfulness, transparency and fairness
(1) focused .		uc a to

(+) focused on privacy threats
(-) does not address all GDPR requirements

Privacy enhacement within the impact rating

Sensitivity	Privacy impact (i_p) Linkability to PII	Privacy-preserving	Value (V)	Weight (w _p)
High	High	None	100	10
High Medium High Medium	High High Medium Medium	Yes Yes Yes None	10 10 10 10	5 5 5
Medium Not sensitive Sensitive	Medium Easy to link Difficult to link	Yes None None	1 1 1	2 2 2
Not sensitive Not sensitive	Difficult to link Difficult to link	Yes None	1 0	1 1

$$i_p = V * W_p$$

$$i_{sum} = \sum_{j \in \{s, f, o, p\}} W_{i,j} i_j$$

1-19 1 - negligible 3 - major 100-999

Impact sum (isum) Impact level

Based on a refinement of the ISO/IEC 29100, the privacy impact is analysed to reflect data sensitivity, linkability and the deployed mitigation techniques.

To compute the privacy impact, a privacy weight is associated to the impact value

The impact level is derived from the impact sum wrapping up the safety, financial, operational and privacy impact.

ULTIMO project

SHOW project

Project funded by Schweizerische Eidgenoss

Federal Department of Economic Affairs

Giampaolo Bella, Pietro Biondi, and Giuseppe Tudisco. A Double Assessment of Privacy Risks Aboard Top-Selling Cars, Automotive Innovation, 2023

- Giampaolo Bella, Pietro Biondi, and Giuseppe Tudisco. A Double Assessment of Privacy Risks Aboard Top-Selling Cars. Automotive Innovation, 2023.

- N. Azam, L. Michala, S. Ansari, and N. B. Truong, "Data Privacy Threat Modelling for Autonomous Systems: A Survey from the GDPR Perspective," IEEE Transactions on Big Data, 4 2022.

- Meriem Benyahya, AnastasijaCollen, Sotiria Kechagia, and NielsAlexanderNijdam. 2022. Automated city shuttles: Mapping the key challenges in cybersecurity, privacy and standards to future developments. Computers & Security 122 (11 2022), 102904. https://doi.org/10.1016/j.cose.2022.102904

- Meriem Benyahya, Sotiria Kechagia, Anastasija Collen, and Niels Alexander Nijdam. 2022. The Interface of Privacy and Data Security in Automated City Shuttles:

- Meriem Benyahya, Pierre Bergerat, Anastasija Collen, and Niels Alexander Nijdam. Symbiotic Analysis of Security Assessment and Penetration Tests Guiding Real L4 Automated City Shuttles. Telecom, 4(1):198–218, 3 2023.

rsecurity engineering, Technical report, ISO/SAE, 8 2021. ISO. ISO/SAE 21434 Road vehicles-Cybe

- UNECE, 2020, R155, Technical Report, UNECE, 1-194 pages

CAV: Connected and Automated Vehicles
ISO: International Organization for Standardization
LINDDUN: Linkability, Identifiability, Nonrepudiation, Detectability, Disclosure of data, Unawareness, and Noncor
PII:Personal Identifiable Information

UNIVERSITÉ

DE GENÈVE

AND MANAGEMENT

GENEVA SCHOOL OF ECONOMICS

Institute of Information Service Science

SAE: Society of Automotive Engineering STRIDE: Spoofing, Tampering, Repudiation, Information disclosure, Denial-of-service and Elevation of privilege TARA:Threat Analysis and Risk Assessment UNECE: United Nations Economic Commission for Europe