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Physics is like sex: sure, it may give some practical
results, but that’s not why we do it.

— Richard Feynman

Everything we call “real” is made of things that cannot be
regarded as real.

— Niels Bohr
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Abstract

The emergence of irreversibility in physical processes, despite the fundamentally re-
versible nature of quantum mechanics, remains an open question in physics. This
thesis explores the intricate relationship between quantum mechanics and thermo-
dynamics, with a particular focus on minimizing entropy production in finite-time
processes. By employing tools from quantum information theory and geometric
thermodynamics, we tackle the challenge of deriving irreversible thermodynamic
behavior from the reversible microscopic framework of quantum mechanics.
We begin with a comprehensive review of the laws of thermodynamics, setting the
stage for the subsequent analyses. We introduce novel developments in quantum
thermodynamics through a generalized framework for geometric thermodynamics,
which enables the derivation of finite-time corrections beyond the Markovian regime.
Building on this foundation, we extend Landauer’s principle by incorporating a
finite-time correction that highlights the necessity of strong coupling for optimal
information erasure processes. This result underscores the emergence of Planckian
time as a fundamental speed limit to thermalization. Additionally, we explore how
collective effects can be harnessed to reduce energy dissipation in thermodynamic
operations, revealing that classical correlations between systems can significantly
mitigate dissipation, though this may pose new questions regarding the third law
of thermodynamics. Finally, we optimize thermodynamic processes in mesoscopic
systems, including quantum dot engines and information engines.
These findings not only enhance our understanding of the fundamental limits of ir-
reversibility but also open new avenues for research. Future works will focus on fully
exploiting collective effects, aligning these with the third law of thermodynamics,
and understanding the thermodynamic consistency of master equations.
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Résumé

L’émergence de l’irréversibilité dans les processus physiques, malgré la nature fon-
damentalement réversible de la mécanique quantique, demeure une question ouverte
en physique. Cette thèse explore la relation complexe entre la mécanique quantique
et la thermodynamique, en se concentrant particulièrement sur la minimisation de la
production d’entropie dans les processus thermodynamiques en temps fini. En util-
isant des outils de la théorie de l’information quantique et de la thermodynamique
géométrique, nous abordons le défi de dériver un comportement thermodynamique
irréversible à partir du cadre microscopique réversible de la mécanique quantique.
Nous commençons par une revue complète des lois de la thermodynamique, étab-
lissant les bases pour les analyses suivantes. Nous introduisons des développements
nouveaux en thermodynamique quantique à travers un cadre généralisé pour la ther-
modynamique géométrique, qui permet la dérivation de corrections en temps fini
au-delà du régime Markovien.
En nous appuyant sur cette base, nous étendons le principe de Landauer en incor-
porant une correction en temps fini qui met en évidence la nécessité d’un couplage
fort pour des processus d’effacement de l’information optimaux. De plus, nous ex-
plorons comment les effets collectifs peuvent être exploités pour réduire la dissipation
d’énergie dans les opérations thermodynamiques, révélant que les corrélations clas-
siques entre systèmes peuvent atténuer substantiellement la dissipation d’énergie.
Enfin, nous optimisons les processus thermodynamiques dans les systèmes méso-
scopiques, y compris les moteurs à points quantiques et les moteurs d’information.
Ces résultats non seulement enrichissent notre compréhension des limites fondamen-
tales de l’irréversibilité, mais ouvrent également de nouvelles pistes de recherche. Les
travaux futurs se concentreront sur l’exploitation complète des effets collectifs, leur
alignement avec la troisième loi de la thermodynamique, et la compréhension de la
cohérence thermodynamique des équations maîtresses.
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Chapter 1

Introduction

The more success the quantum theory has, the sillier it looks.

— Albert Einstein

One of the most puzzling open problems in physics is the emergence of irre-
versibility. The phenomena that we observe in the world around us are evidently
irreversible. This irreversibility is even thought to be the origin of the arrow of
time. However, at the microscopic scale the world is described by a reversible the-
ory: quantum mechanics. It is difficult to overstate the success of quantum physics,
which has led us to a better understanding of the most fundamental aspects of
nature, enabling technological discoveries that revolutionized the world of comput-
ing, communication and medicine. Therefore, it is surprising that the irreversible
processes that we observe at the macroscopic scale should emerge from the fun-
damentally reversible microscopic processes described by quantum mechanics – or
more precisely, quantum electrodynamics. It is worth noting that, however, the the-
ory of quantum mechanics was born in an attempt to describe a thermodynamic –
and fundamentally irreversible – process: black-body radiation. Indeed, the origins
of quantum mechanics are deeply rooted in thermodynamics: the quantization of
light arises by imposing the thermodynamic consistency of Maxwell’s equations [1].

Given this context, it is natural to ask if one can derive irreversibility – and
more generally, the laws of thermodynamics – by starting from a microscopic and
reversible theory like quantum mechanics. Indeed, foundational insights on the
topic date back to the early days of quantum mechanics with the works of Von Neu-
mann [2, 3], which extend the works of Boltzmann in classical statistical mechanics
to quantum mechanics. A key insight that they brought to our modern understand-
ing of both quantum mechanics and thermodynamics is the role of information in
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the two theories. Specifically, they illuminate how the lack of information on a sys-
tem relates to entropy. Perhaps, the role of information for irreversibility is best
exemplified by Landauer’s principle [4], as it shows that the entropy of the universe
increases when information is erased.

Since then, the question of defining entropy production and proving the irre-
versibility of thermodynamics starting from a reversible classical theory has been a
central focus of the field of stochastic thermodynamics, which has developed mod-
ern mathematical tools to tackle the topic. Among its most impactful results are
the fluctuation theorems [5,6], which generalize the laws of thermodynamics to non-
equilibrium processes. These prove the validity of the second law of thermodynamics
for a wide variety of scenarios.

In more recent years, with the advent of quantum information and a variety
of experimental breakthroughs that have demonstrated an unprecedented level of
control over quantum systems – such as trapped ions [7] and optomechanical sys-
tems [8] – the focus has increasingly shifted towards quantum thermodynamics.
This emerging field, at the intersection of quantum information, stochastic thermo-
dynamics, and many-body physics, has led to a variety of significant advancements
ranging from the topic of the equilibration and thermalization of quantum systems
to thermodynamic uncertainty relations. For instance, it has been demonstrated
that small subsystems of a large pure quantum state can effectively evolve towards
a thermal state under certain conditions, highlighting the robustness of thermaliza-
tion in quantum settings. Moreover, the special role of the observer/external agent
in both quantum mechanics and thermodynamics naturally leads to information-
theoretic interpretations in quantum thermodynamics. In particular, irreversibility
in thermodynamic processes is now understood as the loss of information about the
state of the system.

The question of irreversibility is especially relevant for finite-time processes
where the system is brought out of equilibrium and entropy production is thought
to be always strictly positive. Indeed, the main goal of this thesis is to reach a better
understanding on the gap between reversible processes with no entropy production
and irreversible processes with finite entropy production. Therefore, it is in this
context – and armed with quantum information theoretic tools – that we approach
multiple aspects of the minimization of the entropy production of physical tasks.



Chapter 1. Introduction 3

Thesis Outline

In this thesis we start by presenting a self-contained review on the laws of thermo-
dynamics in Chapter 2. We then present the mathematical formalism that is used in
the rest of the thesis. In particular, in Sec. 3.2 we generalize the results of [9] to ob-
tain a derivation of the thermodynamic geometry technique that applies to all types
of dynamics – i.e. for both open and closed quantum systems; thus giving a formal
setting for the work minimization of thermodynamic protocols in the slow-driving
regime, which is used multiple times in the rest of the thesis.

In Chapter 4 we apply this extended formalism to obtain a finite-time correction
to Landauer’s bound on the dissipated energy required to erase information. While
previous works obtaining a finite-time correction to the bound already existed, these
were limited to the Markovian regime [9–11]. The main result of the chapter eq. (4.2)
is valid beyond such approximations [12]. Indeed, it unveils the need for strong
coupling for the optimal energy management of erasure processes. Furthermore,
despite the result being derived in a specific setting, it reveals the general form of a
universally valid finite-time correction to Landauer’s bound with the emergence of
Planckian time.

Remarkably, the results of Chapter 5 show how one can use the framework of
geometric thermodynamics to unveil a novel type of collective effects that allow to
drastically reduce the amount of energy that is dissipated when performing a task
on a collection of systems simultaneously [13]. Collective effects are a well known
and important phenomenon in physics, ranging from phase transition to quantum
entanglement [14–18]. It is often the case that one can exploit these effects to
improve the result or cost of a given task, leading to a notion of collective advantages:
the outcome of a task is improved when performed globally on a collection of systems
instead of each system individually. Indeed, our results show that if one wishes to
perform multiple tasks on multiples systems, then it is possible to exploit classical
correlations between these systems to drastically suppress the amount of energy
that is dissipated into the environment. To put it simply, one manages to “share
the losses” between the individual systems. With sufficient amount of control, this
suppression is strong enough to obtain a vanishing dissipation per system in the
thermodynamic limit. This is an astounding result, as it seems to go counter to
the third law of thermodynamics, but on a technical level there seems to be no
contradiction as the remaining finite-time dissipation is always strictly positive.

Finally, in Chapter 6 we focus on the thermodynamic optimization of meso-
scopic systems. We show how to fully optimize two types of nano-scale thermal
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engines and fast operations on a system. The optimization of thermal engines
and, more generally, operations at the nano-scale are questions that allows us to
probe the fundamental limits of the trade-offs between relevant physical costs and
desiderata [19–23]. In steady state heat engines, these trade-offs are captured by
thermodynamic uncertainty relations [21, 24]. First, we study how one can fully
optimize all the relevant thermodynamic aspects of the simplest possible thermal
engine: a periodically driven quantum dot engine [25]. Indeed, with the use of
analytical techniques and reinforcement learning we characterize the optimization
trade-off of power, efficiency and power fluctuations of a quantum dot engine in all
driving regimes. Second, we characterize and optimize the performance of an infor-
mation engine at all driving speeds. Information engines stand in a class of their
own, as they make use of measurements on the system instead of a cold reservoir.
Furthermore, we confirm the feasibility of the optimal protocols we compute with
an experimental implementation thanks to the collaboration of the group of prof.
N. Ares. Last, but not least, we develop a general framework for the optimization
of work and work fluctuations in rapidly driven systems [26]. Our results show that
optimal fast protocols, in both open and closed system dynamics, consist of two
instantaneous jumps in the control parameters – one at start and one at the end
of the protocol. Interestingly, this is true whether we are aiming to optimize work
or work fluctuations – or any trade-off of the two quantities, but it is seldom the
case that the optimal “jump point” is the same for both objectives. We showcase
this phenomenon by applying the framework to compute the optimal fast protocols
across phase transitions of many-body quantum systems.

In Chapter 7 we conclude on the presented work and reflect on the future per-
spectives of research that were opened by this thesis.



Chapter 2

The Laws of Thermodynamics

The law that entropy always increases holds, I think, the supreme
position among the laws of Nature. If someone points out to you that
your pet theory of the universe is in disagreement with Maxwell’s
equations – then so much the worse for Maxwell’s equations. If it is
found to be contradicted by observation – well, these experimentalists do
bungle things sometimes. But if your theory is found to be against the
second law of thermodynamics I can give you no hope; there is nothing
for it but to collapse in deepest humiliation.

— Sir Arthur Eddington, The Nature of the Physical World

2.1 Thermodynamic Operations and Work

One of the main objectives of Thermodynamics is to describe flows of energy in
a physical process [27]. This question is so general that it can be applied to any
field of physics, which makes thermodynamics a so-called “universal” theory. Before
stating the laws of thermodynamics, we will define what is an “operation” in the
thermodynamic sense. In a typical thermodynamic setting one is studying a system
S with a set of parameters that can be controlled by an external agent. For example,
if we consider the gas in a piston (cf. Fig. 2.1), an agent can control the volume of
this gas by moving the piston rod. Another example – in the world of Quantum
Mechanics – would be an electron in the magnetic field of an experiment.
We define a thermodynamic operation as the changing of one or more parameters
of the system from an initial value to a final value – which could be the same as
the initial value. It is worth noting that any physical process could be framed as a

5



6 2.1. Thermodynamic Operations and Work

iii it
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Figure 2.1: Example of a thermodynamic operation: compressing a piston. The
studied system is a gas of N particles inside a piston. The whole system is in an
environment that is depicted in blue. On the left we have the gas in its initial state
with the piston in position A and on the right the gas after the piston has been
compressed to position B, reducing the volume of the system.

thermodynamic operation. In Fig. 2.1 we give a typical textbook example of such a
task: the compression of a gas in a piston. In mathematical terms, this corresponds
to changing the Hamiltonian of the system S from its initial value Ĥi to its final
value Ĥf . We will be calling protocol the function Ĥ(t) that describes how this
change is implemented. This leads naturally to the following definition:

Definition 1 (Thermodynamic Work). The thermodynamic work W of an operation
on a system S is the amount of energy that the agent has to spend in order to perform
the aforementioned operation on the system S.

If we denote by ρ̂tot(t) and Ĥtot(t) the state and Hamiltonian of the system and
everything that it is interacting with – except the agent – we have a very natural
definition for the expected value of work

⟨W ⟩ = Tr
[
ρ̂tot(τ)Ĥtot(τ)− ρ̂tot(0)Ĥtot(0)

]
, (2.1)

where we denoted by τ the amount of time it took to perform the operation. The
study of work and how to minimize it is a central question in thermodynamics.
Typically, one can expect the work cost to increase for decreasing values of τ and
to decrease for increasing values of τ . In fact, one can show that the work cost is
minimal when τ goes to infinity (cf. Sec. 2.4). Since we will be treating stochastic
systems throughout this thesis and will never explore single shot scenarios, we will
only be speaking of the expected work cost ⟨W ⟩ instead of the work cost W . There-
fore, to lighten the notation and text, we will drop the average symbol ⟨·⟩ for this
quantity and will be writing “work cost” implying that the average has been taken.
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2.2 The First Law and the Definition of Heat

As in the example shown in Fig. 2.1, during a thermodynamic operation one can
distinguish three parties that are involved: an agent, the system being described,
and the environment. If one considers the energy flow that happens between these
three parties during a thermodynamic operation then, by conservation of energy,
when the agent provides δW of energy it is split between the system and the envi-
ronment.

The First Law of Thermodynamics. During a thermodynamic operation, the
following holds by conservation of energy

δW = dE + δQ , (2.2)

where δW is the amount of energy provided by the agent during an infinitesimal
amount of time dt, dE is the energy gained by the system S and δQ is the energy
gained by the environment.

Typically one identifies the environment as “whatever is not the system and is
interacting with it”. This usually coincides with something that cannot be controlled
by the agent – or at least not as well as the system. Therefore the energy that is
gained by the environment cannot be directly accessed anymore by the agent. Which
leads us to another definition:

Definition 2 (Heat). The heat

Q := W −∆E (2.3)

of an operation is the amount of energy that the environment has gained when the
agent performed a thermodynamic operation on a system S – which gained ∆E of
energy1.

It is interesting to note that by defining a different cut between what is being
studied and what is the environment, one gets a different definition of heat. Which
might make it seem arbitrary, but this a fundamental feature of thermodynamics

1This partition of the energy is omitting any amount of energy that is stored in the interaction
between system and environment. In all the scenarios we will study, the interaction energy at the
start and end of the process will be the same, thus allowing us to write the energy balance as in
Definition 2. This is still a lively topic in the community, see [28] for a summary.



8 2.2. The First Law and the Definition of Heat

that ties it to information-theory. By distinguishing between what can and cannot
be acted upon by the agent, we are making an information-theoretic statement.
And by applying conservation of energy to this statement we obtain the first law
of thermodynamics. Therefore we can see that, at least partially, the first law of
thermodynamics is an information-theoretic statement.

If we denote by ρ̂(t) the state of the system S at a time t and its Hamiltonian by
Ĥ(t), then its expected energy is given by E(t) = Tr

[
ρ̂(t)Ĥ(t)

]
. If we differentiate

this expression in time we get

dE

dt
= Tr

[
ρ̂(t)

dĤ(t)

dt

]
+ Tr

[
dρ̂(t)

dt
Ĥ(t)

]
. (2.4)

By using the first law eq. (2.2) and the definition of work, we can identify that work
corresponds to the term with the change in the Hamiltonian: δW = Tr

[
ρ̂(t)Ĥ ′(t)

]
,

where we used ′ to denote the time derivative to lighten the notation. One can recover
this term by taking the time derivative of eq. (2.1), but it can be also understood
as the term that the agent has control over. This leads to the two integral formulas
for the work and heat of a process

W =

∫ τ

0

dt Tr

[
ρ̂(t)

dĤ(t)

dt

]
, (2.5)

Q = −
∫ τ

0

dt Tr

[
dρ̂(t)

dt
Ĥ(t)

]
. (2.6)

It is worth noting that these integral forms are not fully rigorous – despite being
widely used – as they do not give the proper result in the case one introduces
discontinuities at the start and end of the protocol. In particular, if we imagine a
protocol where at t = 0 there is a sudden change in the Hamiltonian – which we will
call quench going forward – then the integral in eq. (2.5) will give an erroneous 1/2

factor to the term corresponding to the quench. However this can be easily “fixed”
if we keep in mind that the true boundaries of the integrals in eq. (2.5) and eq. (2.6)
are −ε and τ + ε in the limit that ε tends to 0+.
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2.3 Equilibrium and the Second Law

And on the pedestal these words appear:
“My name is Ozymandias, King of Kings:
Look on my works, ye Mighty, and despair!”
No thing beside remains. Round the decay
Of that colossal wreck, boundless and bare
The lone and level sands stretch far away.

— Percy Shelley, Ozymandias

As opposed to Maxwell’s equations, the second law of thermodynamics is still
today a source of lively arguments and discussion. The core physical phenomenon
it addresses is the presence of irreversible phenomena in the macroscopic world –
e.g. the mixing of liquids – despite the time-symmetry of the underlying physical
laws. On the fundamental side, the second law has deep ties to the emergence of
the arrow of time. While on a more practical aspect, together with the first law it is
essential for the design of thermal engines, power plants, and the analysis of chemical
reactions [29]. It was first stated by Clausius in 1865 as “Heat can never pass from a
colder to a warmer body without some other change, connected therewith, occurring
at the same time” [30]. It is important to note that this is a law of averages: it does
not forbid the transfer of energy from a cold body to a warmer body in a single
instance, but rather it states that the energy transfer is more likely in a direction
than the other. The comparison of the probability of an energy transfer occurring
in one direction or the other is a well studied subject in the context of fluctuation
theorems [29].

The formulation of Clausius has been changed into many forms since he stated
it, but today the most common statement of the second law of thermodynamics is
in terms of entropy production.

The Second Law of Thermodynamics. The entropy production of a thermo-
dynamic operation is non-negative

Σ ≥ 0 . (2.7)

Before defining entropy production, we will introduce a few concepts that build
up to it. Clearly, the first of these concepts should be entropy. Entropy is an
information-theoretic quantity that captures the lack of knowledge that an observer
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has on the system – in this context the thermodynamic agent is the observer. This
abstract notion of “lack of knowledge” can be exemplified by Gibbs’ definition of
entropy: S = lnΩ, where Ω is the number of (equally likely) configurations of the
system that are compatible with the knowledge of the observer. With this definition
we have a natural operational interpretation of the entropy of a system: it is the
minimal amount of information (in number of bits) that we need to measure about
the system to pin down the specific configuration of the system. For quantum
systems we will be using a more general definition of entropy:

Definition 3 (von Neumann Entropy). The von Neumann entropy of a system
described by the state ρ̂ is given by

S(ρ̂) := −Tr [ρ̂ ln ρ̂] . (2.8)

It is worth noting how the von Neumann entropy reduces to the Gibbs defi-
nition of entropy when we have a uniform mixture between Ω orthogonal states.
Furthermore, this definition carries the same operational interpretation about “lack
of information”. In particular, it is minimal (equal to zero) if and only if the state
is pure, and it is maximal if and only if the state is fully mixed.

The concept of entropy allows us to define a notion of “usefulness” of a state.
To illustrate this, let us consider two scenarios of a gas with many particles. First
suppose that we have no information on the state of the gas. This would imply
that we describe the state of the gas with a completely mixed density matrix, which
has maximal entropy. Because of our lack of information on the gas, there is no
operation we can do to extract energy from it in a repeatable way. In the second
scenario, suppose that thanks to some sophisticated measurement apparatus we
acquired the information about the position and momentum of every particle in the
gas. Therefore we can now describe the state of the gas with a pure state, which
has zero entropy. Since we know the position and velocity of every particle in the
gas, we can compute their future trajectories. And therefore, in principle, we could
make a very contrived machine that extracts all of the kinetic energy from each gas
particle and make use of all of the energy available. Since in both scenarios the
energy of the system can be the same, but in one we can reliably extract all of it
as opposed to the other, we naturally reach a notion of “useful energy”, which is
captured by the following definition.
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Definition 4 (Non-Equilibrium Free Energy). The non-equilibrium free energy Fn.eq(ρ̂)

of a system ρ̂ with Hamiltonian Ĥ is defined as

Fn.eq(ρ̂) := Tr[ρ̂Ĥ]− kBTS(ρ̂) , (2.9)

where kB is the Boltzmann constant and T is the temperature2.

With this definition, one can interpret the second law as a statement about how,
over time, we have less and less free energy available in the system, until the entropy
is maximized and the system is “useless”. We then say that the system has reached
equilibrium. For a given Hamiltonian and a given temperature there is a unique
equilibrium state:

Definition 5 (Gibbs state). For a system at temperature T with Hamiltonian Ĥ,
its equilibrium state is given by the canonical ensemble, also known as Gibbs state

π̂ :=
e−βĤ

Tr[e−βĤ ]
, (2.10)

where β := 1/kBT is the inverse temperature, and the normalization defines the
partition function Z = Tr[e−βĤ ].

We can use this definition to rewrite the non-equilibrium free energy of a state
ρ̂ in terms of the Gibbs state of the Hamiltonian

Fn.eq(ρ̂) = Fn.eq(π̂) + S(ρ̂||π̂) , (2.11)

where S(ρ̂||π̂) := Tr[ρ̂(log ρ̂− log π̂)] ≥ 0 is the relative entropy. Since Tr[ρ̂(log ρ̂−
log π̂)] = 0 if and only if ρ̂ = π̂, it is clear that Gibbs states minimize the free
energy. And thus shows how Gibbs states correspond to the aforementioned no-
tion of equilibrium state, which we will also refer to as thermal state. It is also
worth noting that for a given expected energy and temperature, it also follows that
Gibbs states maximize the entropy. In the jargon of resource theory, thermal states
are also known as the only completely passive states [32]. This notion of equilib-
rium leads to a state-independent notion of free energy: the equilibrium free energy
Feq := Fn.eq(π̂) = −kBT lnZ.

2Here the temperature can be defined as k−1
B ∂E/∂S. However it is worth noting that often it

coincides with the temperature of the environment with which the system is interacting. See [31]
for a more detailed discussion.
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At this point, one might be (very) tempted to take the change in von Neumann
entropy of the state describing the system and environment as entropy production.
However, von Neumann entropy is invariant under unitary transformations. There-
fore the von Neumann entropy of a closed system remains constant when it evolves
by the rules of quantum mechanics. Which means that we need to take a different
approach to define entropy production.
The notion of “usefulness” given by the free energy is actually the key here: in a
thermodynamic operation all the energy that can be recovered if we were to imme-
diately revert the operation corresponds to changes in free energy. Therefore we can
split the work of a thermodynamic operation as follows

W = ∆Fn.eq +Wdiss , (2.12)

where ∆Fn.eq = Fn.eq(ρ̂S(τ)) − Fn.eq(ρ̂S(0)) is the difference in free energy of the
system: the reversible component of work, and Wdiss is the dissipated energy: the
irreversible component of work – and is defined as the difference between work and
free energy change. We also defined the reduced state ρ̂S := TrE[ρ̂SE], that describes
the state of the system S when one does not have knowledge of the total state of the
system and environment together ρ̂SE. This leads us to a very natural definition of
entropy production: Σ = βWdiss. With this definition one could already express the
second law of thermodynamics as W ≥ ∆Fn.eq. Using eq. (2.12) with Definition 4
and Definition 2 we obtain a very common formulation of entropy production and
the second law

Σ = βQ+∆S ≥ 0 , (2.13)

where ∆S = S(ρ̂S(τ)) − S(ρ̂S(0)) is the change of entropy of the system, and β is
the inverse temperature of the environment. The term βQ corresponds to a flow of
entropy from the system towards the environment. It is worth noting how the second
law allows for a reduction in entropy of the system, as long as it is compensated
with a sufficient flow of entropy into the environment (cf. Chapter 4). There are
many situations in which it is not immediate to assign a unique temperature to the
environment – e.g. an engine. However, one can always divide the environment into
multiple uncorrelated parts E1, ..., En and assign a temperature Ti to each of these
parts [33]. In this case, one looses a clear definition of non-equilibrium free energy,
because depending on the configuration of the system and environments there is not
necessarily an equilibrium state towards which the state naturally evolves – e.g. non-
equilibrium steady states [34]. Since the entropy is additive between independent
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systems, each environment contributes βiQi to the entropy production. Which allows
us to generalize eq. (2.13) to

Σ =
∑

i

βiQi +∆S ≥ 0 . (2.14)

One often assumes that at the start of the process the environment – or each of
its subdivisions – is at thermal equilibrium and uncorrelated to the system, which
allows us to rewrite Σ in terms of information theoretic quantities

Σ = Iτ (S : E) + S(ρ̂E(τ)||π̂E) , (2.15)

where It(S : E) := S(ρ̂SE(t)||ρ̂S(t)⊗ ρ̂E(t)) is the mutual information, which quan-
tifies the amount of information that is stored in the correlations between system
and environment, which is lost when one has lo longer access to either E or S. And
the relative entropy S(ρ̂E||π̂E) quantifies how much the environment was “pushed
away” from the equilibrium3. It is interesting to note how eq. (2.15) shows clearly
this notion of the entropy production matching the concept of “lost information”.
Furthermore, since the quantities in eq. (2.15) are non-negative, the second law is
mathematically proven for thermal environments.

Going back to processes where the system interacts with a single bath at temper-
ature T , very often one also assumes that also the system is initialized in a thermal
state. For these situations, usually the system is also left to thermalize after the
operation is over at time τ . And therefore the “useful energy” that is in the system
at time τ is also dissipated, which leads to the following definition of dissipation

kBTΣ = W −∆Feq . (2.16)

It is worth noting that W −∆Fn.eq = W −∆Feq−kBTS(ρ̂S(τ)||π̂S(τ)) ≤ W −∆Feq,
where the difference is exactly entropy associated to the leftover free energy of the
system at the end of protocol.

Finally, we will briefly cover a different approach to defining dissipation, which
is purely information-theoretic. The main idea stems from finding a generalization
of eq. (2.15). Starting from an initially uncorrelated system and environment, if

3Strictly speaking the relative entropy is not a distance because it does not respect the triangular
inequality. However it is non-negative, and equal to zero if and only if the two entries are equal.
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one considers the amount of lost information during the thermodynamic process,
then there are two contributions: the correlations generated between the system
and environment, and the perturbation of the environment [35]. Which leads to the
following definition

Σ = Iτ (S : E) + S(ρ̂E(τ)||ρ̂E(0)) , (2.17)

which coincides with eq. (2.15) when the environment – or its sub divisions – is
assumed to start in a thermal state. However, the downside of this approach is that
it is not equivalent to eq. (2.14) as these expressions do not coincide whenever the
assumption of a thermal environment is not satisfied.

2.4 The Third Law

The third law of thermodynamics has been formulated in many different forms over
the years and the subject of intense discussions [36]. Unlike the second law, a fully
general proof of the third law – or as general as the second law – is still lacking [37,38].
The first formulation, given by Nernst, is now known as the heat theorem. It states
“At zero temperature, a finite size system has an entropy S, which is independent
of any external parameters x, i.e. limT→0 S(T, x1) − S(T, x2) = 0.” [39]. However,
in quantum mechanics it is clear that the zero-temperature entropy is equal to the
logarithm of the ground state degeneracy. Therefore the validity of the heat theorem
is dependent on the possibility of changing this degeneracy with the parameter x.
Today, the third law is understood as Nernst’s unattainability principle [39].

The Third Law of Thermodynamics. It is impossible to bring a system into its
ground state without either infinite time, infinite energy, or infinite complexity.

This version of the third law – that includes complexity as a resource – is based
on the most recent advances of the field [40]. However, one can find a mathematical
formulation of it in [37] and [38]. In quantum mechanics the third law implies that
it is impossible to prepare a pure state without one of the three aforementioned
quantities going to infinity.

An interesting consequence of the third law is that the second law eq. (2.7) can
only be saturated when the work, heat, complexity, or time diverge. In particular,
when the time of the operation τ goes to infinity, then the system is at all times in
the instantaneous equilibrium state – typically given by π̂(t). Therefore the work
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cost of the operation will be given exactly by the free energy change, which implies
that the dissipation is exactly Σ = 0. In this case we say that the operation is
reversible. Conversely, for τ <∞, whenever we change the Hamiltonian the system
will be pushed away from its equilibrium state. Which implies that there will be a
non-zero dissipation Σ > 0, and we say that the operation is irreversible.
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Chapter 3

Mathematical Tools

Ludwig Boltzmann, who spent much of his life studying statistical
mechanics, died in 1906 by his own hand. Paul Ehrenfest, carrying on
the work, died similarly in 1933. Now it is our turn to study statistical
mechanics.

— David Goodstein, States of Matter

3.1 Evolution of Quantum Systems

The evolution of a quantum system described by a state ρ̂ is given by a the dynamical
equation

d

dt
ρ̂(t) = Gt[ρ̂(t)] , (3.1)

where Gt is the time-dependent generator of the dynamics. The solution of this
equation is given by

ρ̂(t) = G(t, 0)[ρ̂(0)] (3.2)

where G(t, t′)[ · ] is a completely positive trace preserving map known as the propa-
gator of the dynamics from t′ to t. It is defined as

G(t, t′) :=
←−T exp

[∫ t

t′
ds Gs

]
, (3.3)

where we introduced the time ordering operator
←−T . The exponential operator is

defined via its usual series; that, when expanded, yields the Dyson expansion

G(t, t′) = 1+
∞∑

n=1

∫ t

t′
dtn

∫ tn

t′
dtn−1 ...

∫ t2

t′
dt1 Gtn ◦ Gtn−1 ◦ ... ◦ Gt1 , (3.4)

17
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where 1 denotes the identity super-operator, and ◦ denotes the map composition.

When we consider an isolated quantum system – in the thermodynamic setting
this is the case when we consider a system together with its environment – then its
evolution is described by unitary dynamics: Gt[ · ] = −i

ℏ [Ĥ(t), · ]. Therefore eq. (3.1)
reduces to

d

dt
ρ̂(t) =

−i
ℏ

[
Ĥ(t), ρ̂(t)

]
. (3.5)

The solution of this equation leads to the unitary evolution of the system

ρ̂(t) = Û(t)ρ̂(0)Û †(t) , (3.6)

where the unitary operator is given by

Û(t) =
←−T exp

[
− i
ℏ

∫ t

0

ds Ĥ(s)

]
, (3.7)

which has a similar expansion as in eq. (3.4).

Taking the typical thermodynamic scenario, we are often only interested in de-
scribing the dynamics of the system without the environment. In this case the
evolution of the system alone is naturally given by

ρ̂S(t) = TrE

[
Û(t)ρ̂SE(0)Û

†(t)
]
. (3.8)

This problem is can still be very challenging to solve analytically, in particular when
the traced out part is large, which is typically the case for the environment. However,
one can usually make two approximations that greatly simplify eq. (3.8): first, that
the environment is well described by a thermal state at the start of the evolution
ρ̂SE(0) = ρ̂S(0)⊗ π̂B. Second, that the interaction between system and environment
is weak and Markovian. It is worth noting that this second approximation is often
made also in classical thermodynamics, where the interactions between system and
environment are attributed to boundary effects. With these two approximations
one can simplify the the time derivative of eq. (3.8) to the famed Lindblad master
equation (c.f. [41] for a detailed derivation)

d

dt
ρ̂S(t) = L[ρ̂S(t)] , (3.9)
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where L is the Lindbladian. It is defined as

L[ρ̂S(t)] :=
−i
ℏ

[
ĤS(t), ρ̂S(t)

]
+
∑

i

γi

(
L̂iρ̂S(t)L̂

†
i −

1

2

{
L̂†
i L̂i, ρ̂S(t)

})
, (3.10)

where ĤS(t) is the Hamiltonian of the system – without the parts acting on the
environment. The L̂i are the jump operators, they describe the dissipative aspects
of the dynamics and how the environment acts on the system. Finally, the γi ≥ 0 are
the damping rates associated to the jump operators, they encode the strength of the
effect of the corresponding jump operator. It is difficult to overstate the success and
importance of this equation: it plays a crucial role in the field of quantum optics,
quantum biology, quantum information and condensed matter.

3.2 Geometric Thermodynamics

3.2.1 General Derivation of the Thermodynamic Metric

The framework of quantum thermodynamic geometry [9,42,43] allows us to minimize
the entropy production Σ for protocols that are slow compared to their relaxation
time-scale. We start by considering a system described by a state ρ̂(t) with an
externally driven Hamiltonian Ĥ(t) that is undergoing the dynamics described by
eq. (3.1) with the generator Gλ(t), where we made the dependence on the control
parameters explicit. This description could be only about the system – thus in the
setting of the Lindblad master equation, or about the system and environment –
thus undergoing unitary dynamics. Since the Hamiltonian is a linear operator over
the Hilbert space it can be decomposed in the following manner

Ĥ(t) = Ĥ0 +
n∑

j=1

λj(t)X̂j , (3.11)

where Ĥ0 contains the parts of the Hamiltonian that cannot be controlled, {λj}nj=1

are externally controllable parameters and {X̂j}nj=1 are the corresponding observ-
ables. These control parameters can be constrained, and we will denote by M ⊆ Rn

the manifold of the allowed values for these parameters. A thermodynamic protocol
corresponds to a curve within the space M , as is illustrated in Fig. 3.1. In order to
apply the framework of geometric thermodynamics, we need to satisfy three prop-
erties.
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Figure 3.1: Curve of a protocol on the manifold of thermal states. [46]

Requirement 0: A Single Thermal Environment. We assume that the envi-
ronment is initialized in a thermal state at a single well defined temperature T and
that it is infinitely large. So that, by the second law, there is a well defined thermal
equilibrium for the state ρ̂ if we were to freeze the control of the Hamiltonian. This
is implies that π̂t is a fixed point of the dynamics: Gλ(t)[π̂t] = 0.

For unitary dynamics this is automatically the case since the thermal state com-
mutes with its corresponding Hamiltonian. While for the Lindblad master equation
we need to require that the whole environment is already at thermal equilibrium.

Requirement 1: Thermalization of the Work Observables. In absence of
driving, the expectation values of the observables {X̂j} thermalize. More precisely,
if at time t we were to freeze the driving, then the propagator of the evolution
becomes Gfz

λ(t)(s, r) = e(s−r)Gλ(t) for s ≥ r ≥ t. We then say that the expectation
value of X̂j thermalizes if

lim
s→∞

Tr[X̂je
sGλ(t) [ρ̂(t)]] = Tr[π̂(t)X̂j] . (3.12)

This condition is typically satisfied by open quantum systems [44] and by non-
integrable systems that satisfy the eigenstate thermalization hypothesis [45].

These two requirements are usually combined into one for the Lindblad master
equation by simply stating that the state of the system converges to the thermal
state in absence of driving. However, this is not the case for unitary dynamics,
and thus we have to weaken this assumption into Requirements 0 and 1. Before
stating the last requirement, let us consider the following decomposition of the state:
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ρ̂(t) = π̂(t) + ∆ρ̂(t), where ∆ρ̂(t) is defined as the difference between the thermal
state and the state of the system. Inserting this decomposition into the dynamics
eq. (3.1) we obtain (

Gλ(t) −
d

dt

)
[∆ρ̂(t)] =

d

dt
π̂(t) . (3.13)

Since Gλ(t) has a non-trivial kernel it is not invertible. However, we can solve this
equation by introducing the concept of Drazin inverse [47]. In this case, it reduces
to taking the inverse over the support of Gλ(t):

GDλ(t) = (Gλ(t)|supp(Gλ(t)))
−1 ⊕ 0ker(Gλ(t)) , (3.14)

where ⊕ denotes the direct sum and 0ker(Gλ(t)) denotes the zero operator over the
kernel of Gλ(t). It is useful to note that GDλ(t)Gλ(t) = Gλ(t)GDλ(t) and is equal to the
projector over the support of Gλ(t): Psupp(Gλ(t)). Therefore we can apply the Drazin
inverse to both sides of eq. (3.13) to obtain

(
Psupp(Gλ(t)) − GDλ(t)

d

dt

)
[∆ρ̂(t)] = GDλ(t)

d

dt
[π̂(t)] . (3.15)

Since, by construction, the image and support of GDλ(t) are the support of Gλ(t), we
can write (

1− GDλ(t)
d

dt

)
[∆ρ̂s(t)] = GDλ(t)

d

dt
[π̂(t)] , (3.16)

where we decomposed ∆ρ̂(t) into ∆ρ̂s(t) its projection onto the support of Gλ(t) and
∆ρ̂k(t) its projection onto the kernel of Gλ(t). Finally, with (1 −X)−1 =

∑∞
n=0X

n

we find

ρ̂(t) = ∆ρ̂k(t) +
∞∑

n=0

(
GDλ(t)

d

dt

)n
[π̂(t)] . (3.17)

Each term in the sum is proportional to ∥λ̇(t)∥n, therefore if ∥λ̇(t)∥ is progressively
going to 0 the only surviving term in the sum is π̂(t). Nonetheless the state will not
necessarily thermal because of the term ∆ρ̂k(t). If we are in the case of a Lindblad
master equation where the only fixed point of the evolution is π̂(t), then δρ̂(t) =

0. However, in the case of a full unitary description ∆ρ̂k(t) cannot be vanishing
because only the thermal state maps to the thermal state in a unitary evolution. In
particular, if we were to freeze the evolution as described in Requirement 1, since
∆ρ̂k(t) is a fixed point of the frozen evolution, we have

lim
s→∞

esGt [ρ̂(t)] = ∆ρ̂k(t) + π̂(t) . (3.18)
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Combining this last equation with Requirement 1, we get

Tr[∆ρ̂k(t)X̂j] = 0 . (3.19)

The limit where ∥λ̇(t)∥ goes to zero corresponds to the quasi-static limit with the
protocol time τ going to infinity. But here we are interested in the case where τ
is finite and ∥λ̇(t)∥ is sufficiently small to drop most of the terms in the sum of
eq. (3.17). Which naturally leads us to the last requirement:

Requirement 2: Slow driving. The system is driven in such a way that its
evolution is slow compared to the relaxation timescales of evolution of the expec-
tation values of the observables {X̂j}. More precisely, if we denote by τ eqj (t) the
relaxation timescale of Tr[X̂je

sGλ(t) [ρ̂(t)]] as we let s increase. Then by defining
τeq := maxj sup0≤t≤τ τ

eq
j (t), we are in the slow driving regime when τeq/τ ≪ 1.

The expansion for a varying τ should be understood as done for a fixed curve
{λ(t)} ⊂M , so that changing the value of τ only changes the speed over which the
path on the curve is covered. Which allows us to identify ∥λ̇∥ = O(τeq/τ), we then
get from eq. (3.17)

ρ̂(t) = ∆ρ̂k(t) + π̂(t)− βGDλ(t)[Dπ̂(t)[Ĥ
′(t)]] +O(τ 2eq/τ 2) , (3.20)

where we used d
dt
π̂(t) = −βDπ̂(t)[Ĥ

′(t)], with

Dρ̂[Â] :=

∫ 1

0

ds ρ̂s
(
Â− Tr[ρ̂Â]1

)
ρ̂1−s . (3.21)

From eq. (2.5), eq. (3.19) and eq. (3.20) we can find the following expression for work

W = ∆Feq − β
∫ τ

0

dt Tr
[
H ′(t)GDλ(t)[Dπ̂(t)[Ĥ

′(t)]]
]
+O(τ 2eq/τ 2) , (3.22)

where we obtained ∆Feq from integrating Tr[π̂(t)Ĥ ′(t)]. By using Ĥ ′(t) =
∑

j λ̇
j(t)X̂j,

we can now easily identify the leading order for the entropy production in the slow
driving regime

Σ =
∑

ij

∫ τ

0

dt λ̇i(t)λ̇j(t)gij(λ(t)) , (3.23)

where we defined the symmetric tensor g(λ) as

gij(λ) := −
β2

2
Tr
[
X̂iGDλ [Dπ̂(λ)[X̂j]] + X̂jGDλ [Dπ̂(λ)[X̂i]]

]
. (3.24)
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From the second law of thermodynamics we have Σ ≥ 0. Therefore, since eq. (3.23)
is valid for any choice of λ as long as τ is large enough, then we necessarily have
that the tensor g is positive definite – and because of the third law we know that it
is strictly positive definite. Since it also depends smoothly on λ and is independent
of the velocity λ̇, we can notice that g has all the properties of a metric over M .
In fact, it is known in the literature as the thermodynamic metric and defines the
length of a curve γ : [0, τ ] 7→M

L[γ] :=

∫

γ

dt
√
γ̇i(t)γ̇j(t)gij(γ(t)) , (3.25)

where we adopted the Einstein summation convention, which we will keep through
the rest of this thesis.

3.2.2 Minimally Dissipating Curves

We will now discuss how to use the metric eq. (3.24) to find minimally dissipating
protocols from an initial configuration Ĥi and initial state ρ̂(0) = π̂i to a final con-
figuration Ĥf . The entropy production and length associated to a specific protocol
λ : [0, τ ] 7→M are related via a Cauchy-Schwarz inequality:

Σ[λ] ≥ 1

τ
L[λ]2 , (3.26)

where we made explicit the dependence of Σ on λ. This inequality can always be
saturated by making the integral of the entropy production λ̇i(t)λ̇j(t)gij(λ) constant,
which can always be achieved by modulating the speed along the curve – and it does
not affect its length. Therefore to minimize the dissipation Wdiss = kBTΣ we need
to find the curve in the space Cλi,λf

(M) of smooth paths connecting Ĥi and Ĥf that
minimizes its length. This corresponds to a geodesic path on M , which satisfies the
geodesic equation

λ̈i + Γi
jkλ̇

jλ̇k = 0 , (3.27)

where Γi
jk are the Christoffel symbols

Γi
jk =

1

2
gil(∂jgkl + ∂kglj − ∂lgjk) , (3.28)

where gil denotes the elements of the inverse of the metric and ∂α := ∂
∂λα . We

can therefore define L(Ĥi, Ĥf ) as the length of the geodesic curve connecting λi

and λf . Automatically L satisfies all the properties of a distance function over
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the space M , furthermore it gives us an expression for the minimal dissipation
W ∗

diss := minλ∈Cλi,λf (M)Wdiss[λ] and the minimal entropy production Σ∗ = βW ∗
diss

W ∗
diss = kBTΣ

∗ =
kBT

τ
L2 +O(τ 2eq/τ 2) . (3.29)

It is interesting to note that the length of a curve inM is independent of τ , and there-
fore all the dependency of the dissipation on the protocol time is in the prefactor 1/τ .

It is well known that optimal finite-time protocols feature jumps [48]. How-
ever, these jumps disappear near the reversible limit (cf. [49] and Fig. 4.1) and their
contribution to the dissipated heat becomes either negligible or is disadvantageous.
Let us first consider jumps at the start of the protocol ∆Ĥi = Ĥ(0+) − Ĥi, the
work cost of this jump is Tr[π̂i∆Ĥi], which yields a contribution to the dissipation
that is independent of τ . Therefore, however small is the work cost of the rest of
the protocol, by eq. (3.29) there exists τ ∗ such that for all τ ≥ τ ∗ the geodesic will
dissipate less than the protocol with a jump at the start. A similar argument can
be applied to the end of the protocol. What this shows is that the jumps need to at
most be of magnitude O(τ eq/τ), which implies that they are vanishing in the slow
driving limit, and most of the time we will be ignoring their contribution.



Chapter 4

Finite-Time Landauer Principle

Ahimè, non mai due volte configura
il tempo in egual modo i grani! E scampo
n’è: che, se accada, insieme alla natura
la nostra fiaba brucerà in un lampo.

— Eugenio Montale, Vento e bandiere, Ossi di seppia

Any logical irreversible operation will incur a thermodynamic cost in the form of
heat dissipated into the environment. On a fundamental level this is because logi-
cally irreversible operations lead to a loss of information, and in the words of Rolf
Landauer “information is physical”. Therefore a loss of information results in a loss
of energy. Landauer’s principle quantifies this relation between information process-
ing and thermodynamics with the bound Q ≥ kBT ln 2 for the erasure of a single
bit of information [4]. Here Q is the dissipated heat, kB is the Boltzmann constant
and T is the absolute temperature at which the process is taking place. In recent
years, this principle has been intensively studied within the fields of stochastic and
quantum thermodynamics [50,51], and has been approached in several experimental
platforms [52–54].

The third law of thermodynamics (cf. Sec. 2.4) implies that Landauer’s bound
cannot be saturated with finite resources, namely time and energy [37,39]. In finite
time, using tools from optimal transport theory [55] and thermodynamic geome-
try [43, 56], optimal erasure protocols have been derived both for classical systems
described by over-damped Langevin dynamics [57] and open quantum systems de-
scribed by Lindblad master equations [10,58]. Such optimal protocols naturally lead
to a finite-time correction to Landauer’s bound in different physical set-ups, which
has given rise to the term finite-time Landauer principle [59]. For a slowly driven
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(quantum) two-level system weakly coupled to a thermal bath, the finite-time bound
takes the simple form [9]

Q ≥ kBT

(
ln 2 +

π2

4Γτ

)
+O

(
1

Γ2τ 2

)
, (4.1)

where τ is the total time of the process and Γ is the thermalization rate. The finite-
time correction is positive, in agreement with the second law of thermodynamics,
and when Γτ →∞ we recover the standard bound. We also note that the optimal
protocol saturating the finite bound eq. (4.1) has been recently implemented in a
semiconductor quantum dot [54]. More general versions of eq. (4.1) have also been
recently developed for Markovian systems driven at any speed [10,11].

Despite this remarkable progress, previous works on the finite-time Landauer
principle have focused in Markovian systems which, for quantum systems, can be
guaranteed by a sufficiently weak interaction between system and bath. In the
presence of strong coupling, we expect both new opportunities arising due to faster
relaxation rates and non-Markovian dynamics [60], as well as challenges due to the
presence of new sources of irreversibility [61]. In this chapter we will derive the first
order to a tight finite-time correction of Landauer’s principle for a single fermion that
can interact strongly with a reservoir, as described by the resonant-level model [62].
The main result of this chapter can be summarized as follows.

Given a two-level system that can be strongly coupled to a thermal bath, we
find that the finite-time version of Landauer’s principle can be expressed as

Q ≥ kBT
(
ln 2 + a

τPl
τ

)
+O

(
1

Γ2τ 2

)
(4.2)

where a ≈ 2.57946, τPl = ℏ/kBT is the so-called Planckian time [63], and Γ is the
average thermalization rate (see details below). This expression generalizes eq. (4.1)
to strong system-bath couplings, with the transition between the two being charac-
terized in Fig. 4.2. The finite-time correction in eq. (4.2) is of quantum-mechanical
nature and independent of the coupling strength, hence prevailing even for arbitrar-
ily strong system-bath coupling (roughly speaking, Γ→∞ in eq. (4.1)).

The appearance of the Planckian time τPl = ℏ/kBT in eq. (4.2) is particularly
interesting. This timescale encodes two fundamental constants of nature: Boltz-
mann’s constant kB and Planck’s constant ℏ. It arises in several contexts in many-
body physics, including quantum transport and quantum chaos; see Ref. [63] for a
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review. In analogy with the “Planck time” in quantum gravity, it is associated with
the shortest timescale of thermalization [63,64]; that is, the shortest time needed to
redistribute energy between particles and reach thermal equilibrium. This gives an
insightful context to our main result eq. (4.2): a fundamental finite-time quantum
correction must appear to Landauer’s bound due to a minimal time required for
thermalization. This also suggests that the form of eq. (4.2) has a broader range
of applicability, with the dimensionless value a depending on the specific many-
body thermalizing dynamics considered. In order to obtain eq. (4.2), we exploit the
framework of thermodynamic geometry explained in Sec. 3.2.

4.1 Framework

We consider a driven system S that can be put in contact with a thermal bath B,
so that the total time-dependent Hamiltonian reads:

Ĥ(t) = ĤS(t) + Ĥint(t) + ĤB. (4.3)

Here, ĤS(t), Ĥint(t) are the externally controllable Hamiltonian of S and the SB
coupling, whereas ĤB is the Hamiltonian of B. The state ρ̂(t) of SB evolves ac-
cording to eq. (3.6). From eq. (2.5), the work cost induced by driving Ĥ(t), with
t ∈ [0, τ ], reads:

W =

∫ τ

0

dt Tr[ρ̂(t)Ĥ ′(t)] = Tr[Ĥ(τ)ρ̂(τ)− Ĥ(0)ρ̂(0)] (4.4)

Focusing on protocols where Ĥint(0) = Ĥint(τ) = 0, we can naturally identify from
the first law of thermodynamics eq. (2.2) W = Q +∆E, with the change in energy
of the system

∆E = Tr[ĤS(τ)ρ̂S(τ)− ĤS(0)ρ̂S(0)] (4.5)

with ρ̂S(t) := TrB[ρ̂(t)], and the energy absorbed by the bath

Q = Tr[ĤB(ρ̂B(τ)− ρ̂B(0))] (4.6)

with ρ̂B(t) := TrS[ρ̂(t)].

Assuming that the initial state of SB is a thermal state: ρ̂(0) = π̂(0) := e−βĤ(0)

Z(0)
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with Z(t) := Tr[e−βĤ(t)], we can be re-express the work cost as:

W = ∆Feq + kBTΣ , (4.7)

where ∆Feq = kBT ln[Z(0)/Z(τ)] is the change of equilibrium free energy of SB, and
the entropy production Σ can be expressed as Σ = S(ρ̂(τ)||π̂(τ)) (cf. Sec. 2.3 for
more detail). The entropy production Σ ≥ 0 accounts for the irreversible energetic
contribution in finite-time processes, and depends on the particular driving path
Ĥ(t) linking Ĥ(0) to Ĥ(τ). Minimizing Σ over all finite-time processes leads to
thermodynamic protocols that minimize the work W . Furthermore, in an erasure
process, ∆E = 0 (see details below) therefore these protocols also minimize the
dissipated heat Q.

4.2 The Resonant Level Model

We now focus on finite-time driving processes of a single fermionic mode coupled to
a fermionic bath, which can e.g. describe a single-electron quantum dot. The total
Hamiltonian reads:

Ĥ(t) = ε(t)â†â+
n∑

k=1

ωkb̂
†
kb̂k + κ(t)

n∑

k=1

λkâ
†b̂k + λ∗kb̂

†
kâ. (4.8)

where â† is the creation operator of the two-level system and b̂†k is the creation
operator of a bath mode with frequency ωk. These operators follow the canoni-
cal anti-commutation relations: {â†, â} = 1, {b̂†j, b̂k} = δjk1, {b̂j, b̂k} = {â, b̂k} =

{â†, b̂k} = {â, â} = 0. κ(t) modulates the interaction Hamiltonian and λk are the
interaction weights which define the spectral density function of the bath J(ω) =

2π
∑

k |λk|2δ(ω − ωk). Finally, the energy ε(t) is the difference between the energy
gap of the two-level system and the chemical potential of the bath1. We are assum-
ing optimal control over the functions ε(t) and g(t) so that we can fully optimize the
protocol and reach the fundamental limit for this system. While this level of control
is, in principle, ambitious experimentally in regards to the coupling, it has been
achieved in quantum dots [65] where the tunneling rate (i.e. interaction strength)
can be modified by several orders of magnitude. We take the continuum limit and

1The chemical ν potential of the bath is incorporated by subtracting νâ†â to the system’s
Hamiltonian. Since here ĤS = εa†â (with ε the energy of the system), we can simply redefine ε to
be the difference between the system’s energy and the chemical potential and set ν = 0 without
loss of generality.
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assume that the spectral density of the bath is a Lorentzian

J(ω) =
Λ2

Λ2 + ω2
, (4.9)

where Λ > 0 is a parameter characterizing its width. Exact and explicit solutions
for the resonant-level model are known in the wide-band limit Λ → ∞ [62]. This
limit is commonly used to describe quantum systems in contact with fermionic
macroscopic baths, e.g. in quantum dots or single-molecule junctions (see [66] for
an example). In essence, it neglects the structure of the density of states in the bath
and, as a consequence, a main limitation is that it fails to describe the short-time
dynamics [66]. Nevertheless, this problem does not affect this study since we are
interested in large times. We should further note that the energy of the system-bath
interaction is proportional to Λ, and therefore is divergent in this limit. We will
therefore take Λ to be finite but much larger than any other energy scale of the
system. For our analysis to be valid we simply require dynamics much slower than
Λ−1 [62].

The dynamics are solved via a quantum Langevin approach [12, 67]. For an
uncorrelated initial state ρ̂(0) = ρ̂S(0) ⊗ π̂B, we compute the expectation values
that are relevant to the work cost: the probability of occupation of the excited
level of the system p(t) = ⟨â†â⟩ and the system-bath interaction energy v(t) =∑

k λk⟨â†b̂k⟩+ h.c..

p(t) = |G(t, 0)|2 p(0) + 1

2π

∫ ∞

−∞
dω fβ(ω)

∣∣∣∣
∫ t

0

ds κ(s)G(t, s)ei
ω
ℏ (t−s)

∣∣∣∣
2

, (4.10)

v(t) =
1

π
ℑ
∫ ∞

−∞
dω fβ(ω)

∫ t

0

ds κ(s)G(t, s)ei
ω
ℏ (t−s), (4.11)

where fβ(ω) = (1+eβω)−1 is the Fermi-Dirac distribution. We defined the propagator

G(t, s) = exp

[
−1

ℏ

∫ t

s

dr µ(r) + iε(r)

]
, (4.12)

where we introduced µ(t) := 1
2
κ(t)2 in order to have more concise equation in the

rest of the chapter. We therefore obtain the expected thermodynamic work cost to
be

W =

∫ τ

0

dt ε̇(t)p(t) + µ̇(t)v(t)/κ(t). (4.13)

The framework of quantum thermodynamic geometry allows us to minimize the
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dissipated work Wdiss = W −∆Feq, and therefore the dissipated heat Q for erasure,
for protocols that are slow compared to their relaxation time-scale. In order to
apply the framework presented in Sec. 3.2, we have to ensure that the requirements
are satisfied. Since we are in unitary dynamics we already satisfy requirement 0.
The proof that requirement 1 is satisfied is quite convoluted, which is why we left
it for the end of the chapter in Sec. 4.6. While requirement 2 can be easily imposed
by choose τ appropriately. In particular, using that the thermalization rate of the
system is Γ := 2

ℏτ

∫ τ

0
dt µ(t) we can perform the slow driving expansion of eq. (4.10)

and eq. (4.11) in orders of 1/(τΓ). We then obtain an expansion for W analogous
to eq. (4.7) where the entropy production Σ is described by eq. (3.23) with λ(t) =

(ε(t), µ(t)) and the thermodynamic metric

g(λ(t)) =
βℏ
π

∫ ∞

−∞
dω fβ(ω)mω(ε(t)− ω, µ(t)) , (4.14)

where

mω(ε, µ) :=
1

(µ2 + ε2)3

(
4εµ2 −µ(µ2 − 3ε2)

µ(µ2 − 3ε2) 2ε(ε2 − µ2)

)
. (4.15)

This metric gives a geometrical description of slow thermodynamic protocols per-
formed on the system. By solving the geodesic equations, we can find the geodesic
length L and hence the minimal entropy production.

4.3 Special Limits of the Metric

Before attempting to solve the geodesic equations for the case of erasure, we now
study the high and low temperature limits, as well as the limit of weak coupling, to
gain further analytical insights on the form of optimal protocols and the associated
entropy production.

4.3.1 High Temperature Limit (βε, βµ≪ 1)

Since the terms of eq. (4.14) quickly decay at high frequencies, we can perform the
high temperature expansion fβ(ω) = 1

2
− 1

4
βω +O(β3ω3) directly in the metric. At

leading order, we find:

gHT =
β2ℏ
8µ

1 . (4.16)

This enables an analytical solution of the geodesic equations. Given the boundary
conditions {ε(0) = µ(0) = µ(τ) = 0, ε(τ) = ε∗ > 0}, which will later match those of
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an erasure protocol2, we find the following geodesic path

ε(t) = ε∗

(
t/τ − sin(2πt/τ)

2π

)
, (4.17)

µ(t) =
ε∗
π
sin(πt/τ)2 . (4.18)

In the regime βε(t)≪ 1, we observe that minimising entropy production requires a
maximal coupling strength ε(τ)/π. The entropy production of the geodesic protocol
is

kBTΣ
∗ =

πℏβε∗
2τ

+O(β3ε3∗) , (4.19)

which linearly scales with the final energy βε∗.

4.3.2 Zero Temperature Limit (βε or βµ→∞)

In the limit of T = 03 we have fβ(ω)→ f∞(ω) = Θ(−ω), where Θ is the Heaviside
step function. Therefore the metric becomes

gT=0 =
βℏ
π

1

(µ2 + ε2)2

(
µ2 −εµ
−εµ ε2

)
, (4.20)

which coincides with the metric of an angle distance in the (ε, µ) space – hence the
metric is singular. If we re-parameterize (ε, µ) as (r cosϕ, r sinϕ) we find kBTΣ =
1
π

∫ τ

0
dt ϕ̇(t)2. Therefore any protocol that keeps ϕ̇(t) constant is a geodesic, leading

to the minimal entropy production:

kBTΣ
∗
∣∣∣∣
T=0

=
ℏ(∆ϕ)2

πτ
, (4.21)

with ϕ = arctan(µ/ε). Note that there are multiple (infinitely many) geodesics for
any pair of boundary points. This fact prevents us from continuing the expansion to
further orders in temperature. Nevertheless, this limit provides analytical insights
on optimal protocols with βε or βµ ≫ 1. In particular, we note that there is no
need for a diverging coupling even when ε(τ) → ∞ as, once µ has become large,

2Usually, the initial condition for erasure would be ε(0) = ν for ν the chemical potential of the
bath and ε the energy of the two-level system (so that the corresponding thermal state is the fully
mixed state). But since here we defined ε to be the difference to the chemical potential we take
ε(0) = 0 without loss of generality.

3The zero temperature limit is achieved whenever the energy gaps of the system are too large for
thermal fluctuations to occur between the energy levels. Bringing either βε or βµ to infinity achieves
this effect. It is the opposite in the infinite temperature limit, where the thermal fluctuations need
to overcome any energy gap, therefore in that limit, both βε and βµ need to be brought to zero.
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Figure 4.1: (left) Examples of optimal protocols computed from [49] for boundary
conditions ε(0) = 0 and βε(τ) = 20 at different values of τ . (right) Comparison of
the entropy production of the optimal protocols from [49] with boundary conditions
ε(0) = 0 and βε(τ) = 100 to the lower bounds given by eq. (4.1), Van Vu et al. [10]
and Zhen et al. [11].

eq. (4.21) shows that it is optimal to reduce the coupling while increasing the energy.
Furthermore, eq. (4.21) shows that at zero temperature, while the reversible cost of
the operation goes to zero, the dissipation W ∗

diss = kBTΣ
∗ remains strictly positive.

This result is complementary to the findings of Ref. [68] which demonstrate a finite-
size correction to Landauer’s bound that does not disappear in the zero-temperature
regime.

4.3.3 Weak Coupling Limit

Lastly, we take take the weak coupling limit to compare to previous erasure results
that are obtained via Lindbladian dynamics, which is a common assumption in
previous works on optimal thermodynamic control in the quantum regime. In this
limit the coupling is taken to be small and constant, therefore the metric becomes
a scalar:

gweak(ε) =
β2ℏ
Γ
fβ(ε)(1− fβ(ε)) . (4.22)

Which matches the metric one obtains from the rate equation

dp(t)

dt
= −Γ

(
p(t)− 1

1 + eβε(t)

)
. (4.23)

In this regime, protocols that minimize dissipated heat at arbitrary speed were found
by [49]. Therefore we will compare the results one obtains in slow driving and the
results of [10,11] to the exact minimization of [49].

We are interested in erasure processes, where ε(t) is driven from2 ε(0) = 0 to
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ε(τ) = ε∗ with ε∗ ≫ kBT in a time τ . Optimal finite-time protocols are those which
minimize the work cost W =

∫ τ

0
dt ε̇(t)p(t), and hence the heat dissipated to the

environment Q = W − ∆E. The results of [49] provide an exact solution to this
problem, which is shown in Fig. 4.1. As is well-known in finite time stochastic ther-
modynamics [48], jumps appear in the optimal solution. However, as we approach
the quasi-static limit where τΓ≫ 1, the jumps progressively disappear (cf. Fig. 4.1).
In Sec. 3.2 we prove why the jumps should also disappear in the long times limit at
strong coupling. The optimal driving solution in this limit has the simple analytical
form

ε(t) = 2kBT ln tan
[π
4
(t/τ + 1)

]
, (4.24)

leading to the work cost

W = kBT

(
ln 2 +

π2

4τΓ

)
, (4.25)

from where we can directly recover eq. (4.1) through the first law of thermodynamics
(note that ∆E = 0). In Fig. 4.1 we notice that the exact solution of [49] agrees well
with this analytical form in the slow driving limit. For completeness, we also show
recent results of [10,11]. These results apply more generally to any Markovian master
equation – here we apply them to the particular case of eq. (4.23), and one can see
that they provide a bound to the exact numerical – and approximate analytical –
solutions.

4.4 Optimized Erasure

We now focus on erasure outside any approximation, where we will optimize the
driving over both the energy and coupling. In what follows, we focus on minimizing
Σ in an erasure process, which imposes specific boundary conditions to the geodesic
equations. We assume that we have no prior knowledge of the system, therefore its
initial state is ρS(0) = 1/2. This translates in taking ε(0) = 0 so that it coincides
with the thermal state of Ĥ(0). For the qubit to be erased we want its final state
to be ρS(τ) ≈ |0⟩⟨0| (i.e. p(τ) ≈ 0). Since the driving is done slowly, p(t) is always
close to its thermal expectation value. Therefore by choosing βε(τ)→∞ we ensure
p(τ) ≈ 04. For the coupling, the boundary conditions are µ(0) = µ(τ) = 0, because

4Strictly speaking, in order to ensure consistency with the slow driving limit, βε(τ) has to remain
finite (so that the speed λ̇ remain finite). However, the final population p(τ) is exponentially small
with βε(τ), leading to exponentially small corrections. Our results are valid up to such corrections,
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Figure 4.2: (left) A series of optimal protocols depicted in the (µ, ε) space. They all
start with zero energy and coupling and end with finite energy and zero coupling. In
the limit of large βε(τ) they can be considered as erasure protocols. (middle) The
entropy production of the optimal erasure protocol as a function of the final energy,
compared to the high temperature regime cost eq. (4.19). (right) Comparison of
the entropy production for a geodesic protocol in which one parameter is varied
at a time (with µ being increased until µ∗) and the weak coupling approximation
eq. (4.1); the minimal possible entropy production, τΣ∗/β = 2.57946 ± 1 · 10−5 [ℏ],
obtained when both parameters are changed simultaneously is also shown.

we want to think of this as an “erasure machine” that the qubit is “brought to” at the
start and “retrieved from” at the end. Given this family of protocols, we recognize
from eq. (4.7) that W = Q = kBT (ln 2 + Σ). After the qubit has been decoupled
(i.e. at t > τ), we bring the Hamiltonian of the system back to its starting value
(ε = 0) to close the cycle. Since p(τ) ≈ 0, this step requires no work, and it can be
done arbitrarily quickly.

The geodesic equations we obtain for this process are not solvable analytically.
The integral of eq. (4.14) can be solved to give us an expression of the metric in
terms of polygamma functions but it does not simplify the geodesic equations into
an analytically solvable form. We therefore turn to numerical tools to obtain the
optimal protocol and compute the dissipated work. However, in our case, we want
to impose the aforementioned boundary conditions; this is known as a Boundary
Value Problem (BVP), which is famously hard to solve numerically [69]. Though
we can use the fact that the high temperature limit is accurate at the start of an
erasure protocol, therefore the initial conditions of the optimal protocol for erasure
will match the initial conditions of eq. (4.17) and eq. (4.18). This allows us to turn
the BVP into an Initial Value Problem which is much simpler to solve.

In Fig. 4.2 we show optimal erasure protocols in the (µ, ε) space for different final
values of βε. We can notice that the predictions of the high and low temperature
limit are verified: at the start of the protocols the coupling is increased, but once we
reach a certain value there is no more need to increase it, regardless of the final value

and for sufficiently large τ to ensure the validity of the approximation.
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of βε we try to reach. Interestingly, the maximal value reached by βµ is larger than
1. This shows that reaching the strong coupling regime is needed to achieve optimal
erasure, which is one of the main insights of our work. In the same figure we also
show the value of τΣ∗/β for the optimal protocol as a function of the final energy.
We can see that for small values of βε(τ) the high temperature limit eq. (4.19) gives
an accurate description of the work cost, but as we reach higher values it saturates to
τΣ∗/β = 2.57946± 1 · 10−5 [ℏ]. This provides a finite-time correction to Landauer’s
principle in this setup:

Q ≥ kBT
(
ln 2 + a

τPl
τ

)
+O

(
1

Γ2τ 2

)
. (4.26)

with a ≈ 2.57946 and τPl = βℏ. This is one of the main results of this work and can
be seen as a generalization of eq. (4.1). As opposed to the results of [11] and [10],
eq. (4.26) is only valid for large protocol times; yet, it has the advantage of taking
into account strong coupling effects (including any possible variation of the coupling
strength), having a much simpler form for the correction (which is independent of
any chosen relaxation timescale), and we provide an explicit protocol to achieve it.
By turning around eq. (4.26) one can highlight a quantum speed limit for erasure of a
qubit, furthermore this speed limit is of the order of the Planckian time τPl = ℏ/kBT
which is conjectured to be the fastest relaxation timescale for thermalization [63].
In particular, one can see that eq. (4.26) bounds the speed of erasure by the order
of τPl regardless of how large is the coupling strength used in the protocol.

Interestingly, we now argue that the form of the correction eq. (4.26) is in fact
general of any Landauer erasure protocol with control on S and the SB coupling.
Indeed, first note that – in natural units – the minimal dissipation Σ∗ is dimensionless
and can only depend on β and the boundary conditions as we optimize over µ and
ε. In an erasure process, the boundary conditions read: ε(0) = 0, ε(τ) → ∞, and
µi(0) = µi(τ) = 0 where i runs over all the possible control parameters on SB. But
this implies that Σ∗ is independent of them and hence of β. Therefore W ∗

diss will
take the form of a constant, independent of any parameter of the system and bath,
divided by τ . This is a crucial difference from eq. (4.1).

This simple argument based on dimensional analysis thus shows that eq. (4.26)
is rather general, with the value of a depending on the specific implementation (e.g.
the ohmicity of the bath). It is important to highlight that the bound eq. (4.26)
implies that, even when having access to arbitrary strong SB interactions (naively
taking Γ → ∞ in eq. (4.1)), infinite time is still required for perfect erasure due to
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the quantum-mechanical correction derived here.

Finally, we analyze a scenario where the coupling is kept constant while ε(t)
is driven, which is motivated both by experimental set-ups and for a comparison
with the weakly interacting case. Therefore, we restrict to one-parameter protocols
consisting of the three following steps: 1. while keeping ε at 0 we turn on the
coupling to some value µ∗; 2. while keeping the coupling fixed we bring ε from 0 to
some value ε∗ ≫ kBT ; 3. while keeping ε constant we turn off the coupling. Each
step contributes positively to the entropy production, and their minimization leads
to the following dissipation

Σ∗
one param =

1

τ

(∫ µ∗

0

dµ [gµµ(0, µ)]
1/2 +

∫ ∞

0

dε [gεε(ε, µ∗)]
1/2

)2

. (4.27)

In Fig. 4.2, we show Σ∗ for different values of µ∗, ranging from the weak to the super-
strong coupling regime. It can be appreciated how eq. (4.1) breaks down, and also
how such one-parameter protocols become close to the fundamental limit eq. (4.26)
for βµ∗ > 1.

4.5 Conclusions and Outlook

Deriving finite-time corrections to the seminal Landauer bound is a challenging
endeavor in stochastic and quantum thermodynamics. Previous works have focused
on Markovian systems only, which in the quantum regime is obtained through the
weak coupling limit (βκ2 → 0). However, should a general finite-time correction
exist, it will require the presence of strong coupling at some point during the process
as the dissipation generated in finite time is proportional to κ−2 when κ is small5.
Motivated by this observation, we have developed new insights into the form of
optimal protocols for erasure beyond the weak coupling limit.

We have focused on a bit encoded in the occupation of a single fermionic mode,
which can be strongly coupled to a reservoir. We have derived analytically the
thermodynamic metric, which governs the dissipation rate in the slow driving regime,
and showed that it takes a simple form in the high and low temperature limits.
From the general form of the metric we obtained the optimal erasure protocol,
which requires increasing the coupling strength to κ2 ∼ kBT , which corresponds
to a relaxation timescale of the order of the Planckian time τPl. The corresponding

5This can be seen by expanding the finite time dissipation around κ2 = 0 for long times:
kBTΣ ∝ 1/κ2τ , which follows by noticing that the relaxation time-scale is of the order of κ−2.



Chapter 4. Finite-Time Landauer Principle 37

dissipation yields a finite-time correction to Landauer’s bound for this setup, which is
substantially lower than similar results in the weak coupling regime. Furthermore,
by using the obtained bound as a quantum speed limit, this result adds further
evidence to the conjecture [63] that τPl is fastest relaxation timescale many-body
systems can achieve.

While our results were derived in a fermionic model, there are some general
insights that follow from our work. First there is a fundamental quantum correction
that prevails, see eq. (4.26), which can be compared with eq. (4.1) derived in the
weak coupling regime. While the specific value of a in eq. (4.26) will depend on the
specific setup, it will never approach 0 (even for diverging system-bath coupling) due
to the inherent cost of changing the interaction strength. Furthermore, to obtain
these results we adapted the framework of thermodynamic geometry to system-bath
unitary dynamics in which the coupling can be arbitrarily large or small. Finally,
as was argued before, our results make evident the need for strong coupling in a
general finite-time correction to Landauer’s principle.

This work opens exciting directions for the future. On the one hand, the level
of experimental control required to implement such protocols is in principle possible
in quantum dots, where the energy-level ε(t) and coupling κ(t) can be indepen-
dently controlled, even by several orders of magnitude [65]. On the other hand,
it would be interesting to characterize the dependence of a in the nature of the
bath and the SB coupling – e.g. its spectral density, more generally to derive simi-
lar quantum-mechanical finite-time corrections that are independent of the specific
implementation, and to gain further insights in the connection between Landauer
erasure and the Planckian time.
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4.6 Proof of Thermalization

In this section we will prove that, in absence of driving, p(t) and v(t) thermalize.
We do so in two steps, we first simplify the expressions of eq. (4.10) and eq. (4.11)
for ε(t) = ε and κ(t) = κ and compute the infinite time limit. Then we compute
the thermal expectation value of the corresponding observables and prove that the
obtained expressions are the same.

4.6.1 Infinite Time Limit in Absence of Driving

By assuming that the driving parameters are kept constant the propagator becomes

G(t, s) = e−(t−s)( 1
2
κ2+iε) . (4.28)

This allows us to compute the time integrals in eq. (4.10) and eq. (4.11):

p(t) = p(0)e−κ2t +
κ2

2π

∫ ∞

−∞
dω fβ(ω)

1− 2e−κ2t/2 cos([ω − ε]t) + e−κ2t

κ4/4 + (ω − ε)2 , (4.29)

v(t) =
κ

π

∫ ∞

−∞
dω fβ(ω)

(ω − ε)
[
1− e−κ2t/2 cos([ω − ε]t)

]
− 1

2
κ2e−κ2t/2 sin([ω − ε]t)

κ4/4 + (ω − ε)2 .

(4.30)

By taking the limit t→∞, we find

lim
t→∞

p(t) =

∫ ∞

−∞

dω

π
fβ(ω)

κ2/2

κ4/4 + (ω − ε)2 , (4.31)

lim
t→∞

v(t) = κ

∫ ∞

−∞

dω

π
fβ(ω)

(ω − ε)
κ4/4 + (ω − ε)2 . (4.32)

Here we can notice that if we take the Laplace transform of the propagator we obtain

G̃(z) :=

∫ ∞

0

dt G(t, 0)e−zt =
1

z + iε+ κ2/2
, (4.33)

which allows us to rewrite eq. (4.31) and eq. (4.32) as

lim
t→∞

p(t) =

∫ ∞

−∞

dω

π
fβ(ω)ℜ

[
G̃(−iω)

]
, (4.34)

lim
t→∞

v(t) = κ

∫ ∞

−∞

dω

π
fβ(ω)ℑ

[
G̃(−iω)

]
. (4.35)
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4.6.2 Thermal Expectation Value

We now compute the expectation value of â†â and V̂ =
∑n

k=1 λkâ
†b̂k+λ∗kb̂

†
kâ when the

state is a Gibbs state. Therefore we want to find pth := Tr[π̂â†â] and vth := Tr[π̂V̂ ].
Using the fact that the total Hamiltonian is quadratic, we can diagonalize it to
rewrite it in the following way

Ĥ =
∑

k

εkĉ
†
kĉk , (4.36)

where εk are eigen-energies and ĉk are fermionic ladder operators that follow the
CAR: {ĉ†j, ĉk} = δjk1, {ĉj, ĉk} = 0. They are related to the original ones by

â =
∑

k

⟨0|â|k⟩ ĉk , b̂j =
∑

k

⟨0|b̂j|k⟩ ĉk , (4.37)

where |k⟩ = ĉ†k |0⟩ are 1-particle eigenstates of the Hamiltonian with eigenvalue εk.
Inserting this relation in the expression for the thermal expectation of the probability
of occupation we find

pth =
1

Z

∑

jk

⟨j|â†|0⟩⟨0|â|k⟩Tr
[
e−βĤ ĉ†j ĉk

]
=
∑

k

∣∣⟨k|â†|0⟩
∣∣2 fβ(εk) . (4.38)

By its definition, we can write the propagator as follows

G(t, 0) = ⟨0|âH(t)â†|0⟩ =
∑

k

e−iεkt ⟨0|Û †(t)â|k⟩⟨k|â†|0⟩ =
∑

k

e−iεkt
∣∣⟨k|â†|0⟩

∣∣2 ,

(4.39)
where we used the fact that the vacuum state does not evolve Û(t) |0⟩ = |0⟩ and
Û(t) = e−it

∑
k εk ĉ

†
k ĉk . By now defining φ(ω) :=

∑
k

∣∣⟨k|â†|0⟩
∣∣2 δ(ω − εk), we can

identify

G(t, 0) =

∫ ∞

−∞
dω φ(ω)e−iωt , pth =

∫ ∞

−∞
dω fβ(ω)φ(ω) . (4.40)

Considering eq. (4.34) it is clear that if φ(ω) = 1
π
ℜ
[
G̃(−iω)

]
then we have proven

pth = limt→∞ p(t). Therefore we compute the Laplace transform of G(t, 0) using
eq. (4.40)

G̃(−iω) =
∫ ∞

0

dt G(t, 0)eiωt = πφ(ω) + iP.

∫ ∞

−∞
dω′ φ(ω′)

ω − ω′ , (4.41)
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where P. denotes the Cauchy principal value. Since φ(ω) is by definition a real
function we can see that P.

∫∞
−∞ dω′ φ(ω′)

ω−ω′ is a real number. Therefore we can conclude

φ(ω) = 1
π
ℜ
[
G̃(−iω)

]
. Which concludes the proof of the thermalization of p(t).

To prove the thermalization of v(t) we proceed in a similar fashion. We start by
computing vth

vth =
∑

jk

fβ(εk)
(
λj ⟨k|â†|0⟩⟨0|b̂j|k⟩+ λ∗j ⟨k|b̂†j|0⟩⟨0|â|k⟩

)
. (4.42)

To proceed we have to define the following cross-propagators

λjKj(t) := ⟨0|âH(t)b̂†j|0⟩ =
∑

k

e−iεkt ⟨k|b̂†j|0⟩⟨0|â|k⟩ =
∫ ∞

−∞
dω ψj(ω)e

−iωt , (4.43)

λ∗jHj(t) := ⟨0|b̂j,H(t)â†|0⟩ =
∑

k

e−iεkt ⟨k|â†|0⟩⟨0|b̂j|k⟩ =
∫ ∞

−∞
dω ψ∗

j (ω)e
−iωt ,

(4.44)

where we defined ψj(ω) =
∑

k ⟨k|b̂†j|0⟩⟨0|â|k⟩ δ(ω−εk). By further defining ψ0(ω) :=∑
k λ

∗
kψk(ω) and ψ(ω) = ψ0(ω) + ψ∗

0(ω) we can see that

K(t) :=
∑

j

|λj|2 (Kj(t) +Hj(t)) =

∫ ∞

−∞
dω ψ(ω)e−iωt , (4.45)

vth =

∫ ∞

−∞
dω fβ(ω)ψ(ω) . (4.46)

Therefore, similarly to the case of G(t, 0), we have

K̃(−iω) = πψ(ω) + iP.

∫ ∞

−∞
dω′ ψ(ω

′)

ω − ω′ ,

and in particular πψ(ω) = ℜ
[
K̃(−iω)

]
(since ψ(ω) is real by definition). Hence, by

eq. (4.35) and eq. (4.46), the last step to prove that v(t) thermalizes is to check that
ℜ
[
K̃(−iω)

]
= gℑ

[
G̃(−iω)

]
. To do so we start by computing the components of

K(t): from the solution of the evolution of âH and b̂j,H (cf. [12] for more detail) we
can find

Kj(t) = Hj(t) = −ig
e−iωjt −G(t, 0)
1
2
g2 + i(ε− ωj)

. (4.47)

Since the time time dependence is contained in the exponentials, it is straightforward
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to compute the Laplace transform

K̃j(z) = H̃j(z) =
−ig

z + iωj

G̃(z) . (4.48)

Therefore we find

K̃(−iω) = g

π
G̃(−iω)P.

∫ ∞

−∞
dω′ 1

ω − ω′ = −igG̃(−iω) , (4.49)

which allows us to conclude ψ(ω) = gℑ
[
G̃(−iω)

]
. This concludes the proof of the

thermalization of v(t).
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Chapter 5

Collective Advantages

¡Hasta la victoria siempre!

— Ernesto Che Guevara

Collective effects play a central role in physics, ranging from phase transitions
to quantum entanglement. Often, they can be exploited for a useful task, such as
ultra-precise measurements [70], leading to the notion of a collective advantage1. In
the growing fields of stochastic and quantum thermodynamics, such advantages have
received notable attention: relevant examples are found in quantum batteries, where
entangling operations have been proven to enable faster charging [14]; in many-body
thermal engines, whose performance can be enhanced via phase transitions [15],
many-body interactions [16], or superradiance [17]; and in quantum transport [18].
In this chapter, we uncover a new collective advantage in a crucial task in non-
equilibrium thermodynamics: the minimization of dissipation in finite time. In
general, the thermodynamic work W required to transform a system, in contact
with an environment, in a finite time τ can be split into two contributions (cf.
Sec. 2.3)

W = ∆Feq +Wdiss (5.1)

a reversible contribution ∆Feq, the free energy change, and an irreversible positive
contribution Wdiss, the dissipated work. Whereas ∆Feq is extensive with the size
N of the system, we will show here that Wdiss can grow sub-linearly in N . This
is proven in the regime of slow-but-finite-time processes and becomes possible by

1The outcome of a task is improved when performed globally on a collection of systems com-
pared than when realized on each system individually. There are multiple real life analogues of
collective advantages in real life – unrelated to physics – such as collective action and bargaining
or streamlined production (cf. Fig. 5.1).

43
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exploiting many-body interactions suitably created along the process.

Figure 5.1: Analogue of collec-
tive advantages in the macro-
scopic world: the streamlining
of production. Streamlined pro-
duction lines (bottom) are much
more efficient than a production
line where each worker is cre-
ating the product independently
(top). [71]

The advantage is dramatic: in principle, col-
lective processes enable an N -fold reduction of
Wdiss when compared to local processes (see
Fig. 5.2). While we will show that reaching this
limit requires highly non-local or long-range in-
teractions, a sub-linear growth of Wdiss can be
achieved with two-body interactions and real-
istic control. To obtain these results, we rely
on the framework of thermodynamic geometry
(cf. Sec. 3.2). Our results show that geodesic
protocols generically explore highly interacting
Hamiltonians, even if interactions are absent at
the beginning and end of the process. As an
application, we focus on finite-time information
erasure (cf. Chapter 4) of N qubits. We show
that collective processing can substantially re-
duce dissipation in this relevant task, leading to a faster convergence to Landauer’s
bound.

Overall, these results uncover a genuine collective advantage in stochastic and
quantum thermodynamics, which is not linked to standard collective phenomena
such as quantum entanglement, phase transitions, or collective system-baths cou-
plings (e.g. superradiance).

5.1 Framework

Following the formalism introduced in Sec. 3.2, let us consider a system in a d-
dimensional Hilbert space Cd with an externally driven Hamiltonian ĥ(t). It can be
parameterized as ĥ(t) =

∑n
j=1 λ

j(t)x̂j, {λj} are externally controllable parameters,
and {x̂j} are the corresponding observables. Additionally, the system is in contact
with an external thermal bath at inverse temperature β, so that the system is
undergoing Lindblad dynamics eq. (3.9).

We focus on the task of driving ĥ(t) from an initial configuration ĥ(0) = ĥi to
a final one ĥ(τ) = ĥf in a time t ∈ [0, τ ]. External energy is needed to realize this
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transformation, quantified by the (average) thermodynamic work:

W =

∫ τ

0

dt Tr
[dĥ(t)
dt

ρ̂(t)
]
, (5.2)

where ρ̂(t) is the state of the system. This expression can be split as in eq. (5.1),
where ∆Feq = β−1 lnZ(0)/Z(τ). The minimal dissipated work Wdiss in a finite time
τ can then be found by optimizing the driving protocol λ : [0, τ ] 7→ M ⊂ Rn. To
address the non-trivial optimization we make some assumptions.

First, we assume that the driving d
dt
ĥ(t) is slow compared to the relaxation

rate. Then Wdiss can be expressed as a quadratic form at leading order in τ−1 (cf.
Sec. 3.2):

Wdiss = kBT

∫ τ

0

dt λ̇i(t)λ̇j(t)gij(λ(t)) +O
(
τ−2
)
, (5.3)

where gij(λ) is the so-called thermodynamic metric. By solving the geodesic equation
that derive from the metric we can find the protocols that of minimal length L by
the metric and minimal dissipation W ∗

diss = kBTL2/τ .
As a second simplification, we assume there is a single relaxation timescale τeq2,

so that the metric becomes [9]:

gij = −τeqβ
∂2Feq(λ)

∂λi∂λj
. (5.4)

Note that gij then becomes the standard thermodynamic metric for macroscopic sys-
tems [72,73], which can also describes step-processes [74]. In what follows, without
loss of generality, we set τeq = 1.

As a last simplification, we will assume that the initial and final Hamiltonian
commute [ĥi, ĥf ] = 0. This allows us to conclude that at all times [ d

dt
ĥ(t), ĥ(t)] = 0,

as changes in the eigen-basis can only increase dissipation in the linear response
regime [43].

Let us now consider a scenario in which we perform the driving on N copies of
the system. We denote by Ĥ(t) = Ĥ0(t) + Ĥint(t) the total Hamiltonian for all the
copies, where Ĥ0(t) =

∑N
j=1 ĥ

(j)(t) and Ĥint(t) contains the interaction between the
copies. We parameterize Ĥ(t) similarly to ĥ(t): Ĥ(t) =

∑n
i=1 γ

i(t)X̂i, where the sum
can have up to n = dN terms. The problem at hand imposes the following boundary
conditions on the protocol: Ĥint(0) = Ĥint(τ) = 0, ĥ(j)(0) = ĥi, and ĥ(j)(τ) = ĥf ∀j.

2We assume that all driven observables decay exponentially to equilibrium with the same
timescale [43].
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Furthermore, by the same reasoning as in the case for a single copy, we have that
[ d
dt
Ĥ(t), Ĥ(t)] = 0 for the geodesic protocol.

5.2 Fundamental Limit of Collective Advantages

Let us first note that ∆Feq is extensive with N which directly follows from the
boundary conditions. Instead, Wdiss depends on the process and can exhibit a non-
trivial behavior whenever Ĥint(t) ̸= 0. Indeed, we find that, in general, geodesic
paths explore highly interacting Hamiltonians if the constraints allow for it.

To reach the fundamental limit of W ∗
diss we can assume full control on Ĥ(t), so

that the n = dN different eigen-energies {γi} can be externally controlled at will –
the corresponding {X̂i} are chosen to be the corresponding eigen-projectors. In this
case, the distance function corresponding to the thermodynamic metric eq. (5.4) is
known to be the quantum Hellinger angle: L(γ, γ′) = 2 arccosTr

[√
π̂(γ)

√
π̂(γ′)

]

where π̂(γ) = e−βĤ(γ)/Z(γ) is the thermal state (cf. [13]). Therefore the optimal
dissipation of a protocol is

βW ∗
diss =

1

τ

(
2 arccosTr

[√
π̂(0)

√
π̂(τ)

])2
. (5.5)

Since trivially arccos(x) ≤ π/2 for x > 0, the minimal dissipation of a N -body
system is bounded by a constant W ∗

diss ≤ 1
τ
π2 independent of N . This is somehow

astonishing, as we expect the dissipation generated when driving a many-body sys-
tem to increase extensively with its size. The corresponding protocol that achieves
this limit is given by

βĤ(t)=−2 log
[
sin

[
(τ−t)L∗

2τ

]√
π̂(0) + sin

[
tL∗

2τ

]√
π̂(τ)

]
, (5.6)

where L∗ = L(π̂(0), π̂(τ)). Crucially, this protocol generally requires all possible
interacting terms available in the Hamiltonian space, including highly non-local N -
body interactions. One can easily prove this, by contradiction, for generic protocols
using the non linearity of the logarithm. This is illustrated in what follows for the
paradigmatic task of erasing N bits of information.
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5.3 Collective Erasure

Let us consider N qubits, each with local Hamiltonian ĥ(t) = ε(t)σ̂z. We want to
drive ε(t) from ε(0) = 0 to ε(τ) = E with E ≫ kBT , so that the state of each qubit
evolves from a fully mixed state π̂(0) = 1

2
1 to an (almost) pure state π̂(τ) ≈ |0⟩⟨0|

due to the action of the external bath. We have ∆Feq = NkBT ln 2, corresponding
to Landauer’s bound.

Consider first the independent scenario, so that during the whole protocol Ĥint(t) =

0. For each qubit, the dissipation generated via an optimal driving can be com-
puted from eq. (5.5) with the aforementioned boundary conditions, yielding βW ∗

diss =

π2/4τ . The total dissipation of N qubits then reads:

W ∗,local
diss =

π2

4τ
NkBT , (5.7)

which grows linearly with N . The corresponding optimal driving reads βε(t) =

ln tan[π(t+ τ)/4τ ], which has been implemented experimentally in a single-energy
driven dot [54].

If we now allow for full control of the Hamiltonian, we can again use eq. (5.5) to
compute the minimal dissipation, but this time we use the global states π̂(0) = 1

2N
1

and π̂(τ) ≈ |0⟩⟨0|⊗N instead of the local ones. This leads to:

W ∗,global
diss =

kBT

τ

(
2 arccos

[
1

2N/2

])2

=
π2

τ
kBT +O

(
e−N/2

)
. (5.8)

Therefore, an N -fold advantage can potentially be achieved by global processes, as
illustrated in Fig. 5.2.

Let us now discuss the implications of this result for the reachability of Lan-
dauer’s bound. From eq. (5.1) we have ∆Feq = NkBT ln 2 whereas Wdiss can reach
eq. (5.8) at leading order in τ−1 (recall that our results are based on the slow driving
assumption where the expansion eq. (5.3) is well justified). Hence, the work cost of
erasure for each qubit can be written as:

W ∗
qubit = kBT

(
ln 2 +

π2

τN

)
+O

(
τ−2
)
. (5.9)

Hence, in the thermodynamic limit N → ∞, we can approach Landauer’s bound
with an error that scales as τ−2 instead of the standard τ−1 (cf. Chapter 4). We
note that a link between complexity, as in higher level k-body interactions and faster
information erasure has been suggested in Ref. [40]. The optimal driving achieving
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Figure 5.2: (a) Minimal dissipation for the erasure of N spins for different control
designs analyzed in this chapter. These are compared with the dissipations that are
achievable with no interactions (eq. (5.7), blue-shaded area), and with the dissipa-
tions that are not achievable regardless of the protocol (eq. (5.8), red-shaded area).
We find τW ∗,chain

diss ≈ 1.69N , τW ∗,all
diss ≈ 2.20N0.857, while τW ∗,Star

diss ≤ 9π2/4. Single
points are provided for 2-D and 3-D Pyramid models with few layers and an aper-
ture of 8. (b-e) Depiction of the geometries of the interactions in eq. (5.12) (equal
colors/labels correspond to equal values of the local fields). (b) all-to-all model with
N = 8, (c) 1-D spin chain with N = 8, (d) the Star model with N = 9, (e) 2-D
Pyramid model with 4 layers and an aperture of 1.

the limit eq. (5.8) can be computed from eq. (5.6):

βĤ(t) = γ(t)
N∑

j=1

(−1)j+1

N∑

i1<i2<...<ij

x̂(i1)x̂(i2)...x̂(ij) , (5.10)

where x̂ = σ̂+σ̂− and the control function can be written as

γ(t) = 2 log

[
1 + 2N/2 sin

(
πt

2τ

)
sin−1

(
π(τ − t)

2τ

)]
. (5.11)

It follows that highly non-local N -body interactions are required to saturate the
bound eq. (5.8). More specifically, one needs to activate every possible (classical)
interaction present in the system. This makes reaching the fundamental bound
eq. (5.8) highly challenging in practice, and opens the question as to whether collec-
tive advantages beyond the local bound eq. (5.7) can be achieved via more realistic
driven many-body systems featuring (local) few-body interactions. We address this
relevant question in what follows.
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5.4 Driven Many-Body Systems

In this section, we constrain the total system to only feature at most 2-body in-
teractions, to seek collective advantages in a more realistic model. Specifically, we
consider a spin system with Hamiltonian of the form

Ĥ(t) =
N∑

i=1

εi(t)σ̂
(i)
z +

1

2

N∑

i,j=1

Jij(t)σ̂
(i)
z σ̂

(j)
z (5.12)

We thus examine different degrees of control, reflected in the topologies represented
in Fig. 5.2: (i) an all-to-all spin model, (ii) a 1-D spin chain with nearest neighbor
interaction (with periodic boundary conditions) (iii) a Star-shaped design, which we
generalize to (iv) a multi-layer Pyramid scheme. In practice, the energies εi(t) could
be tuned via an external magnetic field whereas the interaction strength Jij(t) could
be controlled by changing the distance between the spins, which are interacting
via dipole-dipole coupling. Current quantum annealers have the capacity of tuning
generic Hamiltonians of the form eq. (5.12)3.

The all-to-all model corresponds to taking uniform magnetic fields and spin
interactions, i.e. εi(t) ≡ ε(t) and Jij(t) ≡ J(t) in eq. (5.12). We can compute the
partition function as follows

Zall =
N∑

k=0

(
N

k

)
e−βEk , (5.13)

where Ek = ε(2k −N) + 1
2
J(2k −N)2. The standard 1-D Ising model corresponds

to uniform local terms ε, and Ji,i+1 ≡ J for nearest neighbors and 0 elsewhere. The
partition function can be found by making use of the transfer matrix method:

Zchain = zN+ + zN− , (5.14)

where z± = e−βJ/2 cosh βε±
√
e−βJ sinh βε+ eβJ . Thirdly, we consider a Star topol-

ogy corresponding to a central spin σ̂(1)
z with local magnetic field ε0(t) and uniform

elsewhere εi(t) ≡ ε1(t) ∀ i > 1, and uniform “radial” interaction J1j(t) = Jj1(t) ≡
J(t), and 0 elsewhere. The partition function is easily computed as

ZStar = e−βε(2 cosh βλ+)
N−1 + eβε(2 cosh βλ−)

N−1 , (5.15)

3See for example D-Wave Systems.

https://www.dwavesys.com/
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Figure 5.3: Dependence of the exponent x of the dissipation W ∗,all
diss = αNx on the

boundary condition βε(τ) (with ε(0) = 0). The fit is achieved for numerical data
up to N = 150.

where λ± = ε1 ± J .

For the models above, given the partition function, we compute the metric
according to eq. (5.4), from which we can obtain the geodesic equations. Their
solution provides us with the minimal length for given boundary conditions, from
which we find the minimal dissipation. We implemented this procedure numerically
for the task of approximate erasure, we take ε(0) = J(0) = J(τ) = 0 and ε(τ) =

5kBT which corresponds to an erasure process with an error of 4.5 · 10−5.

In Fig. 5.2 we present the resulting minimal dissipation for the different many-
body models. The results are contrasted with the optimal non-interacting protocol
eq. (5.7) and the fundamental bound obtained with full-control eq. (5.8) (i.e. arbi-
trarily complex interactions).

First, we observe that the nearest neighbor model displays a linear increase
of the dissipation with N , but with a better pre-factor than the non-interacting
case (W ∗,chain

diss /W ∗,local
diss ≈ 0.686). On the other hand, the all-to-all model displays

a sub-linear dependence on N : W ∗,all
diss = αNx with x ≈ 6/7. Furthermore, the

exponent x displays a non-trivial dependence on the specific boundary conditions,
which can been seen in Fig. 5.3. Finally, quite remarkably, the Star model can
achieve a finite value of the dissipation, independent of N . This feature is enabled by
a 3-step protocol that suppresses specific terms in the otherwise-extensive logZStar.
Interestingly, the Star model was found to be optimal in the context of two-body
probes used for thermometry [75].

The sub-linearity of the all-to-all’s and Star-model’s dissipation is remarkable as
it allows for the same effect as in eq. (5.9): it is possible to reach Landauer’s bound
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Model 1D chain All-to-All Star Pyramid
Asymptotic Wdiss O(N) O(Nx) O(1) O(N2/D)

Short-range ✓ ✗ ✗ ✓

Table 5.1: All models studied in this work are based on two-body interactions (cf.
eq. (5.12)). The All-to-all and Star model feature long-range interactions that enable
a sub-linear scaling of Wdiss , i.e. a collective advantage. The Pyramid models can
achieve such advantage in D = 3 spatial dimensions using short-range interactions
only.

in finite-time with an error that scales as τ−2 instead of τ−1 as one approaches
the thermodynamic limit. However, both these models use long-range interactions
between arbitrarily far spins as N grows, and their scaling properties might thus be
seen as inconsequential. However, we can generalize the Star model to a multi-layer
structure, i.e. a Pyramid model (cf. Fig. 5.2). By generalizing the Star protocol,
it can be shown that (cf. Supp. Mat. of [13]) such model can achieve WPyr

diss ∝ ℓ2,
where ℓ is the number of layers of the pyramid. Given that N ∝ ℓD for pyramids in
D spatial dimensions, WPyr

diss ∝ N2/D follows asymptotically.

5.5 Conclusions and Discussion

In this chapter, we considered the task of minimizing dissipated work, Wdiss, for an
N -body system. We showed that, in contrast to ∆Feq, Wdiss can grow sublinearly
with N by suitably creating interactions between the N systems along the process.
This leads to a finite-time reduction of dissipation induced by collective processes
and has a clear potential for improving various thermodynamic tasks ranging from
quantum/stochastic engines [76,77] to the estimation of equilibrium free energy via
non-equilibrium work measurements [78]; or, as is shown here, for the erasure of
information in finite time. There are several observations to be made about these
collective processes.

First, the derived collective processes are a genuine effect of finite-time thermo-
dynamic protocols, which cannot be directly linked to other well-known collective
phenomena such as entanglement, phase transitions, or superradiance. Indeed, (i)
they do not require the presence of quantum correlations or coherence, but rather
arise due to the interplay between interactions and dissipation to an external ther-
mal environment; and (ii) they are process dependent – i.e. depend on the whole
driving protocol Ĥ(t) – unlike phase transitions which take place in a particular
point in the parameter space.
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Second, the results of this chapter suggest an interesting interplay between the
complexity of the interactions and the associated reduction in dissipation, which is
to be confronted with the results of Ref. [40]. In particular, we argued that reaching
the maximal advantage requires highly non-local N -body interactions. Despite this,
we showed that similar reductions (in scaling) can be achieved with only two-body
long-range interactions via the Star model. A sub-linear growth of Wdiss was found
in the all-to-all model and, crucially, in the Pyramid model that only features short-
range strong interactions. See Table 5.1 for a compact summary.

Third, being derived in the linear response regime, the dissipated work is directly
related to the work fluctuations σ2

W via the work fluctuation-dissipation relation
β
2
σ2
W = Wdiss. This implies that the collective gains also lead to a reduction of work

fluctuations, a desired property in stochastic thermodynamics.
Finally, it is important to stress that our results have been derived in the slow

driving regime, i.e., for the leading order contribution of Wdiss in τ−1. For a finite
(large) time τ , the next order contributions of O(τ−2) can become relevant when
increasing N . An exciting future endeavor is to generalize such collective advantages
for arbitrary non-equilibrium protocols. For this, it might be useful to exploit recent
results on minimal dissipation and the Wasserstein distance [79] as well as new tools
such as reinforcement learning [25] or fast-driving expansions [26] for finding optimal
protocols.

Another future challenge is to understand how the collective advantages are
modified beyond the simple model of thermalization used in eq. (5.4) and by adding
constraints on the strength of the couplings in eq. (5.12). In particular, whether
such advantages can still be found for more realistic thermalization models where
the relaxation timescale(s) is modified in the presence of interactions, which can
lead to a critical slowdown of relaxation.



Chapter 6

Thermodynamic Optimization

Give me a lever long enough and a fulcrum on which to place it, and I
shall move the world.

— Archimedes

The study of how to optimize the energetic cost of a physical task goes back to
the very origin of Thermodynamics with Carnot optimizing the efficiency of thermal
steam engines [80]. This is a question that has a dual scope, on the one hand it can
applied for very practical purposes such as optimizing car engines [27] or minimizing
the overheating of the chips in super-computers [81], while on the other hand it can
applied to probe the most fundamental aspects of the laws of thermodynamics –
e.g. finding the fundamental limit between a finite-resource process and a reversible
process [40].

Generally, optimizing a thermodynamic operation that brings the Hamiltonian
of a system from Ĥi to Ĥf consists in finding the optimal time variation Ĥ(t) that
minimizes the energy dissipated into the environment. This optimization can be
done with varying degrees of constraints to achieve more applied or more funda-
mental lower bounds on dissipation. These bounds can then also be used as speed
limits [82] for performing the described operations, which is of particular interest for
classical and quantum computers. However, it is always a very challenging problem
as it requires functional optimization and boundary value problems to be solved [69]
over solutions of the time-dependent Schrodinger (or Lindblad) equation. There
are a variety of methods to tackle this problem – analytical as well as numerical –
these range from optimal transport [83] and optimal control theory [49, 84, 85] to
geometric methods (cf. Sec. 3.2 and [12]). Because of the fundamental difficulty of
this problem, many open questions remain that range from direct applications to
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more general and fundamental ones.

It is important to note that the minimal amount of work W can be negative,
thus resulting in a gain of energy for the agent. Therefore, in the proper setting, one
can find thermodynamic protocols such that work is extracted from an environment
that is out of equilibrium (cf. Sec. 2.3). Typically an out-of-equilibrium-environment
is modeled as a collection of thermal baths at different temperatures – often two of
those. A thermal engine is a device that implements periodically a work extracting
protocol, so that it can convert a flow of heat between two (or more) thermal baths
into “useful energy” (e.g. kinetic energy).
A relatively simple example to showcase how an engine can exploit a difference in
temperature between two thermals baths to extract work is a periodically driven
quantum dot engine. Since the quantum dot has only two energy levels, we can
choose the Hamiltonian so that the lower energy state has zero energy and the
higher energy state has energy ε. Let us now consider the following process: we first
let the dot thermalize with the colder bath, then we pay some energy to increase
the energy gap ε. At this point, we let the dot thermalize with the warmer bath
and then gain some energy by taking ε back to its initial value. The main thing to
note, to see why one could gain energy in such a process, is that one only pays or
gains energy when the excited state is occupied, as can be see from the integral form
of work eq. (2.5). Since the probability of being in the excited state is lower when
the dot is thermalized with the colder bath compared to when it’s thermalized with
the warmer bath, it is more likely to gain energy from this process than it is to pay
energy. Therefore, on average, energy flows from the warmer bath to the cold bath
and the agent.
The performance of an engine can be quantified in different ways. One very natural
metric to do so is the average amount of energy extracted per unit time: power,
which is defined as

⟨P ⟩ := −W
τ
, (6.1)

where here we denote by W the work cost of a cycle and by τ the length of the cycle.
However, when we consider that some of the energy from the warm bath ends up
in the cold bath during a cycle, it can also be natural to consider how efficient the
engine is

η :=
W

Qh

, (6.2)

where Qh denotes the energy gained by the hot bath – the sign choice of Qh might
be making this definition less intuitive, but it was made so to be consistent with the
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first law as it is formulated in eq. (2.2). The optimization of these quantities is a
topic which has been a widely studied in the literature [86–88]. However it is seldom
the case that they can be optimized simultaneously. Finally, the systems we will
be dealing with are stochastic in nature. As opposed to engines at the macroscopic
scale, one cannot expect to extract the same amount of work at each cycle, therefore
we will be quantifying the constancy – or more precisely, the lack thereof – with the
power fluctuations ⟨∆P ⟩ := σ2

W/τ , where σ2
W is the variance of work [89]

σ2
W := 2ℜ

∫ τ

0

dt

∫ t

0

dt′ Tr
[
Ĥ ′(t)G(t, t′)

[
∆ρ̂(t′)Ĥ

′(t′)ρ̂(t′)
]]

, (6.3)

for ∆ρ̂Â := Â− Tr[Âρ̂] and G the propagator of the evolution (cf. Sec. 3.1).

In this chapter, we will be looking at three examples of thermodynamic opti-
mization: for a quantum dot engine [25], for an information engine (a.k.a. Szilard
engine), and finally for fast thermodynamic operations [26].

6.1 Quantum Dot Heat Engine

Stochastic heat engines are devices that convert a heat flow into work at the nano-
scale [90]. We can distinguish between two classes of such engines: steady-state
heat engines (SSHE) perform work against external thermodynamic forces (e.g. a
chemical potential difference) after reaching a non-equilibrium steady state [91],
while periodically driven heat engines (PDHE) perform work against external driv-
ing fields through time-dependent cycles. Earlier works have started optimizing the
power fluctuation of these engines [19, 20]. However, a framework to fully optimize
the performance of microscopic heat engines that accounts power, efficiency and
power fluctuations is currently lacking. In fact, an ideal engine operates at high
power, high efficiency, and low power fluctuations; however, such quantities usu-
ally cannot be optimized simultaneously, but one must seek trade-offs. In SSHEs,
a rigorous manifestation of this trade-off is given by thermodynamic uncertainty
relations [21, 24]. For “classical” stochastic SSHE (i.e. in the absence of quantum
coherence) operating between two thermal baths at inverse temperatures βC (cold)
and βH (hot), they read [21]:

ξ ≡ 2

βC

⟨P ⟩
⟨∆P ⟩

η

ηc − η
≤ 1, (6.4)
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Figure 6.1: A quantum system (gray circle) is coupled to a thermal bath (left box)
characterized by a controllable inverse temperature β(t). The coupling produces a
heat flux J(t). Control parameters λ(t) allow us to control the state of the system
and the power P (t) extracted from the system.

where ηc ≡ 1 − βH/βC is the Carnot efficiency. Such thermodynamic uncertainty
relations imply, for example, that high efficiency can only be attained at the expense
of low power or high power fluctuations. The thermodynamic uncertainty relation
inequality eq. (6.4) can be violated with quantum coherence [92] and in PDHEs [93].
This has motivated various generalized thermodynamic uncertainty relations [94], in
particular for time-symmetric driving [95] and slowly driven stochastic engines [96].
Despite their importance, thermodynamic uncertainty relations provide an incom-
plete picture of the trade-off: while high values of ξ may appear more favorable, this
does not give us any information on the individual objectives.

In this section, we present a framework to optimize any trade-off between power,
efficiency, and power fluctuations in arbitrary PDHE described by Lindblad dynam-
ics [97, 98]. This allows us to find Pareto-optimal cycles, i.e. those cycles where no
objective can be further improved without sacrificing another one. We then show
how reinforcement learning (RL) can be used to fully optimize a quantum dot (QD)
engine [99]. We characterize the Pareto front, i.e. the set of values {⟨P ⟩, ⟨∆P ⟩, η}
corresponding to Pareto-optimal cycles, and evaluate the thermodynamic uncer-
tainty relation ratio ξ on such optimal cycles. Furthermore, we derive analytical
results for the Pareto front and ξ in the fast and slow driving regimes, i.e. when the
period of the cycle is respectively much shorter or much longer than the thermal-
ization timescale of the system.
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6.1.1 Multi-Objective Optimization of Heat Engines

In this case we will study an engine featuring a single thermal bath with tunable
inverse temperature β(t) between two extremal values βH and βC, which can be
regarded as having a large selection of baths to choose from – thus allowing for
further optimization. An illustration is presented in Fig. 6.1. The coupling between
system and bath produces a heat flux J(t) from the bath to the quantum system,
while the system itself is controlled by the parameters λ⃗(t) that allow exchanging
work with the system. Therefore, in this framework, a thermodynamic cycle is
described by periodic functions β(t) and λ⃗(t). This framework includes standard
PDHEs, in which the system is sequentially put in contact with two baths (by
abruptly changing the values of β(t)) and cases where β(t) varies smoothly in time.
We assume that the dynamics of the system are described by a Markovian master
equation (cf. Sec. 3.1), and we consider PDHEs in the asymptotic limit cycle – i.e.
in the limit of infinite repetitions of the cycle. Because of this assumption, we can
express that the time average ⟨O⟩ of an arbitrary quantity O(t) as

⟨O⟩ = 1

τ

∫ τ

0

dt O(t) , (6.5)

where τ is the period of the cycle. We can therefore compute the average power
⟨P ⟩, power fluctuations ⟨∆P ⟩ and entropy production ⟨Σ⟩ by averaging

P (t) = −Tr
[
ρ̂(t)Ĥ ′(t)

]
, (6.6)

∆P (t) = Tr
[
ŝ(t)Ĥ ′(t)

]
, (6.7)

Σ(t) = −β(t)Tr
[
ρ̂′(t)Ĥ(t)

]
= −J(t)β(t) . (6.8)

Here, ρ̂(t) and Ĥ(t) are respectively the reduced density matrix and the local Hamil-
tonian of the quantum system, while ŝ(t) is an auxiliary Hermitian operator satisfy-
ing Tr[ŝ(t)] = 0 that we introduce to compute the power fluctuations. These satisfy

dρ̂(t)

dt
= Lλ⃗(t),β(t)[ρ̂(t)],

dŝ(t)

dt
= Lλ⃗(t),β(t)[ŝ(t)] + {ρ̂(t), Ĥ ′(t)} − 2Tr[ρ̂(t)Ĥ ′(t)]ρ̂(t),

(6.9)

where Lλ⃗(t),β(t) is the Lindbladian describing the evolution of the system and {·, ·} is
the anti-commutator. In the asymptotic limit cycle, it can be shown that both ρ̂(t)
and ŝ(t) are periodic with the same period as the control, and can thus be determined
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by solving eq. (6.9) with periodic boundary conditions. While the expressions of ⟨P ⟩
and ⟨Σ⟩ are standard in the limit cycle [100], the expression for ⟨∆P ⟩ in terms of
ŝ(t) is less common. But we use it here as it is crucial to efficiently minimize the
power fluctuations of the non-equilibrium engine using RL.

To identify Pareto-optimal cycles we introduce the dimensionless figure of merit

⟨F ⟩ = a
⟨P ⟩
Pmax

− b ⟨∆P ⟩
∆P (Pmax)

− c ⟨Σ⟩
Σ(Pmax)

, (6.10)

where a, b, c ≥ 0 are three scalar weights, satisfying a + b + c = 1, that determine
how much we are interested in each of the three objectives, and Pmax, ∆P (Pmax) and
Σ(Pmax) are respectively the average power, fluctuations and entropy production
of the cycle that maximizes the power. Notice that, given the relation between
entropy production and efficiency, cycles that are Pareto-optimal for {⟨P ⟩, ⟨∆P ⟩, η},
are also Pareto-optimal for {⟨P ⟩, ⟨∆P ⟩, ⟨Σ⟩}. The positive sign in front of ⟨P ⟩ in
eq. (6.10) ensures that we are maximizing the power, while the negative sign in front
of ⟨∆P ⟩ and ⟨Σ⟩ ensures that we are minimizing power fluctuations and the entropy
production. Pareto-optimal trade-offs are then found maximizing ⟨F ⟩ for various
choices of a, b and c.

6.1.2 Optimal Quantum Dot Heat Engine

In the following, we compute Pareto-optimal cycles in a minimal heat engine con-
sisting of a two-level system coupled to a Fermionic bath with flat density of states.
This represents a model of a single-level QD [86]. The Hamiltonian reads

Ĥ(t) = λ(t)
ε

2
σ̂z, (6.11)

where λ(t) is our single control parameter, ε is a fixed energy scale and σ̂z is the
z-Pauli matrix. Denoting with |1⟩ the excited state of Ĥ(t), and defining p(t) :=

⟨1|ρ̂(t)|1⟩ as the probability of being in the excited state, the Lindblad equation
eq. (6.9) becomes p′(t) = −γ(p(t) − f(ελ(t)β(t))), where γ−1 is the thermalization
timescale arising from the coupling between system and bath, and f(x) = (1+ex)−1

is the excited level population of the instantaneous Gibbs state.

We optimize ⟨F ⟩ of the QD heat engine using three different tools: RL, analytics
in the fast-driving regime, and analytics in the slow-driving regime. The RL-based
method allows us to numerically optimize ⟨F ⟩ without making any approximations
on the dynamics, exploring all possible (time-discretized) time dependent controls
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β(t) and λ(t) subject to the constraints β(t) ∈ [βH, βC] and λ(t) ∈ [λmin, λmax], and
identifying automatically also the optimal period τ . The RL method, based on the
soft actor-critic algorithm [101] and generalized from [102,103], additionally includes
the crucial impact of power fluctuations, and identifies Pareto-optimal cycles. Ma-
chine learning methods have been employed for other quantum thermodynamic [104]
and quantum control [105] tasks.

The fast-driving regime assumes that τ ≪ γ−1. Interestingly, without any as-
sumption on the driving speed, we show that any trade-off between power and
entropy production (b = 0 in eq. (6.10)) in the QD engine is maximized by Otto cy-
cles in the fast-driving regime, i.e. switching between two values of β(t) and λ(t) “as
fast as possible” [106]. We thus expect such “fast-Otto cycles” to be nearly optimal
in the high power regime.

The slow-driving regime corresponds to the opposite limit, i.e. τ ≫ γ−1. Since
entropy production and power fluctuations can be minimized by considering quasi-
static cycles, we expect this regime to be nearly optimal in the high efficiency and
low fluctuations regime, i.e. for low values of a in eq. (6.10). To make analytical
progress in this regime, we maximize eq. (6.10) assuming a finite-time Carnot cycle.
The obtained results naturally generalize previous considerations for low-dissipation
engines [22,107,108] to account for the role of fluctuations. The main technical tool
is the geometric concept of “thermodynamic length” [43, 109] which yields the first
order correction in (γτ)−1 from the quasi-static limit.

We now present the results. Each point in Fig. 6.2(a) corresponds to a separate
optimization of ⟨F ⟩ with weights c and a displayed on the x-y axis. Since b =

1− a− c, points lying on the sides of the triangle (highlighted in yellow) correspond
to optimizing the trade-off between 2 objectives, whereas points inside the triangle
take all 3 objectives into account. Denoting the figure of merit optimized with RL
and with fast-Otto cycles with ⟨F ⟩RL and ⟨F ⟩FAST, in Fig. 6.2(a) we show blue (red)
dots when ⟨F ⟩RL > ⟨F ⟩FAST (⟨F ⟩RL ≤ ⟨F ⟩FAST), while Fig. 6.2(b) is a contour plot
of ⟨F ⟩RL. As expected, there are red dots when b = 0 (along the hypotenuse), but
it turns out that fast-Otto cycles are optimal also when c = 0. However, as soon as
all 3 weights are finite, the optimal cycles identified with RL change abruptly and
outperform fast-Otto cycles. Furthermore, we notice that while ⟨F ⟩RL is positive
for all values of the weights, ⟨F ⟩FAST = 0 below the black curve shown in Fig. 6.2(b)
for its analytic expression.

To visualize the changes in protocol space, in Fig. 6.2(c,d,e) we show the cycles
identified with RL at the three different values of the weights highlighted by a black
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Figure 6.2: Optimization of ⟨F ⟩ at different values of a and c, with b = 1 − a − c,
for a QD-based PDHE. Each dot in panel (a) displays, as a function of c and a,
whether ⟨F ⟩RL > ⟨F ⟩FAST (blue dots) or not (red dots). Points with a ∼ 0 are not
displayed since, in such a regime, optimal cycles become infinitely long (to minimize
entropy production and fluctuations) and the RL method does not converge reliably.
(b): contour plot of ⟨F ⟩RL, as a function of c and a, using the data-points of (a).
The black line represents the curve below which ⟨F ⟩FAST = 0. (c,d,e): cycles,
described by piece-wise constant values of β (black dots) and λ (blue dots) as a
function of t, identified at the three values of a and c highlighted in black in panel
(a) (respectively from top to bottom). The inset in panel (c) represents a zoom into
the corresponding cycle, which is a fast-Otto cycle. Parameters: βC = 2, βH = 1,
λmin = 0.2, λmax = 1.1 and ε = 2.5.

circle in Fig. 6.2(a) (respectively from top to bottom). Since RL identifies piece-wise
constant controls, the cycle is displayed as dots corresponding to the value of β(t)
(black dots) and λ(t) (blue dots) at each small time-step. First, we notice that
the inverse temperature abruptly switches between βH and βC for all values of the
weights, so that in this engine no gain arises when smoothly varying the temperature.
As expected, the cycle identified by RL in Fig. 6.2(c), corresponding to the black
point on the hypotenuse in Fig. 6.2(a), is a fast-Otto cycle (a “zoom” in a short time
interval is shown in the inset). However, moving down in weight space to the black
dot at a = 0.6 and c = 0.2, we see that the corresponding cycle (Fig. 6.2(d)) now
displays a finite period, with linear modulations of λ(t) at fixed temperatures, and
a discontinuity of λ(t) when switching between βH and βC. The cycle in Fig. 6.2(e),
corresponding to the lowest black dot at a = 0.2 and c = 0.4, displays an extremely
long period τ ≈ 125γ−1, which is far in the slow-driving regime. Optimal cycles,
therefore, interpolate between the fast and the slow-driving regimes as we move in
weight space (cf. Fig. 6.2(a)) from the sides to the lower and central region – i.e.
switching from 2 to 3 objectives.

In Fig. 6.3 we display the Pareto-front, i.e. we plot the value of P/Pmax, η/ηc, and
∆P/∆P (Pmax) found maximizing ⟨F ⟩ for various values of the weights. Fig. 6.3(a)
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Figure 6.3: Pareto-front found optimizing ⟨F ⟩ with fast-Otto cycles in the limit of
small temperature differences (panel (a)), optimizing ⟨F ⟩ in the slow-driving regime
(panel (b)), and numerically using RL (panel (c)). The system parameters are as
in Fig. 6.2. All panel display ⟨∆P ⟩/∆P (Pmax) as a function of ⟨P ⟩/Pmax (x-axis)
and of η/ηc (color). The black curve represents the outer border of the Pareto-front
derived analytically.

is derived in the fast-driving regime assuming a small temperature difference, while
Fig. 6.3(b) is derived in the slow-driving regime. The RL results, shown in Fig. 6.3(c),
correspond to the points in Fig. 6.2(a). First, we notice that, by definition of the
Pareto front, the “outer border” corresponds to points where we only maximize the
trade-off between the two objectives ⟨P ⟩ and ⟨∆P ⟩. Since these points are optimized
by fast-Otto cycles, the black border of Fig. 6.3(a), also shown in Fig. 6.3(b,c), is
exact. Moreover, in this setup, we can establish an exact mapping between the
performance of a SSHE and of our PDHE operated with fast-Otto cycles. Since
SSHE satisfy eq. (6.4), also fast-Otto cycles have ξ ≤ 1. Furthermore, for small
temperature differences, ξ = 1. This allows us to fully determine the internal part
of the Pareto front in the fast-driving regime using the thermodynamic uncertainty
relations, i.e. P/Pmax = (∆P/∆P (Pmax))(ηc−η)/η. Indeed, the linear contour lines
in Fig. 6.3(a) stem from the linearity between P and ∆P , the angular coefficient
being determined by the efficiency.

Comparing Fig. 6.3(a,b), we see where the fast and slow-driving regimes are
optimal. As expected, the slow-driving Pareto front cannot reach the black border,
especially in the high-power area, where fast-Otto cycles are optimal. However, in
the low power and low fluctuation regime, cycles in the slow-driving substantially
outperform fast-Otto cycles by delivering a higher efficiency (pink and purple regions
in Fig. 6.3(b)).

Interestingly, the RL points in Fig. 6.3(c) capture the best features of both
regimes. RL can describe the high-power and low fluctuation regime displaying
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Figure 6.4: (a): contour plot of the SSHE thermodynamic uncertainty relationship
ratio ξ as a function of c and a. (b,c,d): log-log plot of ξ, color mapped as in panel
(a), as a function of ⟨P ⟩/Pmax, ⟨∆P ⟩/∆P (Pmax) and ⟨Σ⟩/Σ(Pmax), respectively.
Every point corresponds to the same RL optimization performed in Fig. 6.2. The
black line is the behavior of ξ derived analytically in the slow-driving regime for
small values of ⟨P ⟩, ⟨∆P ⟩ and ⟨Σ⟩.

both red and blue/green dots near the lower border. The red dots are fast-Otto
cycles that are optimal exactly along the border but deliver a low efficiency. The
blue/green dots instead are finite-time cycles that deliver a much higher efficiency
by sacrificing a very small amount of power and fluctuations. This dramatic en-
hancement of the efficiency as we depart from the lower border is another signature
of the abrupt change in optimal cycles.

6.1.3 Violation of Thermodynamic Uncertainty Relation

At last, we analyze the behavior of the thermodynamic uncertainty relation ratio ξ
(cf. eq. (6.4)), which represents a relevant quantity combining the three objectives,
computing it on Pareto-optimal cycles (recall that ξ ≤ 1 for classical stochastic
SSHE but PDHE can violate this bound [93]). In Fig. 6.4(a) we show a contour
plot of ξ, computed with RL, as a function of a and c. Because of the mapping
between SSHE and fast-Otto cycles, we have ξ = 1 along the sides of the triangle,
where only 2 objectives are optimized. However, this mapping breaks down for
finite-time cycles, allowing us to observe a strong increase of ξ in the green/purple
region in Fig. 6.4(a). As shown in Fig. 6.2, this region corresponds to long cycles
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operated in the slow-driving regime, where violations of thermodynamic uncertainty
relations had already been reported. In Fig. 6.4(b,c,d) we show a log-log plot of ξ
respectively as a function of P/Pmax, ∆P/∆P (Pmax), and Σ/Σ(Pmax) with the same
color-map as in Fig. 6.4(a). We see that ξ diverges in the limit of low power, low
fluctuations, and low entropy production as a power law. Indeed, using the slow-
driving approximation, we analytically prove that ξ diverges as ⟨P ⟩−2, ⟨∆P ⟩−1, and
⟨Σ⟩−1. Such relations, plotted as black lines, nicely agree with our RL results.

6.2 Szilard Engine

As opposed to the typical heat engine, information engines function with a single
thermal bath that is at equilibrium. Initially this might seem as if it would be
violating a formulation of the second law of thermodynamics (cf. Sec. 2.3), but
no such violation is occurring. Information engines function by making use of a
measurement instead of a cold bath [110]. The fact that this is possible becomes
less surprising once one considers that there is a tight thermodynamic link between
perfect measurements and zero-temperature baths [40].

The reason why there is no violation of the second law is that information is
physical and, as a consequence, its manipulation has a thermodynamic cost [111].
Likewise, information is a thermodynamic resource that can be exploited to generate
work, e.g., by means of information engines – also known as Szilard engines. These
deep links between information and thermodynamics go back to seminal ideas by
Maxwell, Szilard and Landauer [4,112]. Their once thought-experiments can nowa-
days be realized in a variety of physical platforms driven by the development of the
fields of stochastic and quantum thermodynamics [113,114]. Pioneering experimen-
tal works linking information and thermodynamics realized an information Szilard
engine [115] and the erasure of information close to the Landauer limit [116] on
single colloidal particle, which were followed by several demonstrations in Brownian
colloidal particles [117] but also in quantum systems like single-electron quantum
dots [118], ultra-cold atoms [119], NMR [120] and superconducting circuits [121].

The steps in the cycle of a Szilard quantum dot engine can be broken down as
follows: 0) The effective energy gap starts at 0 and the system is always in contact
with the bath. 1) Measure the occupation of the dot with the charge sensor. 2) If
the outcome of the measurement at step 1 is that the dot in the state |0⟩: quickly
increase ε to a large value, if instead the outcome is |1⟩ quickly decrease ε to a large
negative value. 3) Decrease the energy gap in some finite time τ until it reaches 0.
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The protocol is designed to use the information of the measurement so that we
are always in a position of gaining energy during step 3. However, by Landauer’s
principle, at the measurement in step 1 there is an implicit cost of kBT ln 2 that will
be payed when the memory storing the result is erased.

Fully exploiting the thermodynamic content in information typically requires
reversible, and hence infinitesimally slow, processes. This naturally raises the ques-
tion of how information engines can be optimally driven in finite time and hence
out-of-equilibrium conditions. This question has been extensively studied theoreti-
cally, including general optimization frameworks [22] as well as finite-time versions
of the Landauer’s principle [12]. At the experimental level, relevant progress has
been achieved in the optimization of classical information engines based on optically
trapped colloidal particles [122] whereas, for quantum systems, a recent work ex-
ploited the concept of thermodynamic length to perform optimal Landauer erasure
in the slow driving limit [54].

The goal of this section is optimize – similarly to the previous section – and
implement in a quantum dot experiment – collaborating with the group of Natalia
Ares – a finite-time Szilard engine in the whole range of driving speeds: ranging from
the slow (high efficiency, low power) to the fast (high power, low efficiency) driving
regime. The optimal protocol is found from the theoretical results of [49], which
interpolates between the two-jump protocols for fast driving [26] and the geodesic
protocols of [9] at slow driving. We also characterize work fluctuations, which play
a dominant role at these scales [29]. We observe that, whereas in the high efficiency
regime work fluctuations disappear due to the fluctuation-dissipation regime, higher
power comes inevitably with higher fluctuations.

6.2.1 Experiment

Here we discuss the experimental device, which was realized by the group of Prof.
N. Ares. The device is is shown in Fig. 6.5(a). It consists of a quantum dot system
in a strained Ge quantum well. An information bit is encoded in the occupancy
of the right dot in the bottom array (QD1). This quantum dot QD1 is defined by
applying voltages VG1 and VG3 that confine the electronic state. The discrete energy
level E is controlled using the plunger gate voltage VG2. The left dot in the array
is positioned in Coulomb blockage which limits the tunneling of QD1 to the right
reservoir. Another quantum dot in the top array, defined using gates VCS1-CS3, serves
as a probe for the occupancy n of QD1. The occupancy n is monitored by measuring
the current ICS through the charge sensor dot as shown in Fig. 6.5(b).
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Figure 6.5: (a) The experimental device: a quantum dot system in a strained Ge
quantum well. (b) Monitoring of the occupancy of the dot via the current ICS.

The experiment is performed in a regime where n ∈ 0, 1 i.e, when QD1 has an
extra particle or not. The tunneling in and out rates are characterized by γin =

Γinf(ε) and γout = Γout(1 − f(E)), where Γin = 3.5 Hz and Γout = 7 Hz. We note
that Γout ≈ 2Γin indicating the spin degeneracy of the system.

In this section, we operate this device as a Szilard engine, the details of which
are described in the next section. From an operational perspective this requires us
to let the quantum dot system thermalize with the reservoir while keeping its energy
at E0 = 2kBT which corresponds to a 50%−50% occupation, where T is the electron
temperature. Then the charge sensor measures the instantaneous charge state, and
the gate voltage VG2 is modified to realize the optimal protocol.

6.2.2 Optimization of a Szilard Engine

In this section we will present how the setup can be used as a Szilard engine and
then proceed to optimize it. The two-level system can be effectively described by
the Hamiltonian

Ĥ(t) =
1

2
ε(t)σ̂z , (6.12)

where ε(t) is the effective gap between the energy levels, we define it so that it is 0

when the occupation probability is 0.5, therefore we have the relation ε = E + E0.
This energy gap can be be externally controlled by the gate voltage VG2. By denoting
with |1⟩ the excited state of Ĥ(t), p(t) := ⟨1|ρ̂(t)|1⟩ is the probability of being in
the excited state. The Markovian dynamical equation becomes

ṗ(t) = γ(ω(t)− p(t)) , (6.13)
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where ω(t) = (1+eβε(t))−1 is the excited level population of the instantaneous Gibbs
state, γ−1 is the thermalization timescale due to the interaction between system and
bath, and β = (kBT )

−1 is the inverse temperature of the bath. Eq. (6.13) can be
solved to find

p(t) = p(0)e−γt + γ

∫ t

0

ds ω(s)e−γ(t−s) . (6.14)

Ref. [49] shows that for the system at hand the exact dynamics are simple enough to
obtain a general analytical solution for ε(t) and p(t) that minimizes the work cost.
Here we will focus on finding the optimal protocol ε0(t) in the case we measure |0⟩
in step 1. By spin-flip symmetry, the optimal protocol ε1(t) in the case where we
measure |1⟩ is simply given by ε1(t) = −ε0(t). Since we have to perform cycles, the
symmetry of the problem imposes the boundary conditions ε(0) = ε(τ) = 0. From
ref. [49] optimal protocols satisfy

p(t) =
1−
√
Keβε(t)/2

1 + eβε(t)
, 0 < t < τ , (6.15)

where K is an integration constant determined by the boundary conditions. For
a given value of K, one can find p(t) = F−1

K (t), where FK(p) is a transcendental
function. By inserting eq. (6.15) into eq. (2.5) we can express the work cost of optimal
protocols as a function of their boundary conditions on p

min
ε(t)

βW [ε(t)] = G(p(0))−G(p(τ)) , (6.16)

where G(p) is also a transcendental function that can be found in ref. [49].

The measurement at step 1 sets the boundary condition p(0) = 0. Since at the
start of the next cycle another measurement will be performed, we do not need to
impose a boundary condition at p(τ). Therefore by replacing p(τ) with F−1

K (τ) in
eq. (6.16) and minimizing with respect to K we can find the optimal integration
constant κτ (for a given protocol time τ) which defines the optimal protocol:

βε0(t) = 2 ln

[√
κτ + 4F−1

κτ
(t)(1− F−1

κτ
(t))−√κτ

2F−1
κτ

(t)

]
. (6.17)

Since the optimal integration constant is defined by

κτ := argmax
K

G(F−1
K (τ)) , (6.18)

we turned the functional minimization problem in eq. (6.16) into a regular minimiza-
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Figure 6.6: (a) Optimal protocol for different values of γτ . (b,c,d) Comparison
of predicted and measured efficiency η = −βW/ ln 2 (b), power ⟨P ⟩ = −W/τ (c),
and power fluctuations ⟨∆P ⟩ = Var(P ) (d) for implementations of the optimal
protocol eq. (6.17) (red) and a linear ramp ε(t) = 5kBT (τ − t)/τ (blue) at different
values of γτ that range from the fast-driving regime to the slow-driving regime. The
experimental data is represented with points and the shaded area corresponds to
the statistical error of the measurement.

tion problem, which is much simpler to handle numerically. It is worth noting that
the optimal protocol features jumps at the start and the end of the protocol, as it
can be noted from eq. (6.17) that ε(t) > 0 for 0 < t < τ . In Fig. 6.6(a) we showcase
these optimal protocols for a range of values of γτ from the slow-driving regime to
the fast-driving regime.

6.2.3 Results and Discussion

For the engine cycle to be truly closed, the information obtained from the mea-
surement at step 1 will have to erased. Thus dissipating kBT ln 2 of heat into the
environment because of Landauer’s principle (cf. Chapter 4). This gives us a simple
formula for the efficiency of this engine

η =
−W

kBT ln 2
. (6.19)

The efficiency of the information engine reaches its maximum ηC = 1 in the static
limit, which corresponds to the Carnot efficiency one obtains when setting the tem-
perature of the cold bath to zero. This is simply one of many examples of the link
between perfect measurements and zero temperature baths [40].

It is interesting to note that this expression for efficiency implies that, for a
given cycle length τ , the optimization of power and efficiency coincide. Therefore
here it is sufficient to maximize the work gained to optimize both the power and
efficiency. In Fig. 6.6(b,c) we show as red solid lines the maximal efficiency and
maximum power that can be achieved for a given value of γτ . We also compare the
obtained results to the power and efficiency of a “naive protocol”: a linear ramp from
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±5kBT to 0 over the whole period τ – the + sign corresponds to measuring |0⟩ and
− to measuring |1⟩. We can se that the difference is not very significant in terms of
efficiency. However, for power the optimal protocol has significant gains in the fast
driving regime. In Fig. 6.6(d) we computed the power fluctuations ⟨∆P ⟩ = Var(P )
(cf. eq. (6.3)) for the optimal and naive protocols. Interestingly, we can see that in
the fast driving regime the naive protocol has slightly better fluctuations than the
optimal protocol.

For a series of values of γτ between 10−1 and 101 we implemented optimal
protocols and linear ramps while measuring the dot’s occupation. We can then
use the dot occupation data to compute the work cost of a single round of the
experiment, with multiple repetitions (in the thousands for the faster protocols
and at least 200 for the slower ones) we can compute the corresponding statistical
cumulants. The resulting values are shown in Fig. 6.6(b-d) as dots, and the shaded
area corresponds to the statistical error. We can see that the experiment is in total
agreement with the predicted values in for the power and efficiency. However for
the fluctuations it seems that the measured values are generally lower than the
predicted values (more than 1σ away for most values). This bias could be explained
with the fact that the calibration of the experiment drifts over time. But overall,
the agreement between theory and experiment for the extracted work shows the
feasibility of these optimal protocols in information engines.

6.3 Fast Operations

For the last section of this chapter we move away from heat engines and look at
the optimization of operations in the fast driving regime. In particular, we will
look at the problem of minimizing the dissipated work and minimizing the work
fluctuations. However, typically it is not possible to minimize the dissipation and
fluctuations simultaneously and a compromise must be chosen. Current research
aims to understand the interplay and unavoidable trade-offs between dissipation and
fluctuations in classical-stochastic and quantum thermodynamic systems [21, 23],
and it remains an ongoing problem of how best to balance these two competing
figures of merit in different scenarios.

With regard to dissipation, or equivalently the average excess work done to drive
a system out of equilibrium, optimal processes are well characterized in slowly driven
or linear response regimes where methods from thermodynamic geometry can be em-
ployed [43]. For classical stochastic systems operating in these close-to-equilibrium
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regimes the work fluctuation-dissipation relation holds [5], implying that paths of
minimal dissipation simultaneously minimize the resulting work fluctuations. While
this is not always satisfied by non-classical systems due to the impact of quantum co-
herence [89], an alternative geometric approach has been recently developed that can
determine minimum fluctuation protocols for slowly driven quantum systems [123].
On the other hand, it is desirable to understand how to optimize systems beyond
linear response driving and where shorter operation times are needed. The goal of
this section is to establish a general optimization principle for minimizing both the
average excess work and its fluctuations in rapidly driven small systems.

The study of driven Brownian particles first hinted at a key feature of minimum-
dissipation protocols for fast driving; such protocols contain discontinuous jumps in
the system control parameters or degrees of freedom [48]. This has been further
evidenced in a range of other systems through either analytic or numerical treat-
ments of finite-time thermodynamic optimization problems [49, 57, 83, 84]. More
recently the optimality of these control parameter quenches has been proven in gen-
eral with regard to maximizing the power and efficiency of microscopic heat engines
with fast operation cycles [85,106], and furthermore proven optimal for minimizing
the average excess work done on classical stochastic systems rapidly driven from
equilibrium [124]. In contrast to dissipation, little is known about how to mini-
mize work fluctuations under rapid driving, nor is it known how these protocols
compare to those with minimal dissipation. In this section we show that protocols
with minimal fluctuations also consist of instantaneous jumps in the systems con-
trol parameters. Our result applies in full generality to any quantum or classical
system whose generator is independent of the control parameter velocities. While
sharing the same general design principle as minimal-dissipation protocols, these
control variables typically need to jump to a distinct point in the parameter space,
meaning that average excess work and work fluctuations cannot be simultaneously
optimized. Furthermore, and as we will illustrate, one practical advantage of this
approach is that it enables us to optimize driving protocols for complex many-body
systems where exact results are lacking.

In Sec. 6.3.1 we start by deriving general expressions for the average excess work
and its variance for rapidly driven quantum systems. Then in Sec. 6.3.2 we present
the general Euler-Lagrange equations for finding optimal protocols in this fast driv-
ing regime and show that all solutions consist of discrete jumps in the control param-
eter space. We then explore different scenarios where this optimization scheme can
be implemented; Sec. 6.3.3 focuses on closed quantum systems, whereas Sec. 6.3.4
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concerns open quantum systems including erasure of a quantum dot and driving a
classical and quantum Ising spin chain.

6.3.1 Excess Work and Fluctuations

We will begin with a rather general treatment of a finite-dimensional quantum sys-
tem subject to rapid time-dependent driving, which may be isolated or in contact
with an environment. Following the notation presented in Sec. 3.2 we decompose
the Hamiltonian as follows

Ĥ(λ) = Ĥ0 + λjX̂j, t ∈ [0, τ ], (6.20)

where Ĥ0 denotes a fixed Hamiltonian in the absence of driving, {λj}nj=1 are exter-
nally controllable parameters and {X̂j}nj=1 are the corresponding observables. For
now we can assume the evolution is given by a Markovian generator of the form

dρ̂(t)

dt
= Gλ⃗t

[ρ̂(t)]; ρ̂(0) = π̂(λi). (6.21)

with a thermal initial condition. The most notable part of this assumption is that
the generator is independent of the velocity dλ(t)/dt, and depends only on the lo-
cal values of λ(t). This is readily satisfied by isolated quantum systems evolving
unitarily, adiabatically driven open quantum systems [125] and Markovian dynam-
ics for classical/quasi-classical systems driven by scalar potentials. On the other
hand, open quantum systems driven non-adiabatically may not meet this require-
ment [126]. We also stress that while our system is initially thermal, we place no
restriction on the final state after the protocol has been applied.

As a quantifier for the degree of irreversibility associated with the process, the
average excess – or dissipated, cf. Sec. 2.3 – work done on the system is given by

Wex = W −∆F, (6.22)

where ∆F is the change in equilibrium free energy. The excess work disappears
Wex → 0 in quasi-static processes where the system is always in thermal equilib-
rium, which also implies absence of work fluctuations due to the work fluctuation-
dissipation relation βσ2

W/2 = Wex holding valid in this limit [5]. For non-equilibrium
processes, both Wex and σW will become relevant, and we expect their magnitudes
to increase with the speed of the process (i.e. as τ decreases). Our goal is then to
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investigate which protocols give the smallest values of average dissipation Wex and
work fluctuations σW respectively. In general, computing and optimizing the work
moments relies on knowing an exact solution to the dynamics eq. (6.21). While this
is not generally tractable, we will demonstrate that this control problem becomes
considerably simpler in fast driving regimes (i.e. when the overall time τ taken to
go from λi to λf is small relative to the characteristic timescales of the system).

We first quantify precisely what we mean by a fast protocol by defining a char-
acteristic timescale τc for the generator given by [106]

τ−1
c = max

0≤t≤τ
||Gλ(t)||, (6.23)

where we introduce a norm

||Gλ|| = max
Tr[O]<∞

||Gλ[O]||1
||O||1

(6.24)

and ||A||1 = Tr
[√

A†A
]
. For a finite-dimensional unitary generator, this parameter

is bounded by the operator norm of the Hamiltonian, while for systems undergoing
non-unitary dynamics with a unique fixed point then τc bounds the shortest relax-
ation timescale associated with the system. Overall, this gives us a definition of the
fast driving regime which assumes that the total duration is short enough such that
τ ≪ τc. To see how this approximation impacts the work moments, let us start by
seeing how it impacts the evolution. We can expand the solution to eq. (6.21) as a
Dyson series:

ρ̂(t) = π̂(λi) +
∞∑

n=1

∫ t

0

dtn

∫ tn

0

dtn−1...

∫ t2

0

dt1 Gλ(tn)Gλ(tn−1)...Gλ(t1)[π̂(λi)] . (6.25)

If one makes the integral parameters dimensionless by extracting τ , with eq. (6.23)
one can see that the n-th term of the sum is of order O(τn/τnc ). Therefore we define

σ̂(t) = π̂(λi) +

∫ t

0

dt′ Gλ(t′)[π̂(λi)] , (6.26)

by construction ||ρ̂(t)− σ̂(t)||1 ≤ O(τ 2/τ 2c ). Therefore we can approximate the state
with σ̂(t) so long as τ ≪ τc. We can use this approximation to compute the excess
work

Wex = kBTS(π̂(λi)||π̂(λf )) +
∫ τ

0

dt
dλj(t)

dt

∫ t

0

dt′ Rj(λ(t
′)) +O

(
τ 2/τ 2c

)
. (6.27)
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Where we use the relative entropy

S(ρ̂1||ρ̂2) = Tr[ρ̂1 log ρ̂1]− Tr[ρ̂1 log ρ̂2] , (6.28)

and defined the quantum initial force relaxation rate (IFRR):

Rj(λ) :=
〈
G†λ[X̂j]

〉
λi

(6.29)

where ⟨X̂j⟩λi
= Tr[X̂jπ̂(λi)] is the expectation value with respect to the initial

equilibrium state. We can then do an integration by parts on eq. (6.27) to obtain

Wex = kBTS(π̂(λi)||π̂(λf )) +
∫ τ

0

dt
[
λf − λ(t)

]j
Rj(λ(t)) +O

(
τ 2/τ 2c

)
. (6.30)

The first term represents the excess work from a perfect Hamiltonian quench [74],
while the second term gives the leading order correction for a protocol at finite speed.
This expansion agrees with the results of [124] for classical Focker-Planck dynamics,
now generalized to a fully quantum regime.
By applying the same procedure to work fluctuations eq. (6.3) we obtain

σ2
W = k2BT

2V
(
π̂(λi)||π̂(λf )

)
+

∫ τ

0

dt
[
λf − λ(t)

]j
Gjk(λ(t))

[
λf − λ(t)

]k

+

∫ τ

0

dt
[
λf − λ(t)

]j
Bjk(λ(t))

[
λ(t)− λi

]k
+O

(
τ 2/τ 2c

)
. (6.31)

Where the first term is the relative entropy variance [127]:

V (ρ̂1||ρ̂2) = Tr[ρ̂1(log ρ̂1 − log ρ̂2)
2]− S2(ρ̂1||ρ̂2) , (6.32)

G(λ) is the initial force correlation matrix, with elements

Gjk(λ) :=
1

2

〈
G†λ
[
{∆X̂j,∆X̂k}

]〉
λi
, (6.33)

where {X̂, Ŷ } = X̂Ŷ + Ŷ X̂ is the anti-commutator and we define shifted force
observables as ∆X̂j := X̂j −

〈
X̂j

〉
λi

. Finally, B(λ) is another correlation function
given by

Bjk(λ) :=
〈
{G†λ[∆X̂j],∆X̂k}

〉
λi
. (6.34)

As we saw with the average excess work, the first term here is what one would
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expect for work fluctuations via an instantaneous quench [74], while the two integral
terms are the leading order correction for a finite speed protocol. The expressions
eq. (6.30) and eq. (6.31) are the first main result of this section, and will now form
the basis for finding optimal protocols in the fast driving regime.

6.3.2 Optimality of Instantaneous Jump Protocols

Our aim is now to determine control protocols that minimize the dissipated work
and the work fluctuations. Since the zero-th order terms in the expansions of the
previous section depend only on the boundary conditions of the protocol, it is useful
to define the short-term power savings [124]

Psave := τ−1
[
kBTS

(
π̂(λi)||π̂(λf )

)
−Wex

]
, (6.35)

which quantifies any additional reduction to the rate of work done provided by the
finite-time protocol beyond that of an instantaneous quench. In a similar fashion
we also introduce the short-term constancy savings,

Csave := τ−1
[
k2BT

2V
(
π̂(λi)||π̂(λf )

)
− σ2

W

]
, (6.36)

This measures the reductions to the rate of work fluctuations in a short-time pro-
tocol. These are now the two objectives to maximize in our control problem. Using
our short-time approximations to both the average excess work eq. (6.30) and work
fluctuations eq. (6.31), a general optimization principle becomes immediately appar-
ent for this regime. Since the integrands appearing in eq. (6.30) and eq. (6.31) are
each independent of the control velocity dλ/dt, we can infer that optimal protocols
will consist of an instantaneous jump from λi to a point in the parameter space,
remaining there for the total duration τ and concluding with another instantaneous
jump to the final boundary point λf . We will denote the control values that maxi-
mize Psave and Csave respectively by ξ and Λ, which are determined by the solutions
to the following distinct Euler-Lagrange equations:

Rj(ξ) =
∂

∂λj

([
λf − ξ⃗

]k
Rk(λ)

)∣∣∣∣
λ=ξ

(6.37)
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and

∂

∂λj

([
λf − λ

]k
Gkl(λ)

[
λf − λ

]l
)∣∣∣∣

λ=Λ

=
∂

∂λj

([
λ− λf

]k
Bkl(λ)

[
λ− λi

]l
)∣∣∣∣

λ=Λ

.

(6.38)

The maximal short-term power savings are then given by

Psave ≤ P ∗
save :=

[
ξ − λf

]j
Rj(ξ) , (6.39)

which is saturated via the jump protocol λ(t) = λi + [ξ − λi]θ(t) + [λf − ξ]θ(t− τ),
where θ(t) denotes the Heaviside step function. The optimality of such processes was
proven in [124] for classical systems. We have here shown that the same result applies
to quantum mechanical systems, provided that the dynamical generator eq. (6.21)
remains independent of dλ/dt. As a more significant result, we can now see that the
same is true for fluctuations, albeit with a different choice of point in the parameter
space. The maximum short-term constancy savings are given by

Csave ≤ C∗
save :=

[
Λ− λf

]j
(
Gjk(Λ)

[
λf − Λ

]l
+Bjk(Λ)

[
Λ− λi

]k
)
. (6.40)

which is saturated by jumping to Λ instead: λ(t) = λi+[Λ−λi]θ(t)+[λf−Λ]θ(t−τ).
In general the values of ξ and Λ will not typically coincide, implying a trade-off
between minimized excess work versus minimal fluctuations. This can remain the
case even in quasi-classical regimes where only changes to the energy levels of the
system are allowed. This should be contrasted with slow driving or linear response
regimes, which allow for simultaneous optimization of the average and variance due
to the validity of the fluctuation dissipation relation in the absence of quantum
friction [89, 128]. However, depending on the particular Hamiltonian parameters
and dynamics it is still possible to find situations where ξ = Λ and simultaneous
optimization is possible, as we will highlight in subsequent sections.

Before we proceed it is important to highlight some consistency requirements
needed to implement a jump protocol. As we are restricted to operating in fast
driving regimes, this places restrictions on the set of points one can jump to in
order to ensure that the Taylor expansions remain valid. We can compute the
exact excess work and fluctuations induced by the jump protocols and compare that
to the truncated expressions eq. (6.30) and eq. (6.31). We find that the error of
the dissipation expansion is bounded by ∆h(ξ)O(τ 2/τ 2c ), while for the fluctuations
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expansions it is bounded by ∆h(Λ)2O(τ 2/τ 2c ). Where we defined

∆h(λ) := 2max
{
||Ĥ(λ)− Ĥ(λi)||1, ||Ĥ(λf )− Ĥ(ξ⃗)||1

}
. (6.41)

This tells us that one cannot jump arbitrarily far from the boundary points λi, λf as
this would lead to a large ∆h and hence invalidate the fast driving approximation.
Therefore any freedom in setting the magnitude of ξ and Λ must take these bounds
into account, discounting arbitrarily large values of both P ∗

save and C∗
save. In the

remainder of this chapter we will demonstrate the utility of these jump protocols in
a range of different types of system.



76 6.3. Fast Operations

6.3.3 Closed Quantum Systems

As a starting point we consider an isolated quantum system whose dynamics are
given by the time-dependent Liouville-von Neumann equation:

Gλ[ρ̂] = −
i

ℏ
[
Ĥ(λ), ρ̂

]
. (6.42)

The work statistics of quenched isolated systems are well studied, particularly in
the context of many-body quantum systems [129]. Our formalism can now be used
to calculate the leading short-time corrections to the excess work and fluctuations
arising when the (instantaneous) quenches are replaced by fast Hamiltonian ramps,
and then subsequently minimize them using the appropriate jump protocols outlined
in the previous section. For closed, finite dimensional systems it is clear that the
characteristic time scale is τc ∼ ℏ/Emax(λ), where Emax(λ) denotes the maximum
energy eigenvalue of Ĥ(λ). The relevant initial force relaxation rate and correlation
functions are found to be

Rk(λ) = −
i

ℏ
〈[
X̂k, Ĥ(λ)

]〉
λi
, (6.43)

[
G(λ)

]
jk

= − i

2ℏ
〈[{

∆X̂j,∆X̂k

}
, Ĥ(λ)

]〉
λi
, (6.44)

[
B(λ)

]
jk

= − i
ℏ
〈{[

∆X̂j, Ĥ(λ)
]
,∆X̂k

}〉
λi
. (6.45)

The short-time power savings are then

Psave :=
i

τℏ

∫ τ

0

dt
〈[
Ĥ(λf ), Ĥ(λ(t))

]〉
λi

(6.46)

while the constancy savings are

Csave :=
i

τℏ

∫ τ

0

dt
(〈[

Ĥ(λf )
2, Ĥ(λ(t))

]〉
λi
−
〈{
Ĥ(λi),

[
Ĥ(λf ), Ĥ(λ(t))

]}〉
λi

− 2
〈
Ĥ(λf )− Ĥ(λi)

〉
λi

〈[
Ĥ(λf ), Ĥ(λ(t))

]〉
λi

)
. (6.47)

We can already see from eq. (6.46) and eq. (6.47) that if Ĥ(λf ) and Ĥ(λi) commute,
or λ(t) is chosen such that Ĥ(λ(t)) commutes with either Ĥ(λf ) or Ĥ(λi), then the
integrand is exactly 0 - which directly follows using the cyclic property of the trace.
Therefore, if λ(t) is a linear combination of λi and λf , the first order correction
vanishes. An immediate consequence is that a naive protocol that linearly interpo-
lates between the initial and final Hamiltonian in a closed system is equivalent to a
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quench up to first order in driving speed.

We now choose a jump protocol to maximize either variable. We can notice
that both Psave and Csave are linear in the control variables. Therefore the respective
gradients are independent of λ. Which implies that the optimal points ξ and Λ are
vectors pointing in the direction of the respective gradients, with the norm chosen
as large as possible. However, as argued in the previous section, the larger this
norm is chosen, the larger the error of the approximation is. In particular, setting
∥ξ∥ ≫ ∥λi∥, ∥λf∥ gives ∥ξ∥ ∝ ∆h(ξ) while τc ∝ 1/∥ξ∥. This implies that the error
on the expansion of Psave scales as O(∥ξ∥3τ 2), which clearly limits how large the
norm can be chosen relative to the duration of the protocol. A similar argument
applies to the constancy savings and norm of the optimal point Λ.

We can make some further inferences about the relation between the different
jumps ξ and Λ. We can show that

(λi)
j ∂

∂λj
Psave = (λi)

j ∂

∂λj
Csave = (λf )

j ∂

∂λj
Psave = (λf )

j ∂

∂λj
Csave = 0 , (6.48)

which means that both gradients are orthogonal to λi and λf . As was said before,
this implies that if the protocol consists of a linear combination of Ĥi and Ĥf

then the correction will be zero. But if the Hamiltonian has d ≤ 2 controllable
parameters, it is impossible for λ(t) to be linearly independent from λi and λf .
Therefore, regardless of the type of driving, with d ≤ 2 controllable parameters the
correction is always zero.

It is interesting to consider what happens when we can control exactly three
parameters, d = 3. Eq. (6.48) constrains the gradients of Psave and Csave to be
parallel, which implies

dPsave = ±
||∇λPsave||
||∇λCsave||

dCsave , (6.49)

where the sign is positive if the gradients are oriented in the same direction and
negative otherwise. If the sign is positive, we can optimize fluctuations and excess
work simultaneously with ξ = Λ; if the sign is negative, we have a direct trade-off
between savings in power and constancy.

Driven Qubit

As an illustrative example, we can compute and optimize the excess work and work
fluctuations of a qubit that is undergoing controlled unitary evolution. The most
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Figure 6.7: Comparison of P ∗
save and C∗

save (in units of J2 and J3 respectively) in the
exact case and fast driving approximation as a function of α for a jump protocol
with Hi = Jσx, Hf = Jσz and Jτ = βJ = 1.

general Hamiltonian for a qubit is

Ĥ(λ) = Jλ⃗ · σ⃗ , (6.50)

where σ⃗ = (σ̂x, σ̂y, σ̂z) is the Pauli vector, J is an energy scale and λ⃗ = (λx, λy, λz) are
dimensionless parameters that characterize the Hamiltonian. We find that the power
and constancy savings can be optimized simultaneously with ξ⃗ = Λ⃗ = α λ⃗i ∧ λ⃗f ,
where α > 0 controls the norm of the resulting Hamiltonian. We find the optimal
values

P ∗
save = 2αJ2 sin2 ϕ∥λi∥∥λf∥2 tanh(βJ∥λi∥) , (6.51)

C∗
save = 4αJ3 sin2 ϕ∥λi∥2∥λf∥2

[
1− tanh(βJ∥λi∥)2

(
1− ∥λf∥∥λi∥

cosϕ

)]
, (6.52)

where ϕ is the angle between λi and λf . The magnitude of α has to be chosen in such
a way that that the error of the approximation remains small. A sufficient condition
is then given by choosing α≪ (Jτ | sinϕ|∥λi∥∥λf∥)−1. This is illustrated in Fig. 6.7,
in which we compare the results of eq. (6.51) and eq. (6.52) to the exact calculation
of Psave and Csave for jump protocols in a qubit. The boundary conditions were set
to Ĥi = Jσ̂x, Ĥf = Jσ̂z and the relevant constants are set to τJ = βJ = 1. Then
the condition for the validity of the approximation becomes α ≪ 1, indeed we can
see from the figure that as α approaches O(1) the approximation breaks down.

It is important to stress that for higher dimensional closed systems, simultaneous
optimization of Psave and Csave cannot always be guaranteed despite what we observe
in the case of a qubit.
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6.3.4 Open Quantum Systems

We now move to open quantum systems. Our framework can be applied to any
Markovian Lindblad equation of the form eq. (6.21), in which the generator Gλ(t) is
independent of the velocity dλ(t)/dt. Here we illustrate it for the simple evolution:

Gλ[ · ] =
π̂(λ)Tr[ · ]− ( · )

τ eq
, (6.53)

which describes a decay of the state ρ̂ into the instantaneous Gibbs state π̂(λ) with a
timescale τ eq. This dissipative evolution naturally arises in collisional models [130]
and also describes some systems weakly interacting with a reservoir with a suffi-
ciently flat spectral density [49]. For this type of dynamics we find some more
illuminating expressions for the various terms appearing in the leading corrections
to the excess work and variance. Firstly, the initial force relaxation rate becomes

Rj(λ) :=
⟨X̂j⟩λ − ⟨X̂j⟩λi

τ eq
. (6.54)

This demonstrates that Rj(λ) quantifies the average rate at which each expecta-
tion ⟨X̂j⟩ changes from its initial value relative to the characteristic timescale τ eq.
Furthermore, the correlation functions become

[
G(λ)

]
jk

=
Fjk(λ)−Fjk(λi)

τ eq
+

(
⟨X̂j⟩λ Rk(λ) + ⟨X̂k⟩λ Rj(λ)

)
. (6.55)

and

[
B(λ)

]
jk

= − 2

τ eq
Fjk(λ) , (6.56)

where Fjk(λ) is the symmetric covariance defined as

Fjk(λ) :=
1

2
⟨{X̂j, X̂k}⟩λ − ⟨X̂j⟩λ⟨X̂k⟩λ . (6.57)

This function defines a metric tensor on the manifold of control parameters, and
was first introduced in [131] as a means of quantifying the geometric structure of
thermal states. In quasi-classical regimes where [X̂j, X̂k] = 0, this metric becomes
proportional to the well-known thermodynamic metric, also known as the Fisher
information matrix of the thermal state.
We will now illustrate these results with the optimization of three different systems:
a driven quantum dot, and two Ising spin chains.
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Fast Erasure of a Single Bit

A driven quantum dot interacting weakly with an environment is a paradigmatic
example of a system that can be described by the simple dynamics eq. (6.53) [49].
In that case the Hamiltonian is given by Ĥ(ε) = 1

2
εσ̂z with a single control variable

λ(t) = ε(t) given by the energy gap of the two-level system. The optimal finite-time
thermodynamics of such systems has been well studied with regard to minimizing
average dissipation in Landauer erasure, including a recent experimental implemen-
tation in a driven single dot [54]. In the present context, we apply our results to
a rapid bit-erasure process. The boundary conditions for erasure are then εi = 0

and βεf ≫ 1, which leads to the following expressions for the power and constancy
savings

Psave =
kBT

τ eq

∫ 1

0

ds
(
βεf − βε(s)

)(1

2
− 1

1 + eβε(s)

)
, (6.58)

Csave =
k2BT

2

2τ eq

∫ 1

0

ds βε(s)
(
βεf − βε(s)

)
. (6.59)

We now seek to find the optimal energy gaps to jump to in order to maximize either
Psave or Csave. It will become clear in this case that the power and constancy savings
cannot be simultaneously maximized, and so the distinct gaps are denoted by ξ and
Λ respectively. Maximizing Psave amounts to solving the following transcendental
equation 1

2
− 1

1+eβξ
=

(βεf−βξ)eβξ

(1+eβξ)2
. In the limit of βεf ≫ 1 we can solve it analytically

up to terms O(β−1ε−1
f ln βεf ) and find the optimal jump ε → ξ = β−1 ln 2βεf .

Maximum power savings are thus

P ∗
save ≃

εf
2τ eq

. (6.60)

For this power-optimized jump let us denote the resulting sub-optimal constancy
savings by Cξ

save:

Cξ
save =

ε2f
τ eq

ln 2βεf
2βεf

. (6.61)

On the other hand, to maximize the constancy savings we need to choose a jump to
ε→ Λ = εf/2 instead. This yields

C∗
save =

ε2f
8τ eq

, PΛ
save =

εf
4τ eq

. (6.62)
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where the sub-optimal savings in power are denoted PΛ
save. Clearly there exists

a significant trade-off between these two choices of optimal protocol, with power-
optimized jumps causing no improvement to the constancy while constancy-optimized
jumps reducing the potential power savings by a factor of 1/2. Further comparison
can be made with that of a naive linear driving ε(t) = εf t/τ , which results in savings
given by

Pnaive ≃
εf
4τ eq

, Cnaive =
ε2f

12τ eq
, (6.63)

where we again drop terms of order O(β−1ε−1
f ln βεf ). Therefore we can see that

choosing an optimal jump for the excess work leads to an improvement factor of 1/2,
and choosing the optimal jump for the fluctuations gives an improvement factor
of 3/2, each indicating significant improvements over a naive protocol. However,
two unexpected observations here are that naive protocols are able to achieve larger
savings in constancy than that of the power optimized protocol, and also achieve the
same level of power savings to the constancy-optimized protocol. This emphasizes
that improvements to one objective do not necessarily translate into improvements
of the other.

Dissipative Classical Ising Chain

The strength of our approach is that it enables to deal with more complex systems,
where exact solutions for minimizing dissipation and/or fluctuations are lacking – in
contrast to the previous example. This is illustrated now for an Ising chain weakly
coupled to a bath with dynamics eq. (6.53). We note that optimal driving protocols
for classical spin chains have been devised in the slow driving regime, and now
we complement such results by studying the opposite fast-driving regime. We first
consider a classical spin chain,

Ĥ(ε) = J
n∑

i=1

(
εσ̂(i)

z − σ̂(i)
z σ̂

(i+1)
z

)
, (6.64)

where J is the energy scale and ε is a dimensionless parameter which can be inter-
preted as the strength of an external magnetic field. By assuming periodic bound-
ary conditions, we can compute the partition function in the thermodynamic limit
n→∞:

lim
n→∞

1

n
ln Z = βJ + ln

[
cosh(βJε) +

√
sinh(βJε)2 + e−4βJ

]
. (6.65)
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Figure 6.8: (left) Optimal value of ε∗ for a protocol going from εi = 0 to εf = 10.
(center and right) Relative power and constancy savings in three protocols going
from εi = 0 to εf = 10. We compare protocols that optimize excess work and
fluctuations to a protocol that varies linearly the value of ε.

The relevant force here is then the total X̂ = J
∑

i σ̂
(i)
z . We now identify the following

the relations

− 1

β

∂

∂ε
logZ = Tr

[
X̂π̂(ε)

]
, (6.66)

1

β2

∂2

∂ε2
logZ = Tr

[
X̂2π̂(ε)

]
− Tr

[
X̂π̂(ε)

]2
. (6.67)

These allow us to compute the first order corrections to the excess work and the
fluctuations per site of the protocol in the thermodynamic limit from eq. (6.30) and
eq. (6.31). We find

τ eqR(ε) =
sinh(βJεi)√

sinh(βJεi)2 + e−4βJ
− sinh(βJε)√

sinh(βJε)2 + e−4βJ
, (6.68)

τ eqG(ε) = e−4βJ cosh(βJx)

(sinh(βJx)2 + e−4βJ)3/2

∣∣∣∣
x=ε

x=εi

+ (τ eqR(ε))2, (6.69)

τ eqB(ε) = −2e−4βJ cosh(βJεi)

(sinh(βJεi)2 + e−4βJ)3/2
. (6.70)

It is now a case of substituting these into the two different Euler-Lagrange equations
eq. (6.37) and eq. (6.38) to determine the optimal points ξ and Λ needed in each jump
protocol, with solutions found numerically for a process that brings ε from εi = 0 to
εf = 10 – i.e. turning on the magnetic field. In Fig. 6.8 (left) we display the optimal
field strength ε∗ = {ξ,Λ} that maximizes either the power or constancy savings.
We can notice that in the limits of high and low temperatures they coincide, while
we cannot maximize them simultaneously in between these regimes. In Fig. 6.8
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(center) we plot the power savings P ∗
save relative to the zero-th order contribution

kBTS
(
π(λi)||π(λf )

)
/τc, while Fig. 6.8 (right) displays the constancy savings C∗

save in
units of k2BT 2V

(
π(λi)||π(λf )

)
/τc. Both plots show the relative savings depending on

whether we choose to optimize the power or constancy, and this is also compared to
the savings achieved by taking a naive linear driving ε(t) = εi(1−t/τ)+εf t/τ . In this
case we can see that there is only a modest difference between the εi → ξ → εf and
εi → Λ → εf jump protocols, and they each perform considerably better than the
naive approach, contrasting with what we observed for the driven quantum dot. This
highlights the importance of optimal control in many-body open quantum systems.
It is also interesting to note that in the low temperature regime the best protocol
becomes to simply do a quench directly to εf for both power and fluctuations.

Ising Chain in Transverse Field

We will conclude with a final example covering the remaining scenario of an open
quantum system where the control is such that the Hamiltonian may not commute
at different times, so that [Ĥ(λ(t)), Ĥ(λ(t′))] ̸= 0. This non-commutativity implies
the presence of quantum friction, which is a distinctly non-classical contribution to
the work done to drive the system that arises from allowing transitions between
energy eigenstates. For this purpose we will consider a dissipative Ising chain with
simple dynamics eq. (6.53), though this time we apply a transverse field along the
x-axis that can be controlled in time. We note that optimal driving protocols for
this model have been considered in the slow driving regime [74], and the results
presented here in the fast driving regime are hence complementary. In particular,
we will focus on performing drivings close to a quantum phase transition, which has
also been considered in previous works [129].

The Hamiltonian of the system is

Ĥ(g) = −J
n∑

i=1

(
σ̂(i)
z σ̂

(i+1)
z + gσ̂(i)

x

)
, (6.71)

where J is the energy scale and g is a dimensionless parameter which can be inter-
preted as an external (transverse) magnetic field. Clearly such a model will generate
quantum friction as we vary the strength g in time. Assuming again periodic bound-
ary conditions, we can compute the spectrum of the system with a Jordan-Wigner
transformation [132]. Then by taking the thermodynamic limit the partition func-
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tion is given by

lim
n→∞

1

n
logZ =

∫ 2π

0

dk log

[
2 cosh

βϵk
2

]
, (6.72)

where ϵk is the eigen-energy corresponding to the momentum k

ϵk = 2J
√

1 + g2 − 2g cos k . (6.73)

At zero temperature and g = 1 this system presents a phase transition from an
ordered ferromagnetic phase to a quantum paramagnetic phase. We will focus on
studying protocols that take the system across this point by changing g at finite
temperature. The relevant force this time is X̂ = −J∑i σ̂

(i)
x , and we can use the

relations

− 1

β

∂

∂g
logZ = Tr

[
X̂π̂(g)

]
, (6.74)

1

β2

∂2

∂g2
logZ = Tr

[
X̂2π̂(g)

]
− Tr

[
X̂π̂(g)

]2
. (6.75)

The first order corrections to the excess work and the fluctuations per site of the
protocol are now computed within the thermodynamic limit, giving us

τ eqR(g∗) = −
1

2

∫ 2π

0

dk ϵ̇k tanh
βϵk
2

∣∣∣∣
g=g∗

g=gi

, (6.76)

τ eqG(g∗) =
J

2

∫ 2π

0

dk ϵ̈k tanh
βϵk
2

+
ϵ̇2k
2J

cosh−2 βϵk
2

∣∣∣∣
g=g∗

g=gi

+ (τ eqR(g∗))
2, (6.77)

τ eqB(g∗) = −J
∫ 2π

0

dk ϵ̈k tanh
βϵk
2

+
ϵ̇2k
2J

cosh−2 βϵk
2

∣∣∣∣
g=gi

, (6.78)

where ϵ̇k = dϵk
dg

. Substituting into the Euler-Lagrange equations eq. (6.37) and
eq. (6.38) and solving numerically, we can determine the instantaneous jumps gi →
ξ → gf and gi → Λ → gf for maximizing the respective power and constancy sav-
ings. We set our boundary conditions to be gi = 0 and gf = 3 so that we turn on the
transverse magnetic field and cross the phase transition point at g = 1. Similarly to
the classical case, we also compare these optimal protocols to a “naive” protocol in
which the parameter is varied linearly in time, g(t) = gi(1− t/τ) + gf t/τ .

In Fig. 6.9 (left) we display the optimal fields strength of g∗ = {ξ,Λ}, which no-
ticeably coincide in the limit of high temperatures like we saw with the classical Ising
chain. On the other hand at low temperatures they no longer coincide, indicating a
distinctly non-classical feature of this example and demonstrating that simultaneous
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Figure 6.9: (left) Optimal value of g∗ = {ξ,Λ} for a protocol going from gi = 0
to gf = 3. (center) Relative power savings in three protocols going from gi = 0 to
gf = 3 and (right) relative constancy savings for the same three protocols. In each
figure we compare these optimal protocols to one that varies linearly the value of g.

optimization is no longer possible. In Fig. 6.9 we compare these two choices of pro-
tocol to linear driving and plot the resulting power savings (center) and constancy
savings (right). Since temperature is finite, the phase transition is washed out but
we can still observe a signature in the power and constancy savings occurring at
lower temperatures, where we see that the two quantities move significantly further
apart. One dramatic feature is the fact that optimizing the power savings results in
the constancy savings becoming significantly negative at lower temperatures beyond
the phase transition, indicating a large growth in overall work fluctuations above
that of an infinitely fast quench. On the other hand, if we choose to maximize the
constancy savings we see that this drops to zero alongside the power savings at low
temperatures. This indicates that the system is highly sensitive to the choice of
protocol when driven close to a quantum phase transition.

6.4 Conclusions

In this chapter we studied three examples of thermodynamic optimization. First,
we introduced a general framework, described by eqs. (6.6-6.9), to identify Pareto-
optimal cycles between power, efficiency, and power fluctuations in quantum or
classical stochastic heat engines. As opposed to previous works, we account for
the crucial impact of power fluctuations, which modify non-trivially the optimal
driving solution. We then employed RL to optimize a quantum dot-based heat en-
gine solving its exact finite-time and out-of-equilibrium dynamics. We observed an
abrupt change in Pareto-optimal cycles when switching from the optimization of 2
objectives, where Otto cycles in the fast-driving regime are optimal, to 3 objectives,
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where the optimal cycles have a finite period. This feature, which shares analogies
with the phase transition in protocol space observed in Ref. [133], corresponds to a
large enhancement of one of the objectives while only slightly decreasing the other
ones. Furthermore, we find an exact mapping between Otto cycles in the fast-driving
regime and SSHEs, implying that a violation of the thermodynamic uncertainty re-
lation ratio ξ in eq. (6.4) requires the optimization of all 3 objectives. We then find
that ξ becomes arbitrarily large in the slow-driving regime. Cycles found with RL
display the best features analytically identified in the fast and slow driving regimes.

Secondly, we optimized and implemented an information engine, which repre-
sents a special class on its own among thermal engines that explicitly demonstrates
the intricate connection between information and thermodynamics. We successfully
implemented an optimized finite-time Szilard engine within a quantum dot system.
The experimental setup consisted of a quantum dot system strained in a Germanium
quantum well, where the occupancy of the dot can be manipulated and monitored.
The optimization is based on maximizing the extracted energy for a given, arbitrary,
cycle length. For the given system, it allows for the simultaneous optimization of
power and efficiency. These optimal protocols showed significant improvements over
a naive linear ramp protocol at all driving speeds, in particular in the fast driving
regime. Additionally, we examined the work fluctuations generated by these optimal
protocols, and observed that higher power inevitably comes with higher fluctuations.
The experimental results corroborated the theoretical predictions, showing a high
degree in precision of the (indirect) measurement of extracted work. The study de-
scribed in this section showcased the successful optimization and implementation of
a paradigmatic example of a quantum heat engine.

Finally, we have derived approximations for the average excess work done eq. (6.30)
to rapidly drive a small system out of equilibrium along with the resulting work fluc-
tuations eq. (6.31). This has been derived under the assumption that (i) the dynam-
ics can be described by a Markovian generator that is independent of the velocities
in the time-dependent control parameters, and (ii) the duration of the process is
short relative to the characteristic timescale of the dynamics, τc ≫ τ . Under these
approximations we were able to prove that rapid processes that minimize either the
average excess work, or work fluctuations, under fixed boundary conditions consist of
two instantaneous jumps in the system control parameters, generalizing the results
obtained for the fast driving regime in the first section of the chapter. Also bringing
a contrast with the smooth geodesic paths that are optimal on slow driving and lin-
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ear response regimes [89, 134]. Protocols that minimize the excess work cost, jump
from the initial configuration to a point determined from the Euler-Lagrange equa-
tion eq. (6.37), stay there for the duration τ then jump to the final boundary value.
Protocols that minimize the work fluctuations follow the same pattern, but jump
to an alternative point satisfying a different Euler-Lagrange equation eq. (6.38). We
have seen that in general, these points do not coincide which indicates a trade-off
between the optimal values of the average and variance. These results extend the
work of [124] to show that jump protocols continue to be optimal when one also
cares about keeping fluctuations minimal, while also extending this approach to
the full quantum regime. In particular, it is worth emphasizing that, beyond the
standard scenario of a driven system in contact with a Markovian environment, our
approach also applies to closed quantum driven systems where the form of minimally
dissipative driving processes remain less explored [135]. Due to its generality, our
optimization scheme can be used to improve the control of complicated chemical,
biological and quantum many-body systems whenever short operation times are de-
sired. This has been illustrated by minimizing both excess work and fluctuations
for a classical and quantum spin chain where an external magnetic field is rapidly
changed in time. When driving the system close to a quantum phase transition, we
found that optimizing over driving protocols leads to substantial gains (see Fig. 6.9).
A number of improvements and generalizations to our approach are warranted. For
open quantum systems, it is important to note that protocols with non-commuting
Hamiltonians may not adequately be described by adiabatic Lindblad equations
such as eq. (6.53) when operating in the fast driving regime [85]. Interestingly, since
non-adiabatic corrections can potentially lead to a dependence on the control veloc-
ities [126], this would imply that instantaneous jumps are not necessarily optimal
in these cases.
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Chapter 7

Conclusion and Outlook

We always have, as we imagine, ideas that a certain thing is true, but
we don’t know what it means for something to be true. You may say, “I
know what it means for it to be true that the atom is in the box; it’s in
the box.” But we have found that it isn’t in the box. And what you may
say is, “I know what you mean by ‘is in the box’. It means that if you
put a detector there it’ll click.” No, that isn’t what it means either.

— Richard Feynman, The Character of Physical Law

In this thesis we have covered a set of topics that shed light on the fundamental
limits of the irreversibility of thermodynamic protocols. The general theme that
links these results is the minimization of dissipation for finite-time operations. This
is a fundamentally difficult question in thermodynamics – whether quantum or clas-
sical – because it requires to perform functional optimization over the solution of
the dynamics of the system and environment – which is often not solvable. Through
this question we were able to probe one of the most fundamental aspects of ther-
modynamics: how close one can get to reversible protocols with finite resources?
Furthermore, thanks to the universality of the question of minimizing work, we
were also able to address some more “applied” optimization problems for mesoscopic
systems.

We started by presenting a self-contained review on the laws of thermodynamics
in Chapter 2. We then presented the mathematical formalism that is used in the
rest of the thesis. In particular, in Sec. 3.2 we generalized the results of [9] to obtain
a derivation of the thermodynamic geometry technique that applies to all types of
dynamics – i.e. for both open and closed quantum systems; thus giving a formal
setting for the work minimization of thermodynamic protocols in the slow-driving
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regime, which has been used multiple times in the rest of the thesis.

In Chapter 4 we applied this extended formalism to obtain a finite-time correc-
tion to Landauer’s bound on the dissipated energy required to erase information.
While previous works obtaining a finite-time correction to the bound already existed,
these were limited to the Markovian regime [9–11]. The main result of the chapter
eq. (4.2) is valid beyond such approximations. Indeed, it unveils the need for strong
coupling for the optimal energy management of erasure processes. Furthermore,
despite the result being derived in a specific setting, it reveals the general form of a
universally valid finite-time correction to Landauer’s bound with the emergence of
Planckian time.

Remarkably, the results of Chapter 5 show how one can use the framework of
geometric thermodynamics to unveil a novel type of collective effects that allow
to drastically reduce the amount of energy that is dissipated when performing a
task on a collection of systems simultaneously. Collective effects are a well known
and important phenomenon in physics, ranging from phase transition to quantum
entanglement [14–18]. It is often the case that one can exploit these effects to
improve the result or cost of a given task, leading to a notion of collective advantages:
the outcome of a task is improved when performed globally on a collection of systems
instead of each system individually. Indeed, our results show that if one wishes to
perform multiple tasks on multiples systems, then it is possible to exploit classical
correlations between these systems to drastically suppress the amount of energy
that is dissipated into the environment. To put it simply, one manages to “share
the losses” between the individual systems. With sufficient amount of control, this
suppression is strong enough to obtain a vanishing dissipation per system in the
thermodynamic limit. This is an astounding result, as it seems to go counter to
the third law of thermodynamics, but on a technical level there seems to be no
contradiction as the remaining finite-time dissipation is always strictly positive.

Finally, in Chapter 6 we focused on the thermodynamic optimization of meso-
scopic systems. We showed how to fully optimize two types of nano-scale thermal
engines and fast operations on a system. The optimization of thermal engines and,
more generally, operations at the nano-scale are questions that allows us to probe
the fundamental limits of the trade-offs between relevant physical costs and desider-
ata [19–23]. In steady state heat engines, these trade-offs are captured by thermody-
namic uncertainty relations [21,24]. First, we studied how one can fully optimize all
the relevant thermodynamic aspects of the simplest possible thermal engine: a pe-
riodically driven quantum dot engine. Indeed, with the use of analytical techniques
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and reinforcement learning we were able to characterize the optimization trade-off
of power, efficiency and power fluctuations of a quantum dot engine in all driving
regimes. Second, we characterized and optimized the performance of an information
engine at all driving speeds. Information engines stand in a class of their own, as
they make use of measurements on the system instead of a cold reservoir. Further-
more, we confirmed the feasibility of the optimal protocols we computed, with an
experimental implementation thanks to the collaboration of the group of prof. N.
Ares. Last, but not least, we developed a general framework for the optimization
of work and work fluctuations in rapidly driven systems. Our results showed that
optimal fast protocols, in both open and closed system dynamics, consist of two
instantaneous jumps in the control parameters – one at start and one at the end
of the protocol. Interestingly, this is true whether we are aiming to optimize work
or work fluctuations – or any trade-off of the two quantities, but it is seldom the
case that the optimal “jump point” is the same for both objectives. We showcased
this phenomenon by applying the framework to compute the optimal fast protocols
across phase transitions of many-body quantum systems.

A substantial portion of the presented results relies on the framework of geo-
metric thermodynamics. Therefore, it is very natural to ask how could one could
generalize these results beyond the slow-driving regime – particularly in the case of
the finite-time correction to Landauer’s principle. However, beyond purely technical
extensions of the results, these works shed light on further questions regarding the
fundamental limit of irreversible operations. First, whether one can characterize the
dependence of the term a – in the main result of the chapter on Landauer’s prin-
ciple eq. (4.2) – on the type of interaction with the environment, or even a general
non-trivial lower bound to it. Furthermore, the appearance of Planckian time –
which is conjectured to be the fastest relaxation time scale possible in many-body
systems – in the bound seems to suggest that it also has a role in limiting the speed
of information processing and metrology.

Second, the results of Chapter 5 show that it is possible to exploit correlations
between multiple systems to exploit collective effects to drastically reduce energy
dissipated in a thermodynamic operation. However, this is heavily dependent on
the relaxation dynamics of the system. Therefore, it is left as a future challenge to
characterize how these collective advantages could arise from a microscopic model
of interaction with the thermal bath. This is a crucial step to eventually prove
experimentally the presence of such collective advantages, which could be used one
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day to limit the overheating of chips in super-computers [81]. Furthermore, it is
still unclear if these collective advantages are fully consistent with the third law
of thermodynamics. Therefore it possible that these results help shed light on the
thermodynamic consistency of master equations [136, 137]. For example, if these
collective advantages cannot be derived from a microscopic model, they could be
taken as a witness of thermodynamic inconsistency of some master equations. Thus
opening another avenue on the question of which constraints one needs to impose on
a master equation to ensure its thermodynamic consistency. Conversely, it is also
possible that inconsistencies do not arise, which could be because of a divergence in
the complexity of the protocols that realize these collective advantages – whose role in
the third law of thermodynamics has recently been receiving increased attention [40].
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Finite-time Landauer principle beyond weak coupling
Alberto Rolandi and Martí Perarnau-Llobet
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Landauer’s principle gives a fundamental
limit to the thermodynamic cost of erasing
information. Its saturation requires a re-
versible isothermal process, and hence infi-
nite time. We develop a finite-time version
of Landauer’s principle for a bit encoded
in the occupation of a single fermionic
mode, which can be strongly coupled to
a reservoir. By solving the exact non-
equilibrium dynamics, we optimize era-
sure processes (taking both the fermion’s
energy and system-bath coupling as con-
trol parameters) in the slow driving regime
through a geometric approach to thermo-
dynamics. We find analytic expressions for
the thermodynamic metric and geodesic
equations, which can be solved numeri-
cally. Their solution yields optimal pro-
cesses that allow us to characterize a finite-
time correction to Landauer’s bound, fully
taking into account strong coupling effects.
Our result suggests the emergence of the
Planckian time, τPl = ℏ/kBT , as the short-
est timescale for information erasure.

1 Introduction
Any logical irreversible operation that will incur
a thermodynamic cost in the form of heat dissi-
pated into the environment. Landauer’s princi-
ple quantifies this relation between information
processing and thermodynamics with the bound
Q ≥ kBT ln 2 for the erasure of a single bit of in-
formation [1]. Here Q is the dissipated heat, kB

is the Boltzmann constant and T is the absolute
temperature at which the process is taking place.
In recent years, this principle has been intensively
studied within the fields of stochastic and quan-
tum thermodynamics [2–17], and has been ap-
proached in several experimental platforms [18–
29].
Alberto Rolandi: alberto.rolandi@unige.ch
Martí Perarnau-Llobet: marti.perarnaullobet@unige.ch

The unattainability principle suggests that
Landauer’s bound cannot be saturated with fi-
nite resources, namely time and energy [30–32].
In finite time, using tools from optimal trans-
port theory [33–35] and thermodynamic geome-
try [36–43], optimal erasure protocols have been
derived both for classical systems described by
overdamped Langevin dynamics [44–48] and open
quantum systems described by Lindblad master
equations [35, 49–54]. Such optimal protocols
naturally lead to a finite-time correction to Lan-
dauer’s bound in different physical set-ups, which
has given rise to the term finite-time Landauer
principle [45, 48, 52]. For a slowly driven (quan-
tum) two-level system weakly coupled to a ther-
mal bath, the finite-time bound takes the simple
form (see App. B.2 and Refs. [50, 54])

Q ≥ kBT

(
ln 2 + π2

4Γτ

)
+ O

( 1
Γ2τ2

)
, (1)

where τ is the total time of the process and Γ
is the thermalization rate. The finite-time cor-
rection is positive, in agreement with the sec-
ond law of thermodynamics, and when Γτ → ∞
we recover the standard bound. We also note
that the optimal protocol saturating the finite
bound eq. (1) has been recently implemented in
a semiconductor quantum dot [29]. More gen-
eral versions of eq. (1) have also been recently
developed for Markovian systems driven at any
speed [35, 51, 52].

Despite this remarkable progress, previous
works on the finite-time Landauer principle have
focused in Markovian systems which, for quan-
tum systems, can be guaranteed by a sufficiently
weak interaction between system and bath. In
the presence of strong coupling [55–59], we expect
both new opportunities arising due to faster re-
laxation rates and non-Markovian dynamics [60–
67], as well as challenges due to the presence of
new sources of irreversibility [68–75]. The goal of
this work is to take a first step into this excit-
ing regime by deriving the first order to a tight
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finite-time correction of Landauer’s principle for
a single fermion that can interact strongly with
a reservoir, as described by the resonant-level
model [76–83]. Our main result is summarised
in what follows:

Main result

Given a two-level system that can be
strongly coupled to a thermal bath, we find
that the finite-time version of Landauer’s
principle can be expressed as

Q ≥ kBT

(
ln 2 + a

τPl
τ

)
+ O

( 1
Γ2τ2

)

(2)

where a ≈ 2.57946, τPl = ℏ/kBT is the
so-called Planckian time [84], and Γ is
the average thermalization rate (see de-
tails below). This extends eq. (1) to strong
system-bath couplings, with the transi-
tion between the two being characterized
in Fig. 2. The finite-time correction in
eq. (2) is of quantum-mechanical nature
and independent of the coupling strength,
hence prevailing even for arbitrarily strong
system-bath coupling (roughly speaking,
Γ → ∞ in eq. (1)).

The appearance of the Planckian time τPl =
ℏ/kBT in eq. (2) is particularly interesting.This
timescale encodes two fundamental constants in
nature: Boltzmann’s constant kB and Planck’s
constant ℏ. It arises in several contexts in many-
body physics, including quantum transport and
quantum chaos; see Ref. [84] for a review. In
analogy with the “Planck time” in quantum grav-
ity, it is associated with the shortest timescale
of thermalization [84–87]; that is, the shortest
time needed to redistribute energy between par-
ticles and reach thermal equilibrium. This gives
an insightful context to our main result eq. (2): a
fundamental finite-time quantum correction must
appear to Landauer’s bound due to a minimal
time required for thermalization. This also sug-
gests that the form of eq. (2) has a broader range
of applicability, with the value a depending on the
specific many-body thermalizing dynamics con-
sidered.

In order to obtain eq. (2), we exploit the frame-
work of thermodynamic geometry [36–42], which
has proven successful to devise minimally dissi-

pative processes both in classical [40, 88–94] and
quantum systems [12, 50, 95–99].

2 Framework
We consider a driven system S that can be put in
contact with a thermal bath B, so that the total
time-dependent Hamiltonian reads:

H(t) = HS(t) +Hint(t) +HB. (3)

Here, HS(t), Hint(t) are the externally control-
lable Hamiltonian of S and SB coupling, respec-
tively, whereas HB is the Hamiltonian of B. The
state ρ(t) of SB evolves as ρ(t) = U(t)ρ(0)U †(t)
with U(t) = T exp(− i

ℏ
∫ t

0 ds H(s)). The work
cost induced by driving H(t), with t ∈ [0, τ ],
reads:

W =
∫ τ

0
dsTr[ρ(s)Ḣ(s)] = Tr[H(τ)ρ(τ) − H(0)ρ(0)]

(4)

Focusing on protocols where Hint(0) = Hint(τ) =
0, we can naturally identify from the first law of
thermodynamics W = Q + ∆ES with ∆ES =
Tr[HS(τ)ρ(τ) −HS(0)ρ(0))], the dissipated heat

Q = Tr[HB(ρ(τ) − ρ(0))] (5)

as the total energy absorbed by the bath [3].
Assuming that the initial state of SB is a ther-

mal state: ρ(0) = e−βH(0)/Z(0) with Z(t) ≡
Tr[e−βH(t)], eq. (4) can be re-expressed as [100]:

W = ∆F + kBTΣ , (6)

where ∆F = kBT ln[Z(0)/Z(τ)] is the change
of equilibrium free energy of SB, and the en-
tropy production Σ can be expressed as: Σ =
S
(
ρ(τ)

∣∣∣∣ e−βH(τ)

Z(τ)

)
. The entropy production Σ ≥

0 accounts for the irreversible energetic contri-
bution in finite-time processes, and depends on
the particular driving path H(t) linking H(0) to
H(τ). Minimising Σ over all finite-time processes
leads to thermodynamic protocols that minimize
the work W . Furthermore, in an erasure process,
∆ES = 0 (see details below) therefore these pro-
tocols also minimize the dissipated heat Q.

3 Thermodynamic geometry
The framework of quantum thermodynamic ge-
ometry [42] allows us to minimize the entropy
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production Σ, and therefore the dissipated heatQ
for erasure, for protocols that are slow compared
to their relaxation time-scale.

3.1 Strongly coupled systems
Let us expand the Hamiltonian H(t) in eq. (3)
as H(t) = ∑

j λj(t)Xj where {λj(t)} are the ex-
ternally controllable parameters and {Xj} are
the corresponding observables. In order to apply
the geometric approach, we need to impose more
structure on the possible evolutions U(t) gener-
ated by eq. (3). We require two basic ingredients:
Requirement 1: Thermalization. In absence
of driving, the conjugated observables Xj ther-
malize. More precisely, for a frozen Hamiltonian
H(t), we have

lim
s→∞ Tr[Ũt(s)ρ(0)Ũ †

t (s)Xj ] = ⟨Xj(t)⟩eq, (7)

where Ũt(s) ≡ e−iH(t)s, ⟨Xj(t)⟩eq = Tr[ωβ(t)Xj ],
ωβ(t) = e−βH(t)/Z(t), and β is implicitly defined
by the initial energy of the total system. In the
context considered here, namely purely unitary
dynamics of SB, this condition is satisfied both
by non-integrable systems satisfying the ETH hy-
pothesis [101, 102] and also for integrable sys-
tems typically appearing in open quantum sys-
tems [103–106].
Requirement 2: Slow driving, so that the
system remains close to the instantaneous equi-
librium state while being driven. This enables us
to keep only leading terms when making a linear-
response expansion in the driving speed [107],
which can be expressed as:

⟨Xj(t)⟩ = ⟨Xj(t)⟩eq +
∑

i

mij λ̇i(t) + ... (8)

The coefficients mij , which depend on the
point {λi(t)}, can in principle be derived from the
exact equations of motion. We should note that
it is well known that optimal finite-time proto-
cols feature jumps [108]. However, these jumps
disappear near the reversible limit (see App. E
and [109]) and their contribution to the dissi-
pated heat becomes negligible. Therefore this re-
quirement becomes a natural assumption in the
context of finding a first order correction to Lan-
dauer’s bound.

Combining the expansion of eq. (8) with eq. (4)
and eq. (6), we obtain the standard expression for

entropy production at leading order in the inverse
of the driving speed [37, 40, 42]:

kBTΣ =
∑

ij

∫ τ

0
dt λ̇i(t)mij(t)λ̇j(t) (9)

where, in contrast to previous works, the met-
ric mij depends on the unitary dynamics of SB
(this will later be solved for a specific model).
Because of the second law of thermodynamics, it
follows that mij can be expressed as a metric,
i.e., a symmetric, positive-definite m ≥ 0 opera-
tor that depends smoothly on the point {λi(t)}.
We can associate a length to a protocol by defin-
ing L =

∫ τ
0 dt

√∑
ij λ̇i(t)mij(t)λ̇j(t). It is related

to the entropy production via a Cauchy-Schwarz
inequality [37, 40, 42]:

kBTΣ ≥ 1
τ
L2 , (10)

where equality is satisfied by protocols
with constant entropy production rate∑

ij λ̇i(t)mij(t)λ̇j(t). Furthermore, to min-
imize the entropy production of any (slow)
protocol we have to find the shortest path
between the desired initial and final value of the
Hamiltonian’s parameters. This corresponds to
a geodesic path, with length L, which naturally
defines a minimal entropy production

kBTΣmin = 1
τ

L2 . (11)

We can find Σmin by solving the geodesic equa-
tion that is derived from the metric and comput-
ing its length [37, 40, 42].

3.2 Resonant-level model
Having explained the general ideas behind our
work, we now focus on finite-time driving pro-
cesses of a single fermionic mode coupled to a
fermionic bath, which can e.g. describe a single-
electron quantum dot. The total Hamiltonian
reads:

H(t) = ε(t)â†â+
n∑

k=1
ωk b̂

†
k b̂k + g(t)

n∑

k=1
λkâ

†b̂k + λ∗
k b̂

†
kâ.

(12)

where â† is the creation operator of the two-level
system and b̂†

k is the creation operator of a bath
mode with frequency ωk, following the canon-
ical anti-commutation relations: {â†, â} = 1,
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{b̂†
j , b̂k} = δjk1, {b̂j , b̂k} = {â, b̂k} = {â†, b̂k} =

{â, â} = 0; and finally λk are the interaction
weights which define the spectral density function
of the bath J(ω) = 2π∑k |λk|2δ(ω − ωk). The
energy ε is the difference between the energy of
the two-level system and the chemical potential
of the bath1. We are assuming optimal control
over the functions ε(t) and g(t) so that we can
fully optimize the protocol and reach the funda-
mental limit for this system. While this level of
control is, in principle, ambitious experimentally
in regards to the coupling, it has been achieved
in quantum dots [110] where the tunneling rate
(i.e. interaction strength) can be modified by sev-
eral orders of magnitude. We take the continuum
limit and assume that the spectral density of the
bath is a Lorentzian

J(ω) = Λ2

Λ2 + ω2 , (13)

where Λ > 0 is a parameter characterizing its
width. Exact and explicit solutions for the
resonant-level model are known in the wide-band
limit Λ → ∞ [76–82]. This limit is commonly
used to describe quantum systems in contact with
fermionic macroscopic baths, e.g. in quantum
dots or single-molecule junctions [111, 112]. In
essence, it neglects the structure of the density of
states in the bath and, as a consequence, a main
limitation is that it fails to describe the short-
time dynamics [112]. Nevertheless, this problem
does not affect this study since we are interested
in large times. We should further note that the
energy of the system-bath interaction is propor-
tional to Λ, and therefore is divergent in this
limit. We will therefore take Λ to be finite but
much larger than any other energy scale of the
system. For our analysis to be valid we simply
require dynamics much slower than Λ−1 [76].

The dynamics are solved via a quantum
Langevin approach, which is detailed in App. A
(see also [62, 83]). Taking the initial state to have
no correlations between S and B (ρ(0) = ρS(0) ⊗
ρB(0)) and the bath to be in a thermal state; we
find the probability of occupation of the excited

1The chemical ν potential of the bath is incorporated
by subtracting νâ†â to the system’s Hamiltonian. Since
here HS = εa†â (with ε the energy of the system), we can
simply redefine ε to be the difference between the system’s
energy and the chemical potential and set ν = 0 without
loss of generality.

level of the system p(t) = ⟨â†â⟩ and the system-
bath interaction energy v(t) = ∑

k λk⟨â†b̂k⟩+h.c.,

p(t) = |G(t, 0)|2 p(0) (14)

+ 1
2π

∫ ∞

−∞
dω fβ(ω)

∣∣∣∣
∫ t

0
ds g(s)G(t, s)ei ω

ℏ (t−s)
∣∣∣∣
2
,

v(t) = 1
π

ℑ
∫ ∞

−∞
dω fβ(ω)

∫ t

0
ds g(s)G(t, s)ei ω

ℏ (t−s),

(15)

where fβ(ω) = (1 + eβω)−1 is the Fermi-Dirac
distribution and we defined the propagator

G(t, s) = exp
[
−1
ℏ

∫ t

s
dr µ(r) + iε(r)

]
, (16)

with µ(t) := 1
2g(t)2. From these expressions we

can exactly compute the thermodynamic work
eq. (4), which reads:

W =
∫ τ

0
dt ε̇(t)p(t) + µ̇(t)v(t)/g(t). (17)

From the exact solutions for p(t) and v(t), in
App. A we show that Requirement 1 is satis-
fied, and hence W = ∆F in the quasistatic limit.
For slow but finite-time processes, we perform a
slow driving expansion of eq. (14) and eq. (15)
(details in App. B) using that the thermaliza-
tion rate of the system is Γ := 2

ℏτ

∫ τ
0 dt µ(t), so

that the expansion can be performed in orders of
1/(τΓ). We then obtain an expansion forW anal-
ogous to eq. (6) where the entropy production Σ
is described by eq. (9) with λ⃗(t) = (ε(t), µ(t)) and
the thermodynamic metric

m(t) = ℏ
π

∫ ∞

−∞
dω fβ(ω)mω(ε(t)−ω, µ(t)) , (18)

where

mω(ε, µ) = 1
(µ2 + ε2)3

(
4εµ2 −µ(µ2 − 3ε2)

µ(µ2 − 3ε2) 2ε(ε2 − µ2)

)
.

(19)
This metric gives a geometrical description of
slow thermodynamic protocols performed on the
system. By solving the geodesic equations [113],
we can find the geodesic length L and hence the
minimal entropy production eq. (11).

4 Special limits of the metric
Before attempting to solve the geodesic equations
for the case of erasure, we now study the high
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Figure 1: (left) Examples of optimal protocols computed from [109] for boundary conditions ε(0) = 0 and βε(τ) = 20
at different values of τ . (right) Comparison of the entropy production of the optimal protocols from [109] with
boundary conditions ε(0) = 0 and βε(τ) = 100 to the lower bounds given by eq. (1), Van Vu et al. [52] and Zhen et
al. [51].

and low temperature limits, as well as the limit
of weak coupling, to gain further analytical in-
sights on the form of optimal protocols and the
associated entropy production.

4.1 High temperature limit (βε, βµ ≪ 1)
Since the terms of eq. (18) quickly decay at high
frequencies we can perform the high temperature
expansion fβ(ω) = 1

2 − 1
4βω + O(β3ω3) directly

in the metric. At leading order, we find:

mHT = ℏβ
8µ1 . (20)

This enables an analytical solution of the geodesic
equations. Given the boundary conditions
{ε(0) = µ(0) = µ(τ) = 0, ε(τ) = ε∗ > 0}, which
will later match those of an erasure protocol2, we
find the following geodesic path (cf. App. C)

ε(t) = ε∗

(
t/τ − sin(2πt/τ)

2π

)
, (21)

µ(t) = ε∗
π

sin(πt/τ)2 . (22)

In the regime βε(t) ≪ 1, we observe that min-
imising entropy production requires a maximal
coupling strength ε(τ)/π. The entropy produc-
tion of the geodesic protocol is

kBTΣmin = πℏβε∗
2τ + O(β3ε3

∗) , (23)

which linearly scales with the final energy βε∗.

2Usually, the initial condition for erasure would be
ε(0) = ν for ν the chemical potential of the bath and ε the
energy of the two-level system (so that the corresponding
thermal state is the fully mixed state). But since here we
defined ε to be the difference to the chemical potential we
take ε(0) = 0 without loss of generality.

4.2 Zero temperature limit (βε or βµ → ∞)
In the limit of T = 03 we have fβ(ω) → f∞(ω) =
Θ(−ω), where Θ is the Heaviside step function.
Therefore the metric becomes (cf. App. D)

mT =0 = ℏ
π

1
(µ2 + ε2)2

(
µ2 −εµ

−εµ ε2

)
, (24)

which coincides with the metric of an angle
distance in the (ε, µ) space -hence the met-
ric is singular. If we re-parameterize (ε, µ) as
(r cosϕ, r sinϕ) we find kBTΣ = 1

π

∫ τ
0 dt ϕ̇(t)2.

Therefore any protocol that keeps ϕ̇(t) constant
is a geodesic, leading to the minimal entropy pro-
duction:

kBTΣmin

∣∣∣∣
T =0

= ℏ(∆ϕ)2

πτ
, (25)

with ϕ = arctan(µ/ε). Note that there are mul-
tiple (infinitely many) geodesics for any pair of
boundary points. This fact prevents us from con-
tinuing the expansion to further orders in temper-
ature. Nevertheless, this limit provides analytical
insights on optimal protocols with βε or βµ ≫ 1.
In particular, we note that there is no need for a
diverging coupling even when ε(τ) → ∞ as, once
µ has become large, eq. (25) shows that it is op-
timal to reduce the coupling while increasing the
energy. Furthermore, eq. (25) shows that at zero
temperature, while the reversible cost of the oper-
ation goes to zero, the dissipation remains strictly

3The zero temperature limit is achieved whenever the
energy gaps of the system are too large for thermal fluctu-
ations to occur between the energy levels. Bringing either
βε or βµ to infinity achieves this effect. It is the oppo-
site in the infinite temperature limit, where the thermal
fluctuations need to overcome any energy gap, therefore
in that limit, both βε and βµ need to be brought to zero.
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positive. This result is complementary to the
findings of Ref. [13] which demonstrate a finite-
size correction to Landauer’s bound that does not
disappear in the zero-temperature regime.

4.3 Weak coupling limit
Lastly, we take take the weak coupling limit to
compare to previous erasure results that are ob-
tained via Lindbladian dynamics, a common as-
sumption in previous works on optimal thermo-
dynamic control in the quantum regime [35, 49–
54]. In this limit the coupling is taken to be
small and constant, therefore the metric becomes
a scalar (cf. App. B.2):

mweak(ε) = βℏ
Γ fβ(ε)(1 − fβ(ε)) , (26)

which matches with the results of [50, 54] which
were also obtained with thermodynamic geome-
try. Indeed, this metric can be obtained from the
rate equation

dp(t)
dt

= −Γ
(
p(t) − 1

1 + eβε(t)

)
, (27)

which can also be obtained by taking the weak
coupling limit in the Heisenberg equations that
define eq. (14). In this regime protocols that
minimize dissipated heat at arbitrary speed were
found by [109]. Therefore we will compare the
results one obtains in slow driving and the re-
sults of [51, 52] to the exact minimization of [109].

We are interested in erasure processes, where
ε(t) is driven from2 ε(0) = 0 to ε(τ) = ε∗ with
ε∗ ≫ kBT in a time τ . Optimal finite-time pro-
tocols are those which minimize the work cost
W =

∫ τ
0 dt ε̇(t)p(t), and hence the heat dissipated

to the environment Q = W − ∆E. The results
of [109] provide an exact solution to this problem,
which is shown in Fig. 1. As it is well-known in fi-
nite time stochastic thermodynamics [108], jumps
appear in the optimal solution. However, as we
approach the quasistatic limit where τΓ ≫ 1,
the jumps progressively disappear. In App. E we
prove why the jumps should also disappear in the
long times limit at strong coupling. As detailed
in App. B.2, and also discussed in previous ref-
erences [50], the optimal driving solution in this
limit has the simple analytical form

ε(t) = 2β−1 ln tan
[
π

4 (t/τ + 1)
]
, (28)

leading to the work cost

W = kBT

(
ln 2 + π2

4τΓ

)
, (29)

from where we can directly recover eq. (1)
through the first law of thermodynamics (note
that ∆ES ≈ 0). In Fig. 1 we notice that the
exact solution of [109] agrees well with this an-
alytical form in the slow driving limit. For com-
pleteness, we also show recent results of [51, 52].
These results apply more generally to any Marko-
vian master equation (here we apply them to the
particular case of eq. (27)), and one can see that
they provide a bound to the exact numerical (and
approximate analytical) solutions.

5 Optimized erasure
We now focus on erasure outside of any approx-
imation, where we will optimize the driving over
both the energy and coupling. In what follows,
we focus on minimising Σ in an erasure process,
which imposes specific boundary conditions to
the geodesic equations. We assume that we have
no prior knowledge of the system, therefore its ini-
tial state is ρS(0) = 1/2. This translates in tak-
ing ε(0) = 0 so that it coincides with the thermal
state of HS . For the qubit to be erased we want
its final state to be ρS(τ) ≈ |0⟩⟨0| (i.e. p(τ) ≈ 0).
Since the driving is done slowly, p(t) is always
close to its thermal expectation value. Therefore
by choosing βε(τ) → ∞ we ensure p(τ) ≈ 04.
For the coupling, the boundary conditions are
µ(0) = µ(τ) = 0, because we want to think of this
as an “erasure machine” that the qubit is “brought
to” at the start and “retrieved from” at the end.
Given this family of protocols, we recognise from
eq. (6) that W = kBT (ln 2 + Σ), and similarly
Q = kBT (ln 2 + Σ), thus justifying the minimi-
sation of Σ as given in eq. (9). After the qubit
has been decoupled (i.e. at t > τ), we bring the
Hamiltonian of the system back to its starting
value (ε = 0) to close the cycle. Since p(τ) ≈ 0,

4Strictly speaking, in order to ensure consistency with
the slow driving limit, βε(τ) has to remain finite (so that
the speed λ̇ remain finite). However, the final population
p(τ) is exponentially small with βε(τ), leading to expo-
nentially small corrections. Our results are valid up to
such corrections, and for sufficiently large τ to ensure the
validity of the approximation.
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Figure 2: (left) A series of optimal protocols depicted in the (µ, ε) space. They all start with zero energy and coupling
and end with finite energy and zero coupling. In the limit of large βε(τ) they can be considered as erasure protocols.
(middle) The entropy production of the optimal erasure protocol as a function of the final energy, compared to the
high temperature regime cost eq. (23). (right) Comparison of the entropy production for a geodesic protocol in which
one parameter is varied at a time (with µ being increased until µ∗) and the weak coupling approximation eq. (1);
the minimal possible entropy production, τΣmin/β = 2.57946 ± 1 · 10−5 [ℏ], obtained when both parameters are
changed simultaneously is also shown.
this step requires no work, and it can be done
arbitrarily quickly.

The geodesic equations we obtain for this pro-
cess are not solvable analytically. The integral
of eq. (18) can be solved to give us an expression
of the metric in terms of polygamma functions
(cf. App. B) but it does not simplify the geodesic
equations into an analytically solvable form. We
therefore turn to numerical tools to obtain the
optimal protocol and compute the the dissipated
work. Though, in our case, we want to impose
the aforementioned boundary conditions; this is
known as a Boundary Value Problem (BVP),
which is famously hard to solve numerically [114].
Though we can use the fact that the high tem-
perature limit is accurate at the start of an era-
sure protocol, therefore the initial conditions of
the optimal protocol for erasure will match the
initial conditions of eq. (21) and eq. (22). This
allows us to turn the BVP into an Initial Value
Problem (cf. App. G) which is much simpler to
solve.

In Fig. 2 we show optimal erasure protocols in
the (µ, ε) space for different final values of βε.
We can notice that the predictions of the high
and low temperature limit are verified: at the
start of the protocols the coupling is increased
but once we reach a certain value there is no
more need to increase it, regardless of the final
value of βε we try to reach. Interestingly, the
maximal value reached by βµ is larger than 1.
This shows that reaching the strong coupling is
needed to achieve optimal erasure, which is one
of the main insights of our work. In the same
figure we also show the value of τΣmin/β for the
optimal protocol as a function of the final energy.

We can see that for small values of βε(τ) eq. (23)
gives an accurate description of the work cost,
but as we reach higher values it saturates around
τΣmin/β = 2.57946 ± 1 · 10−5 [ℏ]. This provides
a finite-time correction to Landauer’s principle
in this set-up, thus leading to a generalisation of
eq. (1):

Q ≥ kBT

(
ln 2 + a

τPl
τ

)
+ O

( 1
Γ2τ2

)
. (30)

with a ≈ 2.57946 and τPl = βℏ. This is one of
the main results of this work and can be seen as
a generalization of eq. (1). As opposed to the re-
sults of [51] and [52], eq. (30) is only valid for large
protocol times; yet, it has the advantage of tak-
ing into account strong coupling effects (including
any possible variation of the coupling strength),
having a much simpler form for the correction
(which is independent of any chosen relaxation
timescale), and we provide an explicit protocol
to achieve it. By turning around eq. (30) one can
highlight a quantum speed limit for erasure of a
qubit, furthermore this speed limit is of the or-
der of the Planckian time τPl = ℏ/kBT which is
conjectured to be the fastest relaxation timescale
for thermalization [84]. In particular, one can see
that eq. (30) bounds the speed of erasure by the
order of τPl regardless of how large is the coupling
strength used in the protocol.

Interestingly, we now argue that the form of the
correction eq. (30) is in fact general of any Lan-
dauer erasure protocol with control on S and the
SB coupling. Indeed, first note that the geodesic
length L is dimensionless and can only depend
on β and the boundary conditions as we opti-
mize over µ and ε. In an erasure process, the
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boundary conditions read: ε(0) = 0, ε(τ) → ∞,
and µi(0) = µi(τ) = 0 where i runs over all the
possible control parameters on SB. But this im-
plies that L is independent of them and hence
of β. Therefore kBTΣmin will take the form of
a constant, independent of any parameter of the
system and bath, divided by τ . This is a crucial
difference from eq. (1).

This simple argument based on dimensional
analysis thus shows that eq. (30) is rather general,
with the value of a depending on the specific im-
plementation (e.g. the ohmicity of the bath). It
is important to highlight that the bound eq. (30)
implies that, even when having access to arbitrary
strong SB interactions (naively taking Γ → ∞ in
eq. (1)), infinite time is still required for perfect
erasure due to the quantum-mechanical correc-
tion derived here.

Finally, we analyze a scenario where the cou-
pling is kept constant while ε(t) is driven, which is
motivated both by experimental set-ups and for
a comparison with the weakly interacting case.
Therefore, we restrict to one-parameter protocols
consisting of the three following steps: 1. while
keeping ε at 0 we turn on the coupling to some
value µ∗; 2. while keeping the coupling fixed
we bring ε from 0 to some value ε∗ ≫ kBT ;
3. while keeping ε constant we turn off the cou-
pling. Each step contributes positively to the
entropy production, and its minimisation is dis-
cussed in App. F. In Fig. 2, we show Σmin for dif-
ferent values of µ∗, ranging from the weak to the
super-strong coupling regime. It can be appreci-
ated how eq. (1) breaks down, and also how such
one-parameter protocols become close to the fun-
damental limit eq. (30) for βµ∗ > 1.

6 Conclusions and outlook

Deriving finite-time corrections to the seminal
Landauer bound is a challenging endeavour in
stochastic and quantum thermodynamics [35, 44–
54]. Previous works have focused on markovian
systems only, which in the quantum regime is ob-
tained through the weak coupling limit (βg2 →
0). However, should a general finite-time correc-
tion exist, it will require the presence of strong
coupling at some point during the process as
the dissipation generated in finite time is propor-

tional to g−2 when g is small5. Motivated by this
observation, we have developed new insights into
the form of optimal protocols for erasure beyond
the weak coupling limit.

We have focused on a bit encoded in the occu-
pation of a single fermionic mode, which can be
strongly coupled to a reservoir. We have derived
analytically the thermodynamic metric, which
governs the dissipation rate in the slow driving
regime, and showed that it takes a simple form
in the high and low temperature limits. From
the general form of the metric we obtained the
optimal erasure protocol, which requires increas-
ing the coupling strength to g2 ∼ kBT , which
corresponds to a relaxation timescale of the or-
der of the Planckian time τPl. The corresponding
dissipation yields a finite-time correction to Lan-
dauer’s bound for this setup, which is substan-
tially lower than similar results in the weak cou-
pling regime. Furthermore, by using the obtained
bound as a quantum speed limit, this result adds
further evidence to the conjecture [84] that τPl is
fastest relaxation timescale many-body systems
can achieve.

While our results were derived in a fermionic
model there are some general insights that follow
from our work. First there is a fundamental quan-
tum correction that prevails, see eq. (30), which
can be compared with eq. (1) derived in the weak
coupling regime. While the specific value of a in
eq. (30) will depend on the specific setup, it will
never approach 0 (even for diverging system-bath
coupling) due to the inherent cost of changing
the interaction strength. Furthermore, to obtain
these results we adapted the framework of ther-
modynamic geometry to system-bath unitary dy-
namics in which the coupling can be arbitrarily
large or small. This is in contrast to recent claims
of failure of this approach in closed quantum sys-
tems [115]. Finally, as was argued before, our
results make evident the need of strong coupling
in a general finite-time correction to Landauer’s
principle.

This work opens exciting directions for the fu-
ture. On the one hand, the level of experimental
control required to implement such protocols is
in principle possible in quantum dots [116–119],

5This can be seen by expanding the finite time dissipa-
tion around g2 = 0 for long times: kBT Σ ∝ 1/g2τ , which
follows by noticing that the relaxation time-scale is of the
order of g−2.
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where the energy-level ε(t) and coupling g(t) can
be independently controlled, even by several or-
ders of magnitude [110]. On the other hand, it
would be interesting to characterise the depen-
dence of a in the nature of the bath and the SB
coupling (e.g. its spectral density), more gener-
ally to derive similar quantum-mechanical finite-
time corrections that are independent of the spe-
cific implementation, and to gain further insights
in the connection between Landauer erasure and
the Planckian time.
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Monasterio, R. Mohayaee, and
P. Muratore-Ginanneschi, Journal of
Statistical Physics 147, 487 (2012).

[35] T. Van Vu and K. Saito, Phys. Rev. X 13,
011013 (2023).

[36] P. Salamon, B. Andresen, P. D. Gait, and
R. S. Berry, J. Chem. Phys. 73, 1001 (1980).

[37] P. Salamon and R. S. Berry, Phys. Rev.
Lett. 51, 1127 (1983).

[38] J. Nulton, P. Salamon, B. Andresen, and
A. Qi, J. Chem. Phys. 83, 334 (1985).

[39] B. Andresen, R. S. Berry, R. Gilmore,
E. Ihrig, and P. Salamon, Phys. Rev. A
37, 845 (1988).

[40] D. A. Sivak and G. E. Crooks, Phys. Rev.
Lett. 108, 190602 (2012).

[41] S. Deffner and M. V. S. Bonança, EPL (Eu-
rophysics Letters) 131, 20001 (2020).

[42] P. Abiuso, H. J. D. Miller, M. Perarnau-
Llobet, and M. Scandi, Entropy 22, 1076
(2020).

[43] T. V. Vu and Y. Hasegawa, Physical Re-
view Letters 126 (2021), 10.1103/phys-
revlett.126.010601.

[44] P. R. Zulkowski and M. R. DeWeese, Phys.
Rev. E 89, 052140 (2014).

[45] K. Proesmans, J. Ehrich, and J. Bechhoe-
fer, Phys. Rev. Lett. 125, 100602 (2020).

[46] K. Proesmans, J. Ehrich, and J. Bechhoe-
fer, Phys. Rev. E 102, 032105 (2020).

[47] A. B. Boyd, A. Patra, C. Jarzynski, and
J. P. Crutchfield, Journal of Statistical
Physics 187, 1 (2022).

[48] J. S. Lee, S. Lee, H. Kwon, and H. Park,
Phys. Rev. Lett. 129, 120603 (2022).

[49] G. Diana, G. B. Bagci, and M. Esposito,
Phys. Rev. E 87, 012111 (2013).

[50] M. Scandi and M. Perarnau-Llobet, Quan-
tum 3, 197 (2019).

[51] Y.-Z. Zhen, D. Egloff, K. Modi, and
O. Dahlsten, Phys. Rev. Lett. 127, 190602
(2021).

[52] T. Van Vu and K. Saito, Phys. Rev. Lett.
128, 010602 (2022).

[53] Y.-Z. Zhen, D. Egloff, K. Modi, and
O. Dahlsten, Phys. Rev. E 105, 044147
(2022).

[54] Y.-H. Ma, J.-F. Chen, C. P. Sun, and
H. Dong, Phys. Rev. E 106, 034112 (2022).

[55] P. Strasberg, G. Schaller, N. Lambert, and
T. Brandes, New Journal of Physics 18,
073007 (2016).

[56] C. Jarzynski, Phys. Rev. X 7, 011008
(2017).

[57] H. J. D. Miller, in Fundamental Theories of
Physics (Springer International Publishing,
2018) pp. 531–549.

[58] A. Nazir and G. Schaller, in Fundamental
Theories of Physics (Springer International
Publishing, 2018) pp. 551–577.

[59] P. Talkner and P. Hänggi, Rev. Mod. Phys.
92, 041002 (2020).

[60] A. Rivas, Phys. Rev. Lett. 124, 160601
(2020).

[61] M. Brenes, J. J. Mendoza-Arenas,
A. Purkayastha, M. T. Mitchison, S. R.
Clark, and J. Goold, Phys. Rev. X 10,
031040 (2020).

[62] N. Pancotti, M. Scandi, M. T. Mitchison,
and M. Perarnau-Llobet, Phys. Rev. X 10,
031015 (2020).

[63] S. Alipour, A. Chenu, A. T. Rezakhani,
and A. del Campo, Quantum 4, 336 (2020).

[64] K. Ptaszyński, Physical Review E 106
(2022), 10.1103/physreve.106.014114.

[65] M. Carrega, L. M. Cangemi, G. De Filippis,
V. Cataudella, G. Benenti, and M. Sas-
setti, PRX Quantum 3, 010323 (2022).

[66] F. Cavaliere, M. Carrega, G. D. Filippis,
V. Cataudella, G. Benenti, and M. Sas-
setti, Physical Review Research 4 (2022),
10.1103/physrevresearch.4.033233.

[67] F. Ivander, N. Anto-Sztrikacs, and D. Se-
gal, Phys. Rev. E 105, 034112 (2022).

[68] D. Newman, F. Mintert, and A. Nazir,
Phys. Rev. E 95, 032139 (2017).

[69] M. Perarnau-Llobet, H. Wilming, A. Ri-
era, R. Gallego, and J. Eisert, Physical

Accepted in Quantum 2023-10-24, click title to verify. Published under CC-BY 4.0. 10



Review Letters 120 (2018), 10.1103/phys-
revlett.120.120602.

[70] P. Strasberg, G. Schaller, T. L. Schmidt,
and M. Esposito, Physical Review B 97
(2018), 10.1103/physrevb.97.205405.

[71] M. Wiedmann, J. T. Stockburger, and
J. Ankerhold, New Journal of Physics 22,
033007 (2020).

[72] J. Liu, K. A. Jung, and D. Segal, Phys.
Rev. Lett. 127, 200602 (2021).

[73] Y. Shirai, K. Hashimoto, R. Tezuka,
C. Uchiyama, and N. Hatano, Phys. Rev.
Research 3, 023078 (2021).

[74] S. Koyanagi and Y. Tanimura, The Journal
of Chemical Physics 157, 084110 (2022).

[75] J. Liu and K. A. Jung, Phys. Rev. E 106,
L022105 (2022).

[76] G. Schaller, Open quantum systems far
from equilibrium, Vol. 881 (Springer, 2014).

[77] M. F. Ludovico, J. S. Lim, M. Moskalets,
L. Arrachea, and D. Sánchez, Phys. Rev.
B 89, 161306 (2014).

[78] M. Esposito, M. A. Ochoa, and
M. Galperin, Phys. Rev. Lett. 114, 080602
(2015).

[79] M. Esposito, M. A. Ochoa, and
M. Galperin, Phys. Rev. B 92, 235440
(2015).

[80] A. Bruch, M. Thomas, S. Viola Kusmin-
skiy, F. von Oppen, and A. Nitzan, Phys.
Rev. B 93, 115318 (2016).

[81] P. Haughian, M. Esposito, and T. L.
Schmidt, Phys. Rev. B 97, 085435 (2018).

[82] M. T. Mitchison and M. B. Plenio, New
Journal of Physics 20, 033005 (2018).

[83] K. Tong and W. Dou, Journal of Physics:
Condensed Matter 34, 495703 (2022).

[84] S. A. Hartnoll and A. P. Mackenzie, Rev.
Mod. Phys. 94, 041002 (2022).

[85] S. Sachdev, Quantum Phase Transitions,
2nd ed. (Cambridge University Press,
2011).

[86] J. Maldacena, S. H. Shenker, and D. Stan-
ford, Journal of High Energy Physics 2016
(2016), 10.1007/jhep08(2016)106.

[87] S. Pappalardi and J. Kurchan, SciPost
Phys. 13, 006 (2022).

[88] P. R. Zulkowski, D. A. Sivak, G. E. Crooks,
and M. R. DeWeese, Phys. Rev. E 86,
041148 (2012).

[89] M. V. S. Bonança and S. Deffner, J. Chem.
Phys. 140, 244119 (2014).

[90] G. M. Rotskoff, G. E. Crooks, and
E. Vanden-Eijnden, Phys. Rev. E 95,
012148 (2017).

[91] G. Li, J.-F. Chen, C. P. Sun, and H. Dong,
Phys. Rev. Lett. 128, 230603 (2022).

[92] J. Eglinton and K. Brandner, Phys. Rev. E
105, L052102 (2022).

[93] A. G. Frim and M. R. DeWeese, Phys. Rev.
Lett. 128, 230601 (2022).

[94] J.-F. Chen, R.-X. Zhai, C. Sun, and
H. Dong, arXiv preprint arXiv:2209.07269
(2022), 10.48550/arXiv.2209.07269.

[95] H. J. D. Miller, M. Scandi, J. Anders, and
M. Perarnau-Llobet, Phys. Rev. Lett. 123,
230603 (2019).

[96] P. Abiuso and M. Perarnau-Llobet, Phys.
Rev. Lett. 124, 110606 (2020).

[97] K. Brandner and K. Saito, Phys. Rev. Lett.
124, 040602 (2020).

[98] P. Terrén Alonso, P. Abiuso, M. Perarnau-
Llobet, and L. Arrachea, PRX Quantum
3, 010326 (2022).

[99] M. Mehboudi and H. J. D. Miller, Phys.
Rev. A 105, 062434 (2022).

[100] S. Deffner and E. Lutz, Phys. Rev. Lett.
105, 170402 (2010).

[101] J. Eisert, M. Friesdorf, and C. Gogolin,
Nature Physics 11, 124 (2015).

[102] L. D'Alessio, Y. Kafri, A. Polkovnikov,
and M. Rigol, Advances in Physics 65, 239
(2016).

[103] Y. Subaşı, C. H. Fleming, J. M. Taylor,
and B. L. Hu, Physical Review E 86 (2012),
10.1103/physreve.86.061132.

[104] M. Merkli, Annals of Physics 412, 167996
(2020).

[105] J. D. Cresser and J. Anders, Phys. Rev.
Lett. 127, 250601 (2021).

[106] A. S. Trushechkin, M. Merkli, J. D. Cresser,
and J. Anders, AVS Quantum Science 4,
012301 (2022).

[107] V. Cavina, A. Mari, and V. Giovannetti,
Phys. Rev. Lett. 119, 050601 (2017).

[108] T. Schmiedl and U. Seifert, Phys. Rev. Lett.
98, 108301 (2007).

[109] M. Esposito, R. Kawai, K. Lindenberg, and
C. Van Den Broeck, EPL 89, 20003 (2010).

[110] S. Rochette, M. Rudolph, A.-M. Roy, M. J.
Curry, G. A. T. Eyck, R. P. Manginell,

Accepted in Quantum 2023-10-24, click title to verify. Published under CC-BY 4.0. 11



J. R. Wendt, T. Pluym, S. M. Carr, D. R.
Ward, M. P. Lilly, M. S. Carroll, and
M. Pioro-Ladrière, Applied Physics Letters
114, 083101 (2019).

[111] F. Evers, R. Korytár, S. Tewari, and
J. M. van Ruitenbeek, Rev. Mod. Phys. 92,
035001 (2020).

[112] F. Covito, F. G. Eich, R. Tuovinen, M. A.
Sentef, and A. Rubio, Journal of Chemical
Theory and Computation 14, 2495 (2018).

[113] L. W. Tu, Differential Geometry (Springer
International Publishing, 2017).

[114] L. Fox and D. F. Mayers, Numerical So-
lution of Ordinary Differential Equations
(Springer Netherlands, 1987).

[115] A. Soriani, E. Miranda, and M. V. S. Bo-
nança, New Journal of Physics 24, 113037
(2022).

[116] M. Ciorga, A. S. Sachrajda, P. Hawrylak,

C. Gould, P. Zawadzki, S. Jullian, Y. Feng,
and Z. Wasilewski, Phys. Rev. B 61, R16315
(2000).

[117] J. M. Elzerman, R. Hanson, J. S.
Greidanus, L. H. Willems van Beveren,
S. De Franceschi, L. M. K. Vandersypen,
S. Tarucha, and L. P. Kouwenhoven, Phys.
Rev. B 67, 161308 (2003).

[118] J. V. Koski, V. F. Maisi, J. P. Pekola, and
D. V. Averin, Proceedings of the National
Academy of Sciences 111, 13786 (2014).

[119] J. V. Koski, V. F. Maisi, T. Sagawa, and
J. P. Pekola, Phys. Rev. Lett. 113, 030601
(2014).

[120] S. Ismail-Beigi, Yale notes (2013).
[121] P. A. Erdman, A. Rolandi, P. Abiuso,

M. Perarnau-Llobet, and F. Noé, Phys.
Rev. Res. 5, L022017 (2023).

Contents
1 Introduction 1

2 Framework 2

3 Thermodynamic geometry 2
3.1 Strongly coupled systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Resonant-level model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4 Special limits of the metric 4
4.1 High temperature limit (βε, βµ ≪ 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 Zero temperature limit (βε or βµ → ∞) . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3 Weak coupling limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Optimized erasure 6

6 Conclusions and outlook 8

References 9

A Solving the exact dynamics 13
A.1 Solving the Heisenberg equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
A.2 Relevant observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
A.3 Proof of requirement 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A.3.1 Infinite time limit in absence of driving . . . . . . . . . . . . . . . . . . . . . . . 16
A.3.2 Thermal expectation value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

B Slow driving expansion 19
B.1 Deriving the thermodynamic metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
B.2 Weak coupling limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
B.3 Solving the integral of the thermodynamic metric and finding the symmetry . . . . . . 22

Accepted in Quantum 2023-10-24, click title to verify. Published under CC-BY 4.0. 12



C High temperature limit 24

D Low temperature limit 26

E Discontinuities in the protocol 27

F One-parameter case 28

G Numerical solution to the general case 30

A Solving the exact dynamics
A.1 Solving the Heisenberg equations
We consider a single fermionic mode coupled to a fermionic bath. Without loss of generality we can
set the chemical potential to 0 and the ground state of the two-level system to 0. The Hamiltonians
of the system and bath are

ĤS(t) = ε(t)â†â , (31)

ĤB =
n∑

k=1
ωk b̂

†
k b̂k , (32)

where â† is the creation operator of the two-level system and b̂†
k is the creation operator of a bath

mode with frequency ωk. These ladder operators follow the canonical anticommutation relations. For
the interaction between system and bath, the Hamiltonian is

Ĥint(t) = g(t)V̂ = g(t)
n∑

k=1
λkâ

†b̂k + λ∗
k b̂

†
kâ , (33)

where the λk are the interaction weights.

Will will consider that ε(t) and g(t) are the control parameters to then perform the erasure of
information in the single mode of the system. We now proceed to solve the dynamics of the system
and bath in the Heisenberg picture.
For an operator Â in the Schrödinger picture, we denote by ÂH(t) the corresponding operator in the
the Heisenberg picture. The evolution of ÂH(t) is defined by the Heisenberg equation of motion:

d

dt
ÂH(t) = i

[
Ĥ(t), ÂH(t)

]
, (34)

where Ĥ(t) = ĤS(t) + Ĥint(t) + ĤB and ℏ = 1. Applying this equation to the ladder operators âH(t)
and b̂k,H(t) we find the following system of n+ 1 equations:

d

dt
âH(t) = −iε(t)âH(t) − ig(t)

∑

k

λk b̂k,H(t) , (35)

d

dt
b̂k,H(t) = −iωk b̂k,H(t) − ig(t)λ∗

kâH(t) . (36)

By defining ûk(t) = eiωktb̂k,H(t) we can see that eq. (36) becomes

e−iωkt d

dt
ûk(t) = −ig(t)λ∗

kâH(t) ,

which is solved by ûk(t) = ûk(0) − iλ∗
k

∫ t
0 ds e

iωksg(s)âH(s). We therefore find

b̂k,H(t) = e−iωktb̂k − iλ∗
k

∫ t

0
ds g(s)âH(s)eiωk(s−t) , (37)
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where we used that ûk(0) = b̂k,H(0) = b̂k. Therefore

∑

k

λk b̂k,H(t) = ξ̂(t) − i

∫ t

0
ds χ(s− t)g(s)âH(s) , (38)

where we defined the noise operator ξ̂(t) = ∑
k e

−iωktλk b̂k and χ(t) = ∑
k e

iωkt|λk|2. We can notice
that χ(t) is the (symmetrized) noise correlation function:

〈{
ξ̂†(t), ξ̂(0)

}〉
=
∑

j,k

eiωktλ∗
kλj

〈{
b̂†

k, b̂j

}〉
=
∑

k

eiωkt|λk|2 = χ(t) ,

and its Fourier transform is the (unit-less) spectral density of the bath J(ω) = 2π∑k |λk|2δ(ω − ωk)
By inserting eq. (38) into equation eq. (35) we find an equation of motion for âH(t):

d

dt
âH(t) = −iε(t)âH(t) − ig(t)ξ̂(t) − g(t)

∫ t

0
ds χ(s− t)g(s)âH(s) . (39)

In order to solve eq. (39) we will need to explicitly take the continuum limit so that our bath indeed
becomes a bath. We can take its spectral density to be either a Lorentzian J(ω) = Λ2

Λ2+ω2 or a pass-band
J(ω) = Θ(Λ − |ω|) (Θ is the Heaviside step function). We will need to assume that we are working in
the wide-band approximation (Λ → ∞). More practically, we are assuming that the bath interaction
is the same over the energies we are spanning with the system. This limit allows us to say that the
noise correlation function is negligible for time differences larger than zero:

lim
Λ→∞

lim
n→∞χ(t) = δ(t) .

In this limit eq. (39) becomes considerably simpler:

d

dt
âH(t) = −

(
iε(t) + 1

2g(t)2
)
âH(t) − ig(t)ξ̂(t) . (40)

Similarly to how we solved eq. (36), we define û(t) = exp
[∫ t

0 z(s)ds
]
âH(t) for z(t) := iε(t) + 1

2g(t)2.
Now we have

e−
∫ t

0 z(s)ds d

dt
û(t) = −ig(t)ξ̂(t) ,

which is solved by û(t) = û(0) − i
∫ t

0 ds g(s) exp [
∫ s

0 z(r)dr] ξ̂(s). We therefore find the solution of the
evolution of the ladder operator of the distinguished mode:

âH(t) = G(t, 0)â− i

∫ t

0
ds g(s)G(t, s)ξ̂(s) (41)

where we defined the propagator G(t, s) = exp
[
− ∫ t

s z(r)dr
]

. And from eq. (37) we find the solution
for the bath modes:

b̂k,H(t) = e−iωktb̂k −iλ∗
k

∫ t

0
ds g(s)G(s, 0)âeiωk(s−t)−λ∗

k

∫ t

0
ds

∫ s

0
dr g(s)g(r)G(s, r)ξ̂(r)eiωk(s−t) . (42)

A.2 Relevant observables
Since we are performing an erasure, we will assume the system starts in a factorized state and that
the bath starts in a thermal state at inverse temperature β state with respect to its Hamiltonian:

ρ̂(0) = ρ̂S(0) ⊗ e−βĤB

ZB
, ZB = Tr[e−βĤB ] .
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We are interested in computing the occupation probability of the excited level p(t) = ⟨â†â⟩ and the
system-bath interaction potential v(t) = ⟨V̂ ⟩. From eq. (41) we have

p(t) = Tr
[
ρ̂(0)â†

H(t)âH(t)
]

= |G(t, 0)|2 p(0) +
∫ t

0
dsdr g(s)g(r)G∗(t, s)G(t, r)Tr

[
e−βHB

ZB
ξ̂†(s)ξ̂(r)

]
,

(43)
where we used the CAR to get Tr[â†ξ̂(s)] = 0 and drop the cross terms. Further using the CAR we
simplify the remaining trace in the integral:

Tr
[
e−βHB

ZB
ξ̂†(s)ξ̂(r)

]
=
∑

k

eiωk(s−r)|λk|2Tr
[
e−βHB

ZB
b̂†

k b̂k

]
=
∑

k

eiωk(r−s)|λk|2fβ(ωk) , (44)

where fβ(ω) = (1 + eβω)−1 is the Fermi-Dirac distribution. We can apply the continuum limit to
eq. (44) by using the equality 2π∑k |λk|2h(ωk) =

∫
dω J(ω)h(ω), which holds for any function h by

definition of J. We can then apply the wideband limit by using limΛ→∞ limn→∞ J(ω) = 1. We find

Tr
[
e−βHB

ZB
ξ̂†(s)ξ̂(r)

]
=
∫ ∞

−∞

dω

2π e
iω(s−r)J(ω)fβ(ω) Λ→∞−−−−→

∫ ∞

−∞

dω

2π e
iω(s−r)fβ(ω) . (45)

Applying eq. (45) to eq. (43) we get

p(t) = |G(t, 0)|2 p(0) + 1
2π

∫ ∞

−∞
dω fβ(ω)

∫ t

0
ds

∫ t

0
dr g(s)g(r)G∗(t, s)G(t, r)eiω(s−r) . (46)

Using eq. (38), the CAR and eq. (41), we have

v(t) = Tr
[
ρ̂(0)â†

H(t)
(∑

k

λk b̂H(t)
)]

+ h.c.

= Tr
[
ρ̂(0)â†

H(t)ξ̂(t)
]

− i

∫ t

0
ds χ(s− t)g(s)Tr

[
ρ̂(0)â†

H(t)âH(s)
]

+ h.c. ,

Λ→∞−−−−→ Tr
[
ρ̂(0)â†

H(t)ξ̂(t)
]

− i
g(t)

2 Tr
[
ρ̂(0)â†

H(t)âH(t)
]

+ h.c. ,

= Tr
[
ρ̂(0)â†

H(t)ξ̂(t)
]

+ h.c. ,

= i

∫ t

0
ds g(s)G∗(t, s)Tr

[
e−βHB

ZB
ξ̂†(s)ξ̂(t)

]
+ h.c. ,

= i

2π

∫ ∞

−∞
dω fβ(ω)

∫ t

0
ds g(s)G∗(t, s)eiω(s−t) + h.c. .

So we have

v(t) = 1
π

ℑ
∫ ∞

−∞
dω fβ(ω)

∫ t

0
ds g(s)G(t, s)eiω(t−s) . (47)

A.3 Proof of requirement 1

We will now proceed to prove that, in absence of driving, p(t) and v(t) thermalize. We do so in two
steps, we first simplify the expressions of eq. (46) and eq. (47) for ε(t) = ε and g(t) = g and compute the
infinite time limit. Then we compute the thermal expectation value of the corresponding observables
and prove that the obtained expressions are the same.
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A.3.1 Infinite time limit in absence of driving

By assuming that the driving parameters are kept constant the propagator becomes

G(t, s) = e−(t−s)( 1
2 g2+iε) . (48)

This allows us to compute the time integrals in eq. (46) and eq. (47):

p(t) = p(0)e−g2t + g2

2π

∫ ∞

−∞
dω fβ(ω)1 − 2e−g2t/2 cos([ω − ε]t) + e−g2t

g4/4 + (ω − ε)2 , (49)

v(t) = g

π

∫ ∞

−∞
dω fβ(ω)

(ω − ε)
[
1 − e−g2t/2 cos([ω − ε]t)

]
− 1

2g
2e−g2t/2 sin([ω − ε]t)

g4/4 + (ω − ε)2 . (50)

As a side-note, it is interesting to note that the frequency integral of eq. (49) can be solved to give the
following expression for the occupation probability

p(t) = 1 + p(0)e−g2t + sinh(βε)
cosh(βε) + cos(βg2

2 )
+
(
1 + e−g2t

) [1
2 − 1

π
ℑψ(0)

(
1
2 + β

2π

(
g2

2 + iε

))]

+ e−g2t

π
ℑB

(
e2πt/β; 1

2 + β

2π

(
g2

2 − iε

)
, 0
)

+ 1
π

ℑB
(
e2πt/β; 1

2 − β

2π

(
g2

2 − iε

)
, 0
)
, (51)

where ψ(0)(z) = d
dz ln Γ(z) is the digamma function (defined as the logarithmic derivative of the Gamma

function) and B(x; a, b) =
∫ x

0 ds s
a−1(1 − s)b−1 is the incomplete beta function. This expression is

useful for numerical implementations as it is faster to compute than the integral of eq. (49).
By taking the limit t → ∞ in eq. (49) and eq. (50) we find

lim
t→∞

p(t) =
∫ ∞

−∞

dω

π
fβ(ω) g2/2

g4/4 + (ω − ε)2 , (52)

lim
t→∞

v(t) = g

∫ ∞

−∞

dω

π
fβ(ω) (ω − ε)

g4/4 + (ω − ε)2 . (53)

Here we can notice that if we take the Laplace transform of the propagator we obtain

G̃(z) :=
∫ ∞

0
dt G(t, 0)e−zt = 1

z + iε+ g2/2 , (54)

which allows us to rewrite eq. (52) and eq. (53) as

lim
t→∞

p(t) =
∫ ∞

−∞

dω

π
fβ(ω)ℜ

[
G̃(−iω)

]
, (55)

lim
t→∞

v(t) = g

∫ ∞

−∞

dω

π
fβ(ω)ℑ

[
G̃(−iω)

]
. (56)

A.3.2 Thermal expectation value

We now compute the expectation value of â†â and V̂ when the state is a Gibbs state

ω̂β := e−βĤ

Z
=

exp
[
−βεâ†â− βgV̂ − βĤB

]

Z
, Z = Tr[e−βĤ ] .

Therefore we want to find pth := Tr[ω̂β â
†â] and vth := Tr[ω̂βV̂ ]. Using the fact that the total Hamil-

tonian is quadratic, we can diagonalize it to rewrite it in the following way

Ĥ =
∑

k

εk ĉ
†
k ĉk , (57)
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where εk are eigen-energies and ĉk are fermionic ladder operators that follow the CAR: {ĉ†
j , ĉk} = δjk1,

{ĉj , ĉk} = 0. They are related to the original ones in the following way

â =
∑

k

⟨0|â|k⟩ ĉk , (58)

b̂j =
∑

k

⟨0|b̂j |k⟩ ĉk , (59)

where |k⟩ = ĉ†
k |0⟩ are 1-particle eigenstates of the Hamiltonian with eigenvalue εk. Inserting this in

the expression for the thermal expectation of the probability of occupation we find

pth = 1
Z

∑

jk

⟨j|â†|0⟩⟨0|â|k⟩ Tr
[
e−βĤ ĉ†

j ĉk

]
=
∑

k

∣∣∣⟨k|â†|0⟩
∣∣∣
2 Tr

[
e−βεk ĉ†

k
ĉk ĉ†

k ĉk

]

Tr
[
e−βεk ĉ†

k
ĉk

] =
∑

k

∣∣∣⟨k|â†|0⟩
∣∣∣
2
fβ(εk) .

(60)
From eq. (41) it is easy to see that we can write the propagator in the following way

G(t, 0) = ⟨0|âH(t)â†|0⟩ = ⟨0|Û †(t)âÛ(t)â†|0⟩ =
∑

k

e−iεkt ⟨0|Û †(t)â|k⟩⟨k|â†|0⟩ =
∑

k

e−iεkt
∣∣∣⟨k|â†|0⟩

∣∣∣
2
,

(61)
where we used the fact that the vacuum state does not evolve Û(t) |0⟩ = |0⟩ and that since we are
performing no driving we have Û(t) = e−it

∑
k

εk ĉ†
k

ĉk . Note that the sum needs only to be over 1-
particle states as there is a scalar product with the 1-particle state â† |0⟩. By now defining φ(ω) :=
∑

k

∣∣∣⟨k|â†|0⟩
∣∣∣
2
δ(ω − εk) we can identify

G(t, 0) =
∫ ∞

−∞
dω φ(ω)e−iωt , (62)

pth =
∫ ∞

−∞
dω fβ(ω)φ(ω) . (63)

Considering eq. (55) it is clear that if φ(ω) = 1
π ℜ
[
G̃(−iω)

]
then we have proven pth = limt→∞ p(t).

Therefore we compute the Laplace transform of G(t, 0) using eq. (62)

G̃(−iω) =
∫ ∞

0
dt G(t, 0)eiωt ,

=
∫ ∞

0
dt

∫ ∞

−∞
dω′ ei(ω−ω′)tφ(ω′) ,

=
∫ ∞

−∞
dω′ φ(ω′)

∫ ∞

−∞
dt Θ(t)ei(ω−ω′)t ,

= πφ(ω) + iP.

∫ ∞

−∞
dω′ φ(ω′)

ω − ω′ ,

where P. denotes the Cauchy principal value, Θ(t) is the Heaviside step function and we used that
its Fourier transform is (in a distributional sense)

∫
dt eistΘ(t) = πδ(s) + P. i

s . Since φ(ω) is by
definition a real function we can see that P.

∫∞
−∞ dω′ φ(ω′)

ω−ω′ is a real number. Therefore we can conclude

φ(ω) = 1
π ℜ
[
G̃(−iω)

]
. Which concludes the proof of the thermalization of p(t).

To prove the thermalization of v(t) we proceed in a similar fashion. We start by computing vth

vth = 1
Z

∑

jk

λj ⟨k|â†|0⟩⟨0|b̂j |k⟩ Tr
[
e−βĤ ĉ†

k ĉk

]
+h.c. =

∑

jk

fβ(εk)
(
λj ⟨k|â†|0⟩⟨0|b̂j |k⟩ + λ∗

j ⟨k|b̂†
j |0⟩⟨0|â|k⟩

)
.

(64)
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To proceed we have to define the following cross-propagators

λjKj(t) := ⟨0|âH(t)b̂†
j |0⟩ =

∑

k

e−iεkt ⟨k|b̂†
j |0⟩⟨0|â|k⟩ =

∫ ∞

−∞
dω ψj(ω)e−iωt , (65)

λ∗
jHj(t) := ⟨0|b̂j,H(t)â†|0⟩ =

∑

k

e−iεkt ⟨k|â†|0⟩⟨0|b̂j |k⟩ =
∫ ∞

−∞
dω ψ∗

j (ω)e−iωt , (66)

where we defined ψj(ω) = ∑
k ⟨k|b̂†

j |0⟩⟨0|â|k⟩ δ(ω − εk). By further defining ψ0(ω) := ∑
k λ

∗
kψk(ω) and

ψ(ω) = ψ0(ω) + ψ∗
0(ω) we can see that

K(t) :=
∑

j

|λj |2 (Kj(t) +Hj(t)) =
∫ ∞

−∞
dω ψ(ω)e−iωt , (67)

vth =
∫ ∞

−∞
dω fβ(ω)ψ(ω) . (68)

Therefore, similarly to the case of G(t, 0), we have

K̃(−iω) = πψ(ω) + iP.

∫ ∞

−∞
dω′ ψ(ω′)

ω − ω′ ,

and in particular πψ(ω) = ℜ
[
K̃(−iω)

]
(since ψ(ω) is real by definition). Hence, by eq. (56) and

eq. (68), the last step to prove that v(t) thermalizes is to check that ℜ
[
K̃(−iω)

]
= gℑ

[
G̃(−iω)

]
. To

do so we start by computing the components of K(t): from eq. (41) we can see that

Kj(t) = −ig
∫ t

0
ds G(t, s)e−iωjs ,

= −ig
∫ t

0
ds e−(t−s)( 1

2 g2+iε)e−iωjs ,

= −ige−t( 1
2 g2+iε)

∫ t

0
ds es( 1

2 g2+i(ε−ωj)) ,

= −ig e
−iωjt − e−( 1

2 g2+iε)t

1
2g

2 + i(ε− ωj)
= −ig e

−iωjt −G(t, 0)
1
2g

2 + i(ε− ωj)
;

(69)

and from eq. (42)

Hj(t) = −ig
∫ t

0
ds G(s, 0)eiωj(s−t) = −ige−iωjt

∫ t

0
ds e−( 1

2 g2+i(ε−ωj))s = −ig e
−iωjt − e−( 1

2 g2+iε)t

1
2g

2 + i(ε− ωj)
= Kj(t) .

(70)
Since the time time dependence is contained in the exponentials, it is straightforward to compute the
Laplace transform

K̃j(z) = H̃j(z) = −ig
1
2g

2 + i(ε− ωj)

∫ ∞

0
dt
[
e−iωjt −G(t, 0)

]
e−zt

= −ig
1
2g

2 + i(ε− ωj)

[
1

z + iωj
− 1
z + iε+ g2/2

]
= −ig
z + iωj

G̃(z) . (71)

Therefore we find
K̃(−iω) = g

π
G̃(−iω)P.

∫ ∞

−∞
dω′ 1

ω − ω′ = −igG̃(−iω) , (72)

which allows us to conclude ψ(ω) = gℑ
[
G̃(−iω)

]
. This concludes the proof of the thermalization of

v(t).
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B Slow driving expansion
B.1 Deriving the thermodynamic metric
We are interested in performing an erasure protocol and minimizing the work cost of performing it.
The erasure protocol is one where ε(0) = 0, ε(τ) ≫ β−1 and g(0) = g(τ) = 0, for τ the total time of
the protocol. The work cost of a protocol where we control ε and g is

W =
∫ τ

0
dt Tr

[
ρ̂(t) d

dt
Ĥ(t)

]
=
∫ τ

0
dt ε̇(t)p(t) + ġ(t)v(t) . (73)

To get a correction to Landauer’s bound for finite time protocols, and to work with more tractable
expressions, we expand eq. (73) in the long times limit up to first order. To do that we first need to
make some notation changes. First we make the time parameter in ε and g dimensionless, so that
the protocol starts at “time” input parameter 0 and ends at “time” input parameter 1. So we have
the following mappings: t → τt,

∫
dt → τ

∫
dt and d

dt → τ−1 d
dt . Second we need to “extract” the

evolution timescale of the system in order to make the slow driving expansion. From eq. (46), eq. (47)
and the definition of the propagator (or more clearly form eq. (49) and eq. (50)) it is quite clear that
the relaxation timescale of the system, at any point of the evolution, is of the order (g(t)2)−1. Hence
we are going take the average of the square of the coupling as normalizing factor, we therefore define
(in normalized time) Γ :=

∫ 1
0 dt g(t)2. We now define a normalized version of our control parameters:

ϵ(t) := 1
Γε(t) , γ(t) := 1

2Γg(t)2 . (74)

We can therefore write the expression for work cost in this new convention

W =
∫ 1

0
dt ϵ̇(t)Γp(t) + γ̇(t)

√
Γ

2γ(t)v(t) . (75)

We can also rewrite the propagator

G(t, s) = exp
[
−τΓ

∫ t

s
dr γ(r) + iϵ(r)

]
, (76)

and the expectation values of the observables

p(t) = |G(t, 0)|2 p0 + 1
π

∫ ∞

−∞
dω fβ(ωΓ)

∣∣∣∣τΓ
∫ t

0
ds γ(s)

1
2G(t, s)eiτωΓ(t−s)

∣∣∣∣
2
, (77)

v(t) = τΓ
√

2Γ
π

ℑ
∫ ∞

−∞
dω fβ(ωΓ)

∫ t

0
ds γ(s)

1
2G(t, s)eiτΓω(t−s) , (78)

where we were able to insert a phase in the time integral of eq. (77) because of the absolute value and
rescaled ω by Γ. We can see that we have to expand in 1/τΓ the same integral for both eq. (77) and
eq. (78). To do that we do partial integration. First, we can notice that

Gω(t, s) := G(t, s)eiτΓω(t−s) = exp
[
−τΓ

∫ t

s
dr γ(r) + i(ϵ(r) − ω)

]
.

Furthermore we have
d

ds
Gω(t, s) = τΓ [γ(s) + i(ϵ(s) − ω)]Gω(t, s) .

Therefore we can write

τΓ
∫ t

0
ds γ(s)

1
2Gω(t, s) =

∫ t

0
ds

γ(s) 1
2

γ(s) + i(ϵ(s) − ω)
d

ds
Gω(t, s) ,

= γ(s) 1
2

γ(s) + i(ϵ(s) − ω)Gω(t, s)
∣∣∣∣∣

t

s=0
−
∫ t

0
ds Gω(t, s) d

ds

γ(s) 1
2

γ(s) + i(ϵ(s) − ω) , (79)
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where we can evaluate the first part as γ(s)
1
2

γ(s)+i(ϵ(s)−ω)Gω(t, s)
∣∣∣∣
t

s=0
= γ(t)

1
2

γ(t)+i(ϵ(t)−ω) + O(e−τΓ). We ab-

sorbed the Gω(t, 0) term in O(e−τΓ). For the second term we evaluate the derivative and continue
integrating by parts

∫ t

0
ds

γ̇(s)
2 (γ(s) + i(ϵ(s) − ω)) − γ(s)(γ̇(s) + iϵ̇(s))

γ(s) 1
2 (γ(s) + i(ϵ(s) − ω))2

Gω(t, s)

= 1
τΓ

γ̇(s)
2 (γ(s) + i(ϵ(s) − ω)) − γ(s)(γ̇(s) + iϵ̇(s))

γ(s) 1
2 (γ(s) + i(ϵ(s) − ω))3

Gω(t, s)
∣∣∣∣∣

t

s=0

− 1
τΓ

∫ t

0
ds Gω(t, s) d

ds

γ̇(s)
2 (γ(s) + i(ϵ(s) − ω)) − γ(s)(γ̇(s) + iϵ̇(s))

γ(s) 1
2 (γ(s) + i(ϵ(s) − ω))3

. (80)

Similarly as in eq. (79), we keep only the evaluation at s = t for the first term because the evaluation
at s = 0 is of order O(e−τΓ). Whereas the remaining integral will also have to be evaluated by parts,
and in doing so we will obtain another power of 1/τΓ. But since we are only interested in the first
order correction and the integral will only yield terms of order O(1/τ2Γ2) we don’t need to compute
it. By combining eq. (79) and eq. (80) we finally find

τΓ
∫ t

0
ds γ(s)

1
2Gω(t, s) = γ(t) 1

2

γ(t) + i(ϵ(t) − ω) − 1
τΓ

γ̇(t)
2 (−γ(t) + i(ϵ(t) − ω)) − iγ(t)ϵ̇(t)

γ(t) 1
2 (γ(t) + i(ϵ(t) − ω))3

+ O( 1
τ2Γ2 ) .

(81)
The absolute value squared of eq. (81) is

∣∣∣∣τΓ
∫ t

0
ds γ(s)

1
2Gω(t, s)

∣∣∣∣
2

= γ(t)
γ(t)2 + (ϵ(t) − ω)2

+ 1
τΓ

4ϵ̇(t)γ(t)2(ϵ(t) − ω) + γ̇(t)γ(t)
(
γ(t)2 − 3(ϵ(t) − ω)2)

(γ(t)2 + (ϵ(t) − ω)2)3 + O( 1
τ2Γ2 ) . (82)

Combining this with eq. (77) we find the expansion of p(t) in the slow driving regime

p(t) = 1
π

∫ ∞

−∞
dω fβ(ωΓ) γ(t)

γ(t)2 + (ϵ(t) − ω)2

+ 1
τΓ

1
π

∫ ∞

−∞
dω fβ(ωΓ)4ϵ̇(t)γ(t)2(ϵ(t) − ω) + γ̇(t)γ(t)

(
γ(t)2 − 3(ϵ(t) − ω)2)

(γ(t)2 + (ϵ(t) − ω)2)3 + O( 1
τ2Γ2 ) . (83)

Whereas the imaginary part of eq. (81) is

τΓ
γ(t) 1

2
ℑ
∫ t

0
ds γ(s)

1
2Gω(t, s) = − ϵ(t) − ω

γ(t)2 + (ϵ(t) − ω)2

− 1
τΓ

2γ̇(t)(ϵ(t) − ω)
(
γ(t)2 − (ϵ(t) − ω)2)− ϵ̇(t)γ(t)

(
γ(t)2 − 3(ϵ(t) − ω)2)

(γ(t)2 + (ϵ(t) − ω)2)3 + O( 1
τ2Γ2 ) . (84)

Therefore the slow driving expansion of v(t) is

1√
2Γγ(t)

v(t) = − 1
π

∫ ∞

−∞
dω fβ(ωΓ) ϵ(t) − ω

γ(t)2 + (ϵ(t) − ω)2

− 1
τΓ

1
π

∫ ∞

−∞
dω fβ(ωΓ)2γ̇(t)(ϵ(t) − ω)

(
γ(t)2 − (ϵ(t) − ω)2)− ϵ̇(t)γ(t)

(
γ(t)2 − 3(ϵ(t) − ω)2)

(γ(t)2 + (ϵ(t) − ω)2)3

+ O( 1
τ2Γ2 ) . (85)
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Therefore we can see that we can rewrite the work cost of the protocol as

W = W (0) + 1
τΓW

(1) + O( 1
τ2Γ2 ) . (86)

The leading order term is

W (0) = 1
π

∫ ∞

−∞
dω fβ(ω)

∫ 1

0
dt

ϵ̇(t)γ(t) − γ̇(t)(ϵ(t) − ω/Γ)
γ(t)2 + (ϵ(t) − ω/Γ)2

= 1
π

∫ ∞

−∞
dω fβ(ω)

(
arctan γ(0)

ϵ(0) − ω/Γ − arctan γ(1)
ϵ(1) − ω/Γ

)
, (87)

where we re-scaled ω by Γ. Here we were able to perform the integral independently of the function
describing the control parameters. Therefore W (0) only depends on their initial and final value. More
importantly, we can identify the instantaneous thermal expectation values of p(t) and v(t) (from eq. (52)
and eq. (53)) in the time integral of W (0). This implies very directly that W (0) = ∆F .
We can notice that we can write W (1) as

W (1) =
∫ 1

0
dt

˙⃗
λT

t m(λ⃗t) ˙⃗
λt , (88)

with λ⃗t = (ϵ(t), γ(t))T and the metric

m(λ⃗) = 1
π

∫ ∞

−∞
dω fβ(ω)mω(ϵ− ω/Γ, γ) , (89)

for

mω(ϵ, γ) = 1
(γ2 + ϵ2)3

(
4ϵγ2 γ(γ2 − 3ϵ2)

γ(γ2 − 3ϵ2) 2ϵ(ϵ2 − γ2)

)
. (90)

Since the leading order is independent of the path taken in parameter space, minimizing the work cost
of erasure only implies minimizing W (1), i.e., the entropy production kBTΣ. As we see from eq. (88) it
is equivalent to finding the shortest path in a metric space described by the metric m(λ⃗). The length of
this shortest path is known as thermodynamic length. In the main text eq. (18) and eq. (19) represent
the metric when the problem is rewritten in terms of the unit-full parameters.

B.2 Weak coupling limit
Previous works on optimization of finite-time Landauer erasure have focused on the Markovian
regime [44–54], corresponding to the weak coupling limit. We analyze this regime in this section.
First we assume that the coupling remains unchanged during the protocol, which means Γ = g2 and
γ = 1. We start by rewriting p(t) from eq. (83) in a more convenient manner under this first assumption:

p(t) = 1
2π

∫ ∞

−∞
dω fβ(ω) Γ

Γ2/4 + (ε(t) − ω)2 + 1
τΓ

1
2π

∫ ∞

−∞
dω fβ(ω) ε̇(t)(ε(t) − ω)Γ3

(Γ2/4 + (ε(t) − ω)2)3 + O( 1
τ2Γ2 ) ,

(91)
where we used eq. (74) to go back to unit-full parameters and re-scaled ω by Γ. Integrating by parts
the second integral we get

p(t) = 1
2π

∫ ∞

−∞
dω fβ(ω) Γ

Γ2/4 + (ε(t) − ω)2 + 1
τΓ

βε̇(t)
8π

∫ ∞

−∞
dω fβ(ω)(1−fβ(ω)) Γ3

(Γ2/4 + (ε(t) − ω)2)2 ,

(92)
where we used that d

dωfβ(ω) = −βfβ(ω)(1−fβ(ω)), d
dω

1
(Γ2/4+(ε(t)−ω)2)2 = 4(ε(t)−ω)

(Γ2/4+(ε(t)−ω)2)3 and dropped
the O(1/τ2Γ2) to make the notation lighter. We now take the weak coupling limit, but we do so while
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keeping the slow driving assumption: τΓ ≫ 1. Using the results of [120] we get the following

lim
Γ→0

1
π

Γ/2
Γ2/4 + (ε(t) − ω)2 = δ(ε(t) − ω) ,

lim
Γ→0

1
π

Γ3/8
(Γ2/4 + (ε(t) − ω)2)2 = 1

2δ(ε(t) − ω) ,

where the equalities are meant in a distributional sense. Therefore we find that the occupation prob-
ability in the weak coupling limit is

p(t) = fβ(ε(t)) + 1
τΓβε̇(t)fβ(ε(t))[1 − fβ(ε(t))] . (93)

This result coincides with applying a slow driving expansion to a simple exponential relaxation model
with characteristic time Γ (ṗ = −τΓ[p− fβ(ϵ(t))]). Computing the work cost yields

W = ∆F + 1
τΓβ

∫ 1

0
dt ε̇(t)2fβ(ε(t))[1 − fβ(ε(t))] , (94)

with ∆F = β−1 ln 1+e−βε(0)

1+e−βε(1) . We will now minimize the work cost of the erasure protocol, similar
optimizations have been done before in [50, 109, 121]. From variational calculus we know that the
extremal function of the integral in eq. (94) will keep the integrand constant. So we can solve the
variational problem as follows:

ε̇(t)
√
fβ(ε(t))[1 − fβ(ε(t))] = Kw ,

∫ ε(t)

ε(0)

e−βε/2

1 + e−βε
dε = Kw

∫ t

0
dt′ ,

2 arctan(eβε(t)/2) − π

2 = βKwt ,

ε(t) = 2β−1 ln tan
(
βKwt/2 + π

4

)
,

(95)

with Kw = 2β−1(arctan(eβε(1)/2) − π
4 ) βϵ(1)→∞−−−−−−→ π

2β
−1. We therefore find

εweak(t) = 2β−1 ln tan
(
π

4 (t+ 1)
)
, (96)

and recover the result of eq. (1) from the main text:

W = kBT

(
ln 2 + π2

4τΓ

)
. (97)

B.3 Solving the integral of the thermodynamic metric and finding the symmetry
We will now try to find a more tractable version of the metric in eq. (89). First we notice that

mω(ϵ, γ) = − d

dϵ

1
(γ2 + ϵ2)2

(
γ2 −ϵγ

−ϵγ ϵ2

)
=: − d

dϵ
m0(ϵ, γ) . (98)

We can remark that m0 coincides with a metric of an angle distance in the (ϵ, γ) space. To solve the
integral of eq. (89) we will go in Fourier space. For a function h(ϵ) its Fourier transform h̃(ξ) has the
defining property

h(ϵ) = 1
2π

∫ ∞

−∞
dξ h̃(ξ)eiξϵ . (99)
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Even though fβ(ω) is not an integrable function we can find its Fourier transform in a distributional
sense

f̃β(ξ) = πδ(ξ) + πi

β sinh (πξ/β) . (100)

For m0 we find

m̃0(ξ, γ) = π

2 Θ(ξ)e−ξγ

(
γ−1 + ξ iξ
iξ γ−1 − ξ

)
+ π

2 Θ(−ξ)eξγ

(
γ−1 − ξ iξ
iξ γ−1 + ξ

)
, (101)

with m̃0(0, γ) = π
2γ 1. Therefore we can rewrite eq. (89) as

m(λ⃗) = − 1
4π3

d

dϵ

∫ ∞

−∞
dωdξdξ′ f̃β(ξ′)m̃0(ξ, γ)eiωξ′

ei(ϵ−ω/Γ)ξ ,

= − i

4π3

∫ ∞

−∞
dωdξdξ′ ξf̃β(ξ′)m̃0(ξ, γ)eiϵξeiω(ξ′−ξ/Γ) ,

= − i

2π2

∫ ∞

−∞
dξdξ′ ξf̃β(ξ′)m̃0(ξ, γ)δ(ξ′ − ξ/Γ)eiϵξ ,

= − i

2π2

∫ ∞

−∞
dξ ξf̃β(ξ/Γ)m̃0(ξ, γ)eiϵξ ,

= 1
2βπ

∫ ∞

−∞
dξ ξ

m̃0(ξ, γ)
sinh( πξ

βΓ)
eiϵξ ,

(102)

where we used eq. (99), eq. (100) and the fact that
∫∞

−∞ dω eiωx = 2πδ(x). If we now insert eq. (101)
and flip the sign in the second integral we find

m(λ⃗) = 1
4β

∫ ∞

0
dξ

ξe−ξ(γ−iϵ)

sinh( πξ
βΓ)

(
γ−1 + ξ iξ
iξ γ−1 − ξ

)
+ 1

4β

∫ 0

−∞
dξ

ξeξ(γ+iϵ)

sinh( πξ
βΓ)

(
γ−1 − ξ iξ
iξ γ−1 + ξ

)
,

= 1
4β

∫ ∞

0
dξ

ξe−ξ(γ−iϵ)

sinh( πξ
βΓ)

(
γ−1 + ξ iξ
iξ γ−1 − ξ

)
+ 1

4β

∫ ∞

0
dξ

ξe−ξ(γ+iϵ)

sinh( πξ
βΓ)

(
γ−1 + ξ −iξ

−iξ γ−1 − ξ

)
,

= 1
4β

∫ ∞

0
dξ

ξe−ξγ

sinh( πξ
βΓ)

[
eiξϵ

(
γ−1 + ξ iξ
iξ γ−1 − ξ

)
+ e−iξϵ

(
γ−1 + ξ −iξ

−iξ γ−1 − ξ

)]
,

= 1
4β

∫ ∞

0
dξ

ξe−ξγ

sinh( πξ
βΓ)

(
(γ−1 + ξ)(eiξϵ + e−iξϵ) −iξ(e−iξϵ − eiξϵ)

−iξ(e−iξϵ − eiξϵ) (γ−1 − ξ)(eiξϵ + e−iξϵ)

)
,

= 1
4βγ

∫ ∞

0
dξ

ξe−ξγ(eiξϵ + e−iξϵ)
sinh( πξ

βΓ)
1 + 1

4β

∫ ∞

0
dξ

ξ2e−ξγ

sinh( πξ
βΓ)

(
eiξϵ + e−iξϵ e−iξϵ−eiξϵ

i
e−iξϵ−eiξϵ

i −eiξϵ − e−iξϵ

)
,

= 1
2βγ1ℜ

∫ ∞

0
dξ

ξe−ξ(γ+iϵ)

sinh( πξ
βΓ)

+ 1
2β

(
ℜ ℑ
ℑ −ℜ

)∫ ∞

0
dξ

ξ2e−ξ(γ+iϵ)

sinh( πξ
βΓ)

.

(103)

We will now be able to compute these integrals in terms of poly-gamma functions. The poly-gamma
function of order m ≥ 0 is defined as ψ(m)(z) := dm+1

dzm+1 ln Γ(z). For m > 0 and ℜ[z] > 0 they have an
integral representation:

ψ(m)(z) = (−1)m+1
∫ ∞

0
dξ

ξme−ξz

1 − e−ξ
. (104)
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Using the fact that 1
sinh(x) = 2e−x

1−e−2x , a change of variable and eq. (104) we find

m(λ⃗) = 1
βγ

1ℜ
∫ ∞

0
dξ

ξe
−ξ( π

βΓ +γ+iϵ)

1 − e
−2 πξ

βΓ
+ 1
β

(
ℜ ℑ
ℑ −ℜ

)∫ ∞

0
dξ

ξ2e−ξ( π
βΓ +γ+iϵ)

1 − e
−2 πξ

βΓ
,

= βΓ2

4π2γ
1ℜ
∫ ∞

0
dξ

ξe−ξ[ 1
2 + βΓ

2π
(γ+iϵ)]

1 − e−ξ
+ β2Γ3

8π3

(
ℜ ℑ
ℑ −ℜ

)∫ ∞

0
dξ

ξ2e−ξ[ 1
2 + βΓ

2π
(γ+iϵ)]

1 − e−ξ
,

= βΓ2

4π2γ
1ℜψ(1)

(1
2 + βΓ

2π (γ + iϵ)
)

− β2Γ3

8π3

(
ℜ ℑ
ℑ −ℜ

)
ψ(2)

(1
2 + βΓ

2π (γ + iϵ)
)
.

(105)

We can notice that the metric explicitly depends on Γ in such a way that it seems that the solution
for the geodesic should depend on this scale factor. Though this dependence disappears if we re-
parameterize the problem in terms of its original unit-full parameters. We start by rewriting the work
as

W = ∆F +W (1) + O( 1
τ2Γ2 ) , (106)

where we redefined W (1) with the unit-full parameters λ⃗t = (ε(t), µ(t))T (with µ(t) := 1
2g(t)2 = Γγ(t)):

W (1) = 1
τ

∫ 1

0
dt

˙⃗
λT

t m(λ⃗t) ˙⃗
λt, (107)

m(λ⃗) = β

4π2µ
1 ℜψ(1)

(1
2 + β

2πz
)

− β2

8π3

(
ℜ ℑ
ℑ −ℜ

)
ψ(2)

(1
2 + β

2πz
)
. (108)

We remind the reader that z = µ+ iε. This metric is the same as the one presented in the main text.
Despite not looking very approachable, eq. (108) is a much more tractable version of eq. (18) from
the main text when it comes to numerical implementations (as the polygamma functions are com-
puted much faster than integrals) and analytical studies of the geometric properties of thermodynamic
protocols.

We can notice from eq. (107) and eq. (108) is that there is a symmetry in the corrective term. If we
perform the following transformation:

ε(t) → λε(t) ,
µ(t) → λµ(t) ,
β → λ−1β ,

(109)

for λ > 0; then W (1) remains unchanged. This symmetry allows us to conclude that the minimal value
of W (1) to perform Landauer erasure will be of the form c/τ where c is a constant that does not depend
on any physical quantity.

C High temperature limit
In order to find the minimal dissipation in the multi-variable case we need to numerically solve
the equations of motion given by the exact metric, which (unsurprisingly) are very untractable
analytically. But instead of solving an initial value problem (which we can always solve by numerical
integration, in principle) we are trying to solve a boundary value problem. Generically, to solve a
BVP numerically, the solver will try many IVPs until the wanted BVP is reached. But here we can
notice that we can turn the BVP into an IVP by taking an analytical approximation of the problem
around the point (ε, µ) = (0, 0).

As we have seen in eq. (109) there is an underlying symmetry in this problem, so a limit where ε
and µ are infinitesimal is the same as a limit where β is infinitesimal but ε and µ finite. Formally we
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are requiring β|µ + iε| ≪ 1, which is a high-temperature limit. It is important to note that despite
the fact that this approximation will yield some analytical results on how to optimize a protocol in the
high temperature regime it will not give us a result that is relevant for Landauer erasure because to
perform erasure we are assuming that we reach βε ≫ 1, which is a low temperature limit.

One way to obtain an analytical result in this framework is by going back to eq. (89) and apply
the high-temperature expansion of the Fermi-Dirac distribution: fβ(ω) = 1

2 − 1
4βω + O(β3ω3). Since

m0(±∞, γ) = 0 the first term of the metric in this expansion is 0. But from the next order we find (in
unit-full parameters)

mHT (λ⃗) = β

4π

∫ ∞

−∞
dω

ω − ε

(µ2 + ω2)3

(
4ωµ2 µ(µ2 − 3ω2)

µ(µ2 − 3ω2) 2ω(ω2 − µ2)

)
= β

8µ1 . (110)

It might not be immediate why we also require βµ ≪ 1, but it becomes clear that it is required when
we want to obtain the same result by applying the same expansion on eq. (108) (which would also allow
us to get further orders). We will now compute and solve the equations of motion:

λ̈i + Γi
jkλ̇

j λ̇k = 0 , (111)

where we assumed the Einstein tensorial notation and Γi
jk are the Christoffel symbols

Γi
jk := 1

2m
il(∂jmkl + ∂kmjl − ∂lmjk) . (112)

Here we have mil = 8µ
β δ

il and ∂ambc = − β
8µ2 δaµδbc. We therefore find

Γi
jk = − 1

2µ(δjµδ
i
k + δkµδ

i
j − δiµδjk) , (113)

which can be rewritten as

Γε = − 1
2µ

(
0 1
1 0

)
, Γµ = 1

2µ

(
1 0
0 −1

)
. (114)

We get the following differential equations for µ and ε:

ε̈µ = ε̇µ̇ , 2µµ̈ = µ̇2 − ε̇2. (115)

From the first equation we can see that
∫
dε̇/ε̇ =

∫
dµ/µ, therefore ε̇ = Cµ for some constant C (we

can already see as a sanity check that ε̇ never changes sign in an optimal protocol). The equation for
µ becomes

2µµ̈ = µ̇2 − C2µ2 ,

when we consider that µ = g2/2 and µ̈ = ġ2 + gg̈ we can see that

g̈ = −C2g/4 .

Taking into account that the boundary conditions for g are g(0) = g(1) = 0 we find that g(t) =
A sin(kπt) for some constant A, k ∈ N∗ and C = 2kπ. By choosing ε(0) = 0 and ε(1) = ε∗ we have
ε(t) = kπA2 ∫ t

0 ds sin(kπs)2, therefore A2 = 2ε∗
kπ . Thus the optimal protocol, portrayed in Fig. 3, is

ε(t) = ε∗

(
t− sin(2kπt)

2kπ

)
, µ(t) = ε∗

kπ
sin(kπt)2 . (116)
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Figure 3: Parametrization of µ(t) and ε(t) described by eq. (116) for multiple values of k. Shown in the parameter
space (left) and as a function of time (centre and right).

From eq. (116) we can compute the integrand of the dissipated work:

˙⃗
λT

t mHT (λ⃗t) ˙⃗
λt = β

8µ(4k2π2µ2 + µ̇2)

= βε2
∗

2µ
(
sin(kπt)4 + sin(kπt)2 cos(kπt)2

)

= kπβε∗
2 .

(117)

We therefore find the dissipated work for the high temperature limit by inserting this in eq. (107) and
taking k = 1:

W
(1)
HT = πβε∗

2τ . (118)

We can see that in this scenario the corrective term grows extensively with the final energy ε∗, com-
bining this with the fact that the exact metric goes to 0 faster than O(|z−1|) we can presume that
most of the dissipation in the exact protocol is caused by the part of the protocol that matches with
the high temperature regime.

D Low temperature limit
We will now study the limit of T → 0 we have fβ(ω) → f∞(ω) = Θ(−ω), where Θ is the Heaviside
step function. Therefore the integral of eq. (89) becomes (in unit-full parameters)

mT =0(λ⃗) = 1
π

∫ ∞

−∞
dω Θ(−ω)mω(ε− ω, µ) ,

= 1
π

∫ ∞

ε
dω mω(ω, µ) ,

= − 1
π

∫ ∞

ε
dω

d

dω
m0(ω, µ) ,

= 1
π
m0(ε, µ) .

(119)

where we used eq. (98) and the fact that m0(+∞, µ) = 0. Thus we have

mT =0(λ⃗) = 1
π

1
(µ2 + ε2)2

(
µ2 −εµ

−εµ ε2

)
. (120)

We can compute the integrand of W (1) to find

˙⃗
λTmT =0(λ⃗) ˙⃗

λ = 1
π

ε̇2µ2 − 2ε̇µ̇εµ+ µ̇2ε2

(µ2 + ε2)2 = 1
π

(
εµ̇− ε̇µ

µ2 + ε2

)2
(121)
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By defining the coordinates λ⃗r,ϕ = (r, ϕ)T , such that ε = r cosϕ and µ = r sinϕ, we have ϕ = arctan µ
ε .

Therefore
˙⃗
λTmT =0(λ⃗) ˙⃗

λ = ϕ̇2

π
, (122)

From which we can deduce the metric in these new coordinates

m
(r,ϕ)
T =0(λ⃗r,ϕ) = 1

π

(
0 0
0 1

)
. (123)

Crucially, we can notice that this metric is singular: here changes in the coordinate r do not cause an
increase in the work cost. Therefore we can parameterize geodesics at zero temperature as follows

ε(t) = r(t) cos(ϕ(0)(1 − t) + ϕ(1)t) , µ(t) = r(t) sin(ϕ(0)(1 − t) + ϕ(1)t) , (124)

where r(t) is any function that satisfies the boundary conditions. By using eq. (107) we can find the
dissipated work

W
(1)
T =0 = (∆ϕ)2

πτ
, (125)

for ∆ϕ = ϕ(1) − ϕ(0).

E Discontinuities in the protocol
As is mentioned in the main text, it is well known [108] that, at weak coupling, discontinuities appear
at the beginning and at the end in optimal finite-time protocols. In the main text we gave numerical
evidence to the fact that these jumps disappear as one approaches the quasistatic limit. Here we make
an a posteriori argument as to why these jumps should also disappear for the system we studied in
the strong coupling regime.

We can start by immediately discarding jumps in the coupling because these lead to a diverging
work cost in the wideband limit. Then, if one makes a jump in the energy at the start of the protocol
from 0 to ε∗ its work cost is

Wjump = p(0)ε∗ = 1
2ε∗ , (126)

where p(0) is the probability of occupation at t = 0 and is set to be 1/2. We can compare it to the
work cost given by an optimal continuous protocol with the same boundary conditions:

Wcont = ∆F + a(βε∗)ℏ
τ

= kBT ln
( 2

1 + e−βε∗

)
+ a(βε∗)ℏ

τ
, (127)

where a(βε∗) is a bounded function of βε∗ (c.f. figure in the main text). We note that by expanding
∆F around β = 0 we find

∆F = 1
2ε∗ − 1

8βε
2
∗ + O(β3) . (128)

Therefore at β > 0 and small enough one finds that ∆F < Wjump. But one can also note that
limβ→∞ ∆F = 0, and since ∆F is a monotonous function of β we conclude that ∆F < Wjump for any
temperature and any ε∗ > 0. At this point it is immediate that there exists τ large enough such that
Wcont < Wjump.
We finally consider jumps in the energy at the end of the protocol. These jumps would have to be
performed once the coupling is very close to zero since it is at the end of the protocol. In this limit
optimal protocols are found by [109]. These optimal protocols feature jumps whose magnitude is
controlled by a constant of integration K, in particular the magnitude of these jumps is O(

√
K). This

constant is defined as follows (in terms of our notation with unit-less time)

K = 1
τ2Γ2

ṗ2

(p+ ṗ/τΓ)(1 − p− ṗ/τΓ) . (129)
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From which it is clear that K goes to 0 in the limit of τΓ ≫ 1 and therefore the jumps disappear. This
behavior is also confirmed in Fig. 1 where these optimal protocols are shown.

F One-parameter case
Because of the metric we obtain in eq. (108) it is quite clear that, in the two-parameter case, we will not
be able to solve analytically the geodesics for the full problem. This even prevents us form finding an
analytical expression for the distance between two points in the parameter space, as it is the length of
the shortest path (for which we have no expression). But by fixing one parameter to an arbitrary value
and solving for the other we can use the fact that geodesics always have a conserved quantity along
their path (the integrand: ˙⃗

λT
t m(λ⃗t) ˙⃗

λt) to avoid solving the geodesic equation and finding an explicit
formula for the length and geodesic. We point out the fact that the symmetry mentioned in App. B
does not lead to a conserved quantity because β is a constant of the system instead of a function of
time for which we are solving.

Here we will take the erasure protocol to be made of three parts, which will be optimized separately:
1. we turn on the coupling to some value µ∗ while keeping the energy at zero; 2. while keeping the
coupling at µ∗ we increase the energy from zero to infinity; 3. we turn the coupling off. Incidentally,
this type of protocols are more realistic for an experimental realization as often setups are not able to
control optimally energy an coupling at the same time. And even if the control over the coupling is
only to turn it on to some value and turn it off, step 2 will remain valid. Furthermore, previous studies
done at weak coupling essentially are described by this type of protocol; but they are in a regime where
step 1 and 3 can be neglected. Therefore we can compare the results of this section to those of the
weak coupling limit.

We start by looking at step 3, in the limit of βε → ∞ we actually reach a scenario described by the
T = 0 limit. Therefore the length of this step is described by eq. (123), for any finite value of µ∗ the
angle span of this step is trivially 0. Therefore, up to first order, this step will not cause any extra
dissipation, no matter how it is realized.

We notice that we can write the length of the first step as follows

L1 =
∫ 1

0
dt |µ̇(t)|mµµ(0, µ(t))1/2 =

∫ µ(1)

0
dµ mµµ(0, µ)1/2 , (130)

where we used the fact that, since the metric is not explicitly time-dependent, the sign of µ̇ has to be
always positive for this step. With eq. (108) we find the following expression for the length

L1 = 1√
2π

∫ βµ∗/2π

0

√
ℜ
[1
x
ψ(1)

(1
2 + x

)
+ ψ(2)

(1
2 + x

)]
dx . (131)

Now that we have an expression for L1 we can recover an equation for µ(t). We can use the fact that
the integrand of the time integral in eq. (130) is constant to obtain

tL1 = 1√
2π

∫ βµ(t)/2π

0

√
ℜ
[1
x
ψ(1)

(1
2 + x

)
+ ψ(2)

(1
2 + x

)]
dx , (132)

which gives an implicit definition of µ(t), or rather an explicit definition of its inverse t(µ).
By following the same procedure as in step 1 we can recover the length of step 2

L2 = 1√
2π

∫ ∞

0

√
ℜ
[ 2π
βµ∗

ψ(1)
(1

2 + βµ∗
2π + iy

)
− ψ(2)

(1
2 + βµ∗

2π + iy

)]
dy , (133)

and the implicit definition of ε(t)

L2t = 1√
2π

∫ βε(t)/2π

0

√
ℜ
[ 2π
βµ∗

ψ(1)
(1

2 + βµ∗
2π + iy

)
− ψ(2)

(1
2 + βµ∗

2π + iy

)]
dy . (134)

Accepted in Quantum 2023-10-24, click title to verify. Published under CC-BY 4.0. 28



These implicit definitions of ε(t) and µ(t) can be solved numerically, the results are shown in Fig. 4.

Figure 4: Parametrization of µ(t) and ε(t) described by eq. (132) and eq. (134) for multiple values of βµ∗.

The question remains about how to subdivide optimally the protocol times of step 1 (τ1) and step
2 (τ2 = τ − τ1). The total excess work is given by W (1) = L2

1/τ1 +L2
2/τ2, by taking the derivative and

imposing it to be zero we find

τ1 = L1
L2 + L1

τ . (135)

And therefore we find

W (1) = 1
τ

(L1 + L2)2 , (136)

which is indeed what was to be expected, as L1 + L2 is the total length of the protocol.
We now discuss how we can obtain an exact version of eq. (1) of the main text, so that it applies also

in the strong coupling regime. First we can notice that since L1 > 0 and L2 > 0 we have W (1) ≥ L2
2/τ .

Then by considering that mεε(ε, µ∗) is a one-dimensional metric it has to be positive by definition.
Therefore the integrand of eq. (133) is always positive. Next we can consider the fact that

lim
µ∗→∞

2π
βµ∗

ψ(1)
(1

2 + βµ∗
2π + iy

)
− ψ(2)

(1
2 + βµ∗

2π + iy

)
= 0 . (137)

Therefore, for all µ∗ and all ε

mεε(ε, µ∗) ≥ lim
µ∗→∞mεε(ε, µ∗) , (138)

which allows us to conclude L2 ≥ limµ∗→∞ L2. For any finite µ∗ large enough mεε(ε, µ∗) can be
approximated by [mT =0]εε(ε, µ∗). The angle spanned by the integral of L2 is π/2. Therefore for all µ∗

∫ ∞

0
dε [mT =0(ε, µ∗)]1/2

εε =
√
π

2 , (139)

and since the approximation becomes exact in the limit µ∗ → ∞ we have limµ∗→∞ L2 =
√
π/2.

Therefore,

W (1) ≥ π

4τ . (140)

In Fig. 5 we show the minimal value of W (1) for step 2 as a function of βµ∗, and we compare it to
eq. (1) of the main text and to eq. (140). We can see how, when the coupling becomes small, the exact
curve agrees with eq. (1).
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Figure 5: Comparison of the excess work W (1) = kBTΣ for a slow erasure protocol at constant coupling in the
exact description (eq. (133)) with the weak coupling approximation (eq. (1) of the main text) and the lower bound
of eq. (140).

G Numerical solution to the general case

Figure 6: A series of optimal protocols depicted for multiple values of βε(1). They all start with zero energy and
coupling and end with finite energy and zero coupling. In the limit of large βε(1) they can be considered as erasure
protocols. Shown in the parameter space (left) and as a function of time (centre and right).
We now discuss how the numerical problem of finding the optimal erasure protocol was approached.
Having found the metric eq. (108), all we have to do to find the optimal erasure protocol is to solve
the geodesic equations

0 = ε̈+ Γε
εεε̇

2+̇2Γε
εµε̇µ̇+ Γµ

µµµ̇
2 ,

0 = ε̈+ Γµ
εεε̇

2+̇2Γµ
εµε̇µ̇+ Γµ

µµµ̇
2 ;

(141)

with the Christoffel symbols defined as in eq. (112). Though the differential equations we get are quite
untractable and cannot be solved analytically, we won’t even write them here as they are very long
and will not bring any insight. Therefore we will solve them numerically, and indeed eq. (141) is quite
practical for numerical integration since the second derivative of the parameters can be easily isolated.
The boundary conditions we impose for the erasure protocol are {ε(0) = µ(0) = µ(1) = 0 , ε(1) ≫
kBT}. Indeed we cannot impose βε(1) = ∞ because we are performing numerics, therefore we set it
to be an arbitrarily large value.

But at this point we can notice that close to t = 0, by continuity, we are satisfying the conditions
for the high temperature approximation. And at t = 0 the approximation becomes exact. Therefore
the initial conditions of an optimal erasure protocol in the general case must match with the initial
conditions of the protocols that we previously studied in the high-temperature regime. From a nu-
merical perspective it is much more preferable to solve an initial value problem instead of a boundary
value problem. Therefore we used the numerical solver DOP853, implemented in the scipy library in
python, to solve eq. (141) with the initial conditions given by eq. (116).
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To be precise, we cannot start the integration from t = 0 as the metric is formally divergent at
(ε, µ) = (0, 0), therefore we evaluate eq. (116) at an infinitesimal time and integrate from there. The
specific value we choose for ε∗ sets the value of ε(1) that is reached in a monotonous way. When ε∗ is
chosen small the protocol closes matches with those of eq. (116) (as long as ε(1) is also small). Then
for larger values of ε∗ we get more interesting behavior, as is shown in Fig. 6.

When one changes the value of k in eq. (116) the value of ε(1) that is reached is different. But, as is
shown in Fig. 7, by numerically searching values of ε∗ such that the same ε(1) is reached for different
values of k we find that the protocols end up being the same.

Finally we thought it might be interesting to compare the best one-parameter protocol to the geodesic
erasure protocol we find numerically. And we can see from Fig. 8 that, despite seeming very different
in the path taken in the parameter space, when we look at the functions of time they are actually quite
similar. The apparent difference happens because the part of the protocol for βε ≫ 1 is done very
quickly since the metric is vanishing in that region.

Figure 7: Comparing two optimal erasure protocol with βε(1) ≈ 21 for two different values of k. The same is found
for other values of k.

Figure 8: Comparing an optimal erasure protocol (βε(1) ≈ 50) to an optimized (βµ∗ ≈ 1.863) erasure protocol
where we change only one parameter at a time.
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A central task in finite-time thermodynamics is to minimize the excess or dissipated work Wdiss when
manipulating the state of a system immersed in a thermal bath. We consider this task for an N-body system
whose constituents are identical and uncorrelated at the beginning and end of the process. In the regime of
slow but finite-time processes, we show that Wdiss can be dramatically reduced by considering collective
protocols in which interactions are suitably created along the protocol. This can even lead to a sublinear
growth ofWdiss with N:Wdiss ∝ Nx with x < 1; to be contrasted to the expectedWdiss ∝ N satisfied in any
noninteracting protocol. We derive the fundamental limits to such collective advantages and show that
x ¼ 0 is in principle possible; however, it requires long-range interactions. We explore collective processes
with spin models featuring two-body interactions and achieve noticeable gains under realistic levels of
control in simple interaction architectures. As an application of these results, we focus on the erasure of
information in finite time and prove a faster convergence to Landauer’s bound.

DOI: 10.1103/PhysRevLett.131.210401

Introduction.—Collective effects play a central role in
physics, ranging from phase transitions to quantum entan-
glement. Often, they can be exploited for a useful task, such
as ultraprecise measurements [1], leading to the notion of a
collective advantage [2]. In the growing fields of stochastic
and quantum thermodynamics [3–9], such advantages have
received notable attention: relevant examples are found in
quantum batteries [10–17], where entangling operations
have been proven to enable faster charging [10–17]; in
many-body thermal engines [18], whose performance can
be enhanced via phase transitions [19–25], many-body
effects [26–30], or superradiance [31–34]; and in quantum
transport [35–40].
In this Letter, we uncover a new collective advantage in a

crucial task in nonequilibrium thermodynamics: the min-
imization of dissipation in finite time [41–52]. In general,
the thermodynamic workW required to transform a system,
in contact with an environment, in a finite-time τ can be
split into two contributions (see e.g., [4])

W ¼ ΔF þWdiss ð1Þ
a reversible contribution ΔF, the free energy change, and
an irreversible positive contribution Wdiss, the excess or
dissipated work (the latter is directly proportional to the
entropy production [53]). WhereasΔF is extensive with the
size N of the system, we will show here thatWdiss can grow
sublinearly in N. This is proven in the regime of slow-but-
finite-time processes and becomes possible by exploiting
many-body interactions suitably created along the process.
The advantage is dramatic: in principle, collective

processes enable an N-fold reduction of Wdiss when

compared to local processes (see Fig. 1). While we will
show that reaching this limit requires highly nonlocal or
long-range interactions, a sublinear growth of Wdiss can be
achieved with two-body interactions and realistic control.
To obtain these results, we rely on the framework of

thermodynamic geometry [42,46,54,55], which has
recently found numerous applications in mesoscopic and
quantum systems [23,56–64]. In this approach, which is
valid in the slow-driving regime, finite-time protocols are
identified with curves in the thermodynamic parameter
space, so that geodesics are those protocols that minimize
Wdiss. Our results show that geodesic protocols generically
explore highly interacting Hamiltonians, even if inter-
actions are absent at the beginning and end of the process.
As an application, we focus on finite-time information
erasure [65–75] of N qubits. We show that collective
processing can substantially reduce dissipation in this
relevant task, leading to a faster convergence to Landauer’s
bound.
Overall, these results uncover a genuine collective

advantage in stochastic and quantum thermodynamics,
which is not linked to standard collective phenomena such
as quantum entanglement, phase transitions, or collective
system-baths couplings (e.g., superradiance).
Framework.—Let us consider a system in ad-dimensional

Hilbert space Cd with an externally driven Hamiltonian
ĥðtÞ. It can be parametrized as ĥðtÞ ¼ P

n
j¼1 λ

jðtÞx̂j, fλjg are
externally controllable parameters, and fx̂jg are the corre-
sponding observables. These control parameters can be
constrained, and we will denote by M ⊆ Rn the manifold
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of the allowed values for these parameters. Additionally,
the system is in contact with a thermal bath at inverse
temperature β.
We focus on the task of driving ĥðtÞ from an initial

configuration ĥð0Þ ¼ ĥA to a final one ĥðτÞ ¼ ĥB in a time
t∈ ½0; τ�. External energy is needed to realize this trans-
formation, quantified by the (average) thermodynamic
work:

W ¼
Z

τ

0

dtTr

�
dĥðtÞ
dt

ρ̂ðtÞ
�
; ð2Þ

where ρ̂ðtÞ is the state of the system. This expression can
be split as in Eq. (1), where ΔF ¼ β−1 lnZð0Þ=ZðτÞ and
ZðtÞ ¼ Tr½e−βĥðtÞ�. Whereas ΔF depends only on the end
points of the process, W depends on the protocol, i.e., the
specific driving λ∶½0; τ� → M. The minimal dissipated work
Wdiss in a finite time τ can then be found by optimizing for
fλjðtÞg over the space of curves in M connecting ĥA to ĥB:
W�

diss ≡minλ∈ CA;BðMÞ Wdiss. To address the nontrivial opti-
mization we make some assumptions.
First, we assume that the driving ðd=dtÞĥðtÞ is slow

compared to the relaxation rate. Then Wdiss can be
expressed as a quadratic form at leading order in τ−1

[23,42,46,54]:

Wdiss ¼ kBT
Z

τ

0

dt λ̇iðtÞλ̇jðtÞgijðλðtÞÞ þOðτ−2Þ; ð3Þ

where gijðλÞ is the so-called thermodynamic metric, and we
adopted the Einstein summation convention. The metric
allows us to define the length of a line element in M by
ds2 ¼ gijdλidλj, which is used to assign a length to a

curve λ in M: L½λ� ¼ R
λ ds ¼

R
τ
0 dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ̇iðtÞλ̇jðtÞgijðλðtÞÞ

q
. It

is related to the dissipated work via a Cauchy-Schwartz
inequality [42]: βWdiss ≥ L2=τ, where equality is satisfied
by protocols with constant dissipation rate. The shortest
length L corresponds to the protocol that minimizes
dissipation: βW�

diss ¼ L2=τ. We can then find W�
diss by

solving the geodesic equation for the thermodynamic
metric [23,42,46].
As a second simplification, we assume there is a

single relaxation timescale τeq [76], so that the metric
becomes [55]

gij ¼ τeq
∂
2 lnZ
∂λi∂λj

: ð4Þ

Note that gij then becomes the standard thermodynamic
metric for macroscopic systems [54,77,78], which can also
describes step processes [79,80]. In what follows, without
loss of generality, we set τeq ¼ 1.
As a last simplification, we will assume that the initial

and final Hamiltonian commute ½ĥA; ĥB� ¼ 0. This allows
us to conclude that at all times ½ðd=dtÞĥðtÞ; ĥðtÞ� ¼ 0, as

changes in the eigenbasis can only increase dissipation in
the linear response regime [49,81].
Let us now consider a scenario in which we perform the

driving on N copies of the system. We denote by ĤðtÞ ¼
Ĥ0ðtÞ þ ĤintðtÞ the total Hamiltonian for all the copies,
where Ĥ0ðtÞ ¼

P
N
j¼1 ĥ

ðjÞðtÞ and ĤintðtÞ contains the inter-
action between the copies. We parametrize ĤðtÞ similarly to
ĥðtÞ: ĤðtÞ ¼ P

n
i¼1 γ

iðtÞX̂i, where the sum can have up to
n ¼ dN terms. The problem at hand imposes the following
boundary conditions on the protocol: Ĥintð0Þ ¼ ĤintðτÞ ¼ 0,
ĥðjÞð0Þ ¼ ĥA, and ĥðjÞðτÞ ¼ ĥB ∀ j. Furthermore, by the
same reasoning as in the case for a single copy, we have that
½ðd=dtÞĤðtÞ; ĤðtÞ� ¼ 0 for the geodesic protocol.
Fundamental limit of collective advantages.—Let us first

note that ΔF is extensive with N which directly follows
from the boundary conditions. Instead, Wdiss depends on
the process and can exhibit a nontrivial behavior whenever
ĤintðtÞ ≠ 0. Indeed, we find that, in general, geodesic paths
explore highly interacting Hamiltonians if the constraints
allow for it.
To reach the fundamental limit of W�

diss we can assume
full control on ĤðtÞ, so that the n ¼ dN different eigene-
nergies fγig can be externally controlled at will—the
corresponding fX̂ig are chosen to be the corresponding
projectors. In this case, the thermodynamic metric is given
by β−2gij ¼ ωiδij − ωiωj, where ωi ¼ e−βγi=Z are the

eigenvalues of the thermal state ω̂β ¼ e−βĤ=Z, for which
the distance function is known to be the quantum Hellinger
angle: L ¼ 2 arccos Tr½ ffiffiffiffiffiffiffiffiffiffiffiffi

ω̂βð0Þ
p ffiffiffiffiffiffiffiffiffiffiffi

ω̂βðτÞ
p � (cf. Supplemental

Material A [82] and [23,83]), leading to

βW�
diss ¼

1

τ

�
2 arccos Tr

� ffiffiffiffiffiffiffiffiffiffiffiffi
ω̂βð0Þ

q ffiffiffiffiffiffiffiffiffiffiffi
ω̂βðτÞ

q ��
2

: ð5Þ

Since trivially arccosðxÞ ≤ π=2 for x > 0, the minimal
dissipation of an N-body system is bounded by a constant
W�

diss ≤ ð1=τÞπ2 independent of N. This is somehow
astonishing, as we expect the dissipation generated when
driving a many-body system to increase extensively with its
size. In Supplemental Material A [82] we derive the
protocol that achieves this limit, obtaining

βĤðtÞ¼−2log
�
sin

�
Lðτ−tÞ

2τ

� ffiffiffiffiffiffiffiffiffiffiffiffi
ω̂βð0Þ

q
þsin

�
Lt
2τ

� ffiffiffiffiffiffiffiffiffiffiffi
ω̂βðτÞ

q �
:

ð6Þ

Crucially, this protocol generally requires all possible
interacting terms available in the Hamiltonian space,
including highly nonlocal N-body interactions (see proof
in Supplemental Material A [82]). This is illustrated in what
follows for the paradigmatic task of erasing N bits of
information.
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Collective erasure.—Let us consider N qubits, each with
local Hamiltonian ĥðtÞ ¼ εðtÞσ̂z. We want to drive εðtÞ
from εð0Þ ¼ 0 to εðτÞ ¼ E with E ≫ kBT, so that the state
of each qubit evolves from a fully mixed state ω̂βð0Þ ¼ 1

2
1

to an (almost) pure state ω̂βðτÞ ≈ j0ih0j due to the action of
the external bath. We haveΔF ¼ NkBT ln 2, corresponding
to Landauer’s bound.
Consider first the independent scenario, so that during

the whole protocol ĤintðtÞ ¼ 0. For each qubit, the dis-
sipation generated via an optimal driving can be computed
from Eq. (5) with the aforementioned boundary conditions,
yielding βW�

diss ¼ π2=4τ, see also [42,72,75]. The total
dissipation of N qubits then reads

βW�;local
diss ¼ N

π2

4τ
; ð7Þ

which grows linearly with N. The corresponding optimal
driving reads βεðtÞ ¼ ln tan ½πðtþ τÞ=4τ�, which has been
implemented experimentally in a single-energy driven
dot [73].
If we now allow for full control of the Hamiltonian, we

can again use Eq. (5) to compute the minimal dissipation,
but this time we use the global states ω̂βð0Þ ¼ ð1=2NÞ1 and
ω̂βðτÞ ≈ j0ih0j⊗N instead of the local ones. This leads to

βW�;global
diss ¼ 1

τ

�
2arccos

�
1

2N=2

��
2

¼ π2

τ
þOðe−N=2Þ: ð8Þ

Therefore, an N-fold advantage can potentially be achieved
by global processes, as illustrated in Fig. 1.
Let us now discuss the implications of this result for the

reachability of Landauer’s bound. From Eq. (1) we have
ΔF ¼ NkBT ln 2 whereasWdiss can reach Eq. (8) at leading
order in τ−1 [recall that our results are based on the slow
driving assumption where the expansion Eq. (3) is well
justified]. Hence, the work cost per qubit of erasure can be
written as

βW�
qubit ¼ ln 2þ π2

τN
þOðτ−2Þ: ð9Þ

Hence, in the thermodynamic limit N → ∞, we can
approach Landauer’s bound with an error that scales as
τ−2 instead of the standard τ−1 [65–75,84].
We note that a collective N-qubit erasure based upon

spontaneous symmetry breaking has been recently reported
in Ref. [85]. Furthermore, a link between complexity, as in
higher level k-body interactions and faster information
erasure has been suggested in Ref. [86]. While being based
on different collective phenomena or operations, these
results share conceptual similarities to the collective erasure
developed here.
The optimal driving achieving the limit Eq. (8) can be

computed from Eq. (6):

βĤðtÞ ¼ γðtÞ
XN
j¼1

ð−1Þjþ1
XN

i1<i2<…<ij

x̂ði1Þx̂ði2Þ…x̂ðijÞ; ð10Þ

where x̂ ¼ σ̂þσ̂− and the control function can be written

as γðtÞ ¼ 2 log ½1þ 2N=2 sinðπt
2τÞsin−1ðπðτ−tÞ2τ Þ�. It follows that

highly nonlocalN-body interactions are required to saturate
the bound Eq. (8). More specifically, one needs to activate
every possible (classical) interaction present in the system.
This makes reaching the fundamental bound Eq. (8) highly
challenging in practice, and opens the question as to
whether collective advantages beyond the local bound
Eq. (7) can be achieved via more realistic driven many-
body systems featuring (local) few-body interactions. We
address this relevant question in what follows.
Collective advantage in driven many-body systems.—To

seek collective advantages in a more realistic model, in this
section, we constrain the total system to only feature at
most two-body interactions. Specifically, we consider a
spin system with Hamiltonian of the form

ĤðtÞ ¼
XN
i¼1

εiðtÞσ̂ðiÞz þ 1

2

XN
i;j¼1

JijðtÞσ̂ðiÞz σ̂ðjÞz : ð11Þ

We thus examine different degrees of control, reflected in
the topologies represented in Fig. 1: (i) an all-to-all spin
model, (ii) a 1D spin chain with nearest neighbor inter-
action (with periodic boundary conditions), (iii) a star-
shaped design, which we generalize to (iv) a multilayer
pyramid scheme. In practice, the energies εiðtÞ could be
tuned via an external magnetic field whereas the interaction
strength JijðtÞ could be controlled by changing the distance
between the spins interacting via dipole-dipole coupling.
Current quantum annealers have the capacity of tuning
generic Hamiltonians of the form Eq. (11) [87].
The all-to-all model corresponds to taking uniform

magnetic fields and spin interactions, i.e., εiðtÞ≡ εðtÞ
and JijðtÞ≡ JðtÞ in Eq. (11). We can compute the partition
function as follows,

Zall ¼
XN
k¼0

�
N

k

�
e−βEk; ð12Þ

where Ek ¼ εð2k − NÞ þ 1
2
Jð2k − NÞ2. The standard 1D

Ising model corresponds to uniform local terms ε, and
Ji;iþ1 ≡ J for nearest neighbors and 0 elsewhere. The
partition function can be found by making use of the
transfer matrix method:

Zchain ¼ zNþ þ zN− ; ð13Þ

where z� ¼ e−βJ=2 cosh βε�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−βJ sinh βεþ eβJ

p
. Third,

we consider a star topology corresponding to a central spin

σ̂ð1Þz with local magnetic field ε0ðtÞ and uniform elsewhere
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εiðtÞ≡ ε1ðtÞ ∀ i > 1, and uniform “radial” interaction
J1jðtÞ≡ JðtÞ, and 0 elsewhere. The partition function is
easily computed as

Zstar ¼ e−βεð2 cosh βλþÞN−1 þ eβεð2 cosh βλ−ÞN−1; ð14Þ
where λ� ¼ ε1 � J.
For the models above, given the partition function, we

compute the metric according to Eq. (4), from which we
can obtain the geodesic equations. Their solution provides us
with the minimal length for given boundary conditions, from
which we find the minimal dissipation. This is implemented
numerically for the task of approximate erasure (see details in
SupplementalMaterial C [82]); we take εð0Þ ¼ 0 and εðτÞ ¼
5kBT [recall Jð0Þ ¼ JðτÞ ¼ 0] which corresponds to an
erasure process with an error of 4.5 × 10−5.
In Fig. 1 we present the resulting minimal dissipation for

the different many-body models. The results are contrasted
with the optimal noninteracting protocol Eq. (7) and the
fundamental bound obtained with full-control Eq. (8) (i.e.,
arbitrarily complex interactions).
First, we observe that the nearest neighbor model dis-

plays a linear increase of the dissipation with N, but
with a better prefactor than the noninteracting case
(W�;chain

diss =W�;local
diss ≈ 0.686). On the other hand, the all-to-

all model displays a sublinear dependence on N: W�;all
diss ¼

αNx with x ≈ 6=7. Furthermore, the exponent x displays a
nontrivial dependence on the specific boundary conditions
(cf. Supplemental Material C [82]). Finally, quite remark-
ably, the star model can achieve a finite value of the
dissipation, independent of N. This feature is enabled by
a three-step protocol (cf. Supplemental Material B [82])

that suppresses specific terms in the otherwise-extensive
logZStar. Interestingly, the star model was found to be
optimal in the context of two-body probes used for
thermometry [88].
The sublinearity of the all-to-all’s and star-model’s

dissipation is remarkable as it allows for the same effect
as in Eq. (9): it is possible to reach Landauer’s bound in
finite-time with an error that scales as τ−2 instead of τ−1 as
one approaches the thermodynamic limit. However, both
of these models use long-range interactions between
arbitrarily far spins as N grows, and their scaling properties
might thus be seen as inconsequential. For this reason,
in Supplemental Material B [82] we generalized the star
model to a multilayer structure, i.e., a pyramid model (see
Fig. 1 and Supplemental Material B [82]). By generalizing
the star protocol, we prove that such model can achieve
WPyr

diss ∝ l2, l being the number of layers of the pyramid.

Given that N ∝ lD for pyramids in D dimensions, WPyr
diss ∝

N2=D follows asymptotically.

TABLE I. All models studied in this Letter are based on two-
body interactions (11). The all-to-all and star model feature long-
range interactions that enable a sublinear scaling of Wdiss, i.e., a
collective advantage. The pyramid models can achieve such
advantage in D ¼ 3 spatial dimensions using short-range inter-
actions only (cf. Supplemental Material B [82]).

Model 1D chain All-to-all Star Pyramid

Asymptotic Wdiss OðNÞ OðNxÞ Oð1Þ OðN2=DÞ
Short-range ✓ ✗ ✗ ✓

FIG. 1. (a) Minimal dissipation for the erasure ofN spins for different control designs analyzed in this Letter. These are compared with
the dissipations that are achievable with no interactions [Eq. (7), blue shaded area], and with the dissipations that are not achievable
regardless of the protocol [Eq. (8), red shaded area]. We find τW�;chain

diss ≈ 1.69N, τW�;all
diss ≈ 2.20N0.857, while τW�;Star

diss ≤ 9π2=4
(cf. Supplemental Material B [82]). Single points are provided for 2D and 3D Pyramids with few layers and an aperture of 8
(cf. Supplemental Material B [82]). (b)–(e) Depiction of the geometries of the interactions in Eq. (11) (equal colors/labels correspond to
equal values of the local fields). (b) All-to-all model with N ¼ 8, (c) 1D spin chain with N ¼ 8, (d) the star model with N ¼ 9, (e) 2D
pyramid model with four layers and an aperture of 1.
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Conclusions and discussion.—In this Letter, we consid-
ered the task of minimizing dissipated work, Wdiss, for an
N-body system. We showed that, in contrast to ΔF, Wdiss
can grow sublineraly with N by suitably creating inter-
actions between the N systems along the process. This
leads to a finite-time reduction of dissipation induced by
collective processes and has a clear potential for improving
various thermodynamic tasks ranging from quantum and
stochastic engines [5,9,89] to the estimation of equilibrium
free energy via nonequilibrium work measurements [90];
or, as is shown here, for the erasure of information in finite
time. There are several observations to be made about these
collective processes.
First, the derived collective processes are a genuine

effect of finite-time thermodynamic protocols, which can-
not be directly linked to other well-known collective
phenomena such as entanglement, phase transitions, or
superradiance. Indeed, (i) they do not require the presence
of quantum correlations or coherence, but rather arise due
to the interplay between interactions and dissipation to an
external thermal environment, and (ii) they are process
dependent, i.e., they depend on the whole driving protocol
ĤðtÞ, unlike phase transitions which take place in a
particular point in the parameter space.
Second, our results suggest an interesting interplay

between the complexity of the interactions and the asso-
ciated reductions in dissipation, see also Ref. [86]. In
particular, we argued that reaching the maximal advantage
requires highly nonlocal N-body interactions. Despite this,
we showed that similar reductions (in scaling) can be
achieved with only two-body long-range interactions via
the star model. A sublinear growth ofWdiss was found in the
all-to-all model and, crucially, in the pyramid model that
only features short-range strong interactions. See Table I
for a compact summary.
Third, being derived in the linear response regime, the

dissipated work is directly related to the work fluctuations
σ2W via the work fluctuation-dissipation relation ðβ=2Þσ2W ¼
Wdiss [91–94]. This implies that the collective gains also
lead to a reduction of work fluctuations, a desired property
in stochastic thermodynamics [95,96].
Finally, it is important to stress that our results have been

derived in the slow driving regime, i.e., for the leading
order contribution ofWdiss in τ−1. For a finite (large) time τ,
the next order contributions ofOðτ−2Þ can become relevant
when increasing N. An exciting future endeavor is to
generalize such collective advantages for arbitrary non-
equilibrium protocols. For this, it might be useful to exploit
recent results on minimal dissipation and the Wasserstein
distance [48,51,52,97–100] as well as new tools such as
reinforcement learning [101,102] or fast-driving expan-
sions [102–104] for finding optimal protocols.
Another future challenge is to understand how the

collective advantages are modified beyond the simple
model of thermalization used in Eq. (4) and by adding

constraints on the strength of the couplings in Eq. (11). In
particular, for more realistic thermalization models where
the relaxation timescale(s) is(are) modified in the presence
of interactions, which can lead, e.g., to a critical slowdown
of relaxation.
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A. FULL CONTROL SCENARIO

We consider N copies of a d-dimensional system, with an externally driven Hamiltonian Ĥ(t) = Ĥ0(t) + Ĥint(t),

where Ĥ0(t) =
∑N

j=1 ĥ
(j)(t) (with each ĥ(j) acting only on the d-dimensional Hilbert space of the j-th site) and

Ĥint(t) contains the interaction terms. We can always parameterize the total Hamiltonian by Ĥ(t) =
∑n

i=1 γ
i(t)X̂i

with n = d2N .
We focus on the task of driving each copy from an initial configuration ĥ(0) = ĥA to a final one ĥ(τ) = ĥB in a

time t ∈ [0, τ ], where at the beginning and the end of the protocol the copies are non-interacting. This translates to
the following boundary conditions

Ĥint(0) = Ĥint(τ) = 0 , ĥ(j)(0) = ĥA , ĥ(j)(τ) = ĥB ∀j . (A1)

Since we are considering only protocols in which the initial and final Hamiltonian commute (cf. main text), the driving

will not require us to change the eigenbasis of Ĥ(t). Therefore we can reduce the number of needed parameters to

n = dN parameters to describe Ĥ(t) by choosing {γj(t)} to be its eigenvalues at time t, and X̂j to be the projector
associated to γj(t). The average work cost of the operation can be computed by:

W =

∫ τ

0

dt Tr

[
dĤ(t)

dt
ρ̂(t)

]
, (A2)

where ρ̂(t) is the state of the system. We can split this expression intoW = ∆F+Wdiss, where ∆F = β−1 lnZ(0)/Z(τ)
(with Z(t) = Tr

[
e−βĤ(t)

]
) is the reversible contribution and depends only on the endpoints. Whereas the dissipative

term Wdiss depends on the specific driving Ĥ(t), at first order in the slow driving regime, it is quantified by

Wdiss = kBT

∫ τ

0

dt dγi(t)dγj(t)gij(γ(t)) +O
(
τ−2

)
, (A3)

where gij(γ) is a metric over the manifold M of the control parameters {γi}. This metric allows us to quantify the
length of a line element ds over the manifold M : ds2 = gijdγ

idγj . By integrating ds over a curve γ(t) we can find
the length of the curve:

L[γ] =

∫

γ

ds =

∫ τ

0

dt
√
dγi(t)dγj(t)gij(γ(t)) . (A4)

The length of the curve and the dissipation of the corresponding driving are related by a Cauchy-Schwartz inequality

βWdiss ≥
1

τ
L2 , (A5)

where equality is satisfied whenever the integrand is constant. Since geodesics – curves of minimal length connecting
two points – have a constant integrand for the length, they also minimize dissipation. Therefore we can find protocols
that minimize the dissipation by solving the geodesic equations:

γ̈i(t) + Γi
jkγ̇

j(t)γ̇k(t) = 0 , (A6)
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where Γi
jk are the Christoffel symbols

Γi
jk =

1

2
gil
(
∂glk
∂γj

+
∂gjl
∂γk

− ∂gjk
∂γl

)
, (A7)

for gil the inverse of the metric.

In this work, we focus on a simple model of thermalization with a single time-scale τeq, which is described by the
rate equation

d

dt
ρ̂(t) =

ω̂β(t)− ρ̂(t)

τeq
, (A8)

where ω̂β(t) = e−βĤ(t)/Z(t) is the instantaneous thermal state. Without loss of generality, we can absorb the time
scale in the total time of the protocol, which allows us to drop it for simplicity. This model guarantees us the following
form for the metric [1]

gij =
∂2 lnZ
∂γi∂γj

. (A9)

Given the full control assumed here, and choosing the parametrization to be such that {γi} correspond to the

eigenenergies of Ĥ, this leads to

β−2gij = ωiδij − ωiωj , (A10)

where ωi = e−βγi/Z is the thermal probability of the eigenstate corresponding to the energy γi.

1. Recovering the quantum Hellinger angle

We now show that the distance function induced by the metric eq. (A10) is the quantum Hellinger angle

d(γ, γ′) = 2 arccosTr

[√
ω̂β(γ)

√
ω̂β(γ′)

]
, (A11)

where γ and γ′ are two points in M , ω̂β(γ) and ω̂β(γ
′) are the corresponding thermal states. Let us notice that we

can rewrite the Hellinger angle as d(γ, γ′) = 2 arccos
√

ωiω′
i since the thermal states have the same eigenbasis.

Let us now consider the radius 2 sphere embedded in Rn, we can describe it with Cartesian coordinates {ri}ni=1

subject to the constraint riri = 4 . With the Euclidean metric, the line element in Rn is dl2 = δijdr
idrj , this naturally

induces the notion of Euclidean distance over Rn. By restricting ourselves to the radius 2 sphere it is clear that the
Euclidean distance between a point r and r′ on the sphere is given by the angle between these two points times the
radius, which gives us

d(r, r′) = 2 arccos
rir′i
4

, (A12)

where rir′i is the scalar product of r and r′. We can notice that if we identify ri = 2
√
ωi we recover the Hellinger

angle, and the constraint is naturally satisfied by the thermal probabilities since it becomes
∑

i ω
i = 1. Therefore by

applying a coordinate transformation, we can recover the line element (or equivalently the metric) that induces the
Hellinger angle as its distance in terms of variations of the eigenenergies instead of variations of the square root of
the thermal probabilities. We start by transforming to the thermal probabilities as coordinates, we have

dl2 =
δij
ωi

dωidωj , (A13)

where we used dri = 1√
ωi
dωi. Using the definition of the thermal probabilities we can easily find dωi = β(ωiωj −

δijωi)dγj , with eq. (A13) and the constraint
∑

i ω
i = 1 we find dl2 = β2(ωiδij − ωiωj)dγ

idγj , which corresponds to
the metric we found in eq. (A10). This reveals that the manifold M is the positive quadrant of the n-dimensional
sphere of radius 2. It confirms that the thermodynamic length is given by the Hellinger angle and allows us to find
the corresponding optimal protocols over the space of parameters.
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2. Geodesics

For this subsection, we will take τ = 1 for lightness of notation, as the results can be trivially generalized to τ ̸= 1.
Since M is the positive quadrant of the n-dimensional sphere of radius 2 equipped with the Euclidean metric, it is
very simple to find the geodesics. In terms of the coordinates {ri}i the geodesic connecting r(0) to r(1) is given by

r(t) = 2
(1− u(t))r(0) + u(t)r(1)

∥(1− u(t))r(0) + u(t)r(1)∥ , (A14)

where u : [0, 1] → [0, 1] is a bijective and increasing function that we choose such that ∥ṙ(t)∥ is a constant, as this
is equivalent to ds

dt being constant. This trajectory follows a great circle of the n-dimensional sphere. To compute

u(t) we can start by noticing that, because of the normalization, L = d(r(0), r(1)) = ds
dt = ṙi(t)ṙi(t) for a geodesic.

Therefore we get the following differential equation for u(t)

L =
2u̇(t) sinL

2

1− 2u(t)(1− u(t))(1− cosL2 )
, (A15)

which can be solved by integration. We thus find

u(t) =
1

2

(
1 +

tan
[L
4 (2t− 1)

]

tanL
4

)
. (A16)

Plugging this result in eq. (A14) and transforming the coordinates we find the geodesic in terms of the thermal state

ω̂β(t) =
1

sin2 L
2

(
sin

[L
2
(1− t)

]√
ω̂β(0) + sin

[L
2
t

]√
ω̂β(1)

)2

. (A17)

At this point, it is immediate that the geodesic trajectory for the Hamiltonian is

Ĥ(t)=−2kBT log

[
sin

[L(τ − t)

2τ

]
e−

β
2 Ĥ(0)

Z(0) 1
2

+ sin

[Lt
2τ

]
e−

β
2 Ĥ(τ)

Z(τ) 1
2

]
, (A18)

where we neglected terms proportional to the identity. The geodesic of eq. (A18) describes the optimal trajectory that
every energy level should follow, one can notice that if two distinct energy levels have the same boundary conditions
then they follow the same trajectory. Therefore, by permutation invariance, the number of distinct trajectories is given
by the number of different (i.e. without counting the degeneracies) energy levels in the initial and final Hamiltonian.
By taking into account that the initial and final Hamiltonian do not have interaction terms and are permutation
invariant we can conclude that there are at most only n =

(
N+d−1

N

)
= O(Nd−1) distinct control parameters instead

of dN .

Let us now consider the question of what orders of interaction are present in the trajectory described by eq. (A18).
The following argument is made for spins- 12 , but its generalization is immediate. Let us suppose that there is no k-th
order interaction term (i.e. that it involves k sites) in the trajectory in eq. (A18), then we denote by εk(t) an eigen-

energy of Ĥ that corresponds to k distinct excitations at time t. Then εk(t) can be written as a linear combination

of eigen-energies corresponding to fewer excitations: εk(t) =
∑k−1

j=1

∑Nj

l αj,lεj,l(t), where εj,l(t) are the eigen-energies

corresponding to j distinct excitations (we are supposing w.l.o.g. that there are Nj of them) and αj,l are the real
numbers composing the linear combination. Inserting this into eq. (A18) we get that the following must be satisfied
for all t ∈ [0, τ ]

∑

j,l

αj,l log
[
A(t)e−βεj,l(0)/2 +B(t)e−βεj,l(τ)/2

]
= log

[
A(t)e−β

∑
j,l αi,jεj,l(0)/2 +B(t)e−β

∑
j,l αi,jεj,l(τ)/2

]
. (A19)

By defining ∆εj,l := εj,l(τ)− εj,l(0) we can turn this last equation into

∑

j,l

αj,l log
[
A(t) +B(t)e−β∆εj,l/2

]
= log

[
A(t) +B(t)e−β

∑
j,l αj,l∆εj,l/2

]
. (A20)
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Since the function log (A+B exp[·]) is non-linear, this equality generally cannot be satisfied for all times for a given
set of boundary conditions {εj,l(0), εj,l(τ)}j,l. It is worth noting that there are some examples in which εk(t) is
diverging for all times where this equality will be satisfied and k-th order interactions are not needed. Furthermore,

let us point out that permutation invariance is not necessary here, we only need to require that ĥ(j)(0) ̸= ĥ(j)(τ) for
all j. Therefore, generally eq. (A20) cannot be satisfied. The only way to solve the contradiction is by removing the
assumption that the k-th order terms are missing. We conclude that, generally, all orders of interactions (from 2-body
to N -body) are necessary to realize the geodesic trajectory.

B. FISHER METRIC AND MINIMUM HELLINGER ANGLE ON CONDITIONAL PROBABILITIES

We analyze here the metric eq. (A13), also known as Fisher metric, for generic probability distributions having
1-way conditional dependence. That is, consider a probability vector of the form

pi1,i2,i3,...,im = p
(1)
i1

p
(2)
i2|i1p

(3)
i3|i2 . . . p

(m)
im|im−1

, (B1)

where p
(l)
il|il−1

is the conditional probability of outcome il given the value of il−1. Moreover, we will use the intuitive

notation for marginal probabilities, that is, for example

pi2,i5 :=
∑

i1,i3,i4,i6,...,im

pi1,i2,i3,...,im . (B2)

Notice in particular that with this notation p
(1)
i1
≡ pi1 . For conditioned probabilities of the kind above eq. (B1), the

Fisher metric takes a special decomposition, that is

∑

i⃗

dp2
i⃗

p⃗i
=
∑

i1

dp2i1
pi1

+
∑

i1,i2

pi1
dp(2)2

i2|i1
pi2|i1

+
∑

i2,i3

pi2
dp(3)2

i3|i2
pi3|i2

+ · · ·+
∑

im−1,im

pim−1

dp(m)2

im|im−1

pim|im−1

. (B3)

This equation will be our central observation in the following, and can be derived explicitly.
Proof of eq. (B3). We show here the case m = 3, which can be generalized trivially. One has

∑

i1,i2,i3

dp2i1,i2,i3
pi1,i2,i3

=
∑

i1,i2,i3

(
dp

(1)
i1

p
(2)
i2|i1p

(3)
i3|i2 + p

(1)
i1

dp
(2)
i2|i1p

(3)
i3|i2 + p

(1)
i1

p
(2)
i2|i1dp

(3)
i3|i2

)2

p
(1)
i1

p
(2)
i2|i1p

(3)
i3|i2

, (B4)

from which the numerator yields

∑

i1,i2,i3

dp(1)2

i1
p(2)2

i2|i1p
(3)2

i3|i2 + p(1)2

i1
dp(2)2

i2|i1p
(3)2

i3|i2 + p(1)2

i1
p(2)2

i2|i1dp
(3)2

i3|i2
p(1)

i1
p(2)

i2|i1p
(3)

i3|i2
+ cross-terms

=
∑

i1,i2,i3

dp(1)2

i1

p(1)

i1

p(2)

i2|i1p
(3)

i3|i2 + p(1)

i1

dp(2)2

i2|i1
p(2)

i2|i1
p(3)

i3|i2 + p(1)

i1
p(2)

i2|i1
dp(3)2

i3|i2
p(3)

i3|i2
+ cross-terms

=
∑

i1

dp2i1
pi1

+
∑

i1,i2

pi1
dp(2)2

i2|i1
p(2)

i2|i1
+
∑

i2,i3

pi2
dp(3)2

i3|i2
p(3)

i3|i2
+
∑

i1,i2,i3

cross-terms , (B5)

where we simplified the expression by partially summing on the indices, using the identification p
(1)
i1
≡ pi1 , noticing

that
∑

i1
pi1p

(2)
i2|i1 = pi2 , and using the normalization constraints on conditional probabilities.

To conclude the proof of eq. (B3) one needs to show that the cross-terms are null. This is indeed the case as
∑

i1,i2,i3

dp
(1)
i1

dp
(2)
i2|i1p

(3)
i3|i2 = 0 by summing on i3 first, and then on i2 , (B6)

∑

i1,i2,i3

dp
(1)
i1

p
(2)
i2|i1dp

(3)
i3|i2 = 0 by summing on i3 , (B7)

∑

i1,i2,i3

p
(1)
i1

dp
(2)
i2|i1dp

(3)
i3|i2 = 0 by summing on i3 . (B8)

This concludes the proof.
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1. Bounds on the Fisher distance between conditional probabilities

In this section, we prove a simple bound on the geodesic Fisher distance between probabilities with conditional
dependence, for a specific form of eq. (B3). Namely, consider a probability vector of the form

pi1,i2,i3 = p
(1)
i1

p
(2)
i2|i1p

(3)
i3

. (B9)

In the following we will assume full control on p
(1)
i1

, while p
(2)
i2|i1 might be constrained to belong to a submanifold

of conditional probabilities; finally the index i3 includes all the degrees of freedom that are uncorrelated to pi1,i2 .
Moreover, our results will be general to any cardinality of the various indexes. As we are interested in Landauer
erasures, and as a tool for simplification, we consider the distance to partially deterministic distributions. That
is, probability vectors representing a deterministic outcome for i1 and i2, which without loss of generality can be
expressed (via re-indexing) always as

pdeti1,i2 = δi1,0δi2,0 . (B10)

where δi,j is the Kronecker product. Notice that pdet is a particular case of the conditional form eq. (B1).
We can now state our main Lemma

Lemma 1. The geodesic Fisher distance between any p of the form eq. (B9), when fixing p(3) and assuming full control
on p(1), is bounded by 3π. When the final point is deterministic on i1 and i2, the bound can be reduced to 2π. That
is, for fixed boundary conditions

p⃗i(0) ≡ p
(1)
i1

(0) p
(2)
i2|i1(0) p

(3)
i3

, and p⃗i(1) ≡ p
(1)
i1

(1) p
(2)
i2|i1(1) p

(3)
i3

, (B11)

and assuming full control on p(1) only, one has

min
p⃗i(t)≡p

(1)
i1

(t) p
(2)

i2|i1
(t) p

(3)
i3

∫ 1

0

dt
ṗ2
i⃗

p⃗i
≤ 3π . (B12)

Moreover, if the final point is of the form eq. (B10), the same bound reads

min
p⃗i(t)≡p

(1)
i1

(t) p
(2)

i2|i1
(t) p

(3)
i3

∫ 1

0

dt
ṗ2
i⃗

p⃗i
≤ 2π when p⃗i(1) ≡ δi1,0δi2,0p

(3)
i3

. (B13)

As we are mainly interested in Landauer erasure, in the following applications we will mainly use the second
inequality eq. (B13). The proof of the Lemma is constructive. That is, we show an explicit trajectory p(t) that
satisfies eq. (B12) and eq. (B13).

Proof of Lemma 1. To prove Lemma 1, we consider a trajectory pstep(t) of the form eq. (B9)

pstep
i⃗

(t) = p
(1)
i1

(t) p
(2)
i2|i1(t) p

(3)
i3

(B14)

and use eq. (B3) specialized to such case as

∑

i⃗

dp2
i⃗

p⃗i
=
∑

i1

dp2i1
pi1

+
∑

i1,i2

pi1
dp(2)2

i2|i1
pi2|i1

. (B15)

We consider pstep(t) to follow 5 steps. In steps 1, 3, and 5, the distance traveled is bounded by π, while in steps 2
and 4 the distance is null. By the triangular inequality, the Lemma is then proven. In particular, if the final point is
deterministic on i1 and i2, Step 5 is not needed and the 2π bound eq. (B13) follows. For more general endpoints Step
5 is needed, proving eq. (B12).

• Step 1. First p
(1)
i1

(t) goes to a deterministic distribution, w.l.o.g.

p
(1)
i1

(0)→ δi1,1 (B16)

while p(2) and (by hypothesis) p(3) do not change. It follows from eq. (B15) that the distance consumed during

this step is given only by
∫ ∑

i1
dt

ṗ
(1)2

i1

pi1
, and therefore by choosing the geodesic path between p

(1)
i1

(0) and δi1,1,

one travels a distance that is bounded by d(p
(1)
i1

, δi1,1) ≤ π.
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• Step 2. Secondly, p
(2)
i2|i1 is modified to its final value for all values of i1 except i1 = 1,

p
(2)
i2|i1 → p

(2)
i2|i1(1) ∀i1 ̸= 1 , (B17)

while all other probabilities are fixed. Notice that in the case of an erasure protocol, one has p
(2)
i2|i1(1) ≡ δi2,0.

Due to p
(1)
i1

= δi1,1 and eq. (B3) it follows that the distance traveled by the whole probability distribution is null
(as the weight associated with i1 ̸= 1 is null).

• Step 3. As a third step, one modifies again p
(1)
i1

, bringing it to a different deterministic value eq. (B10), i.e.

p
(1)
i1

= δi1,1 → δi1,0 . (B18)

Once again, the distance cost of this step is bounded by π, when taking the geodesic path from δi1,1 to δi1,0.

• Step 4. The fourth step takes p
(2)
i2|i1=1 to its final value

p
(2)
i2|1 → p

(2)
i2|1(1) (B19)

at zero distance cost, due to pi1=1 = 0. Notice that at this point the full vector p
(2)
i2|i1(t) is in its final point and

p(1) is in a deterministic configuration.

• Step 5 (only for non-deterministic p
(1)
i1

(1)). If the final desired point is non-deterministic in the i1 index, a final

step is needed to complete

p
(1)
i1

= δi1,0 → p
(1)
i1
(1) . (B20)

This step consists again of traveling a distance smaller than π.

Summarizing, the total effect of the above steps is that of transforming

pstep(0) = p
(1)
i1

(0)p
(2)
i2|i1(0)p

(3)
i3
→ pstep(1) = p

(1)
i1

(1)p
(2)
i2|i1(1)p

(3)
i3

(B21)

at a distance cost bounded by 2π for deterministic final points (erasure protocols), or 3π otherwise. This proves
Lemma 1.

2. Star Model

Consider the following Star-shaped Hamiltonian, featuring a central spin interacting with all the remaining ones,
as depicted in Fig.B1

Ĥstar(t) = ε(t)σ̂(1)
z + λ1(t)

N∑

i=2

σ̂(i)
z + λ2(t)

N∑

i=2

σ̂(1)
z σ̂(i)

z . (B22)

This particular choice of interactions creates on the N − 1 external spins an effective uniform magnetic field that is

equal to λ1 + λ2 when σ̂
(1)
z = +1, while λ1 − λ2 when σ̂

(1)
z = −1. For this reason, the change of variable

λ+ = λ1 + λ2 , λ− = λ1 − λ2 , (B23)

makes the computation of the thermal probabilities and the partition function particularly easy. In particular, choosing
temperature units in which β = 1,

Zstar = e−ε(2 coshλ+)
N−1 + eε(2 coshλ−)

N−1 . (B24)
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ε1

ε1

ε1
ε1

· · ·

ε1

Ĥstar

ε

λ1

λ1

λ1

λ1

λ1

FIG. B1. Star model: a central spin

Moreover, one can notice how the Hamiltonian eq. (B22) leads to a thermal state ωi1,i2 of the form eq. (B1) for m = 2.

In this case, i1 = ±1 represents the two possible configurations of the central spin σ̂
(1)
z , while i⃗2 = {+1,−1}N−1 labels

the configuration of the remaining N − 1 spins. It is straightforward to compute the probabilities of the central spin

ωi1=+1 = p
(1)
i1=+1 =

e−ε(2 coshλ+)
N−1

e−ε(2 coshλ+)N−1 + eε(2 coshλ−)N−1
, (B25)

ωi1=−1 = p
(1)
i1=−1 =

eε(2 coshλ−)N−1

e−ε(2 coshλ+)N−1 + eε(2 coshλ−)N−1
. (B26)

Similarly, once the central spin is fixed i.e. σ̂
(1)
z = i1, the statistics of the remaining spins are defined by a homogeneous

local magnetic field equal to λi1 ,

ωi⃗2|i1 = p
(2)

i⃗2|i1
=

e−λi1

∑N
i=2 σ(i)

z

(2 coshλi1)
N−1

, (B27)

which can be seen to factorize in parallel, that is

ωi⃗2|i1 = ω⊗N−1
i2|i1 . (B28)

The resulting metric becomes of the form

∑

i1

dω2
i1

ωi1

+
∑

i1,i⃗2

ωi1

dω2
i⃗2|i1

ωi⃗2|i1
=
∑

i1

dω2
i1

ωi1

+ (N − 1)
∑

i1,i2

ωi1

dω2
i2|i1

ωi2|i1
. (B29)

The above discussion clarifies how the Hamiltonian control eq. (B22) induces a control on the thermal statistics ω̂
which is of the form eq. (B9). To bound the dissipation for such a model, we can therefore invoke Lemma 1, which
provides the existence of an erasure protocol, starting from any initial thermal state ω̂ to a final deterministic ω̂det,
with Fisher distance bounded by bound

LStar(ω, ωdet) ≤ 2π , (B30)

which is translated to an upper bound on the dissipation

τβWdiss ≡ LStar(ω, ωdet)2 ≤ 4π2 . (B31)

3. Pyramid scheme

In this section, we generalize the Star model above and its minimally-dissipating protocol to a multi-layer structure,
which importantly features only short-range interactions. Consider the pyramidal structure presented in Fig.B2,
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ε0

ε1

ε2

ε1 ε1

ε2 ε2ε2 ε2

· · · ·····
·

··
·

··
·

··
·

··
·

λ1 λ1λ1

λ2 λ2λ2 λ2 λ2

J1 J1

J2 J2 J2 J2 }N2

}N1

FIG. B2. Pyramid model with Ni = 1 + 2i (cf. eq. (B38)), in dimension D = 2.

which can be ascribed to a Hamiltonian of the form

Ĥpyr(t) = ε(t)σ̂(1)
z + ε1(t)

N1∑

i1=1

σ̂(i1)
z + ε2(t)

N2∑

i1=1

σ̂(i2)
z + · · ·+ εm−1(t)

Nm−1∑

im−1=1

σ̂(im−1)
z

+ λ1(t)

N1∑

i1=1

σ̂(1)
z σ̂(i1)

z + λ2(t)

N1,N2∑

i1,i2=1,1

σ̂(i1)
z σ̂(i2)

z + · · ·+ λm−1

Nm−2,Nm−1∑

im−2,im−1=1,1

σ̂(im−2)
z σ̂(im−1)

z

+ J1(t)

N1∑

i1=1

σ̂(i1)
z σ̂(i1+1)

z + J2(t)

N2∑

i2=1

σ̂(i2)
z σ̂(i2+1)

z + · · ·+ Jm−1(t)

Nm−1∑

im−1=1

σ̂(im−1)
z σ̂(im−1+1)

z . (B32)

We now consider an erasure protocol for the such pyramid model, starting from a completely uncorrelated thermal
state of the form

ωinitial
i0,i1,i2,...,im−1

= ωi0ωi1ωi2 . . . ωim−1
, (B33)

corresponding to all λi = 0 and Ji = 0 in the Hamiltonian eq. (B32), to a final deterministic configuration

ωfinal
i0,i1,i2,...,im−1

= δi0,0δi1,0δi2,0 . . . δim−1,0 . (B34)

To bound the total dissipation, we consider a step protocol of the form

ωi0ωi1ωi2 . . . ωim−1
→ δi0,0δi1,0ωi2 . . . ωim−1

→ δi0,0δi1,0δi2,0 . . . ωim−1
→ · · · → δi0,0δi1,0δi2,0 . . . δim−1,0 . (B35)

That is, at each step k, an erasure is completed for the (k − 1)-th and k-th layer, while the other layers are left
untouched, for a total of m− 1 steps. We now claim that each of the m− 1 steps fulfills the hypothesis of Lemma 1
when appropriately using the controls of the Pyramid Hamiltonian eq. (B32). In fact, each k-step has boundary

conditions of the form eq. (B11), by identifying p
(1)
i1
↔ ω

initial/final
ik−1

, p
(2)
i2|i1 ↔ ω

initial/final
ik

, and all the untouched degrees

of freedom i3 ↔ i0, . . . , ik−2, ik+1, . . . , im−1. For the Lemma to be valid at each step, one needs to assume full-control
on the ik−1 degrees of freedom. This is not the case in general, as each layer corresponds to a uniform Ising-like control.
However, this is resolved with the following care: after step k − 1, layer k − 1 is in a deterministic ωik−1

= δik−1,0. In
such case, it is possible to modify the couplings Jk−1 →∞ to a fully ferromagnetic configuration without modifying
ω̂. This produces an effective two-level system, i.e. all the spins up or all spins down at layer k − 1, on which the
local magnetic fields act as an effective full-control for such a two-level system.

Given the above discussion, we can bound the dissipation in the Pyramid model using the (m − 1)-step protocol
therein described, which corresponds to a total Fisher distance L ≤ 2(m− 1)π. It then follows that the dissipations
are bounded by

τβWdiss ≡ L2 ≤ 4(m− 1)2π2 , (B36)
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while the total number of spins is

N = N0 + · · ·+Nm−1 +Nm−1 . (B37)

In standard pyramids with spatial dimension D, we can assume that

Ni = (c+ a(i− 1))D−1 (B38)

for some positive integers c and a. This corresponds to a pyramid-shaped Hamiltonian in spatial dimension D having
the first layer increase with size a. For example, the pyramid in Fig.B2 corresponds to c = 1 and a = 2.
In such a model the total number of spins scales as

N =
m−1∑

i=0

Ni =
m−1∑

i=0

(1 + ai)D−1 ≈ aD−1

D
mD (B39)

at leading order.
It follows that the dissipation eq. (B36) can be expressed, at leading order,

τβWdiss ≈
4π2

a2
(aDN)

2
D . (B40)

The above expression shows that the scaling of the dissipation in such models is sub-linear in N as soon as D > 2,
(e.g. if the pyramid is 3-dimensional D = 3). The obtained dissipation for D = 2 and D = 3 is showcased in Fig.B3
where it’s contrasted to the minimal dissipation found for the other models.

FIG. B3. Minimal dissipation for the erasure of N spins in the non-interacting case and full control scenario. The dissipation
of the protocol described in Lemma 1 for the erasure of N spins in the star model, and its repeated application for pyramid
models in 2-D and 3-D with apertures a = 2 and a = 8. And an extrapolation of the fit of the minimal dissipation in the
all-to-all model (to compare the scaling) W ∗,all

diss = αNx with x = 0.857 and α = 2.20.

C. NUMERICS FOR MANY-BODY SYSTEMS

In this section, we explain the techniques used to find the protocols that minimize dissipation for the two-body
all-to-all system of spins and the 1-D Ising chain. The Hamiltonians of these systems are the following

Ĥall(t) = ε(t)
N∑

i=1

σ̂(i)
z +

1

2
J(t)

N∑

i,j=1

σ̂(i)
z σ̂(j)

z , (C1)

Ĥnn(t) = ε(t)
N∑

i=1

σ̂(i)
z +

1

2
J(t)

N∑

i=1

σ̂(i)
z σ̂(i+1)

z . (C2)
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FIG. C4. Optimal finite-time protocol for approximate erasure (ε(τ) = 4kBT which has an erasure error of 3 · 10−4) in the
all-to-all spin model. This protocol is computed for N = 10.
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FIG. C5. Optimal finite-time protocol for approximate erasure (ε(τ) = 4kBT which has an erasure error of 3 · 10−4) in the 1-D
Ising chain model. This protocol is the same for all values of N .

To find the optimal driving we use the formalism of geometric thermodynamics which explained in the Sec.A. In
particular, the optimal driving protocols solve the geodesic equation eq. (A6). To compute it we need the Christoffel
symbols, which can be computed from derivatives of the partition function eq. (A9). In both scenarios at hand, the
geodesic equation cannot be solved analytically. Therefore we want to be able to express the partition function (in
particular its derivatives) in numerically tractable ways. For the all-to-all case, we can write the partition function
and its derivatives as follows

Zall =
N∑

k=0

(
N

k

)
e−βEk , (C3)

β−2 ∂
2 lnZall

∂γi∂γj
= ⟨X̂iX̂j⟩ − ⟨X̂i⟩⟨X̂j⟩ , (C4)

−β−3 ∂3 lnZall

∂γi∂γj∂γk
= ⟨X̂iX̂jX̂k⟩ − ⟨X̂iX̂j⟩⟨X̂k⟩ − ⟨X̂iX̂k⟩⟨X̂j⟩ (C5)

− ⟨X̂kX̂j⟩⟨X̂i⟩+ 2⟨X̂i⟩⟨X̂k⟩⟨X̂k⟩ ,

where we defined Ek = ε(2k − N) + 1
2J(2k − N)2, γ = (ε, J), X̂1 =

∑N
k=1 σ̂

(k)
z , X̂2 = 1

2

∑N
k,l=1 σ̂

(k)
z σ̂

(l)
z , and the

expectation values are computed with respect to the thermal state. Thanks to eq. (C3) we can efficiently compute
(for large N) these expectation values, as we get the following expression

⟨X̂i1X̂i2 ... X̂ij ⟩ =
1

Zall

N∑

k=0

(
N

k

)
∂Ek

∂γi1

∂Ek

∂γi2
...
∂Ek

∂γij
e−βEk . (C6)

Whereas for the 1-D Ising chain we can compute the partition function in a more contained analytical expression
thanks to the transfer matrix formalism (with exponentially small corrections in N)

logZnn = −βJN

2
+N log

[
cosh(βε) +

√
sinh(βε)2 + e2βJ

]
, (C7)

from which we can compute analytically the expression for its derivatives and solve the geodesic equations efficiently
with numerical tools. Let us remark here that since logZnn is linear in N it is immediate that the same is true for
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its derivatives and therefore the dissipated work. Furthermore, it is quite clear from eq. (A7) that the differential
equations will not depend on N , therefore the geodesic will also be independent of N .

FIG. C6. Scaling of the dissipation with respect to N for different values of ε∗.

FIG. C7. Dependence of the exponent x of the dissipation W ∗,all
diss = αNx on the boundary condition βε(τ) (with ε(0) = 0).

The fit is achieved for numerical data up to N = 150.

For both models, we end up with a system of two second-order non-linear differential equations. By the structure
of the geodesic equations, we can turn it into a system of four first-order non-linear differential equations of the type
dx⃗
dt = f⃗(x⃗) with x⃗ = (ε, J, ε̇, J̇). Here we want to enforce the boundary conditions ε(0) = J(0) = J(τ) and ε(τ) = ε∗

(where ε∗ ≫ kBT for erasure), but famously boundary value problems are very difficult to solve numerically. In
this particular case, we can exploit the fact that we have only two parameters and that geodesics never cross paths
(they describe a flow in the parameter space). Therefore there is a bijection between the ratio of the initial velocities

ε̇(0)/J̇(0) and the final value ε∗, this allows us to turn the boundary value problem into solving multiple initial value
problems for different ratios of the initial velocities until we find the initial conditions that match the desired boundary
conditions.
Using these techniques we can find the geodesics for (approximate) erasure in both models, an example for each is
showcased in Fig.C4 and Fig.C5. As is explained in the main text, in the case of the all-to-all spin model the
dissipation scales sub-linearly with respect to N . To quantify this effect we compute the dissipation for multiple
values of N (19 values for Fig.1 and 10 values for Fig.2, all between N = 5 and N = 150) and fit a power law. The
relative errors of all the fits showcased in this study are 0.5% or less. In Fig.C6 we showcase more examples of this
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sub-linear scaling for different values of ε∗ and how they are each well described by a power law. Then, in Fig.C7
we collect all the fitted exponents to showcase the dependence on the boundary conditions. Where x is plotted as a
function of βε(τ), which illustrates that the collective effects developed here are genuinely process-dependent.

[1] P. Abiuso, H. J. D. Miller, M. Perarnau-Llobet, and M. Scandi, Entropy 22, 1076 (2020).
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The full optimization of a quantum heat engine requires operating at high power, high efficiency, and high
stability (i.e., low power fluctuations). However, these three objectives cannot be simultaneously optimized—as
indicated by the so-called thermodynamic uncertainty relations—and a systematic approach to finding optimal
balances between them including power fluctuations has, as yet, been elusive. Here we propose such a general
framework to identify Pareto-optimal cycles for driven quantum heat engines that trade off power, efficiency,
and fluctuations. We then employ reinforcement learning to identify the Pareto front of a quantum dot-based
engine and find abrupt changes in the form of optimal cycles when switching between optimizing two and three
objectives. We further derive analytical results in the fast- and slow-driving regimes that accurately describe
different regions of the Pareto front.

DOI: 10.1103/PhysRevResearch.5.L022017

Introduction. Stochastic heat engines are devices that
convert between heat and work on the nanoscale [1–3].
Steady-state heat engines (SSHEs) perform work against
external thermodynamic forces (e.g., a chemical potential
difference) after reaching a nonequilibrium steady state [4],
whereas periodically driven heat engines (PDHEs) perform
work against external driving fields through time-dependent
cycles [5]. The performance of heat engines is usually
characterized by the output power and efficiency, and their op-
timization has been thoroughly addressed in literature [6–30].
However, in contrast to their macroscopic counterpart, the
performance of quantum and microscopic engines is strongly
influenced by power fluctuations. Although early works have
started optimizing power fluctuation [31–35], a framework to
fully optimize the performance of microscopic heat engines
that accounts for power fluctuations is currently lacking; this
Letter fills this void.

An ideal engine operates at high power, high efficiency,
and low-power fluctuations; however, such quantities usually
cannot be optimized simultaneously, but one must seek trade-
offs. In SSHEs, a rigorous manifestation of this trade-off is
given by the thermodynamic uncertainty relations [36–44].
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†frank.noe@fu-berlin.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
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For “classical” stochastic SSHEs (i.e., in the absence of quan-
tum coherence) operating between two Markovian reservoirs
at inverse temperatures βC (cold) and βH (hot), they read [38]

ξ ≡ 2

βC

〈P〉
〈�P〉

η

ηc − η
� 1, (1)

where 〈P〉 and 〈�P〉 are, respectively, the average power and
power fluctuations, η is the efficiency, and ηc ≡ 1 − βH/βC

is the Carnot efficiency. Such thermodynamic uncertainty re-
lations imply, for example, that high efficiency can only be
attained at the expense of low-power or high-power fluc-
tuations. The thermodynamic uncertainty relation inequality
(1) can be violated with quantum coherence [45–53] and in
PDHEs [54–59]. This has motivated various generalized ther-
modynamic uncertainty relations [60–65], in particular, for
time-symmetric driving [40,55] and slowly driven stochastic
engines [66,67].

Despite their importance, thermodynamic uncertainty rela-
tions provide an incomplete picture of the trade-off: whereas
high values of ξ may appear more favorable, this does not
give us any information on the individual objectives. Indeed,
Refs. [56,66] have shown that high values of ξ can be achieved
in the limit of vanishing power, whereas often the goal is to
operate at high power or efficiency.

In this Letter, we propose a framework to optimize
arbitrary trade-offs among power, efficiency and power fluc-
tuations in arbitrary PDHEs described by Lindblad dynamics
[68–71]; this framework enables the use of various optimiza-
tion techniques, such as the Pontryagin minimum principle
[72] or reinforcement learning (RL) [73] to find Pareto-
optimal cycles, i.e., those cycles where no objective can be

2643-1564/2023/5(2)/L022017(8) L022017-1 Published by the American Physical Society
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FIG. 1. A quantum system (gray circle) is coupled to a thermal
bath (left box) characterized by a controllable inverse temperature
β(t ). The coupling produces a heat flux J (t ). Control parameters
�u(t ) allow us to control the state of the system and the power P(t )
extracted from the system.

further improved without sacrificing another one. We then
employ RL to fully optimize a quantum dot- (QD-) based heat
engine [74]. We characterize the Pareto front, i.e., the set of
values {〈P〉, 〈�P〉, η} corresponding to Pareto-optimal cycles,
and evaluate the thermodynamic uncertainty relation ratio ξ

on such optimal cycles. Furthermore, we derive analytical re-
sults for the Pareto front and ξ in the fast- [6,8,20,23,27,75,76]
and slow- [9,26,77–88] driving regimes, i.e., when the period
of the cycle is, respectively, much shorter or much longer than
the thermalization timescale of the system.

Multiobjective optimization of quantum heat engines. We
describe a PDHE as a quantum system coupled to a heat
bath whose inverse temperature β(t ) can be tuned in time be-
tween two extremal values βH and βC with βH � βC (Fig. 1).
The coupling produces a heat flux J (t ) from the bath to the
quantum system. The PDHE is further controlled by time-
dependent control parameters �u(t ) that allow exchanging work
with the system, producing power P(t ). A thermodynamic
cycle is then described by periodic functions β(t ) and �u(t )
with period τ . This framework includes standard PDHEs in
which the system is sequentially put in contact with two baths
[by abruptly changing the values of β(t )] and cases where
β(t ) varies smoothly in time [66,84,87,89–92]. We assume
that the dynamics of the system is described by a Markovian
master equation, i.e., that the reduced density matrix ρt of the
quantum system satisfies

ρ̇t = L�u(t ),β(t )ρt , (2)

where L�u(t ),β(t ) is the Lindbladian describing the evolution of
the system [70].

We are interested in characterizing the performance of
PDHEs computing the average power 〈P〉, average irreversible
entropy production 〈�〉, and average power fluctuations 〈�P〉
in the asymptotic limit cycle [66,89,90], i.e., in the limit of
infinite repetitions of the cycle. In such a limit, ρt becomes
periodic with the same periodicity τ of the control (see the
Supplemental Material [93]).

Given the density-matrix ρt , the calculation of 〈P〉 and
〈�〉 can be performed using the standard approach first put
forward in Ref. [94] (see the Supplemental Material [93] for
details). Defining the time-average 〈O〉 of an arbitrary quantity
O(t ) as 〈O〉 ≡ τ−1

∫ τ

0 O(t ) dt, we can calculate 〈P〉 and 〈�〉
by averaging

P(t ) = −Tr[ρt Ḣ�u(t )], �(t ) = −Tr[ρ̇t H�u(t )]β(t ). (3)

Note that we compute the entropy production �(t ) ≡
−J (t )β(t ) neglecting the entropy variation �S of the quantum
system since the periodicity of the state in the limiting cycle
implies that �S = 0 after each repetition of the cycle.

The average fluctuations 〈�P〉, however, cannot be ex-
pressed as a time average of a function of the state ρt since
they involve a two-point correlation function. Indeed, from
Ref. [82], we can express them as

〈�P〉 = lim
T →∞

1

T

∫ T

0
dt Tr[st Ḣ�u(t )], (4)

where we define

st ≡
∫ t

0
dt ′P(t, t ′)[Ḣ�u(t ′ )ρt ′] + 〈w〉tρt + H.c. (5)

In Eq. (5) P(t, t ′) ≡ ←−
T exp[

∫ t
t ′ dt ′′L�u(t ′′ ),β(t ′′ )] is the propa-

gator, 〈w〉t ≡ − ∫ t
0 dt ′Tr[ρt ′Ḣ�u(t ′ )] is the total average work

extracted between time 0 and t , and H.c. represents the com-
plex conjugate of the right-hand side.

Here, we overcome the difficulty of computing nested inte-
grals and two-point correlation function in Eqs. (4) and (5) by
noting that st is a traceless Hermitian operator that satisfies

ṡt = L�u(t ),β(t )st + {ρt , Ḣ�u(t )} − 2 Tr[ρt Ḣ�u(t )]ρt , (6)

and becomes periodic with period τ in the limiting cycle (see
the Supplemental Material [93]).

Therefore, by considering (ρt , st ) as an “extended state”
satisfying the equations of motion in (2) and (6) in the time-
interval [0, τ ] with periodic boundary conditions, we can
compute 〈P〉, 〈�〉, and 〈�P〉 as time averages of P(t ), �(t ),
and �P(t ), where P(t ) and �(t ) are defined in Eq. (3), and
where

�P(t ) ≡ Tr[st Ḣ�u(t )]. (7)

Note that these are now linear functionals of the extended
state.

To identify Pareto-optimal cycles, we introduce the dimen-
sionless figure of merit

〈F 〉 = a
〈P〉
Pmax

− b
〈�P〉

�P(Pmax)
− c

〈�〉
�(Pmax)

, (8)

where a, b, c � 0 are three scalar weights, satisfying a + b +
c = 1, that determine how much we are interested in each
of the three objectives, and Pmax, �P(Pmax), and �(Pmax)
are, respectively, the average power, fluctuations and entropy
production of the cycle that maximizes the power. Note that,
given the relation between entropy production and efficiency,
cycles that are Pareto optimal for {〈P〉, 〈�P〉, η}, are also
Pareto optimal for {〈P〉, 〈�P〉, 〈�〉} (see the Supplemental
Material [93]). The positive sign in front of 〈P〉 in Eq. (8)
ensures that we are maximizing the power, while the negative
sign in front of 〈�P〉 and 〈�〉 ensures that we are minimizing
power fluctuations and the entropy production. Interestingly,
if convex, it has been shown that the full Pareto front can be
identified repeating the optimization of 〈F 〉 for many values
of a, b, and c [95,96].

Since 〈F 〉 is a linear combination of the average thermody-
namic quantities, using Eqs. (3) and (7) we can express 〈F 〉 as
a time integral of a function of the extended state (ρt , st ) and
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of the controls �u(t ) and β(t ),

〈F 〉 =
∫ τ

0
G[ρt , st , �u(t ), β(t )]dt, (9)

where G[ρt , st , �u(t ), β(t )] is a suitable function. The opti-
mization of 〈F 〉 in this form is precisely the type of problem
that can be readily tackled using optimization techniques,
such as the Pontryagin minimum principle [72] or RL [73].
In this Letter, we employ the latter.

QD heat engine. In the following, we compute Pareto-
optimal cycles in a minimal heat engine consisting of a
two-level system coupled to a fermionic bath with flat den-
sity of states. This represents a model of a single-level QD
[6,10,74]. The Hamiltonian reads

Hu(t ) = u(t )
E0

2
σz, (10)

where u(t ) is our single control parameter, E0 is a fixed
energy scale, and σz is a Pauli matrix. Denoting with |1〉
the excited state of Hu(t ), and defining pt ≡ 〈1|ρt |1〉 as the
probability of being in the excited state, the Lindblad equa-
tion (2) becomes ṗt = −γ (pt − π�u(t ),β(t ) ), where γ −1 is the
thermalization timescale arising from the coupling between
system and bath, and π�u(t ),β(t ) = f [β(t )E0u(t )] is the excited
level population of the instantaneous Gibbs state, with f (x) ≡
(1 + ex )−1 [23].

Optimal cycles with RL and analytical results. We optimize
〈F 〉 of the QD heat engine using three different tools: RL,
analytics in the fast-driving regime, and analytics in the slow-
driving regime.

The RL-based method allows us to numerically optimize
〈F 〉 without making any approximations on the dynamics,
exploring all possible (time-discretized) time-dependent con-
trols β(t ) and u(t ) subject to the constraints β(t ) ∈ [βH, βC]
and u(t ) ∈ [umin, umax] (thus, beyond fixed structures, such
as Otto cycles), and identifying automatically the optimal
period. The RL method, based on the soft actor-critic algo-
rithm [97–99] and generalized from [100,101], additionally
includes the crucial impact of power fluctuations and identi-
fies Pareto-optimal cycles (see the Supplemental Material [93]
for technical details and for benefits of using RL). Machine
learning methods have been employed for other quantum ther-
modynamic [102–104] and quantum control [105–117] tasks.

The fast-driving regime assumes that τ � γ −1. Interest-
ingly, without any assumption on the driving speed, we show
[93] that any trade-off between power and entropy production
[b = 0 in Eq. (8)] in the QD engine is maximized by Otto
cycles in the fast-driving regime, i.e., switching between two
values of β(t ) and u(t ) “as fast as possible” [23,27]. We thus
expect such “fast-Otto cycles” to be nearly optimal in the high
power or efficiency regime. Moreover, we derive analytical
expressions to compute and optimize {〈P〉, 〈�P〉, 〈�〉} effi-
ciently in arbitrary systems in the fast-driving regime [93].

The slow-driving regime corresponds to the opposite limit,
i.e., τ � γ −1. Since entropy production and power fluctu-
ations can be minimized by considering quasistatic cycles
(see, e.g., Refs. [56,66]), we expect this regime to be nearly
optimal in the low-power regime, i.e., for low values of a
in Eq. (8). To make analytical progress in this regime, we
maximize Eq. (8) assuming a finite-time Carnot cycle (see

FIG. 2. Optimization of 〈F 〉 at different values of a and c with
b = 1 − a − c, for a QD-based PDHE. Each dot in panel (a) displays,
as a function of c and a, whether 〈F 〉RL > 〈F 〉FAST (blue dots) or
not (red dots). Points with a ∼ 0 are not displayed since, in such a
regime, optimal cycles become infinitely long (to minimize entropy
production and fluctuations) and the RL method does not converge
reliably [93]. (b) Contour plot of 〈F 〉RL, as a function of c and a,
using the data points of (a). The black line represents the curve below
which 〈F 〉FAST = 0. (c)–(e) cycles, described by piecewise constant
values of β (black dots) and u (blue dots) as a function of t , identified
at the three values of a and c highlighted in black in panel (a) (respec-
tively, from top to bottom). The inset in panel (c) represents a zoom
into the corresponding cycle, which is a fast-Otto cycle. Parameters:
βC = 2, βH = 1, umin = 0.2, umax = 1.1, and E0 = 2.5.

the Supplemental Material [93]). The obtained results nat-
urally generalize previous considerations for low-dissipation
engines [9,10,13,14,21,22,26] to account for the role of fluc-
tuations (see also Ref. [32]). The main technical tool is the
geometric concept of “thermodynamic length” [77,86], which
yields the first-order correction in (γ τ )−1 from the quasistatic
limit.

We now present the results. Each point in Fig. 2(a) cor-
responds to a separate optimization of 〈F 〉 with weights c
and a displayed on the x-y axis. Since b = 1 − a − c, points
lying on the sides of the triangle (highlighted in yellow) cor-
respond to optimizing the trade-off between two objectives,
whereas points inside the triangle take all three objectives into
account. Denoting the figure of merit optimized with RL and
with fast-Otto cycles with 〈F 〉RL and 〈F 〉FAST, in Fig. 2(a),
we show blue (red) dots when 〈F 〉RL > 〈F 〉FAST (〈F 〉RL �
〈F 〉FAST), whereas Fig. 2(b) is a contour plot of 〈F 〉RL. As ex-
pected, there are red dots when b = 0 (along the hypotenuse),
but it turns out that fast-Otto cycles are optimal also when
c = 0. However, as soon as all three weights are finite,
the optimal cycles identified with RL change abruptly and
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FIG. 3. Pareto front found optimizing 〈F 〉 with fast-Otto cycles
in the limit of small temperature differences [panel (a)], optimizing
〈F 〉 in the slow-driving regime [panel (b)], and numerically using
RL [panel (c)]. The system parameters are as in Fig. 2. All panels
display 〈�P〉/�P(Pmax) as a function of 〈P〉/Pmax (x axis) and of
η/ηc (color). The black curve represents the outer border of the
Pareto front derived analytically in the Supplemental Material [93].

outperform fast-Otto cycles. Furthermore, we note that
whereas 〈F 〉RL is positive for all values of the weights,
〈F 〉FAST = 0 below the black curve shown in Fig. 2(b) (see
the Supplemental Material [93] for its analytic expression).

To visualize the changes in protocol space, in Figs. 2(c)–
2(e) we show the cycles identified with RL at the three
different values of the weights highlighted by a black circle
in Fig. 2(a) (respectively, from top to bottom). Since RL
identifies piecewise constant controls, the cycle is displayed
as dots corresponding to the value of β(t ) (black dots) and
u(t ) (blue dots) at each small time step. First, we note that
the inverse temperature abruptly switches between βH and βC

for all values of the weights so that, in this engine, no gain
arises when smoothly varying the temperature. As expected,
the cycle identified by RL in Fig. 2(c), corresponding to the
black point on the hypotenuse in Fig. 2(a), is a fast-Otto cycle
(a “zoom” in a short-time interval is shown in the inset). How-
ever, moving down in weight space to the black dot at a = 0.6
and c = 0.2, we see that the corresponding cycle [Fig. 2(d)]
now displays a finite period with linear modulations of u(t ) at
fixed temperatures and a discontinuity of u(t ) when switching
between βH and βC. The cycle in Fig. 2(e), corresponding
to the lowest black dot at a = 0.2 and c = 0.4, displays an
extremely long period τ ≈ 125γ −1, which is far in the slow-
driving regime. Optimal cycles, therefore, interpolate between
the fast- and the slow-driving regimes as we move in weight
space [Fig. 2(a)] from the sides to the lower and central region
(i.e., switching from two to three objectives).

In Fig. 3, we display the Pareto front, i.e., we plot the
value of P/Pmax, �P/�P(Pmax), and of the efficiency η/ηc,
found maximizing 〈F 〉 for various values of the weights.

Figure 3(a) is derived in the fast-driving regime assuming a
small temperature difference, whereas Fig. 3(b) is derived in
the slow-driving regime. The RL results, shown in Fig. 3(c),
correspond to the points in Fig. 2(a). First, we note that, by
definition of the Pareto front, the “outer border” corresponds
to points where we only maximize the trade-off between the
two objectives 〈P〉 and 〈�P〉. Since these points are optimized
by fast-Otto cycles, the black border of Fig. 3(a), also shown
in Figs. 3(b) and 3(c), is exact and given by (see the Supple-
mental Material [93] for details)

〈P〉
Pmax

= 2

√
〈�P〉

�P(Pmax)
− 〈�P〉

�P(Pmax)
. (11)

Moreover, in this setup, we can establish an exact mapping
between the performance of a SSHE and of our PDHE op-
erated with fast-Otto cycles (see the Supplemental Material
[93]). Since SSHEs satisfy Eq. (1), also fast-Otto cycles have
ξ � 1. Furthermore, for small temperature differences ξ = 1.
This allows us to fully determine the internal part of the Pareto
front in the fast-driving regime using the thermodynamic un-
certainty relations, i.e., P/Pmax = [�P/�P(Pmax)](ηc − η)/η.
Indeed, the linear contour lines in Fig. 3(a) stem from the
linearity between P and �P, the angular coefficient being
determined by the efficiency.

Comparing Figs. 3(a) and 3(b), we see where the fast-
and slow-driving regimes are optimal. As expected, the slow-
driving Pareto front cannot reach the black border, especially
in the high-power area where fast-Otto cycles are optimal.
However, in the low-power and low fluctuation regime, cycles
in the slow driving substantially outperform fast-Otto cycles
by delivering a higher efficiency [purple and blue regions in
Fig. 3(b)].

Interestingly, the RL points in Fig. 3(c) capture the best
features of both regimes. RL can describe the high-power and
low fluctuation regime displaying both red and blue/green
dots near the lower border. The red dots are fast-Otto cycles
that are optimal exactly along the border but deliver a low effi-
ciency. The blue/green dots instead are finite-time cycles that
deliver a much higher efficiency by sacrificing a very small
amount of power and fluctuations. This dramatic enhancement
of the efficiency as we depart from the lower border is another
signature of the abrupt change in optimal cycles.

Violation of thermodynamic uncertainty relation. At last,
we analyze the behavior of the thermodynamic uncertainty
relation ratio ξ , which represents a relevant quantity com-
bining the three objectives, computing it on Pareto-optimal
cycles (recall that ξ � 1 for classical stochastic SSHEs but
PDHEs can violate this bound [54–59]). In Fig. 4(a), we show
a contour plot of ξ , computed with RL as a function of a and c.
Because of the mapping between SSHEs and fast-Otto cycles
[93], we have ξ = 1 along the sides of the triangle where only
two objectives are optimized. However, this mapping breaks
down for finite-time cycles, allowing us to observe a strong
increase in ξ in the green/purple region in Fig. 4(a). As shown
in Fig. 2, this region corresponds to long cycles operated in
the slow-driving regime where violations of thermodynamic
uncertainty relations had already been reported [56,66]. In
Figs. 4(b)–4(d) we show a log-log plot of ξ , respectively, as
a function of P/Pmax, �P/�P(Pmax), and �/�(Pmax) with
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FIG. 4. (a) Contour plot of the SSHE thermodynamic uncer-
tainty relationship ratio ξ as a function of c and a. (b)–(d) log-log
plot of ξ , color mapped as in panel (a) as a function of 〈P〉/Pmax,
〈�P〉/�P(Pmax), and 〈�〉/�(Pmax), respectively. Every point corre-
sponds to the same RL optimization performed in Fig. 2. The black
line is the behavior of ξ derived analytically in the Supplemental
Material [93] in the slow-driving regime for small values of 〈P〉,
〈�P〉, and 〈�〉.

the same color map as in Fig. 4(a). We see that ξ diverges
in the limit of low power, low fluctuations, and low entropy
production as a power law. Indeed, using the slow-driving
approximation, we analytically prove that ξ diverges as 〈P〉−2,
〈�P〉−1, and 〈�〉−1. Such relations, plotted as black lines,
nicely agree with our RL results.

Conclusions. We introduced a general framework to iden-
tify Pareto-optimal cycles among power, efficiency, and power

fluctuations in quantum or classical stochastic heat engines,
paving the way for their systematic optimization using op-
timal control techniques, such as the Pontryagin minimum
principle [72] or reinforcement learning [73]. As opposed
to previous literature reviewed above, we account for the
crucial impact of power fluctuations. We then employed RL
to optimize a quantum dot-based heat engine, solving its ex-
act finite-time and out-of-equilibrium dynamics, providing us
with new physical insights. We observe an abrupt change in
Pareto-optimal cycles when switching from the optimization
of two objectives where Otto cycles in the fast-driving regime
are optimal, to three objectives where the optimal cycles have
a finite period. This feature, which shares analogies with
the phase transition in protocol space observed in Ref. [96],
corresponds to a large enhancement of one of the objectives
whereas only slightly decreasing the other ones. Furthermore,
we find an exact mapping between Otto cycles in the fast-
driving regime and SSHEs, implying that a violation of the
thermodynamic uncertainty relation ratio ξ in Eq. (1) requires
the optimization of all three objectives. We then find that ξ

becomes arbitrarily large in the slow-driving regime. Cycles
found with RL display the best features analytically identified
in the fast- and slow-driving regimes.
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fluctuations of quantum heat engines using reinforcement learning”

Paolo A. Erdman, Alberto Rolandi, Paolo Abiuso, Mart́ı Perarnau-Llobet, and Frank Noé

I. GENERAL FRAMEWORK AND REINFORCEMENT LEARNING APPROACH

In this section we describe a general framework to compute the power, entropy production and power fluctuations
of a quantum thermal machine. We then show how it allows us to use RL to optimize the trade-off between these
three objectives. Assuming that the dynamics is Markovian, the reduced state evolves according to Eq. (2) of the
main text, i.e.

ρ̇t = Lu⃗(t),β(t)ρt. (S1)

As usual, we employ the first law to split the internal energy U(t) = Tr
[
ρtHu⃗(t)

]
of the system into absorbed heat

and output work [1]:

dU = dQ− dW , dQ = Tr
[
dρtHu⃗(t)

]
, dW = −Tr

[
ρtdHu⃗(t)

]
. (S2)

The instantaneous power output is thus given by Eq. (3) of the main text, i.e.

P (t) = −Tr
[
ρtḢu⃗(t)

]
(S3)

and, according to Clausius theorem for cycles (in which we set ∆S = 0 of the quantum system since we consider a
periodic driving in the limiting cycle), the instantaneous irreversible entropy production is given by Eq. (3) of the
main text, i.e.

Σ(t) = −β(t) Tr
[
ρ̇tHu⃗(t)

]
. (S4)

For what concerns power fluctuations, let ⟨σ2⟩t be the work fluctuations between time 0 at t. Using Eq. (2) of Ref. [2],
we can write the fluctuations as

⟨σ2⟩t =
∫ t

0

dt1 Tr
[
Ḣu⃗(t1)st1

]
, (S5)

where we introduce

st1 ≡
∫ t1

0

dt2P (t1, t2)[Ḣu⃗(t2)ρt2 ] + ⟨w⟩t1 ρt1 + h.c. . (S6)

Here P (t1, t2) ≡
←−
T exp

[∫ t1
t2

dτLu⃗(τ),β(τ)

]
is the propagator, ⟨w⟩t1 ≡ −

∫ t1
0

dt2 Tr
[
ρt2Ḣu⃗(t2)

]
is the total average work

extracted between time 0 and t1, h.c. represents the complex conjugate of the whole right-hand-side, and in deriving
Eq. (S5) we used that [P (t1, t2)O]† = P (t1, t2)O

†, which stems from [Lu⃗(τ),β(τ)O]† = Lu⃗(τ),β(τ)O
†. Taking the

time-derivative of st, we find that it satisfies the equation of motion given in Eq. (6) of the main text, i.e.

ṡt = Lu⃗(t),β(t)st + {ρ, Ḣu⃗(t)} − 2Tr
[
ρtḢu⃗(t)

]
ρt, (S7)

where {·, ·} denotes the anti-commutator. Using the definition of st given in Eq. (S6), we see that st is an Hermitian
operator, and that Tr[st] = 0. This last property stems from the fact that P (t1, t2)[·] is trace-preserving.

A. “Extended state” and formulation of the optimization problem

We now define (ρt, st) as an “extended state”. We have just shown that the equation of motion of the extended state
is a set of first-order differential equations [see Eqs. (S1) and (S7)]. Furthermore, the average power ⟨P ⟩ ≡ ⟨w⟩τ /τ ,
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the average fluctuations ⟨∆P ⟩ ≡ ⟨σ2⟩τ/τ and the average entropy production ⟨Σ⟩ ≡ (1/τ)
∫ τ

0
Σ(t)dt can be expressed

as a time-average of the extended state and of the controls u⃗(t) and β(t), i.e.

⟨P ⟩ = −1

τ

∫ τ

0

dtTr
[
ρtḢu⃗(t)

]
=

1

τ

∫ τ

0

dtTr
[
ρ̇tHu⃗(t)

]
,

⟨∆P ⟩ = 1

τ

∫ τ

0

dtTr
[
stḢu⃗(t)

]
,

⟨Σ⟩ = −1

τ

∫ τ

0

dtTr
[
ρ̇tHu⃗(t)

]
β(t).

(S8)

Therefore, also the figure of merit ⟨F ⟩ in Eq. (8) of the main text can be expressed as a time integral of a function of
the extended state (ρt, st) and of the controls u⃗(t) and β(t), i.e.

⟨F ⟩ =
∫ τ

0

G (ρt, st, u⃗(t), β(t)) dt, (S9)

where G(ρt, st, u⃗(t), β(t)) is a suitable function. This is precisely the type of problem that can readily tackled using
optimal control techniques such as Pontryagin Minimum Principle [3] or Reinforcement Learning [4].

As a final remark, one can study heat engines in the limiting cycle imposing periodic boundary conditions for the
extended state, i.e. (ρ0, s0) = (ρτ , sτ ). Indeed, we are interested in studying thermodynamic cycles, i.e. when both
the control and the quantum state ρt are periodic with period τ . Assuming that the Lindbladian Lu⃗(t),β(t) has a
single fixed point, it can be shown that a periodic control eventually drives the state ρt towards the limiting cycle
solution, where ρt becomes periodic with the same period τ of the driving [5]. Furthermore, the equation of motion
of st has the same homogeneous part (Lu⃗(t),β(t)[st]) as ρt, and the non-homogeneous term becomes periodic once ρt
reaches the limiting cycle. Therefore, also st naturally reaches a limiting cycle solution where it is periodic with the
same period τ .

B. Optimizing the entropy production instead of the efficiency

Here we discuss the relation between minimizing the entropy production or maximizing the efficiency. We generalize
the discussion of Ref. [6], where power fluctuations are not considered. We start by noticing that we can express the
efficiency of a heat engine in terms of the average power and entropy production, i.e.

η = ηc [1 + ⟨Σ⟩ /(βC ⟨P ⟩)]−1. (S10)

We show that, thanks to this dependence of η on ⟨P ⟩ and ⟨Σ⟩, optimizing a trade-off between high power, low
fluctuations and high efficiency yields all the Pareto optimal trade-offs between high power, low fluctuations, and low
entropy-production up to a change of the weights (a, b, c).

First, we provide a non-rigorous argument as follows: notice that a point {⟨P ⟩ , ⟨∆P ⟩ , ⟨Σ⟩} belongs to the
Pareto front iff there exists no cycle outperforming it in all 3 quantities, i.e. larger power, smaller fluctua-
tions and smaller entropy production. Due to the functional dependence of η(⟨Σ⟩ , ⟨P ⟩) (S10), the corresponding
point {⟨P ⟩ , ⟨∆P ⟩ , η(⟨Σ⟩ , ⟨P ⟩)} will belong to the power-fluctuations-efficiency Pareto front. In fact, if the point
{⟨P ⟩ , ⟨∆P ⟩ , η(⟨Σ⟩ , ⟨P ⟩)} is not on the Pareto front, then a cycle {⟨P ⟩′ , ⟨∆P ⟩′ , η′} exists such that one of the
following statements holds

(Case 1) ⟨P ⟩′ > ⟨P ⟩ , ⟨∆P ⟩′ = ⟨∆P ⟩ , η′ = η(⟨Σ⟩ , ⟨P ⟩) ; (S11)

(Case 2) ⟨P ⟩′ = ⟨P ⟩ , ⟨∆P ⟩′ < ⟨∆P ⟩ , η′ = η(⟨Σ⟩ , ⟨P ⟩) ; (S12)

(Case 3) ⟨P ⟩′ = ⟨P ⟩ , ⟨∆P ⟩′ = ⟨∆P ⟩ , η′ > η(⟨Σ⟩ , ⟨P ⟩) . (S13)

Notice that in (Case 2) the corresponding {⟨P ⟩′ , ⟨∆P ⟩′ , ⟨Σ⟩ (⟨P ⟩′ , η′)} ≡ {⟨P ⟩ , ⟨∆P ⟩′ , ⟨Σ⟩} clearly violates the
power-fluctuations-entropy production Pareto front, i.e. outperforms the point {⟨P ⟩ , ⟨∆P ⟩ , ⟨Σ⟩} because of smaller
fluctuations. Similarly, by inverting (S10)

Σ(P, η) =
ηc − η

η
βCP (S14)
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we see that in (Case 3) the corresponding point violates the Pareto front via a reduction of ⟨Σ⟩. Finally (Case 1)
is non trivial, but it is intuitive (and empirically verified) that in power-fluctuations-efficiency trade-offs it is always
possible to reduce the power in favor of efficiency and fluctuations, (typically by slowing down the whole cycle, i.e.
increasing τ). This means that the occurrence of (Case 1) induces the existence of (Case 2) and (Case 3), closing the
argument.

Besides the above intuitive argument, to prove such equivalence mathematically, we can prove that the cycles that
maximize

⟨G⟩ ≡ a
⟨P ⟩
Pmax

− b
⟨∆P ⟩

∆P (Pmax)
+ c

η

ηc
(S15)

for some values of the weights a ≥ 0, b ≥ 0, c ≥ 0 such that a+ b+ c = 1, also maximize the figure of merit in Eq. (8)
of the main text for some (possibly different) non-negative values of the weights summing to one. To simplify the
proof and the notation, we consider the following two functions

F (a, b, c; θ) = aP (θ)− b∆P (θ)− cΣ(P (θ), η(θ)),

G(a, b, c; θ) = aP (θ)− b∆P (θ) + cη(θ),
(S16)

where P (θ), ∆P (θ), and η(θ) represent the average power, fluctuations and efficiency of a cycle parameterized by a
set of parameters θ, and Σ(P, η) is given by Eq. (S14).

We wish to prove the following. Given three fixed scalars a1, b1, c1 > 0, that do not necessarily sum to 1, let θ1
be the value of θ that locally maximizes G(a1, b1, c1; θ). Then, it is always possible to identify three positive scalars
a2, b2, c2 > 0, such that the same parameters θ1 (i.e. the same cycle) is a local maximum for F (a2, b2, c2; θ). In the
following, we will use that

∂PΣ ≥ 0, ∂ηΣ < 0, (S17)

and that the Hessian H(Σ) of Σ(P, η) is given by

H(Σ) =

(
0 −βC

ηc

η2

−βC
ηc

η2 2βCP
ηc

η3

)
. (S18)

Proof: by assumption, θ1 is a local maximum for G(a1, b1, c1; θ). Denoting with ∂i the partial derivative in (θ)i, we
thus have

0 = ∂iG(a1, b1, c1; θ1) = a1∂iP (θ1)− b1∂i∆P (θ) + c1∂iη(θ1). (S19)

Now we compute the derivative in θ of F (a2, b2, c2; θ), where a2, b2, c2 > 0 are three arbitrary scalars, and we evaluate
it in θ1. We have

∂iF (a2, b2, c2; θ1) = (a2 − c2∂PΣ)∂iP (θ1)− b2∂i∆P (θ)− (c2∂ηΣ)∂iη(θ1). (S20)

Therefore, if we choose a2, b2, c2 such that



a1
b1
c1


 =



1 0 −∂PΣ
0 1 0
0 0 −∂ηΣ





a2
b2
c2


 , (S21)

thanks to Eq. (S19) we have that

0 = ∂iF (a2, b2, c2; θ1), (S22)

meaning that the same parameters θ1 that nullifies the gradient of G, nullifies also the gradient of F at a different
choice of the weights, given by Eq. (S21). The invertibility of Eq. (S21) (i.e. a non-null determinant of the matrix)
is guaranteed by Eq. (S17). We also have to make sure that if a1, b1, c1 > 0, then also a2, b2, c2 > 0. To do this, we
invert Eq. (S21), finding



a2
b2
c2


 =



1 0 −∂PΣ/(∂ηΣ)
0 1 0
0 0 −1/(∂ηΣ)





a1
b1
c1


 . (S23)
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It is now easy to see that also the weights a2, b2, c2 are positive using Eq. (S17).
To conclude the proof, we show that θ1 is a local maximum for F (a2, b2, c2; θ) by showing that its Hessian is negative

semi-definite. Since, by hypothesis, θ1 is a local maximum for G(a1, b1, c1; θ), we have that the Hessian matrix

H
(G)
ij ≡ ∂ijG(a1, b1, c1; θ1) = a1∂ijP − b1∂ij∆P + c1∂ijη (S24)

is negative semi-definite. We now compute the Hessian H(F ) of F (a2, b2, c2; θ) in θ = θ1:

H
(F )
ij = a2∂ijP − b2∂ij∆P − c2 [∂PΣ ∂ijP + ∂ηΣ ∂ijη +Qij ] , (S25)

where

Qij =
(
∂iP ∂iη

)
H(Σ)

(
∂jP
∂jη

)
, (S26)

and H(Σ) is the Hessian of Σ(P, η) computed in P (θ1) and η(θ1). Since we are interested in studying the Hessian of
F (a2, b2, c2; θ1) in the special point (a2, b2, c2) previously identified, we substitute Eq. (S23) into Eq. (S25), yielding

H
(F )
ij = H

(G)
ij +

b1
∂ηΣ

Qij . (S27)

We now prove that H
(F )
ij is negative semi-definite since it is the sum of negative semi-definite matrices. By hypothesis

H
(G)
ij is negative semi-definite. Recalling Eq. (S17) and that b1 > 0, we now need to show that Qij is positive

semi-definite. Plugging Eq. (S18) into Eq. (S26) yields

Qij = βC
ηc
η2

∂iη ∂jη Rij , (S28)

where

Rij ≡ 2P + Sij + ST
ij , Sij = −

∂iP

∂iη
. (S29)

We now show that if Rij is positive semi-definite, then also Qij is positive semi-definite. By definition, Qij is positive
semi-definite if, for any set of coefficient ai, we have that

∑
ij aiQijaj ≥ 0. Assuming Rij to be positive semi-definite,

and using that βC, ηc, η > 0, we have

∑

ij

aiQijaj = βC
ηc
η2

∑

ij

xiRijxj ≥ 0, (S30)

where we define xi ≡ ∂iη ai. We thus have to prove the positivity of Rij . We prove this showing that it is the sum
of 3 positive semi-definite matrices. Indeed, the first term in Eq. (S29), 2P , is proportional to a matrix with 1 in all
entries. Trivially, this matrix has 1 positive eigenvalue, and all other ones are null, so it is positive semi-definite. At
last, Sij and its transpose have the same positivity, so we focus only on Sij . Sij is a matrix with all equal columns.
This means that it has all null eigenvalues, except for a single one that we denote with λ. Since the trace of a matrix
is equal to the sum of the eigenvalues, we have λ = Tr[S] =

∑
i Sii. Using the optimality condition in Eq. (S19), we

see that each entry of S is positive, i.e. Sij > 0. Therefore λ > 0, thus S is positive semi-definite, concluding the

proof that H
(F )
ij is negative semi-definite.

To conclude, we notice that we can always renormalize a2, b2, c2, such that they sum to 1, preserving the same exact
optimization problem.

C. Identifying optimal cycles with reinforcement learning

In this subsection we show how the formulation of the optimization problem given in Sec. IA in terms of an
extended state allows us to use RL to optimize a figure of merit containing power fluctuations, and we provide
details on the RL implementation. The RL method that we use is based on the Soft Actor-Critic algorithm [7],
introduced in the context of robotics and video-games [8–11], generalized to optimize multiple objectives. RL has
received great attention for its success at mastering tasks beyond human-level such as playing games [12–14], for
robotic applications [8, 9], and for controlling plasmas in a tokamak [15]. RL has been recently used for quantum
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control [16–23], outperforming previous state-of-the-art methods [24, 25], for fault-tolerant quantum computation
[26, 27], and in the field of quantum thermodynamics [6, 28–30]. RL also allows to optimize “blackbox systems”, i.e.
to perform an optimization without requiring any explicit knowledge of the dynamics of the system being optimized,
thus potentially applicable to experimental devices [6, 29]. In light of this, we expect RL to be a powerful tool also in
this context. Furthermore, since RL is based on the Markovian Decision Process framework (see below and Ref. [4]
for details), it is a natural choice for systems described by Markovian dynamics. In principle, also other optimization
methods, such as Pontryagin’s Minimum Principle, could be used [3]. However, this method only provides, in general,
necessary conditions for an optimal control. Furthermore, it could in practice get stuck in local maxima, and it
requires some hand-tuning in the case of non-analytic controls. As we see from our results, optimal cycles are often
given by of piece-wise continuous function, which are not analytic. This would complicate the use of Pontryagin’s
Minimum Principle.

The method here described is an extension of the methods described in Refs. [6, 30]. We therefore refer to the
Ref. [30] for an explanation of the RL method, and we adopt its notation to explain all the differences and general-
izations that we put forward in this paper.

First, we define the optimization problem detailing the choice of the state space, the action space, and of the reward.
Let us discretize time in time steps ti = i∆t. In Ref. [30] just the power is optimized, so the state of the environment
is described by the density matrix ρ. Indeed, RL is based on the Markov Decision Process assumption, meaning
that the reward at a given time-step must be a function of the last state and action. In Ref. [30], the reward is
the power averaged over the last time-step, which can be computed from the density matrix and from the value of
the control at the last time-step. However, power fluctuations cannot be computed solely from the knowledge of
ρ. Here, to optimize also power fluctuations, we employ the extended state as state of the environment, i.e. we
choose as state space S = {(ρ, s, u⃗)|ρ ∈ D, s ∈ E , u⃗ ∈ U}, where D = {ρ|ρ ≥ 0,Tr[ρ] = 1} is the space of density
matrices, E = {s|s = s†,Tr[s] = 0} is the space of traceless Hermitian operators, and U is the continuous set of allowed
control parameters. The state at time-step i is then given by si = (ρti , sti , u⃗(ti−1)). The action space is given by
A = {(u⃗, β)|u⃗ ∈ U , β ∈ [βH, βC]}, such that the action at time-step ti is ai = (u⃗i, βi). The controls u⃗(t) and β(t) are
then kept constant at u⃗i βi for the current time-step. The reward is given by

ri =
1

∆t

∫ ti

ti−1

[
a
P (t)

Pmax
− b

∆P (t)

∆P (Pmax)
− c

Σ(t)

Σ(Pmax)

]
dt, (S31)

which corresponds to the figure of merit averaged only over the last time-step. Together with Eqs. (3) and (7) of the
main text, we see that this choice satisfies the Markov Decision Process assumption.

As in Ref. [30], we formulate the optimization problem as a discounted, continuing RL task, where the aim is to
learn a policy π(a|s) that, at each time step ti, maximizes the return, i.e. the long-term average of the rewards:

ri+1 + γri+2 + γ2ri+3 + · · · =
∞∑

k=0

γkri+1+k, (S32)

where γ ∈ [0, 1) is the discount factor which determines how much we are interested in future rewards, as opposed
to immediate rewards. By choosing γ close enough to 1, we are optimizing the figure of merit averaged over a long
time-scale, such that the method should automatically discover to perform cycles (see Refs. [6, 30] for additional
details).

In this work, we employ the soft actor-critic method [8, 9] as implemented in Ref. [30] with the following changes.

� Policy parameterization. Here we do not have a discrete action, but we have multiple continuous actions

given by ξ⃗ ≡ (u⃗, β). We therefore need to parameterize the policy π(ξ⃗|s) as a multi-variate distribution function.
We use the same approach as in Ref. [30], but we replace the normal distribution with a multivariate normal
distribution. To this end, we employ a Neural Network (NN) that takes the state s as input, and outputs a
vector µ⃗ and a matrix M . We use a multilayer perceptron NN with 2 hidden layer. We then produce samples
from the multivariate normal distribution with mean µ⃗ and covariance matrix MTM + λ1, where λ > 0 is a

small real number added for numerical stability. Then, as in Ref. [30], we determine a sample of π(ξ⃗|s) applying
a “squash function”, in this case a hyperbolic tangent, to each variable of the multivariate distribution. This
ensures that each action lies in the specified continuous interval U .

� Automatic “temperature” tuning. In the soft-actor critic method, the exploration-exploitation balance is
governed by the hyper-parameter ε, known in the RL literature as the “temperature” parameter. In Ref. [30],
ε was scheduled during training. However, its value depends on the magnitude of the reward, making it quite
model-dependent. Here, instead, we follow Ref. [8] to automatically tune ε during training. The idea is to
change ε during training as to set the average entropy of the policy to a target value H̄. Large values of H̄
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produce an exploratory policy, while smaller values of H̄ produce a more deterministic policy. As detailed in
Ref. [8] and implemented in Ref. [6], the tuning of ε is done by minimizing the following loss function

LH(ε) ≡ ε E
s∼B

[
H(π(·|s))− H̄

]
, (S33)

where H(P ) ≡ E
x∼P

[− lnP (x)] is the entropy of the distribution P (x). For numerical stability, if ε becomes

negative during training, we reset it to a small positive number. To favour exploration in the early phases of
the training, while still obtaining a final policy that is nearly deterministic, we exponentially schedule the target
entropy H̄ during training as follows

H̄(nsteps) = H̄end + (H̄start − H̄end) exp
(
−nsteps/H̄decay

)
, (S34)

where H̄start, H̄end and H̄decay are training hyperparameters.

� Training steps. The training steps are performed as in Ref. [30], i.e. repeatedly using the ADAM algorithm
to minimize the loss functions Lπ and LQ computed over a batch of experience drawn from the replay buffer B.
Here, in addition, every time an optimization step of Lπ and LQ is performed, we also update ε performing one
optimization step of LH computed over the same batch of experience.

� Optimal cycle evaluation. Once the training is complete, all cycles and values of the power, power fluctu-
ations, entropy production and efficiency reported in the main text are computed evaluating the deterministic
policy. More specifically, we determine the optimal cycle using the deterministic policy, i.e. choosing actions
according to the mean of the multivariate normal distribution, instead of sampling from it. This turns the
stochastic policy into a deterministic one that typically performs better.

II. FAST-DRIVING FOR GENERIC SYSTEMS

In this section we derive analytic expressions for the main quantities (S8) in the regime of fast-driving, i.e. when
the period τ of the cycle is small compared to the relaxation timescales of the system. As this regime is rigorously
justified for stochastic dynamics, and for easiness of presentation, we will assume diagonal operators that commute
at all times (cf. Ref. [31]).

First, for what concerns power and entropy production, notice, from (S8) that both can be computed from the
integral of

Tr
[
ρ̇tHu⃗(t)

]
= Tr

[
Lu⃗(t),β(t)[ρt]Hu⃗(t)

]
. (S35)

In the fast driving approximation, the cycle is much quicker than the relaxation time of the system. The consequence
is that ρt ≃ ρ(0) tends to a steady-state solution, which can be computed as the leading order of a perturbative
expansion [31]. It follows that power and entropy production can be computed as

⟨P ⟩ = 1

τ

∫ τ

0

dtTr
[
Lu⃗(t),β(t)[ρ

(0)]Hu⃗(t)

]
, (S36)

⟨Σ⟩ = −1

τ

∫ τ

0

dtTr
[
Lu⃗(t),β(t)[ρ

(0)]Hu⃗(t)

]
β(t). (S37)

The generic expression for ρ(0) is given in Ref. [31]. At the same time, for the purposes of the present work, it is enough
to consider the simple case in which the dynamics is described by a scalar master equation L[...] = γπt Tr[...] − γ1,
where

πt =
e−β(t)Hu⃗(t)

Tr
[
e−β(t)Hu⃗(t)

] (S38)

is the instantaneous steady state and γ−1 the relaxation timescale. In such case it is clear that, as ρ(0) is the steady
state, it satisfies

∫ τ

0

dtγ
(
πt − ρ(0)

)
= 0 , (S39)
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leading to

ρ(0) =

∫ τ

0
dt πt

τ
= ⟨π⟩ , (S40)

and therefore

⟨P ⟩ = 1

τ

∫ τ

0

dtγ Tr
[
(πt − ⟨π⟩)Hu⃗(t)

]
, (S41)

⟨Σ⟩ = −1

τ

∫ τ

0

dtγ Tr
[
(πt − ⟨π⟩)Hu⃗(t)

]
β(t). (S42)

The most general expression for the heat current in the fast-driving regime is given in Ref. [31]. In the following,
we derive new analytical expressions that allow to efficiently compute also the power fluctuations in the same regime.

A. Fluctuations in the Fast driving regime for arbitrary stochastic (classical) systems

As mentioned above, we will simplify the discussion by considering semi-classical systems represented by commuting
operators at all time.

1. Simple Lindbladian

First, we start again by considering the simple scalar master equation L[...] = γπt Tr[...] − γ1, with πt =
e−β(t)Hu⃗(t)/Tr

[
e−β(t)Hu⃗(t)

]
. In such case, the equations for ρt (S1) and st (S7) become (from now on we simplify the

notation as Hu⃗(t) ≡ Ht)

ρ̇t =γ(πt − ρt) , (S43)

ṡt =− γst + 2ρtḢt − 2Tr
[
ρtḢt

]
ρt ≡ −γst + 2ρt

˜̇Hρt , (S44)

where we defined

Ãρ = A− ρTr[ρA] . (S45)

The asymptotic solutions for πt and st, in the case of periodic driving with period τ , are

ρt =

∫ t

t−τ
dt′ γπt′e

γ(t′−t)

1− e−γτ
, (S46)

st =

∫ t

t−τ
dt′ 2ρt′

˜̇Hρt′e
γ(t′−t)

1− e−γτ
. (S47)

Notice that until now, no approximation has been used. To compute all relevant quantities, we will use the fast-driving
condition γτ ≪ 1 and expand in powers of γτ . That is,

ρt = ρ
(0)
t + ρ

(1)
t + . . . ρ

(i)
t ∼ O(γiτ i) , (S48)

st = s
(0)
t + s

(1)
t + . . . s

(i)
t ∼ O(γiτ i) . (S49)

It is easy to verify, from (S46),

ρ
(0)
t ≡ ρ(0) = ⟨π⟩ , (S50)

ρ̇
(0)
t = 0 , (S51)

ρ̇
(1)
t = γ(πt − ρ(0)) . (S52)
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The expansion of st is slightly more complex, but for our purposes we only need s(0), which can be found integrating
by parts (S47),

st =

∫ t

t−τ
ds 2ρs

˜̇Hρse
γ(s−t)

1− e−γτ
= 2ρtH̃ρt

− 2

1− e−γτ

∫ t

t−τ

dt′
(
ρ̇t′H̃ρt′ e

γ(t′−t) + γρt′H̃ρt′ e
γ(t′−t) − ρt′ Tr[Ht′ ρ̇t′ ]e

γ(t′−t)
)

.

(S53)

In this expression we can substitute all the quantities at the leading order, obtaining, using the fluctuations notation
δA := A− ⟨A⟩,

s
(0)
t = 2ρ(0)H̃ρ(0) − 2

γτ

∫ t

t−τ

dt′
(
γδπt′H̃ρ(0) + γρ(0)H̃ρ(0) − γρ(0) Tr[Ht′δπt′ ]

)
(S54)

Notice that although ρ(0) is constant, the quantity H̃ρ(0) (cf. Eq. (S45)) is time-dependent as Ht is time dependent.
The above expression can be further simplified by dropping all the time-dependence in the notation and expanding
the time-average at leading order

s(0) = 2
(
ρ(0)H̃ρ(0) − ⟨ρ(0)H̃ρ(0)⟩

)
+ 2

〈
ρ(0) Tr[δHδπ] + δπTr

[
δHρ(0)

]
− δπδH

〉
. (S55)

Fluctuations. The fluctuations become, integrating by parts (S8),

∆P =
1

τ

∫ τ

0

dtTr
[
Ḣtst

]
= −1

τ

∫ τ

0

dtTr[Htṡt] =
1

τ

∫ τ

0

dtTr
[
Ht(γst − 2 ˜̇Hρt

)
]
. (S56)

Therefore we want to compute

I2 =− 1

τ

∫ τ

0

dtTr
[
2Ht

˜̇Hρt

]
, (S57)

I1 =
1

τ

∫ τ

0

dtTr[γHtst] , (S58)

at leading order. Let’s compute the two terms

I2 = −1

τ

∫ τ

0

dtTr
[
2Ht

˜̇Hρt

]
= −1

τ

∫ τ

0

dtTr
[
2Ht(Ḣtρt − ρt Tr

[
Ḣtρt

]
)
]
=

1

τ

∫ τ

0

dtTr
[
H2

t ρ̇t − 2Tr[ρtHt] Tr[ρ̇tHt]
]
=

= γ
(
⟨Tr
[
H2δπ

]
⟩ − 2⟨Tr[Hδπ] Tr

[
Hρ(0)

]
⟩
)

, (S59)

where for the last equality we used the equation of motions ρ̇t = γ(πt−ρt) a the leading order, where ρt ∼ ρ(0) = ⟨π⟩.
We remind that we use the notation δA := A − ⟨A⟩. Notice that for I1 we only need s at order O(γ0τ0). I1 can
therefore be computed as

I1 = γ⟨Tr
[
Hs(0)

]
⟩ , (S60)

and the total fluctuations are, after substituting s(0) (S55) and some tedious algebra,

∆P

2γ
=

I2 + I1
2γ

=

=

〈
Tr
[
ρ(0)H2

]
− Tr

[
ρ(0)H

]2〉
−
(
Tr
[
ρ(0) ⟨H⟩2

]
− Tr

[
ρ(0) ⟨H⟩

]2)
+

1

2
⟨Tr
[
δH2δπ

]
⟩ − ⟨Tr[δHδπ] Tr

[
δHρ(0)

]
⟩ .
(S61)

Under the same assumptions, the power (S41) can be expressed as

P = γ⟨Tr[(π − ⟨π⟩)(H − ⟨H⟩)]⟩ ≡ γ Tr[Cov[π,H]], (S62)

and similarly the entropy production (S42)

Σ = γ⟨Tr[(π − ⟨π⟩)(βH − ⟨βH⟩)]⟩ ≡ γ Tr[Cov[π, βH]], (S63)

where the covariance is with respect to time.
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2. General Stochastic Classical Case

Moving to the case of a general Lindbladian, the expression for power and entropy production can be found as from
Reference [31]. For what concerns the fluctuations, these can be again expressed as (see (S56))

∆P = −1

τ

∫ τ

0

dtTr[Htṡt] = −
1

τ

∫ τ

0

dtTr
[
Ht(Lt[st] + 2 ˜̇Hρt

)
]
= I1 + I2 . (S64)

In the next expressions we drop all the time-dependencies to simplify the notation. The computation of I1 and I2 is
in this case

I2 =− 1

τ

∫ τ

0

dtTr
[
2H ˜̇Hρ

]
= ⟨Tr

[
H2L[ρ(0)]

]
⟩ − 2⟨Tr

[
HL[ρ(0)]

]
Tr
[
Hρ(0)

]
⟩ , (S65)

I1 =− 1

τ

∫ τ

0

dtTr[HL[s0]] , (S66)

where the first expression can be obtained integrating by parts, and everything is expanded at the leading order in
|L|τ , ρ(0) is the steady state of the fast driving (see [31] for an analytical expression) and s0 is the leading order term
of s, which can be computed from the analytical solution

st =

∫ t

−∞
dt′ Ut,t′ [2ρt′

˜̇Hρt′ ] , (S67)

Ut,t′ being the propagator, i.e. time-ordered exponential of L between t′ and t ≥ t′. Expanding the leading term one
obtains

s0 = 2ρ(0)H̃ρ(0) + 2⟨L⟩−1
(
⟨L[ρ(0)]H̃ρ(0)⟩ − ρ(0) Tr

[
⟨HL[ρ(0)]⟩

]
− ⟨L[ρ(0)H̃ρ(0) ]⟩

)
. (S68)

III. QUANTUM DOT BASED HEAT ENGINE

A. Optimality of the Otto cycle in the fast driving for power and entropy production trade-offs

Here we prove that, among all possible cycles described by β(t) and u(t), Otto cycles in the fast driving regime
maximize an arbitrary trade-off between power and entropy production. The proof stems from a simple generalization
of Appendix A of Ref. [32], where it is shown that, among all possible Otto cycles, Otto cycles in the fast driving
regime maximize the power.

To this end, we consider the figure of merit ⟨F ⟩ with b = 0:

⟨F ⟩ = a
⟨P ⟩
Pmax

− c
⟨Σ⟩

Σ(Pmax)
. (S69)

By neglecting fluctuations, we no not need the extended state, so we can write ⟨F ⟩ as the time average of a function
of the state pt (defined in the main text) and of the controls β(t) and u(t), i.e. as

⟨F ⟩ = 1

τ

∫ τ

0

f(pt, u(t), β(t))dt, (S70)

where f(p, u, β) is a suitable function. This assumption is sufficient to use the argument of [32], with ⟨F ⟩ replacing
the average power, to prove that optimal cycles are Otto cycles in the fast-driving regime. Here we outline the general
idea, referring to [32] for additional details. As argued here and in [32], given a cycle with period τ , also the state pt
will become periodic with the same period τ . We can thus represent an arbitrary cycle cycle as a closed curve in the
u−p plane and in the β−p plane. It can be shown that, given any fixed cycle u(t) and β(t), we can always define two
sub-cycles such that one of the two has a larger or equal ⟨F ⟩ than the original one. The two sub-cycles are defined by
introducing quenches in the control, i.e. “cutting vertically” the cycle represented in the u − p and β − p plane. By
reiterating this process over and over, we end up with an Otto cycle in the fast driving regime, thus concluding the
proof.
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𝑡/𝜏

𝜖H

0
𝜃H

𝜖C

𝜃C

𝜖

FIG. S1. Schematic representation of the Otto cycle. The value of the gap ϵ(t) ≡ u(t)E0 is plotted as a function of t/τ . The
red segment corresponds to setting β(t) = βH, and the blue segment to β(t) = βC.

B. Fast driving regime

Using Eqs. (S61,S62,S63), we can easily compute the power, entropy production and fluctuations of a generic Otto
cycle in the fast driving regime. We fix an Otto cycle as in Fig. S1, where ϵH and ϵC are the values of u(t)E0 while in
contact respectively with the hot (H) and cold (C) bath, and θH and θC represent the time fraction of the cycle spent
in contact with the respective bath (θC + θH = 1). This yields

⟨P ⟩ = γθHθC (ϵH − ϵC)(fH − fC),

⟨∆P ⟩ = 2γ θHθC (ϵH − ϵC)
2

[
f̄(1− f̄) + (

fC + fH
2

− f̄)(1− 2f̄)

]
,

⟨Σ⟩ = −γθHθC(βHϵH − βCϵC)(fH − fC),

(S71)

where we define fα = f(βαϵα), for α = H,C and the average excited state occupation f̄ = θHfH + θCfC. Without
loss of generality, in the heat engine regime we can assume ϵα ≥ 0. This condition, together with the heat engine
condition P ≥ 0, can be expressed as

0 ≤ xH ≤ xC ≤ xH(1 + dT ), (S72)

where we introduce the dimensionless quantities xα = βαϵα, and where we define the dimensionless temperature
difference

dT ≡ βC(β
−1
H − β−1

C ). (S73)

For simplicity, in this appendix we define a figure of merit G with a different normalization, i.e.

⟨G⟩ = a

( ⟨P ⟩
γT

)
− b

( ⟨∆P ⟩
γT 2

)
− c

( ⟨Σ⟩
γ

)
, (S74)

where T = β−1
C and kB = 1.

We now assume that the temperature difference is small, i.e. that dT ≪ 1. We therefore study ⟨G⟩ to leading order
in dT . We carry out the optimization with respect to the time fractions θα and with respect to the dimensionless
energy gaps xα. We expand xC as

xC = xH(1 + δxC). (S75)

Imposing the heat engine condition in Eq. (S72), we find that δxC must satisfy

0 ≤ δxC ≤ dT ; (S76)

therefore, δxC is a first order quantity in dT . Expanding ⟨P ⟩, ⟨∆P ⟩ and ⟨Σ⟩ to leading order in dT , we find

⟨P ⟩ /(γT ) = θCθHg(xH)δxC(dT − δxC),

⟨∆P ⟩ /(γT 2) = 2θCθHg(xH)(dT − δxC)
2,

⟨Σ⟩ /γ = θCθHg(xH)δx
2
C,

(S77)
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where we define

g(x) ≡ x2

2(1 + coshx)
. (S78)

Plugging this expansion into Eq. (S74) yields

⟨G⟩ = θHθCg(xH)
[
δxC (adT − (a+ c)δxC)− 2b (dT − δxC)

2
]
. (S79)

First, we notice that ⟨P ⟩, ⟨∆P ⟩ and ⟨Σ⟩ in Eq. (S77), valid in the small temperature difference regime, exactly
saturate the steady-state thermodynamic uncertainty relation even before performing any optimization, i.e. ξ = 1,
where, combining Eqs. (1) of the main text and (S10)

ξ = 2
⟨P ⟩2

⟨Σ⟩ ⟨∆P ⟩ . (S80)

We now maximize ⟨G⟩ as written in Eq. (S79). The optimization over θα and xH depends on the term in the square
parenthesis. We therefore distinguish two cases:

1. Case 1

If the term in square parenthesis is non-null, then we trivially have that θα = 1/2 and xH = xmax, where xmax is
the value that maximizes g(x). It is implicitly defined by xmax > 0 and by solving the transcendental equation

xmax tanh(xmax/2) = 2. (S81)

We can then determine δxC by taking the derivative of G and setting it to zero. This yields

δx∗1
C =

a+ 4b

2a+ 4b+ 2c
dT. (S82)

It is easy to see that this solution always satisfies the heat engine condition in Eq. (S76). In this point we have that

⟨G⟩∗1 = gmax
a2 − 8bc

16(a+ 2b+ c)
dT 2, (S83)

where we define gmax ≡ g(xmax) ≈ 2.40, and

⟨P ⟩∗1 /(γT ) = gmax
(a+ 4b)(a+ 2c)

16(a+ 2b+ c)2
dT 2, ⟨∆P ⟩∗1 /(γT 2) = gmax

(a+ 2c)2

8(a+ 2b+ c)2
dT 2,

⟨Σ⟩∗1 /γ = gmax
(a+ 4b)2

16(a+ 2b+ c)2
dT 2,

η∗1

ηc
=

a+ 2c

2a+ 4b+ 2c
.

(S84)

We thus see that if a2 − 8bc > 0, then the figure of merit is positive. In the opposite case, the figure of merit is
negative, so doing nothing becomes more convenient (since doing nothing, or doing Carnot cycles, gives ⟨G⟩ = 0).
Notice that if a2 = 8bc, then any value of θα and xH gives the same figure of merit, so all these solutions must be
included in the Pareto front.

Setting a = 1 and b = c = 0, we find the maximum power solution:

Pmax

γT
=

gmax

16
dT 2,

∆P (Pmax)

γT 2
=

gmax

8
dT 2,

Σ(Pmax)

γ
=

gmax

16
dT 2,

η

ηc
=

1

2
. (S85)

These relations imply

∆P (Pmax) = 2TPmax. (S86)

Setting c = 0 and b = 1− a in Eq. (S84), we can find the Pareto front between power and power fluctuations, i.e.
the outer border of Fig. 3 of the main text. After some algebra, it can be shown that

⟨P ⟩
Pmax

= 2

√
⟨∆P ⟩

∆P (Pmax)
− ⟨∆P ⟩

∆P (Pmax)
. (S87)

This corresponds to the black border shown in Fig. 3 of the main text.
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2. Case 2

We now consider the case where the term in the square parenthesis of Eq. (S79) is zero. This happens in two cases,
i.e. when

δx∗2
C =

a+ 4b−
√
a2 − 8bc

2a+ 4b+ 2c
dT,

δx∗3
C =

a+ 4b+
√
a2 − 8bc

2a+ 4b+ 2c
dT.

(S88)

These solutions hold when a2 − 8bc ≥ 0. In the opposite case, there is no solution. Both solutions can be shown to
always satisfy the heat engine condition in Eq. (S76), and in this point we have

⟨G⟩∗2,3 = 0. (S89)

However, this zero value of the figure of merit occurs delivering a positive power that is compensated by the negative
sign in front of the finite fluctuations and of the finite entropy production. It can be shown that such solutions either
lie on the boundary Eq. (S87), or inside. We further notice that, looking at the figure of merit, both these solutions
are suboptimal with respect to case 1, except for being equivalent in the special case when a2 = 8bc.

3. Fast driving Pareto front

As we have seen, Otto cycles in the fast driving, expanded to leading order in the temperature difference, exactly
satisfy the steady-state thermodynamic uncertainty relation ξ = 1. Furthermore, the trade-off between power and
power fluctuations is given by Eq. (S87). Therefore, the entire Pareto front, plotted in Fig. 3a of the main text, is
simply obtained by imposing the thermodynamic uncertainty relation, together with the boundary of Eq. (S87).

However, it could in principle be possible that points inside the boundary of Eq. (S87) may not be reached, i.e.
there may not be any Otto cycle in the fast driving regime reaching some of these points. Using the results of the
previous subsections, it can be verified that this is not the case, i.e. that there is an Otto cycle in the fast driving
regime corresponding to all points shown in Fig. 3a of the main text.

4. Positive figure of merit boundary for Otto cycles in the fast-driving regime

In this section we derive the expression for the black boundary shown in Fig. 2b of the main text. As we have seen
in the previous two subsections, the condition

a2 = 8bc, (S90)

with b = 1− a− c, determines the boundary between positive and zero value of the optimized figure of merit in the
fast-driving regime. However, this condition was found with the normalization of ⟨P ⟩, ⟨∆P ⟩ and ⟨Σ⟩ defined as in
Eq. (S74), while the boundary shown in Fig. 2 of the main text is relative to the normalization chosen in Eq. (8) of
the main text. To account for this, we need to “change the coordinate system” from (a0, b0, c0) to (a1, b1, c1). Let us
define

⟨G0⟩ ≡ a0 ⟨P ⟩ − b0 ⟨∆P ⟩ − c0 ⟨Σ⟩ , (S91)

and let us consider a given cycle that maximize G0 at given (a0, b0, c0). We want to see how the coefficients (a1, b1, c1)
must be chosen in order to find the same cycle when maximizing

⟨G1⟩ = a1

( ⟨P ⟩
λa

)
− b1

( ⟨∆P ⟩
λb

)
− c1

( ⟨Σ⟩
λc

)
, (S92)

where λa, λb and λc are given coefficients.
It can be shown that the following identity holds:

⟨G0⟩ = N ⟨G1⟩ , (S93)



13

where we choose

(a1, b1, c1) = (λaa0, λbb0, λcc0)/N, (S94)

with

N = λaa0 + λbb0 + λcc0. (S95)

Since N is just a proportionality factor, they will share the same maximums. Therefore Eq. (S94) defines the “change
of coordinates”. In order to transform the boundary in Eq. (S90) to the “new coordinate system”, we need to invert
Eq. (S94). Using that b = 1− a− c in both coordinate systems, we find

(
a0
c0

)
=

λb

a1λc(λb − λa) + c1λa(λb − λc) + λaλc

(
λca1
λac1

)
. (S96)

Plugging this into Eq. (S90) yields

a21 =
λ2
a

λbλc
8c1(1− a1 − c1). (S97)

Using Eq. (S85), we choose

λa =
gmax

16
dT 2, λb =

gmax

8
dT 2, λc =

gmax

16
dT 2, (S98)

and solve for a. Retaining the correct solution, we find

a = 2(c−√c). (S99)

This corresponds to the black curve shown in Fig. 2b of the main text.

C. Slow driving regime

Here we optimize the trade-off between power, entropy production and power fluctuations for the quantum dot
engine in the slow-driving regime. For this regime we split the protocol of the cycle into four steps: (i) we fix the bath
at a cold temperature TC and we slowly vary the dot energy ϵ(t) ≡ u(t)E0 for a time τC from ϵ(0) = ϵA to ϵ(τ−C ) = ϵB .
(ii) We now change the bath temperature to TH (> TC), all while we are changing the energy to ϵBTH/TC in such a way
that the populations of the dot levels remain constant all along the process (because [Hu(t), Hu(t′)] = 0 ∀ t, t′). This
property allows us to perform this step arbitrarily fast without affecting the objectives. (iii) while keeping the bath
temperature at TH we slowly vary the dot energy from ϵ(τ+C ) = ϵBTH/TC to ϵ(τ−) = ϵATH/TC in a time τH = τ − τC .
(iv) A second quench is performed (in the same manner as step (ii)) to bring the temperature to TC and the dot
energy to ϵA, which closes the cycle.

During each isotherm we can divide the heat exchange in the following manner:

Qx = Tx∆Sx −W diss
x , x = (H,C) (S100)

where Tx∆Sx is the reversible contribution and corresponds to the quasistatic limit τx → ∞. The reversible term is
given by ∆S ≡ ∆SH = −∆SC = S(π0) − S(πτC ) with S(π) the Von Neumann entropy. Crucially, we will from now
on assume the slow driving regime (aka. low dissipation). That is, we assume that the relaxation time scale γ−1 of
the system is much smaller than the time it takes to complete the protocol. This allows us to expand the relevant
quantities in orders of 1/(γτx) and keep only the leading terms. In this regime the state can be written as

ρt = πt +
1

τγ
ρ
(1)
t +O( 1

γ2τ2
). (S101)

It is important to note that when the quenches of steps (ii) and (iv) are performed the adiabatic term πt only

contributes reversible work, but the corrective term 1
τγ ρ

(1)
t will cause dissipated work of order 1

τγ . For simplicity we

want to neglect those terms, in order to do so we can add a waiting time τw = τ∆s at the end of each isotherm. By
using the same Lindbladian model as in the fast driving regime (S43), it is clear that during this waiting time the
corrective term is exponentially suppressed. Therefore the total protocol time is now τ = τC + τH + 2τw = τC+τH

1−2∆s .
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As a result of the slow driving expansion, for each isotherm the irreversible terms can be written as [33–42]:

W diss
x =

Tx

τx

∫
ds mϵϵϵ̇(s)

2 ≡ Tx
σx

τx
+O( 1

γ2τ2x
), (S102)

where mϵϵ = γ−1∂2 lnTr
[
e−βHu

]
/∂ϵ2 is the thermodynamic metric. Furthermore, since we only change the temper-

ature of the bath without affecting its spectral density we have that the optimal protocol verifies σH = σC [34, 41].
We will therefore drop this index going forward. In a cycle the work extracted is W = QC +QH , therefore the power
of the engine reads

⟨P ⟩ = 1

τ
∆T∆S − σ

τ

(
TH

τH
+

TC

τC

)
, (S103)

with ∆ = TH−TC. The slow driving regime allows us to use fluctuation dissipation relations [2, 43–47] to compute the
fluctuations of the work: in particular we have 1

2Var(Wx) = TxW
diss
x . Instead over the quenches we get Var(Wy) =

∆T 2Cy, where Cy = −β2∂2 lnTr
[
e−βHuy

]
/∂β2 is the heat capacity, for y = A,B. Therefore the power fluctuations

of the full cycle are

⟨∆P ⟩ = Var(W )

τ
=

1

τ
∆T 2 (CA + CB) +

2σ

τ

(
T 2
H

τH
+

T 2
C

τC

)
. (S104)

The entropy production rate is, by definition,

⟨Σ⟩ = σ

τ

(
1

τH
+

1

τC

)
. (S105)

In this appendix we define a figure of merit where the normalization has been absorbed in the weights

G = a⟨P ⟩ − b

2
⟨∆P ⟩ − c⟨Σ⟩ = 1

τ

[
∆TA− σ

(
δ2H
τH

+
δ2C
τC

)]
(S106)

with A = a∆S − 1
2b∆T (CA + CB) and δ2x = aTx + bT 2

x + c.

1. Optimization of the cycle

From (S106) we can see that, for given bath temperatures, A depends only on the boundary values ϵA and ϵB and σ
only depends on the protocol’s geometric shape between those boundaries. Therefore all the dependence on protocol
time has been rendered explicit and we can optimize over it by setting the derivatives with respect to τC and τC to
zero: we find

τH = 2 (δH + δC)
δHσ

∆TA
, (S107)

τC = 2 (δH + δC)
δCσ

∆TA
, (S108)

τ = 2
(δH + δC)

2

1− 2∆s

σ

∆TA
. (S109)

It is important to note that, for the time optimization to be valid, we require that A is strictly positive. If A is
negative we can see that G is also negative. But a cycle in which we do nothing results in G = 0 which is ”better”
than a cycle where G is negative, therefore we can always assume A to be positive. We must now check the positivity
of A. It is quite easy to see that if a = 0 then A is negative and therefore the optimal cycle is to do nothing. But if
a > 0 we then have that A is strictly larger than zero if and only if

∆S

CA + CB
>

b

2a
∆T. (S110)

It is clear that this equation can always be satisfied by choosing endpoints of the protocol (ϵA and ϵB) that have
vanishing heat capacity.
When we insert the optimal times into the figure of merit we find

G =
A2∆T 2

4σ

1− 2∆s

(δH + δC)2
. (S111)
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During the waiting time at the end of each isotherm, the decay towards the thermal state goes as e−τγ∆s, to be able
to neglect the correction we have to set τγ∆s = r, where r is some arbitrary O(1) constant that is sufficiently large.
Therefore we find ∆s = 1

2
rA

rA+(δH+δC)2σ , which leads to a new form of G:

G =
1

4

A2∆T 2

rA+ (δH + δC)2σ
. (S112)

At this point, the only term that depends on the protocol shape (given its boundaries) is σ. As one would expect,
G is maximized when σ is minimized. It has been shown [48, 49] that σ is minimized by the thermodynamic length

σmin = L2 = 4arccos
(√

pApB +
√

(1− pA)(1− pB)
)2

, where pA,B = (1 + eβCϵA,B )−1 is the occupation probability

of the excited state at the endpoints of the isotherms.

Now we only have to optimize over the endpoints of the protocol the figure of merit G = 1
4

A2∆T 2

rA+(δH+δC)2L2 . By

taking derivatives with respect to ϵA and ϵB we find two transcendental equations that cannot be solved analytically.
Equivalently, we can optimize with respect to pA and pB , though the same problem persists. But these variables are
more practical for numerical optimization as they are defined on the finite range [0, 0.5]. Therefore we do a numerical
maximization of G for this last step, from the form of G it can be seen that the couple (pA, pB) that maximizes G
depends only on two parameters (assuming the temperatures are given): α := b∆T/a and α′ := c/a. We can note
that a choice of these parameters defines which trade-off of the objectives we want. Furthermore we have to satisfy
the constraint ∆S

CA+CB
> α/2 (see eq. (S110)). From a numerical point of view, in order to plot the Pareto front,

we are interested in a range of values of α and α′ that range from 10−2 to 102. The optimization was done using
a Mathematica script and is shown in Fig. S2, then we can use this to compute the power, efficiency, and power
fluctuations for different trade-off ratios α and α′ with which we obtain the Pareto front shown in panel b of Fig. 3
of the main text.

FIG. S2. Probabilities of occupation of the excited state at the endpoints of the isotherms (A and B) that maximize G in the
slow-driving regime. These are displayed as a function of α = b∆T/a and α′ = c/a (parameters: βC = 2, βH = 1 and r = 2).
These values are used to produce the Pareto front in panel b of Fig. 3 of the main text.

2. Violation of thermodynamic uncertainty relation.

In the low power limit it is known that PDHE can violate thermodynamic uncertainty relations [50–55]. We reach
this limit by not optimizing for power but instead prioritizing the other two objectives. We take the limit of low power
by taking a≪ b, c; this implies that α, α′ ≫ 1, by Eq. (S110) this implies that we need vanishing heat capacity at A
and B (because ∆S is upper-bounded by ln 2). This is seen in Fig. S2: pA approaches the largest values it can while
pB approaches the smallest values it can, which both minimize heat capacity. Furthermore, this also implies that the
thermodynamic distance is as large as it can be (since it is a measure of the distance between the states at A and B),
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but crucially it remains finite. By applying this to Eq. (S109) it is clear that the magnitude of the protocol time is

determined by the ratio L2

A = 1
a

L2

∆S−α(CA+CB)/2 , it is thus clear that the protocol time diverges in this limit.

The fact that the protocol time diverges in this limit also explains the fact that for large α we see a loss of the
dependence on α′ in Fig. S2: in this limit we don’t need to fix τγ∆s to a constant, we only need to fix ∆s to
an arbitrarily low constant since τ goes to infinity. This allows us to keep a simpler form of the figure of merit:

G = A2∆T 2

4L2
1−2∆s

(δH+δC)2 , in which we can note that the optimization over the protocol endpoints only has to be done over

the ratio A2/L2; that does not depend on α′. To maximize this ratio we can take the derivatives with respect to pA
and pB . As before we end up with transcendental equations:

α−1∆S − (CA + CB)/2

∆TL
= βCϵA

√
pA(1− pA)

[
α−1 + 1− 1

2
βCϵA(1− 2pA)

]
, (S113)

α−1∆S − (CA + CB)/2

∆TL
= βCϵB

√
pB(1− pB)

[
α−1 − 1 +

1

2
βCϵB(1− 2pB)

]
. (S114)

For α−1 = 0 we can see that pA = 1
2 and pB = 0 solves the equations, which is coherent with the numerical

results of the previous section. We can now expand around α−1 = 0 by setting pA = 1
2 + p

(1)
A α−1 + O(α−2) and

pB = 0 + p
(1)
B α−1 +O(α−2). We therefore find

pA =
1

2
− ln 2

π
α−1 +O(α−2), (S115)

pB = O(α−2). (S116)

With this result we can compute the values of the objectives analytically to leading order in the low power limit:

⟨P ⟩ = 2α−1

(
ln 2

π

)2
∆T 2

(√
c
b + T 2

H +
√

c
b + T 2

C

)2 +O(α−2), (S117)

⟨∆P ⟩ = 2α−2

(
ln 2

π

)2
∆T 2

(√
c
b + T 2

H +
√

c
b + T 2

C

)3


 T 2

H√
c
b + T 2

H

+
T 2
C√

c
b + T 2

C


+O(α−3), (S118)

⟨Σ⟩ = α−2

(
ln 2

π

)2
1√

c
b + T 2

H

√
c
b + T 2

C

∆T 2

(√
c
b + T 2

H +
√

c
b + T 2

C

)2 +O(α−3). (S119)

In particular we notice that P ∝ α−1, ∆P ∝ α−2, ⟨Σ⟩ ∝ α−2. Which results in ξ ∝ α2, therefore we can violate the
thermodynamic uncertainty relations arbitrarily. Therefore we can write, in this limit, ξ in terms of ⟨P ⟩, ⟨∆P ⟩ and
⟨Σ⟩

ξ =
16
(
ln 2
π

)4
P−2∆T 4

(√
c
b + T 2

H +
√

c
b + T 2

c

)3
(
c
b + T 2

H

) (
c
b + T 2

c

)

T 2
C

√
c
b + T 2

H + T 2
H

√
c
b + T 2

c

, (S120)

ξ =
4
(
ln 2
π

)2 ⟨Σ̇⟩−1∆T 2

√
c
b + T 2

H +
√

c
b + T 2

c

√
c
b + T 2

H

√
c
b + T 2

c

T 2
C

√
c
b + T 2

H + T 2
H

√
c
b + T 2

c

, (S121)

ξ = 8

(
ln 2

π

)2

∆P−1∆T 2

√
c
b + T 2

H

√
c
b + T 2

c

(√
c
b + T 2

H +
√

c
b + T 2

c

)2 . (S122)

By maximising over the choice of b and c for a given α we can then obtain the black lines in Fig. 4 of the main text.

D. Numerical Optimization using RL

Here we provide the training details and hyperparameters used to produce all RL results presented in the main
text in Figs. 2, 3, and 4 of the main text. The method is described in Sec. I C. A separate training was performed
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for all values of the weights (a, c) reported in Fig. 2 of the main text. Since the cycles vary dramatically based on
the choice of (a, c), we mainly employed two sets of hyperparameters, denoted with v1 and v2, shown in Table I.
The hyperparameter names in Table I not defined in this paper are defined as in Ref. [30], except for ntrain-steps

that represents the number of steps that were performed during training. For values of a in [0.4, 1], we used v1 and
performed a single training. The only two exceptions are (a, c) = (1, 0) and (0.55, 0), where we obtained better cycles
training a second time respectively with ntrain-steps = 340k and 280k. Instead, training for values of a in [0.2, 0.35]
was less stable, since the low power regime produces much longer cycles that require more “long-term planning”.
Furthermore, the maximum value of the figure of merit becomes closer to 0 as a decreases. Since also “doing nothing”
(i.e. setting u⃗(t) and β(t) to a time-independent constant) produces a null figure of merit, it becomes harder and
harder for the RL method to distinguish optimal cycles from these trivial solutions. To overcome these difficulties,
we mainly used v2, and we repeated the training up to 3 times for some values of (a, c) - choosing then the cycle with
the largest figure of merit. In total, we repeated 54 trainings, some of which trained with v1. At last, in some cases
we trained for more steps, up to ntrain-steps = 471k steps, and we set ∆t = 0.5 in some other trains, including the
cases with c = 0 or c = 1− a.

Hyperparameter name v1 v2
Hidden layers 2 ”
Hidden layers units 256 ”
Initial random steps 6k ”
First update at step 1000 ”
Batch size 256 ”
Learning rate 0.001 ”
H̄start 0.4 0.28
H̄end -7 ”
H̄decay 108k 162k
nupdates 50 ”
ρpolyak 0.995 ”
Bsize 200k ”
∆t 0.5 2
Discount factor γ 0.9997 0.9998
ntrain-steps 240k 360k

TABLE I. Hyperparameters used to produce the results shown in the main text. The columns v1 and v2 correspond to two
different sets of hyperparameters used in different regimes. The values not specified in v2 are the same as in v1.

E. Equivalence between SSHE and Fast-Otto PDHE for a two-level system

In this section we show that there is mapping between power, fluctuations, and entropy production produced by a
two-level system in a steady-state heat engine (SSHE) and the same system periodically driven (PDHE) in a fast-Otto
cycle. This affinity can be explained, intuitively speaking, as in both cases the state of the system relaxes to a fixed
point (cf. [31]), and the work exchanges are defined by a single variation of energy level (chemical potential for the
SSHE, energy gap quench for the PDHE, see details below).

This mapping explains why, among other things, the Fast-Otto cycle satisfies the SSHE thermodynamic uncertainty
relations, as shown in the main text.

Specifically, consider a two-level system connected to two thermal baths, modeled via a simple rate master equation,
that is

˙⃗pt = γi(π⃗i − p⃗t) (S123)

where γi is the rate of bath i, p⃗ the populations vector, and π⃗i := (fi, 1− fi), with fi =
1

1+e−βiϵi
. Notice that due to

normalization p⃗ = (p, 1− p) and the dynamical equation can be equivalently written as ṗt = γi(fi − pt). Both in the
steady state case and the fast driving cycle, the state tends to a fixed value

pt → p . (S124)

It is possible to compute the steady state p, and the resulting power, efficiency and fluctuations for such system
when driven on a Fast-Otto cycle, made by two quenches rapidly alternating. The analytic expressions can be obtained
as from Appendix II (cf. Eq. (S71), but we also allow different rates for the two baths now).
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SSHE Fast-Otto PDHE

fi (1 + e−βi(ϵ−µi))−1 (1 + e−βiϵi)−1

p f̄ :=
γ1f1 + γ2f2
γ1 + γ2

f̄ :=
θ1γ1f1 + θ2γ2f2
θ1γ1 + θ1γ2

P
γ1γ2

γ1 + γ2
(f1 − f2)(µ1 − µ2)

θ1θ2γ1γ2
θ1γ1 + θ2γ2

(f1 − f2)(ϵ2 − ϵ1)

η 1− ϵ− µ1

ϵ− µ2
1− ϵ1

ϵ2
∆P 2 γ1γ2

γ1+γ2
(ϵ1 − ϵ2)

2
[
f̄(1− f̄) +

(
f1+f2

2
− f̄

)
(1− 2f̄)

]
2 γ1θ1γ2θ2
γ1θ1+γ2θ2

(ϵ1 − ϵ2)
2
[
f̄(1− f̄) +

(
f1+f2

2
− f̄

)
(1− 2f̄)

]

TABLE II. Mapping between a steady-state engine and a fast-Otto cycle for the case of a two-level system.

The resulting expressions are given in Table III E (right column), in terms of the rates γi, the chosen gaps ϵi, the
fraction of time θi spent on each bath i (θ1 + θ2 = 1). It turns out that such expressions become formally equivalent
to those of a SSHE based on a two-level system in a chemical potential gradient between the two baths µi (the gap ϵ
of the qubit is in this case fixed), for which the standard expressions in the left column of Table III E can be obtained
from standard references. In particular, for ∆P it is possible to consider Eq. (14) of [56] and substitute Eq. (24)
of [57] for the values of the T -coefficients in the weak coupling limit.

By looking at Table III E, it is possible to see how each quantity is formally equivalent between the two columns,
via the following mapping

γi → θiγi , (S125)

ϵ− µi → ϵi . (S126)

Finally, let us notice that the expression for the fluctuations ∆P can equivalently be expressed in other forms, such
as (we express it for the SSHE case, although it can be expressed similarly for the Fast-Otto case, via the above
mapping)

∆P =
2γ1γ2
γ1 + γ2

(µ1 − µ2)
2
(
f+(1− f+) + (f̄ − f+)

2
)
, (S127)

where f+ := (f1 + f2)/2. Such expression shows immediately the positiveness of the fluctuations. Another equivalent
expression, which is typically obtained in SSHE calculations is

∆P =
γ1γ2

γ1 + γ2
(µ1 − µ2)

2 (f1(1− f2) + f2(1− f1))−
2γ2

1γ
2
2

(γ1 + γ2)3
(µ1 − µ2)

2 (f1 − f2)
2
. (S128)
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Abstract
To achieve efficient and reliable control of microscopic systems one should look for driving
protocols that mitigate both the average dissipation and stochastic fluctuations in work. This is
especially important in fast driving regimes in which the system is driven far out of equilibrium,
potentially creating large amounts of unwanted entropy production. Here we characterise these
optimal protocols in rapidly driven classical and quantum systems and prove that they consist of
two discontinuous jumps in the full set of control variables. These jumps can be tuned to
interpolate between processes with either minimal dissipation or minimal fluctuations, and in
some situations allow for simultaneous minimisation. We illustrate our general results with rapidly
driven closed quantum systems, classical bit erasure and a dissipative Ising chain driven close to a
quantum phase transition.

Minimising dissipation is a central optimisation problem in stochastic and quantum thermodynamics [1],
and is especially important for ensuring efficient control of microscopic machines operating out of
equilibrium. Careful consideration is needed when choosing Hamiltonian protocols that drive small systems
along non-equilibrium trajectories in finite-time, as generating too much dissipation leads to irreversibility
[2] and thus hampers any thermodynamic performance. A key feature of microscopic systems, whether they
be quantum or classical, is that they are also heavily influenced by stochastic fluctuations, hence
thermodynamic quantities such as work and heat behave as random variables [3, 4]. Therefore from an
optimisation perspective it is also desirable to ensure fluctuations around the mean dissipation are kept small
in order to maintain precision and stability along a thermodynamic process. However, typically it is not
possible to minimise the dissipation and fluctuations simultaneously and a compromise must be chosen.
Current research aims to understand the interplay and unavoidable trade-offs between dissipation and
fluctuations in classical-stochastic and quantum thermodynamic systems [5–9], and it remains an ongoing
problem of how best to balance these two competing figures of merit in different scenarios.

With regard to dissipation, or equivalently the average excess work done to drive a system out of
equilibrium, optimal processes are well characterised in slowly driven or linear response regimes where
methods from thermodynamic geometry can be employed [10–14]. In this case a metric can be assigned to
the control parameter space with minimum dissipation protocols achieved by driving the system along a
geodesic path [15]. For classical stochastic systems operating in these close-to-equilibrium regimes the work
fluctuation-dissipation relation holds [16, 17], implying that paths of minimal dissipation simultaneously
minimise the resulting work fluctuations. While this is not always satisfied by non-classical systems due to
the impact of quantum coherence [18], an alternative geometric approach has been recently developed that
can determine minimum fluctuation protocols for slowly driven quantum systems [19, 20]. On the other
hand, when operating much further from equilibrium over shorter timescales these geodesic paths are no
longer relevant for minimising either of these quantities. It is of course desirable to understand how to
optimise systems beyond linear response driving and where shorter operation times are needed. The central
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aim of this paper is to establish a general optimisation principle for minimising both the average excess work
and its fluctuations in rapidly driven small systems.

The study of driven Brownian particles first hinted at a key feature of minimum-dissipation protocols for
fast driving; such protocols contain discontinuous jumps in the system control parameters or degrees of
freedom [21]. This has been further evidenced in a range of other systems through either analytic or
numerical treatments of finite-time thermodynamic optimisation problems [22–26]. More recently the
optimality of these control parameter quenches has been proven in general with regard to maximising the
power and efficiency of microscopic heat engines with fast operation cycles [27, 28], and furthermore proven
optimal for minimising the average excess work done on classical stochastic systems rapidly driven from
equilibrium [29]. In contrast to dissipation, little is known about how to minimise work fluctuations under
rapid driving, nor is it known how these protocols compare to those with minimal dissipation. In this paper
we will prove that protocols with minimal fluctuations also consist of instantaneous jumps in the systems
control parameters. Our result applies in full generality to any quantum or classical system whose generator
is independent of the control parameter velocities. While sharing the same general design principle as
minimal-dissipation protocols, these control variables typically need to jump to a distinct point in the
parameter space, meaning that average excess work and work fluctuations cannot be simultaneously
optimised. Furthermore, and as we will illustrate, one practical advantage of this approach is that it enables
us to optimise driving protocols for complex many-body systems where exact results are lacking.

The paper is structured as follows; in section 1 we derive general expressions for the average excess work
and its variance for rapidly driven quantum systems, and in section 2 we present the general Euler–Lagrange
equations for finding optimal protocols in this fast driving regime and show that all solutions consist of
discrete jumps in the control parameter space. We then explore different scenarios where this optimisation
scheme can be implemented; section 3 focuses on closed quantum systems, whereas section 4 concerns open
quantum systems including erasure of a quantum dot and driving a classical and quantum Ising spin chain.

1. Average excess work and fluctuations for fast driving

We will begin with a rather general treatment of a finite-dimensional quantum system subject to rapid
time-dependent driving, which may be isolated or in contact with an environment. The Hamiltonian of the
system is first parameterised by a set of d scalar variables λ⃗t = {λ1(t),λ2(t), . . .λd(t)} that can be controlled
in time:

H(λ⃗t) =H0 + λ⃗t · X⃗, t ∈ [0, τ ], (1)

whereH0 denotes a fixed Hamiltonian in the absence of driving, and X⃗ are a set of corresponding observables
with X⃗= {X1,X2, . . .Xd} which may be assumed time-independent without loss of generality. As we wish to
compare the behaviour of different choices of driving protocols γ : t→ λ⃗t, it will be useful to define the set of
protocols γ ∈ C that have a fixed initial and final value:

γ : t→ λ⃗t ∈ C = {λ⃗t ∈ Rd | λ⃗0 = λ⃗A, λ⃗τ = λ⃗B}. (2)

For now we can assume the evolution is given by a Markovian generator of the form

ρ̇(t) = Lλ⃗t
[ρ(t)]; ρ(0) = π(λ⃗A) (3)

with a thermal initial condition, where

π(λ⃗) =
e−βH(λ⃗)

Z(λ⃗)
; Z(λ⃗) := Tr

(
e−βH(λ⃗)

)
(4)

is the corresponding Gibbs state at inverse temperature β. The most notable part of this assumption is that
the generator is independent of the velocity dλ⃗t/dt, and depends only on the local values of λ⃗t. This is readily
satisfied by isolated quantum systems evolving unitarily, adiabatically driven open quantum systems [30] and
Markovian dynamics for classical/quasi-classical systems driven by scalar potentials. On the other hand, open
quantum quantum systems driven non-adiabatically may not meet this requirement [31]. We also stress that
while our system is initially thermal, we place no restriction on the final state after apply the Hamiltonian
protocol (2).

The control protocol will result in some work done on the system since it is driven out of equilibrium.
Due to both thermal and quantum fluctuations, the workW is a stochastic quantity and its statistics are
described by a distribution P(W). In a closed, unitarily-driven system this distribution can be ascertained

2



New J. Phys. 25 (2023) 073005 A Rolandi et al

from projective measurements the system’s Hamiltonian at the beginning and end of the process [4, 32, 33].
For weakly-coupled open systems one can similarly determine the work distribution by monitoring a set of
quantum jumps as the system exchanges energy with its environment [34, 35]. In any case, the average work
〈W〉 and its variance σ2

W = 〈W2〉− 〈W〉2 are given by the following general form [18, 36]:

〈W〉 :=
ˆ τ

0
dt

dλ⃗T
t

dt
Tr
(
X⃗ρ(t)

)
, (5)

σ2
W := 2 Re

ˆ τ

0
dt

ˆ t

0
dt ′ Tr

(
Ḣ(λ⃗t)

←−
P (t, t ′)

[
∆ρt ′ Ḣ(λ⃗t ′)ρt ′

])
, (6)

where we denote∆ρA= A−Tr(Aρ) and

←−
P (t, t ′)[(.)] :=

←−T exp

(
ˆ t

t ′
dν Lλ⃗ν

)
[(.)], (7)

is the time-ordered propagator. As a quantifier for the degree of irreversibility associated with the process,
the average excess work done on the system is defined as

〈Wex〉= 〈W〉−∆F, (8)

where∆F= F(λ⃗B)− F(λ⃗A) is the change in equilibrium free energy, F(λ⃗) :=−β−1 logZ(λ⃗). The excess
work disappears 〈Wex〉 → 0 in quasistatic processes where the system is always in thermal equilibrium, which
also implies absence of work fluctuations due to the work fluctuation-dissipation relation βσ2

W/2= 〈Wex〉
holding valid in this limit [16, 17]. For non-equilibrium processes, both 〈Wex〉 and σW will become relevant,
and we expect their magnitudes to increase with the speed of the process (i.e. as τ decreases). Our goal is
then to investigate which protocols γ in (2) give the smallest values of average dissipation 〈Wex〉 and work
fluctuations σW respectively. In general, computing and optimising the work moments relies on knowing an
exact solution to the dynamics (3). While this is not generally tractable, we will demonstrate that this control
problem becomes considerably simpler in fast driving regimes (i.e. when the overall time τ taken to go from
λ⃗A to λ⃗B is small relative to the characteristic timescales of the system).

We first quantify precisely what we mean by a rapid protocol by defining a characteristic timescale τc for
the generator given by [28]

τ−1
c = max

λ⃗t∈C
||Lλ⃗t
||, (9)

where we introduce a norm

||Lλ⃗||= max
Tr(O)<∞

||Lλ⃗t
[O]||1
||O||1

(10)

and ||A||1 = Tr
(√

A†A
)
. For a finite-dimensional unitary generator, this parameter is bounded by the

operator norm of the Hamiltonian, while for systems undergoing non-unitary dynamics with a unique fixed
point then τc bounds the shortest relaxation timescale associated with the system. Overall, this gives us a
definition of the fast driving regime which assumes that the total duration is short enough such that τ � τc.
To see how this approximation impacts the work moments, let us rewrite the evolution in dimensionless
time:

˙̃ρ(s) = τLλ⃗s
[ρ̃(s)]; ρ̃(0) = π(λ⃗A), s=

t

τ
∈ [0,1]. (11)

In these units the work done is

〈W〉 :=
ˆ 1

0
dt

dλ⃗T
s

ds
Tr
(
X⃗ ρ̃(s)

)
. (12)

We can expand the solution to (11) as a Dyson series:

ρ̃(s) = π(λ⃗A)+
∞∑

n=1

τ n
ˆ s

0
dtn

ˆ tn

0
dtn−1. . .

ˆ t2

0
dt1 Lλ⃗tn

Lλ⃗tn−1
. . .Lλ⃗t1

[π(λ⃗A)], (13)

3
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where 0⩽ t1 ⩽ . . .⩽ tn ⩽ s. Consider the first two terms in the expansion,

σ(s) = π(λ⃗A)+ τ

ˆ s

0
dt ′Lλ⃗t ′

[π(λ⃗A)]. (14)

From our definition of the characteristic timescale (9) we have

||ρ̃(s)−σ(s)||1 ⩽O([τ/τc]2). (15)

Therefore we can approximate the state by ρ̃(s)' σ(s) so long as τ � τc. This approximation should be
contrasted with the slow driving regime that treats the opposite case, τc� τ . Assuming the dynamics has a
thermal fixed point, a slow driving approximation implies that the system stays close to equilibrium at all
times, i.e. ρ̃(s)' π(λ⃗s)+ δρ(λ⃗s) with δρ(λ⃗s) a linear correction to the instantaneous thermal state [37]. In
the present context, the Dyson series allows us to perform the inverse of this expansion, with rapid driving
moving the system far from instantaneous equilibrium instead. We can use (15) to now approximate the
excess work, yielding

〈Wex〉 ' kBTS(π(λ⃗A)||π(λ⃗B))+ τ

ˆ 1

0

dλ⃗T
s

ds

ˆ s

0
dt ′Tr

(
X⃗ Lλ⃗t ′

[π(λ⃗A)]
)
, (16)

= kBTS(π(λ⃗A)||π(λ⃗B))+

ˆ τ

0
dt

dλ⃗T
t

dt

ˆ t

0
dt′ R⃗(λ⃗t′),

where we define the relative entropy

S(ρ1||ρ2) = Tr(ρ1 logρ1)−Tr(ρ1 logρ2) (17)

and the quantum initial force relaxation rate:

R⃗(λ⃗t) :=
〈
L†
λ⃗t
[X⃗]
〉
A

(18)

where 〈(.)〉A = Tr
(
(.)π(λ⃗A)

)
is an average with respect to the initial equilibrium state. We then do an

integration by parts to obtain

〈Wex〉= kBTS
(
π(λ⃗A)||π(λ⃗B)

)
+

ˆ τ

0
dt
[
λ⃗B− λ⃗t

]T
R⃗(λ⃗t). (19)

The first term represents the excess work from a perfect Hamiltonian quench [38], while the second term
gives the leading order correction for a protocol at finite speed. This expansion agrees with the results of [29]
for classical Focker-Planck dynamics, now generalised to a fully quantum regime.

Turning attention now to the work fluctuations, we convert the expression (6) into dimensionless
units, so

σ2
W = 2 Re

ˆ 1

0
ds

ˆ s

0
ds ′ Tr

(
Ḣ(λ⃗s)

←−T exp

(
τ

ˆ s

s ′
dν Lλ⃗ν

)[
∆ρ̃(s ′)Ḣ(λ⃗s ′)ρ̃(s

′)
])

, (20)

where we can approximate the propagator using the Dyson series again, so that

σ2
W ' 2 Re

ˆ 1

0
ds

ˆ s

0
ds′ Tr

(
Ḣ(λ⃗s) ∆ρ̃(s′)Ḣ(λ⃗s′)ρ̃(s

′)
)

+ 2τ Re
ˆ 1

0
ds

ˆ s

0
ds′
ˆ s

s′
dν Tr

(
Ḣ(λ⃗s)Lλ⃗ν

[
∆π(λ⃗A)

Ḣ(λ⃗s′)π(λ⃗A)
])

.

Applying the Dyson expansion to a shifted observable yields

∆ρ̃(s)A'∆σ̃(s)A=∆π(λ⃗A)
A− τ

ˆ s

0
ds ′ Tr

(
A Lλ⃗s ′

[π(λ⃗A)]
)
. (21)

4
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Using this expansion, the Dyson expansion of the state and converting back to original units of time we get

σ2
W ' k2BT

2V
(
π(λ⃗A)||π(λ⃗B)

)
− 2 Re

ˆ τ

0
dt

ˆ t

0
dt ′
ˆ t ′

0
dνTr

(
Ḣ(λ⃗t)π(λ⃗A)

)
Tr
(
Ḣ(λ⃗t ′)Lλ⃗ν

[π(λ⃗A)]
)

(22)

+ 2 Re
ˆ τ

0
dt

ˆ t

0
dt′
ˆ t′

0
dν Tr

(
Ḣ(λ⃗t) ∆π(λ⃗A)

Ḣ(λ⃗t′)Lλ⃗ν
[π(λ⃗A)]

)

+ 2 Re
ˆ τ

0
dt

ˆ t

0
dt′
ˆ t

t′
dν Tr

(
Ḣ(λ⃗t)Lλ⃗ν

[
∆π(λ⃗A)

Ḣ(λ⃗t′) π(λ⃗A)
])

,

where the first term is the relative entropy variance [39]:

V(ρ1||ρ2) = Tr
(
ρ1(logρ1− logρ2)

2
)
− S2(ρ1||ρ2). (23)

Let us first define the initial force correlation matrix G(λ⃗), with elements

[
G(λ⃗)

]
jk
:=

1

2

〈
L†
λ⃗

[
{∆Xj,∆Xk}

]〉
A
, (24)

where {X,Y}= XY+YX is the anti-commutator and we define shifted force observables

∆Xj := Xj−
〈
Xj

〉
A
. (25)

We also need to introduce another correlation function given by

[
B(λ⃗)

]
jk
:=
〈
{L†

λ⃗t
[∆Xj],∆Xk}

〉
A
. (26)

Then the nested integrals in (22) can be converted into a single one using integration by parts twice:

σ2
W = k2BT

2V
(
π(λ⃗A)||π(λ⃗B)

)
+

ˆ τ

0
dt
[
λ⃗B− λ⃗t

]T
G(λ⃗t)

[
λ⃗B− λ⃗t

]
+
[
λ⃗B− λ⃗t

]T
B(λ⃗t)

[
λ⃗t− λ⃗A

]
. (27)

As we saw with the average excess work, the first term here is what one would expect for work fluctuations via
an instantaneous quench [38], while the two terms in the integral are leading order corrections for a finite
speed protocol. The expressions (19) and (27) are our first main results, and will now form the basis for
finding optimal protocols in the fast driving regime.

2. Optimality of instantaneous jump protocols

Our aim is now to determine control protocols (2) that minimise the average excess work and the work
fluctuations subject to a fixed initial and final Hamiltonian. For this it is useful to define the short-term power
savings [29], defined as

Psave := τ−1

(
kBTS

(
π(λ⃗A)||π(λ⃗B)

)
−〈Wex〉

)
, (28)

which quantifies any additional reduction to the rate of work done provided by the finite-time protocol
beyond that of an instantaneous quench. In a similar fashion we also introduce the short-term constancy
savings,

Csave := τ−1

(
k2BT

2V
(
π(λ⃗A)||π(λ⃗B)

)
−σ2

W

)
. (29)

This measures the reductions to the rate of work fluctuations from a short-time protocol. These are now the
two objectives to maximise in our control problem. Using our short-time approximations to both the average
excess work (19) and work fluctuations (27), a general optimisation principle becomes immediately apparent
for this regime. Since the integrands appearing in (19) and (27) are each independent of the control velocity
dλ⃗/dt, we can infer that optimal protocols will consist of an instantaneous jump from λ⃗A to a point in the
parameter space, remaining there for the total duration τ and concluding with another instantaneous jump

5
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to the final boundary point λ⃗B. We will denote the control values that maximise Psave and Csave respectively
by ζ⃗ and Λ⃗, which are determined by the solutions to the following distinct Euler–Lagrange equations:

R⃗(ζ⃗) =∇λ⃗

([
λ⃗B− ζ⃗

]T
R⃗(λ⃗)

)∣∣∣∣
λ⃗=ζ⃗

(30)

and

∇λ⃗

([
λ⃗B− λ⃗

]T
G(λ⃗)

[
λ⃗B− λ⃗

])∣∣∣∣
λ⃗=Λ⃗

=∇λ⃗

([
λ⃗− λ⃗B

]T
B(λ⃗)

[
λ⃗− λ⃗A

])∣∣∣∣
λ⃗=Λ⃗

. (31)

The maximal short-term power savings are then given by

Psave ⩽ P∗save :=
[
ζ⃗ − λ⃗B

]T
R⃗(ζ⃗), (32)

which is saturated via the jump protocol

λ⃗t = λ⃗A + [ζ⃗ − λ⃗A]θ(t)+ [λ⃗B− ζ⃗]θ(t− τ), (33)

where θ(t) denotes the Heaviside step function. The optimality of such processes was proven in [29] for
classical systems. We have here shown that the same result applies to quantum mechanical systems, provided
that the dynamical generator (3) remains independent of dλ⃗/dt. As a more significant result, we can now see
that it is possible to reduce fluctuations using a similar instantaneous jump protocol, albeit with a different
choice of point in the parameter space. The maximum short-term constancy savings are given by

Csave ⩽ C∗
save :=

[
Λ⃗− λ⃗B

]T
(
G(Λ⃗)

[
λ⃗B− Λ⃗

]
+B(Λ⃗)

[
Λ⃗− λ⃗A

])
, (34)

which is saturated by jumping to Λ⃗ instead, so that

λ⃗t = λ⃗A + [Λ⃗− λ⃗A]θ(t)+ [λ⃗B− Λ⃗]θ(t− τ). (35)

In general the values of ζ⃗ and Λ⃗ will not typically coincide, implying a trade-off between minimised excess
work versus minimal fluctuations. This can remain the case even in quasi-classical regimes where only
changes to the energy levels of the system are allowed, as well as fully classical systems that admit a phase
space description. This should be contrasted with slow driving or linear response regimes, which allow for
simultaneous optimisation of the average and variance due to the validity of the fluctuation dissipation
relation in the absence of quantum friction [17, 18]. However, depending on the particular Hamiltonian
parameters and dynamics it is still possible to find situations where ζ⃗ = Λ⃗ and simultaneous optimisation is
possible, as we will highlight in subsequent sections.

Before we proceed it is important to highlight some consistency requirements needed to implement a
jump protocol. As we are restricted to operating in fast driving regimes, this places restrictions on the set of
points one can jump to in order to ensure that the Taylor expansions used in (16) and (22) remain valid. In
the appendix it is shown that errors associated with these approximations scale according to

|〈Wex〉true−〈Wex〉∗|⩽∆h(ξ⃗)O(τ 2/τ 2c ), (36)

|(σ2
W)

true− (σ2
W)

∗|⩽∆h2(Λ⃗)O(τ 2/τ 2c ), (37)

where 〈Wex〉true and (σ2
W)

true denote the exact values of (5) and (6) with respect to the jump protocols, while
〈Wex〉∗ and (σ2

W)
∗ are the corresponding values with respect to the fast driving approximations (19)

and (27). Furthermore, we introduce the Hamiltonian magnitude

∆h(λ⃗) := 2max
{
||H(λ⃗)−H(λ⃗A)||1, ||H(λ⃗B)−H(ξ⃗)||1

}
. (38)

This tells us that one cannot jump arbitrarily far from the boundary points λ⃗A, λ⃗B as this would lead to a
large∆h and hence invalidate the fast driving approximation. Therefore any freedom in setting the
magnitude of ξ⃗ and Λ⃗must take these bounds into account, discounting arbitrarily large values of both P∗save
and C∗

save. For the remainder of the paper we now demonstrate the utility of these jump protocols in a range
of different types of system.
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3. Closed quantum systems

As a starting point we consider an isolated quantum system whose dynamics are given by the time-dependent
Liouville–von Neumann equation:

Lλ⃗t
[(·)] =− i

h̄

[
H(λ⃗t),(·)

]
. (39)

The work statistics of quenched isolated systems are well studied, particularly in the context of many-body
quantum systems [40, 41]. Our formalism can now be used to calculate the leading short-time corrections to
the excess work and fluctuations arising when the (instantaneous) quenches are replaced by fast Hamiltonian
ramps, and then subsequently minimise them using the appropriate jump protocols outlined in the previous
section. For closed, finite dimensional systems it is clear that the characteristic time scale is τc ∼ h̄/Emax(λ⃗),
where Emax(λ⃗) denotes the maximum energy eigenstate of H(λ⃗), and we set τ � τc to establish the fast
driving regime. The relevant initial force relaxation rate and correlation functions are found to be

R⃗(λ⃗) =− i

h̄

〈[
X⃗,H(λ⃗)

]〉
A
, (40)

[
G(λ⃗)

]
jk
=− i

2h̄

〈[{
∆Xj,∆Xk

}
,H(λ⃗)

]〉
A
, (41)

[
B(λ⃗)

]
jk
=− i

h̄

〈{[
∆Xj,H(λ⃗)

]
,∆Xk

}〉
A
. (42)

The short-time power savings are then

Psave :=
i

τ h̄

ˆ τ

0
dt
〈[
H(λ⃗B),H(λ⃗t)

]〉
A

(43)

while the constancy savings are

Csave :=
i

τ h̄

ˆ τ

0
dt
(〈[

H(λ⃗B)
2,H(λ⃗t)

]〉
A
−
〈{

H(λ⃗A),
[
H(λ⃗B),H(λ⃗t)

]}〉
A

− 2
〈
H(λ⃗B)−H(λ⃗A)

〉
A

〈[
H(λ⃗B),H(λ⃗t)

]〉
A

)
. (44)

We can already see from (43) and (44) that if H(λ⃗B) and H(λ⃗A) commute, or λ⃗t is chosen such that H(λ⃗t)
commutes with either H(λ⃗B) or H(λ⃗A), then the integrand is exactly 0—which directly follows using the
cyclic property of the trace. Therefore if λ⃗t is a linear combination of λ⃗A and λ⃗B the first order correction
vanishes. An immediate consequence is that a naive protocol that linearly interpolates between the initial and
final Hamiltonian in a closed system is equivalent to a quench up to first order in driving speed. Similarly, it
follows directly (and without approximation) from (39) that if H(λ⃗B), H(λ⃗A) and H(λ⃗t) commute for all t
then the state does not evolve in time and therefore the protocol is equivalent to a quench. But we can note
that here we get the same result (up to first order) with a weaker assumption on the commutation relations
between the Hamiltonians.

We now choose a jump protocol to maximise either variable, and a simple argument can be used to
determine the optimal points ξ⃗ and Λ⃗. First notice that both Psave and Csave are linear in the control variables,
so that their gradients are independent of λ⃗:

∇λ⃗Psave =
i

h̄

〈[
H(λ⃗B), X⃗

]〉
A
, (45)

∇λ⃗Csave =
i

h̄

(〈[
H(λ⃗B)

2, X⃗
]〉

A
−
〈{

H(λ⃗A),
[
H(λ⃗B), X⃗

]}〉
A
− 2
〈
H(λ⃗B)−H(λ⃗A)

〉
A

〈[
H(λ⃗B), X⃗

]〉
A

)
. (46)

The fact that these gradients are independent of λ⃗ implies that the optimal points ξ⃗ and Λ⃗ are vectors
pointing in the direction of the respective gradients, with the norm chosen as large as possible. However, as
argued in the previous section there is a limitation to how big this norm can be: the larger this norm is
chosen the larger the error of the approximation is. In particular, setting |ξ⃗| � |λ⃗A|, |λ⃗B| gives |ξ⃗| ∝∆h(ξ⃗)
while τc ∝ 1/|ξ⃗|. Comparing with our error bound (36) we see that in this case

|〈Wex〉true−〈Wex〉∗|⩽O(|ξ⃗|3τ 2), (47)
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which clearly limits how large the norm can be chosen relative to the duration of the protocol. A similar
argument applies to the constancy savings and norm of the optimal point Λ⃗.

We can make some further inferences about the relation between the different jumps ξ⃗ and Λ⃗. It follows
from the commutators in (45) and (46) that

λ⃗A ·∇λ⃗Psave = λ⃗A ·∇λ⃗Csave = λ⃗B ·∇λ⃗Psave = λ⃗B ·∇λ⃗Csave = 0, (48)

which means that both gradients are orthogonal to λ⃗A and λ⃗B. As was said before, this implies that if the
protocol consists of a linear combination of HA and HB then the correction will be zero. But if the
Hamiltonian has d⩽ 2 controllable parameters it is impossible for λ⃗t to be linearly independent from λ⃗A and
λ⃗B. Therefore, regardless of the type of driving, with d⩽ 2 controllable parameters the correction is always
zero.

It is interesting to consider what happens when we can control exactly three parameters, d= 3.
Equation (48) constrains the gradients of (45) and (46) to be parallel, which implies a direct relation between
the variation of power and fluctuations

dPsave =±
||∇λ⃗Psave||λ⃗=ξ⃗

||∇λ⃗Csave||λ⃗=Λ⃗

dCsave , (49)

where the sign is positive if the gradients are oriented in the same direction and negative otherwise. If the
sign is positive we can optimize fluctuations and excess work simultaneously with ξ⃗ = Λ⃗, if the sign is
negative we have a direct trade-off between savings in power and constancy.

3.1. Driven qubit
As an illustrative example we can compute and optimize the excess work and work fluctuations of a qubit
that is undergoing unitary evolution. The most general Hamiltonian for a qubit is

H(λ⃗) = Jλ⃗ · σ⃗ , (50)

where σ⃗ = (σx,σy,σz) is the Pauli vector, J is an energy scale and λ⃗= (λx,λy,λz) are dimensionless
parameters that characterize the Hamiltonian. Using the property that (⃗a · σ⃗)(⃗b · σ⃗) = (⃗a · b⃗)1+ i(⃗a∧ b⃗) · σ⃗
we can find that the thermal state can be written in the following way

π(λ⃗) =
e−βH(λ⃗)

Z(λ⃗)
=

1

2
1− 1

2
tanh(βJ‖λ⃗‖) λ⃗ · σ⃗

‖λ⃗‖
. (51)

Using this equation with the fact that Pauli matrices are trace-less it is straightforward to obtain

Psave =−
2J2 tanh(βJ‖λ⃗A‖)

τ‖λ⃗A‖

ˆ τ

0
dt λ⃗t · (λ⃗B ∧ λ⃗A), (52)

Csave =−
4J3

τ

[
1− tanh(βJ‖λ⃗A‖)2

(
1− λ⃗A · λ⃗B

‖λ⃗A‖2

)]
ˆ τ

0
dt λ⃗t · (λ⃗B ∧ λ⃗A) . (53)

It is clear that the integrands are maximised simultaneously by choosing a jump protocol with
ξ⃗ = Λ⃗ = αλ⃗A ∧ λ⃗B, and hence we find the optimal values

P∗save = 2αJ2 sin2ϕ‖λ⃗A‖‖λ⃗B‖2 tanh(βJ‖λ⃗A‖), (54)

C∗
save = 4αJ3 sin2ϕ‖λ⃗A‖2‖λ⃗B‖2

[
1− tanh(βJ‖λ⃗A‖)2

(
1− ‖λ⃗B‖
‖λ⃗A‖

cosϕ

)]
,

(55)

where ϕ is the angle between λ⃗A and λ⃗B. We can notice that tanh(βJ‖λ⃗A‖)2
(
1− ∥λ⃗B∥

∥λ⃗A∥
cosϕ

)
< 1 for all

choices of λ⃗A and λ⃗B. Therefore we can optimize fluctuations and excess work simultaneously by choosing
α> 0. The magnitude of α has to be chosen in such a way that that the error of the approximation (47)
remains small. A sufficient condition is then given by choosing

0⩽ α� 1

Jτ | sinϕ|‖λ⃗A‖‖λ⃗B‖
. (56)

8
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Figure 1. Comparison of P∗save and C∗
save (in units of J2 and J3 respectively) in the exact case and fast driving approximation as a

function of α for a jump protocol with HA = Jσx, HB = Jσz and Jτ = βJ= 1.

This condition is illustrated in figure 1, in which we compare the results of (54) and (55) to the exact
calculation of Psave and Csave for jump protocols in a qubit. The boundary conditions were set to HA = Jσx

(λ⃗A = x̂), HB = Jσz (λ⃗B = ẑ) and the relevant constants are set to τ J= βJ= 1. Then the condition of
equation (56) becomes α� 1, indeed we can see from the figure that as α approachesO(1) the
approximation breaks down.

It is important to stress that for higher dimensional closed systems, simultaneous optimisation of Psave

and Csave cannot always be guaranteed despite what we observe in the case of a qubit.

4. Open quantum systems

We now move to open quantum systems. Our framework can be applied to any Markovian Lindblad
equation of the form (3), in which the generator Lλ⃗t

is independent of the velocity dλ⃗t/dt and depends only

on λ⃗t. Here we illustrate it for the simple evolution:

Lλ⃗t
[·] = π(λ⃗)Tr(·)− (·)

τ eq
, (57)

which describes a decay of the state ρ into the instantaneous Gibbs state π(λ⃗) with a timescale τ eq. This
dissipative evolution naturally arises in collisional models [42] and also describes some systems weakly
interacting with a reservoir with a sufficiently flat spectral density [22]. For this type of dynamics we find
some more illuminating expressions for the various terms appearing in the leading corrections to the excess
work and variance. Firstly, the initial force relaxation rate becomes

R⃗(λ⃗) :=

〈
X⃗
〉
λ⃗
−
〈
X⃗
〉
A

τ eq
, (58)

where 〈(.)〉λ⃗ = Tr
(
(.)π(λ⃗)

)
. This demonstrates that R⃗(λ⃗) quantifies the average rate at which each

expectation 〈Xi 〉 changes from its initial value relative to the characteristic timescale τ eq. Furthermore, the
correlation functions become

[
G(λ⃗)

]
jk
=
Fjk(λ⃗)−Fjk(λ⃗A)

τ eq
+

(
〈Xj〉λ⃗ Rk(λ⃗)+ 〈Xk〉λ⃗ Rj(λ⃗)

)
(59)

and

[
B(λ⃗)

]
jk
=− 2

τ eq
Fjk(λ⃗), (60)

where Fjk(λ⃗) is the symmetric covariance defined as

Fjk(λ⃗) :=
1

2
Tr
(
{Xj,Xk}π(λ⃗)

)
−〈Xj〉λ⃗〈Xk〉λ⃗. (61)

This function defines a metric tensor on the manifold of control parameters, and was first introduced in [43]
as a means of quantifying the geometric structure of thermal states. More recently this metric has been

9
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shown to determine optimal protocols with minimal work fluctuations in slow driving regimes, achieved by
traversing a geodesic path in the parameter space [18, 19]. In quasi-classical regimes where [Xj,Xk] = 0 this
metric becomes proportional to the well-known thermodynamic metric defined as the negative Hessian of
the free energy [44]:

[Xj,Xk] = 0 7→ Fjk(λ⃗) =−kBT
∂2F

∂λj∂λk
. (62)

This metric, which is equivalent to the fisher information matrix of the thermal state, can be used to
determine geodesic paths with minimal excess work in slow driving and close to equilibrium regimes [15]. In
the present context, we observe an interesting connection between the thermodynamic metric (61) and the
work fluctuations in the complete opposite regime of rapid driving. However, minimal fluctuations are not
given by following a geodesic path, but rather they are achieved by jumping to a point in the parameter space
that maximises the balance (34) between the change in metric components, relaxation rates R⃗(λ⃗) and
displacements λ⃗− λ⃗B, λ⃗− λ⃗A. We will now explore the optimisation of three different systems: a driven
quantum dot, and two Ising spin chains.

4.1. Fast erasure of a single bit
A driven quantum dot interacting weakly with an environment is a paradigmatic example of a system that
can be described by the simple dynamics (57) [22]. In that case the Hamiltonian is given byH(ϵ) = 1

2ϵσ
z with

a single control variable λt = ϵ(t) given by the energy gap of the two-level system. The optimal finite-time
thermodynamics of such systems has been well studied with regard to minimising average dissipation in
Landauer erasure [38, 45–49], including a recent experimental implementation in a driven single dot [50], as
well as maximising average power and efficiency in heat engines [26, 51]. More recent numerical approaches
have also been used to find optimal protocols that take into account the minimisation of work
fluctuations [6, 52]. In the present context, the fast driving assumption allows us to obtain analytic results for
these optimal protocols, which we now apply to a rapid bit-erasure process. The boundary conditions for
erasure are then ϵA = 0 and βϵB� 1. We first note that the leading term of the expansion (16) yields:

S(π(λ⃗A)||λ⃗B))

τ
≈ 1

τ
(βϵB− ln(2)) . (63)

To characterise the first order correction, straightforward calculations provide the following expressions:

τ eqR(ϵ) =
1

1+ eβϵ
− 1

2
, (64)

τ eqG(ϵ) = 0, (65)

τ eqB(ϵ) =−1

2
. (66)

From this we can compute the power and constancy savings under the fast driving assumption τ/τc� 1:

Psave =
kBT

τ eq

ˆ 1

0
ds
(
βϵB−βϵ(s)

)(1

2
− 1

1+ eβϵ(s)

)
, (67)

Csave =
k2BT

2

2τ eq

ˆ 1

0
ds βϵ(s)

(
βϵB−βϵ(s)

)
. (68)

We now seek to find the optimal energy gaps to jump to in order to maximise either Psave or Csave. It will
become clear in this case the power and constancy savings cannot be simultaneously maximised, and so the
distinct gaps are denoted by ξ and Λ respectively. Maximising Psave amounts to solving the following
transcendental equation

1

2
− 1

1+ eβξ
=

(βϵB−βξ)eβξ

(1+ eβξ)2
. (69)

In the limit of βϵB� 1 we can solve it analytically up to termsO(β−1ϵ−1
B ln(βϵB)) and find the optimal

jump ϵ 7→ ξ = β−1ln(2βϵB). Maximum power savings are thus

P∗save '
ϵB
2τ eq

. (70)

10
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For this power-optimised jump let us denote the resulting sub-optimal constancy savings by Cξ
save:

Cξ
save =

ϵ2B
τ eq

ln(2βϵB)

2βϵB
. (71)

On the other hand, to maximise the constancy savings we need to choose a jump to ϵ 7→ Λ = ϵB/2 instead.
This yields

C∗
save =

ϵ2B
8τ eq

, PΛsave =
ϵB
4τ eq

, (72)

where the sub-optimal savings in power are denoted PΛsave. Clearly there exists a significant trade-off between
these two choices of optimal protocol, with power-optimised jumps causing no improvement to the
constancy while constancy-optimised jumps reducing the potential power savings by a factor of 1/2. Further
comparison can be made with that of a naive linear driving ϵ(t) = ϵBt/τ , which results in savings given by

Pnaive '
ϵB
4τ eq

, Cnaive =
ϵ2B

12τ eq
, (73)

where we again drop terms of orderO(β−1ϵ−1
B ln(βϵB)). Therefore we can see that choosing an optimal

jump for the excess work leads to an improvement factor of 1/2, and choosing the optimal jump for the
fluctuations gives an improvement factor of 3/2, each indicating significant improvements over a naive
protocol. However, two unexpected observations here are that naive protocols are able to achieve larger
savings in constancy than that of the power optimised protocol, and also achieve the same level of power
savings to the constancy-optimised protocol. This emphasises that improvements to one objective do not
necessarily translate into improvements of the other.

4.2. Dissipative classical Ising chain
The strength of our approach is that it enables to deal with more complex systems, where exact solutions for
minimising dissipation and/or fluctuations are lacking -in contrast to the previous example in section 4.1.
This is illustrated now for an Ising chain weakly coupled to a bath with dynamics (57). We note that optimal
driving protocols for classical spin chains have been devised in the slow driving regime [53–55], and now we
complement such results by studying the opposite fast-driving regime. We first consider a classical spin
chain,

H(ϵ) = J
n∑

i=1

(
εσz

i −σz
i σ

z
i+1

)
, (74)

where J is the energy scale and ε is a dimensionless parameter which can be interpreted as the strength of an
external magnetic field. We assume that ε can be controlled externally in time, λ= ϵ, which results in work
being done on the system. By assuming periodic boundary conditions we can compute the partition function
per spin in the thermodynamic limit n→∞ [56]:

lim
n→∞

1

n
ln Z= βJ+ ln

[
cosh(βJε)+

√
sinh(βJε)2 + e−4βJ

]
. (75)

The relevant force here is then the total X= J
∑

i σ
z
i . We now identify the following the relations

− 1

β

∂

∂ε
logZ= Tr(Xπ(ε)) , (76)

1

β2

∂2

∂ε2
logZ= Tr

(
X2π(ε)

)
−Tr(Xπ(ε))2 . (77)

These allow us to compute the first order corrections to the excess work and the fluctuations per site of the
protocol in the thermodynamic limit from (19) and (27), and employing the above expressions we obtain the
initial force relaxation rates and correlation functions:

τ eqR(ε) =
sinh(βJεA)√

sinh(βJεA)2 + e−4βJ
− sinh(βJε)√

sinh(βJε)2 + e−4βJ
, (78)

τ eqG(ε) = e−4βJ
(

cosh(βJε)

(sinh(βJε)2 + e−4βJ)3/2
− cosh(βJεA)

(sinh(βJεA)2 + e−4βJ)3/2

)
+(τ eqR(ε))2,

(79)

11
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Figure 2. (left) Optimal value of ε∗ for a protocol going from εA = 0 to εB = 10. (centre and right) Relative power and constancy
savings in three protocols going from εA = 0 to εB = 10. We compare protocols that optimize excess work and fluctuations to a
protocol that varies linearly the value of ε.

τ eqB(ε) =−2e−4βJ cosh(βJεA)

(sinh(βJεA)2 + e−4βJ)3/2
. (80)

It is now a case of substituting these into the two different Euler–Lagrange equations (30) and (31) to
determine the optimal points ξ and Λ needed in each jump protocol, with solutions found numerically for a
process that brings ε from εA = 0 to εB = 10 (i.e. turning on the magnetic field). In figure 2(left) we display
the optimal field strength ε∗ = {ξ,Λ} that maximises either the power or constancy savings. We can notice
that in the limits of high and low temperatures they coincide, while we cannot maximise them
simultaneously in between these regimes. In figure 2(centre) we plot the power savings P∗save relative to the
zeroth contribution kBTS

(
π(λ⃗A)||π(λ⃗B)

)
/τc, while figure 2(right) displays the constancy savings C∗

save in

units of k2BT
2V
(
π(λ⃗A)||π(λ⃗B)

)
/τc. Both plots show the relative savings depending on whether we choose to

optimise the power or constancy, and this is also compared to the savings achieved by taking a naive linear
driving ϵ(t) = ϵA(1− t/τ)+ ϵBt/τ . In this case we can see that there is only a modest difference between the
ϵA 7→ ξ 7→ ϵB and ϵA 7→ Λ 7→ ϵB jump protocols, and they each perform considerably better than the naive
approach, contrasting with what we observed for the driven quantum dot. This highlights the importance of
optimal control in many-body open quantum systems.

4.3. Ising chain in transverse field
We will conclude with a final example covering the remaining scenario of an open quantum system where
the control is such that the Hamiltonian may not commute at different times, so that [H(λ⃗t),H(λ⃗t ′)] 6= 0.
This non-commutativity implies the presence of quantum friction [57, 58], which is a distinctly non-classical
contribution to the work done to drive the system that arises from allowing transitions between energy
eigenstates. For this purpose we will consider a dissipative Ising chain with simple dynamics (57), though this
time we apply a transverse field along the x-axis that can be controlled in time. We note that optimal driving
protocols for this model has been considered in the slow driving regime [38], and the results presented here
in the fast driving regime are hence complementary. In particular, we will focus on performing drivings close
to a quantum phase transition, which has also been considered in several previous works [40, 59–61].

The Hamiltonian of the system is

H(g) =−J
n∑

i=1

(
σ̂z
i σ̂

z
i+1 + gσ̂x

i

)
, (81)

where J is the energy scale and g is a dimensionless parameter which can be interpreted as an external
(transverse) magnetic field. Clearly such a model will generate quantum friction as we vary the strength g in
time. Assuming again periodic boundary conditions we can compute the spectrum of the system with a
Jordan–Wigner transformation [62]. Then by taking the thermodynamic limit the partition function is given
by

lim
n→∞

1

n
logZ=

ˆ 2π

0
dk log

[
2cosh

βϵk
2

]
, (82)

where εk is the eigenenergy corresponding to the momentum k

ϵk = 2J
√
1+ g2− 2gcosk . (83)
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Figure 3. (left) Optimal value of g∗ = {ξ,Λ} for a protocol going from gA = 0 to gB = 3. (centre) Relative power savings in three
protocols going from gA = 0 to gB = 3 and (right) relative constancy savings for the same three protocols. In each figure we
compare these optimal protocols to one that varies linearly the value of g.

At zero temperature and g= 1 this system presents a phase transition from an ordered ferromagnetic phase to
a quantum paramagnetic phase. We will focus on studying protocols that take the system across this point by
changing g at finite temperature. The relevant force this time is X=−J∑i σ

x
i , and we can use the relations

− 1

β

∂

∂g
logZ

∣∣∣∣
g=g∗

= Tr(Xπ(g∗)) , (84)

1

β2

∂2

∂g2
logZ

∣∣∣∣
g=g∗

= Tr
(
X2π(g∗)

)
−Tr(Xπ(g∗))2 . (85)

The first order corrections to the excess work and the fluctuations per site of the protocol are now computed
within the thermodynamic limit, giving us

τ eqR(g∗) =−
1

2

ˆ 2π

0
dk ϵ̇k tanh

βϵk
2

∣∣∣∣
g=g∗

g=gA

, (86)

τ eqG(g∗) =
J

2

ˆ 2π

0
dk ϵ̈k tanh

βϵk
2

+
ϵ̇2k
2J

cosh−2 βϵk
2

∣∣∣∣
g=g∗

g=gA

+(τ eqR(g∗))
2, (87)

τ eqB(g∗) =−J
ˆ 2π

0
dk ϵ̈k tanh

βϵk
2

+
ϵ̇2k
2J

cosh−2 βϵk
2

∣∣∣∣
g=gA

, (88)

where ϵ̇k =
dϵk
dg . Substituting into the Euler–Lagrange equations (30) and (31) and solving numerically then

determines the instantaneous jumps gA 7→ ξ 7→ gB and gA 7→ Λ 7→ gB for maximising the respective power
and constancy savings. We set our boundary conditions to be gA = 0 and gB = 3 so that we turn on the
transverse magnetic field and cross the phase transition point at g= 1. Similarly to the classical case, we also
compare these optimal protocols to a ‘naive’ protocol in which the parameter is varied linearly in time,
g(t) = gA(1− t/τ)+ gBt/τ .

In figure 3(left) we display the optimal fields strength of g∗ = {ξ,Λ}, which noticeably coincide in the
limit of high temperatures like we saw with the classical Ising chain. On the other hand at low temperatures
they no longer coincide, indicating a distinctly non-classical feature of this example and demonstrating that
simultaneous optimisation is no longer possible. In figure 3 we compare these two choices of protocol to
linear driving and plot the resulting power savings (centre) and constancy savings (right). Since temperature
is finite the phase transition is washed out but we can still observe a signature in the power and constancy
savings occurring at lower temperatures, where we see that the two quantities move significantly further
apart. One dramatic feature is the fact that optimising the power savings results in the constancy savings
becoming significantly negative at lower temperatures beyond the phase transition, indicating a large growth
in overall work fluctuations above that of an infinitely fast quench. On the other hand, if we choose to
maximise the constancy savings we see that this drops drops to zero alongside the power savings at low
temperatures. This indicates that the system is highly sensitive to the choice of protocol when driven close to
a quantum phase transition.
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5. Discussion

We have derived approximations for the average excess work done (19) to rapidly drive a small system out of
equilibrium along with the resulting work fluctuations (27). This has been derived under the assumption
that (i) the dynamics can be described by a Markovian generator that is independent of the velocities in the
time-dependent control parameters, and (ii) the duration of the process is short relative to the characteristic
timescale of the dynamics, τc� τ . These approximations, which are based around the Dyson series, can be
viewed as the inverse to the approximations used to treat the finite-time thermodynamics of slowly driven
systems where τc� τ [17, 18, 37, 63]. Under these approximations we were able to prove that rapid processes
that minimise either the average excess work or work fluctuations under fixed boundary conditions consist of
two instantaneous jumps in the system control parameters, contrasting with the smooth geodesic paths that
are optimal on slow driving and linear response regimes [15, 18], and bearing close similarity to exact results
in stochastic thermodynamics [21, 22]. Protocols that minimise the excess work done jump from the initial
configuration to a point determined from the Euler–Lagrange equation (30), stay there for the duration τ
then jump to the final boundary value. Protocols that minimise the work fluctuations follow the same
pattern, but jump to an alternative point satisfying a different Euler–Lagrange equation (31). We have seen
that in general, these points do no coincide which indicates a trade-off between the optimal values of the
average and variance. While we have focused only on comparing these two distinct protocols, we can go
further and reformulate this as a multi-objective optimisation problem. To do this one can use a Pareto front
to quantify the family of protocols interpolating between the minimal-dissipation and minimal-fluctuation
processes [6]. This is found from minimising the objective function α〈Wex〉+(1−α)σ2

W ∀α ∈ [0,1]. By
linearity, we can simply add (30) to (31) with respective weightings α and 1−α to get the corresponding
Euler–Lagrange equation. Crucially, Pareto-optimal solutions will again consist of instantaneous jumps in
the control parameters. This extends the results of [29] to show that jump protocols continue to be optimal
when one also cares about keeping fluctuations minimal, while also extending this approach to the full
quantum regime. In particular, it is worth emphasising that, beyond the standard scenario of a driven system
in contact with a Markovian environment, our approach also applies to closed quantum driven systems
where the form of minimally dissipative driving processes remain less explored [1, 64]. Our work also
complements optimisations of power (and fluctuations) in quantum heat engines, where jump protocols
were also typically found [27, 28, 52]. Due to its generality, our optimisation scheme can be used to improve
the control of complicated chemical, biological and quantum many-body systems whenever short operation
times are desired. This has been illustrated by minimising both excess work and fluctuations for a classical
and quantum spin chain where an external magnetic field is rapidly changed in time. When driving the
system close to a quantum phase transition, we found that optimising over driving protocols leads to
substantial gains (see figure 3). It is interesting to combine and contrast these results with previous works
considering the minimisation of dissipation in slowly driven many-body systems [38, 53–55].

A number of improvements and generalisations to our approach are warranted. For open quantum
systems, it is important to note that protocols with non-commuting Hamiltonians may not adequately be
described by adiabatic Lindblad equations such as (57) when operating in the fast driving regime [27, 28].
Hence, one should find a way to match our fast driving approximation to an appropriate Markovian master
equation in situations where the system is weakly-coupled to a bath while allowing for fast, non-commuting
Hamiltonian protocols. Interestingly, since non-adiabatic corrections can potentially lead to a dependence on
the control velocities [31], this would imply that instantaneous jumps are not necessarily optimal in these
cases. The approximations (19) and (27) will remain valid in any case, but terms appearing inside the first
order corrections will now depend on the rates dλ⃗/dt and the Euler–Lagrange equations (30) and (31) will
no longer hold. Moreover, this additional dependence means that solutions can generally consist of both
discontinuous and continuous contributions to the optimal path, as is seen in exactly solvable models such as
the driven Brownian particle [21]. Finding ways to determine these optimal protocols under more accurate
treatments of the non-adiabatic dynamics will be crucial for understanding the impact of quantum
fluctuations on the thermodynamics of rapidly driven systems. As we saw with the toy model in section 4.3,
operating close to a quantum phase transition can have a significant detrimental impact on the work
fluctuations along processes with minimal dissipation. For more realistic non-adiabatic dynamics, this
motivates a more careful consideration of the full multi-objective optimisation problem in the presence of
quantum fluctuations and will be left for future investigation.
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Appendix. Error approximation to fast driving expansion

Choosing the jump protocol λ⃗t = λ⃗A + [ζ⃗ − λ⃗A]θ(t)+ [λ⃗B− ζ⃗]θ(t− τ) and using the fact that
θ̇(t− t ′) = δ(t− t ′), we derive the following inequality:

|〈Wex〉true−〈Wex〉∗|=
∣∣∣∣
ˆ 1

0
ds

dλ⃗T
s

ds
Tr
(
X⃗
(
ρ̃(s)−σ(s)

))∣∣∣∣,

⩽
ˆ 1

0
ds

∣∣∣∣
dλ⃗T

s

ds
Tr
(
X⃗
(
ρ̃(s)−σ(s)

))∣∣∣∣,

⩽
ˆ 1

0
ds ||Ḣ(λ⃗s)||1||ρ̃(s)−σ(s)

)
||1,

⩽
(
||H(ξ⃗)−H(λ⃗A)||1 + ||H(λ⃗B)−H(ξ⃗)||1

)
O(τ 2/τ 2c ),

⩽ 2max
{
||H(ξ⃗)−H(λ⃗A)||1, ||H(λ⃗B)−H(ξ⃗)||1

}
O(τ 2/τ 2c ),

=∆h(ξ⃗)O(τ 2/τ 2c ) (A1)

where we used the triangle inequality followed by the trace bound |Tr(AB) |⩽ ||A||1||B||1 and (15). A more
involved procedure can be used to find the error approximation for the work fluctuations. First we define the
truncated propagator appearing in the Dyson series (13),

←−
M(s, s ′)[(.)] := (.)+

ˆ s

s ′
dν τLλ⃗ν

[(.)]. (A2)

For a given operator A and 0⩽ s⩽ 1, 0⩽ s ′ ⩽ 1, consider the following norm

A(s, s ′) :=
∣∣∣∣←−P (s, s ′)[∆ρ̃(s ′)A ρ̃(s ′)]−←−M(s, s ′)[∆σ(s ′)A σ(s ′)]

∣∣∣∣
1
. (A3)

Expanding the propagators gives

A(s, s′) =
∣∣∣∣
∣∣∣∣∆ρ̃(s′)Aρ̃(s

′)−∆σ(s′)Aσ(s
′)+ τ

ˆ s

s′
dν Lλ⃗ν

[∆ρ̃(s′)Aρ̃(s
′)−∆σ(s′)Aσ(s

′)]

+
∞∑

n=2

τ n
ˆ s

s′
dtn

ˆ tn

s′
dtn−1. . .

ˆ t2

s′
dt1 Lλ⃗tn

Lλ⃗tn−1
. . .Lλ⃗t1

[∆ρ̃(s′)A ρ̃(s′)]

∣∣∣∣
∣∣∣∣
1

,

⩽
∣∣∣∣
∣∣∣∣∆ρ̃(s ′)Aρ̃(s

′)−∆σ(s ′)Aσ(s
′)

∣∣∣∣
∣∣∣∣
1

+ τ

∣∣∣∣
∣∣∣∣
ˆ s

s ′
dν Lλ⃗ν

[∆ρ̃(s ′)Aρ̃(s
′)−∆σ(s ′)A σ(s ′)]

∣∣∣∣
∣∣∣∣
1

(A4)

+

∣∣∣∣
∣∣∣∣

∞∑

n=2

τ n
ˆ s

s′
dtn

ˆ tn

s′
dtn−1. . .

ˆ t2

s′
dt1 Lλ⃗tn

Lλ⃗tn−1
. . .Lλ⃗t1

[∆ρ̃(s′)A ρ̃(s′)]

∣∣∣∣
∣∣∣∣
1

,

where we used the triangle inequality for the trace norm. We next bound each of the three terms separately.
Using the submultiplicavity of the trace norm, one has

∣∣∣∣∆ρ̃(s ′)Aρ̃(s
′)−∆σ(s ′)Aσ(s

′)
∣∣∣∣
1
⩽ 2
∣∣∣∣A
∣∣∣∣
1

∣∣∣∣ρ̃(s ′)−σ(s ′)
∣∣∣∣
1
=
∣∣∣∣A
∣∣∣∣
1
O(τ 2/τ 2c ) (A5)
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where we used (15). Similarly, using the definition of the characteristic timescale (9) one gets

τ

∣∣∣∣
∣∣∣∣
ˆ s

s ′
dν Lλ⃗ν

[∆ρ̃(s ′)A ρ̃(s ′)−∆σ(s ′)Aσ(s
′)]

∣∣∣∣
∣∣∣∣
1

⩽ τ(s− s ′)
τc

∣∣∣∣∆ρ̃(s ′)Aρ̃(s
′)−∆σ(s ′)Aσ(s

′)
∣∣∣∣
1
, (A6)

⩽ 2τ

τc

∣∣∣∣A
∣∣∣∣
1

∣∣∣∣ρ̃(s ′)−σ(s ′)
∣∣∣∣
1
,

= 2
∣∣∣∣A
∣∣∣∣
1
O(τ 3/τ 3c ).

Furthermore,

∣∣∣∣
∣∣∣∣

∞∑

n=2

τ n
ˆ s

s ′
dtn

ˆ tn

s ′
dtn−1. . .

ˆ t2

s ′
dt1 Lλ⃗tn

Lλ⃗tn−1
. . .Lλ⃗t1

[∆ρ̃(s ′)A ρ̃(s ′)]

∣∣∣∣
∣∣∣∣
1

⩽
∣∣∣∣A
∣∣∣∣
1
O(τ 2/τ 2c ). (A7)

We can therefore conclude that

A(s, s ′)⩽
∣∣∣∣A
∣∣∣∣
1
O(τ 2/τ 2c ). (A8)

From here we can now bound the error in the fluctuations for the jump protocol
λ⃗t = λ⃗A + [Λ⃗− λ⃗A]θ(t)+ [λ⃗B− λ⃗]θ(t− τ), which we plug into

|(σ2
W)

true− (σ2
W)

∗|= 2

∣∣∣∣Re
ˆ 1

0
ds

ˆ s

0
ds ′ Tr

(
Ḣ(λ⃗s)

(←−
P (s, s ′)

[
∆ρ̃(s ′)Ḣ(λ⃗s ′)ρ̃(s

′)
]

−←−M(s, s ′)
[
∆σ(s ′)Ḣ(λ⃗s ′)σ(s

′)
]))∣∣∣ . (A9)

Following the same steps we applied in (A1) and combining this with (A8), it is straightforward to see that

|(σ2
W)

true− (σ2
W)

∗|⩽∆h2(Λ⃗)O(τ 2/τ 2c ). (A10)
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