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JUNE, 1PZP PHYSICAL REVIEW VOI. UME 33

DIATOMIC MOLECULES ACCORDING TO THE WAVE
MECHANICS I: ELECTRONIC LEVELS OF

THE HYDROGEN MOLECULAR ION

BY PHILIP M. MORSE AND E. C. G. STUECKELBERG

ABsTRAcT

The electronic energies W~(n„, ny, n, ) of the hydrogen molecular ion are calcu-
lated by means of the wave mechanics as functions of the nuclear separation c = 2p, for
several values of the quantum numbers n„, n~ and n, . The wave function is separable
in the elliptical coordinates y = (ri+r, )/2p, @ and x=(r& —r&)/2p. A qualitative idea
of the behavior of these energies as p changes from infinity to zero is gotten by an
investigation of the behavior of the nodal surfaces. The number of these surfaces in

any coordinate equals the quantum number in that coordinate. When p= oo the
resulting system is that of a hydrogen atom and a separated nucleus, the nodes are
paraboloids and planes with quantum numbers n„, ny and n~, and the electronic
energy is W„=R/(n„+n~+ng+1)' where R is the lowest energy of the hydrogen
atom. When p =0 the system is that of a helium ion, the nodes are spherically sym-
metric with quantum numbers n„, n@ and n|i, and the electronic energy is W0=4R/
(n, +ny+np+1)'. As p changes from zero to infinity it is shown that the quantum
numbers are related in the manner n„~n„~n„; n~~n@~n~, ' nylon, ~2ng or 2ng+1.
Therefore W0=4R/n„+ny+2n~+1)' or =4R/(n„+n~+2n~+2)'. By this rule it is
possible to check the following quantitative calculations. The first order perturba-
tions of the various electronic energies of the first three degenerate levels of the
helium ion resulting when p=0 were calculated; the perturbation being the slight
separation of the nuclei (p )0). The first order perturbations of the various electronic
energies of the first two degenerate levels of the hydrogen atom resulting when p = ~
were calculated when the perturbation was the diminution of the separation (p & oo).
The first method is not valid for p) a/2, where a is the radius of the first Bohr orbit
of the hydrogen atom, and the second is not valid for p&3a/2. The gap between
was extrapolated by means of the nodal reasoning above. These electronic energies
plus the energy of nuclear repulsion give the molecular potential energies. A calcu-
lation of these shows that of the eight curves obtained only three, the 1so, 3do and 4P
states show minima, and therefore are stable configurations to this order of approxi-
mation (the Hund molecular notation is used for the states). The numerical results
check with previous calculations and with the data available.

INTRODUCTION

N THE study of the diatomic molecule one of the most important of its
- properties is the so-called potential energy curve of the nuclei, giving

the energy of the electrons plus the energy of repulsion of the nuclei as a
function of the nuclear separation. The simplest case, that of two similar
nuclei with a single electron in common (represented by the hydrogen mole-
cular ion) must be investigated first, in order that a general idea of the be-
havior of one electron be obtained before attacking the problem of the more
complicated molecule formed by the addition of more electrons. '

' For a general qualitative statement of the problem see the papers of Hund and Mul-
liken.

~ F. Hund, Zeits. f. Physik 30, 657 (1926).
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It has been shown that the electronic energy (the sum of the electronic
potential and kinetic energies) of a diatomic molecule is approximately
independent of the rotatory or vibrational velocity of the nuclei, and only
dependent on their instantaneous relative separation. '

This means that for purposes of calculating this energy the nuclei can
be considered as fixed in space at a distance d =2p apart. The equation for
the wave function of the electron then becomes

8x2p 82Z 82Z
V'4+ 8' +—+—4=0

h' '
r~ r2

where r& is the distance from the point in question to the first nucleus and
r2 the distance from the second nucleus. This equation can be separated in
elliptical coordinates, y = (rq+ r2)/2p, x = (rq —r2)/2p and P the angle about
the nuclear axis.

This means that %=X C(P) I'(y) X(x), where X is the normalizing
factor. The factor C is e™,since angle P is a cyclic coordinate, and the
equations for the other two factors become

d dF m'Y Sx'p, p' 2Ze'
(y' - 1)——— + 8'py'+

dy dy y' —1 h' p
y+C Y=O

d X re'X 8~'pp'
(1 —z')——— + (—W x' —C)X=O.

dx de 1 —x' h'
(2)

The problem presented by these two equations, namely that of finding values
of W and C for which X is finite over the range —1 ~x ~ +1 and Y finite
over the range +1&y & ~, has not been solved in general. Burrau" found
8', as a function of p for the lowest allowed level by a numerical integration
which is only applicable to this lowest state.

It is possible to determine what form 4 takes for the two limiting values
of p, zero and infinity. When p=O, 4' is the wave function of thesingly
ionized helium atom (the united atom)

2l+1
@0(N,I,m) =Se(mlm) e' &.sin 0.P~ (cos8) e "I"" (2r/lao)'L„qg(2r/mao) (3)

These quantum numbers bear relation to n~n„and n the quantum num-
bers for each coordinate, for n& =m, ng =l —m, n =n„+n~+ng+1. The re-
lation between the spherical coordinates used above and the general ellip-

3 F. Hund, Zeits. f. Physik 40' 742 (1927).
' F. Hund, Zeits. f. Physik 42, 93 (1927).
5 F. Hund, Zeits. f. Physik 43, 805 (1927).
' F. Hund, Zeits. f. Physik 51, 759 (1928).
~ R. S. Mulliken, Phys. Rev. 32, 186 (1928).
8 R. S. Mulliken, Phys. Rev. 32, 761 (1928).
9 Born and Oppenheimer, Ann. d. Physik 84, 457 (1927)." Burrau, Kgl. Danske Vid. Selskab. VII, 14, (1927).
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tical coordinates is that as p~0, y—&r/p, x-icos 8 and if' remains Q. Pi,
is the generalized Legendre polynomial; Pb'(x) =d'Pi, (x)/dx . L& is the
generalized Laguerre polynomial; I.i, (x) =d I.&(x)/dx ." The constant
no =.'i'/(8''pe'Zo) =a/2ZO, where a is the radius of the first Bohr orbit in
hydrogen (a =5.4X10 ' cm). The normalizing factor is

2!!'(Nlm) = ~

~

~

2 ' 1 2l+1 (l—m)! (I l —1)—!
~ ~ ~ ~

(&+ )' 2 f( +&
—&)'I')

For the hydrogen molecular ion the value of Zo will be two, and the allowed
energy levels for p=0 are

wo(N) = —2''pzo'e'/S'h'=4R/n'

where R is the energy of the normal state of the hydrogen atom.
When p = Oo the wave function must represent a hydrogen nucleus in-

finitely separated from a neutral hydrogen atom (the separated atom) and
must represent the fact that the electron is as likely to be about nucleus
number one as about nucleus number two. If Pi be the wave function for
a single separate hydrogen atom at the position of nucleus one, and f~ the
same at nucleus two, then the function which must be used in this limiting
case is

+.=8 i+A)/(2)"' (4)

the possibility of either sign being due to the fact that 4' 0' and not 4, has
physical reality, and for p = ~ this change in sign makes no change in the
value of +%. Unsold" made the mistake of considering the wave function
as entirely about one nucleus when he attacked the problem.

The elliptical coordinates for the general problem become parabolic
coordinates gi=ri(1+cos 8i); i!i=ri(l —cos 8i) about nucleus one, and
$2 =r~(1 —cos 8~); i!,=r, (1+cos 82) about nucleus two, with angle Q in both
cases. In other words, when p~m then y~1+i!i/2p and y-+1+i!Q2p;
x~ —(1 —(i/2p) and x~1—(2/2p.

The wave function of the hydrogen atom in parabolic coordinates for
the electron aboutnucleus oneis

(4+ I&)i 2~+ ~ L, —~ L, I
tb 8

0

and similarly for f&. Here a„=a/2Z„, Z„has half the value of Zo for the
united atom, and of the quantum numbers m=n~, k=mg, but otherwise
the definitions of the terms are the same. The total quantum number
n=n„+n~+n~+1 and the normalizing factor

4»~[(&+~)']'[(~—& —1) ']' "'
1V„(nkm.) =

27r («„)' k!(I—k —m-1)!
~ ~

"For definitions of Pf, and Lf, see Courant-Hilbert, (Methoden der Mathematischen
Physik, Berlin, 1924.) pp. 67 and 77.

'2 A. Unsold, Zeits. f. Physik 43, S63 (1927).
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and the allowed energy levels are those of the hydrogen atom

W„(22 k 2/2) =R/'N2

935

Therefore the wave function for the hydrogen molecular ion for infinite
separation of the nuclei is, when the parabolic coordinates are transformed
to elliptical coordinates,

pi m212.

2

2p(y 1)
- m/2

. f2,
—Py/na, L

nG~

2p(X- 1)

2p(1 + 2) m/2

na„
~)- m/2

+

2p(1 + x)
~ e '/" LI+

na

2p(i —x)
s+P*//"'- I.k+m

nCao

(6)

according to Eq. (4).
Thus the form of the wave function and the value of the energy levels

are known for the two limits of p. Presumably the wave functions and energy
levels will change continuously from one form to the other as p changes from
co to 0. The curves obtained for the energy levels will represent the elec-
tronic energies and, by adding the repulsion energy Z2e2/2p, the potential
energy curves will be obtained.

THE OscILLATQRY PRoPERTIEs oF 4
It is possible to tell qualitatively where these electronic energy curves

go (i.e. , which states Wp(n„n~n2) are connected to the states W„(n„nqn2)
by continuous curves) by a study of the oscillatory properties of the wave
function 0' for any separation.

It has been shown above that

e =N c(y) y(y, p) x(x, p)

where the function 4(P) is always e™no matter what the value of p. The
surfaces Y=O, X=0 and (real part of 4) =0 are called nodal surfaces, and
are coordinate surfaces with either P, y or x constant, where 0' is zero or
pure imaginary. As p is varied these surfaces change in shape and position
but can never change in number, due to the inherent character of the Schroe-
dinger equation. " The number of nodes in any coordinate at a finite dis-
tance from the nucleus corresponds to the quantum number in that coor-
dinate, and in the case considered the total number of nodes plus one equals
the total quantum number n. The meaning of these quantum numbers in
terms of a molecular model has been discussed by Mulliken. '

The quantum number nq represents the number of nodal surfaces in P.
The number of nodal surfaces in y is called n„; when p =0 this becomes n„,
and when p = co it is n„. The number of nodal surfaces in x equals n„and

"One of us (P. M. M.) will shortly publish a paper dealing with the general properties
of these nodal surfaces, and a proof of the above propositions will be included.
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when p =0 it becomes ng. The nodes in P are planes in which lies the nuclear
axis, and those in y are ellipsoids with the nuclei as foci. The nodes in x
are hyperboloids with the nuclei as foci, and as the nuclear separation in-
creases these last surfaces separate out; if n is an even number half of them
stay about one nucleus and half about the other and n, = 2m ~, but if n„ is odd
one surface stays midway between the nuclei and when p = ~ it is an in-
finite distance from either nucleus, so that n —1=2n~. No more than one
nodal surface can be an infinite distance from either nucleus, for in this
space midway between them the potential energy is greater than W and from
the nature of the Schroedinger equation, only one nodal surface can be pre-
sent in such a region.

Therefore it can be seen that for p = ~ a hydrogen atom having the quan-
tum numbers n„, np, and np and having the energy W„(n„n&np) =R/(n„+
np+np+1)', plus a nucleus, will become a molecule having quantum num-

bers n„=n„; n~=nq and n, =2n~ or =2n~+1 according as there is or is not
a nodal plane midway between the nuclei. This molecule will, when p=0,
become a united atom with quantum numbers n„=n„; n& =n@ and n& =2n~
or =2n~+1, having the energy

Wp(n, .npnp) =4R/(n„+np+2np+1)'
=4E/(n „+np+ 2n p+ 2) '.

As p changes from infinity to zero W, changes from the above set of
values of W to the corresponding set of pairs of 8'o. Thus there is an ad-
ditional degeneracy in W„due to the possibility of the presence or absence
of this central node in x; when this node is absent the electronic state of the
molecule is called symmetric, when present the state is called antisymmetric
with respect to the nuclei.

As the nuclei are brought together the total quantum number n changes
from (n„+np+np+1) to (n„+np+2np+1) for the symmetric case or to
(n„+n&+2np+2) for the antisymmetric, and therefore n changes in value
unless n~ =0 and the molecule is symmetric. Such an increase in n is called
promotion. The maximum promotion possible is a doubling of n and occurs
when n„=nq=0 and the molecule is antisymmetric. In this case Wp= W„.

The energy levels for 0 &p & ~ will be labelled by the new Hund notation, '
the number indicating the value of n(=n„+np+n, +1) the Roman letter
(in the sequence s, p, d, f, g, , ) indicating the value of n, +n&, and the
Greek letter (in the sequence 0, pr, 8, @,7, ,) indicating the value of n&

Thus a 3d7r state is one in which n=3, n„=0, n&
——1, and n =1. Since n

and n, undergo a change in value for p = ~, but n~ does not, the important
letter in the label is the Greek one.

The connections between the Wo and W„ labels can thus be calculated

by the above formulas and labels can be given each connecting energy curve.
It is perhaps well to consider several simple examples of this nodal argument
in connecting the Wo and W„ levels. The task is to follow the changes in

the nodal surfaces as p goes from zero to infinity or vice versa.



DIATOMIC MOLECULES AND WA VE MECHANICS 937

The normal state of the united atom, He+, has no nodal surfaces, and its
energy is 4R. When the nuclei are separated the wave function separates
into two portions, each concentrated about a nucleus, and each of the same
sign. Therefore when p = ~ there will still be no nodal surface and the energy
of the system will be that of the normal state of the hydrogen atom, R. This
energy curve 4R~R is labelled the iso state.

When rl, =2 for the united atom the energy is R and there are three pos-
sibilities for the one nodal surface. It can be in r, in which case the nodal
surface is a sphere. Then when p)0, ropy and the sphere becomes an el-
lipsoid. When p = ~ the ellipsoid becomes two paraboloids, one about each
nucleus, and so there is still a nodal surface near each nucleus, and the
energy level for the separated atom is the second hydrogen atom level, Rj4.
This state is labelled 2scr.

If the nodal surface is in P, the surface will still be through each nucleus
when p = ~, and so this state, called the 2pm, also has an energy going from
R to R/4.

a ~~~~AAAAA

is 6 2p6

Fig. 1. Behavior of the nodal surfaces. Small circles represent the nuclei,
shaded surfaces n the nodal surfaces and curves u the values

of f along the axis.

If, however, the node is in 0, then when p) 0, the two nuclei will separate,
leaving the nodal plane halfway between them and perpendicular to the
nuclear axis. When p = ~ this plane will be an infinite distance from either
nucleus, and the energy of the system is R, that of a hydrogen atom in the
normal state. This state is called the 2po. state, and when p= ~ it differs
from the 1sg state only in the fact that the wave function about the two nuclei
are of opposite sign. In other words, the 1sg state corresponds to the sym-
metric case and the 2po. state to the antisymmetric.

Figure 1 shows these four states and the change in the nodal surfaces.
The value of the wave function along the nuclear axis is also given.

The general study above developed will show that the following levels
for separated and united atoms must be connected by curves.

It should be noted that states where the Greek and Roman letters are
the same are unpromoted states, for a difference between the two letters
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would indicate a node in x, and these nodes are the ones which cause promo-
tion. It should also be noted that this scheme differs from that which Hund
published at first, ' but coincides with his latest scheme. '

United Atom

Quantum Quantum
No. for He+ No. for H~+

Energy

TABLE I

Molecule

State

Separated Atom

Quantum
No. for H

Energy

4R
R
R

4R/9
4R/9
4R/9
4R/9
4R/9
4R/9
R/4
R/4
R/4
R/4
R/4
R/4
R/4
R/4
R/4
R/4

n nrnQnti

1000
2001
2010
2100
3101
3002
3011
3020
3110
3200
4003
4102
4201
4012
4111
4021
4030
4120
4210
4300

n nynQn~

1000
2001
2010
2100
3101
3002
3011
3020
3110
3200
4003
4102
4201
4012
4111
4021
4030
4120
4210
4300

is(r
2po (promoted)
2p~
2so-

3po (promoted)
3do (promoted)
3d~ (promoted)
3ds
3p~
3$o.
4fo. (dbl y. prom. )
4do. (promoted)
4po (promoted)
4f7r (promoted)
4d~ (promoted)
4' (promoted)
4f@
4db
4p~
4so.

n nrfnynp

1000
1000
2010
2100
2100
2001
2010
3020
3110
3200
2001
3101
3200
3011
3110
3020
4030
4120
4210
4300

R

R/4
R/4
R/4
R/4
R/4
R/9

R/9
R/4
R/9
R/9
R/9
R/9
R/9
R/16
R/16
R/16
R/16

Any approximate quantitative values obtained for the various energies
as functions of p must be joined so that they satisfy the requirements of this
scheme.

PERTURBATION METHOD I

There are two different methods of obtaining these approximate values.
The first is to consider the wave function of the molecule to be that of the
united atom, %0, in the first approximation, and to study the perturbation
of the energy levels of the united atom when p is made greater than zero.
The perturbing energy will be the difference between the potential field due
to the united nuclei and the field due to the two nuclei a small distance 2p
apart. This method will not be valid for large values of p, values, say, larger
than a/2, but it will serve to indicate how the various degenerate levels of
the united atom split.

A slightly better approximation is to consider as the unperturbed wave
function not the %0 for the He+ ion with Z=2, but a wave function for.an
ion with such a Z' that the first order perturbation of the corresponding en-

ergy, due to the separation of the nuclei and increase of their joint charge
to 2e, is zero. This has the effect of increasing the spread of the unperturbed
wave function, and although this "stretching" is spherically symmetric, it
approximates the true wave function better than the "unstretched" function.
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The function used is that in Eq. (3) with Z changed to Z' and ap to ap', and
Z' left undetermined for the time being.

The theory of perturbations of a degenerate system'4 is that the various
perturbations of the energy levels S' resulting from one degenerate level
Wp(n) are to be found by the equation

(W t™—W)
nlm

nlm

nlm'
Knim

(W I
—W)

nlm'8'nl'm'

nl'm'
num
nl'm'

W„i„
ntrmr

(W ( ~ —W).
=0 (7)

where n is the principal quantum number, and l, l', m and m' are various
values of the quantum numbers with respect to which the system is degen-
erate; and where

nlm
8'n) m =

l 0'p elm +0 nl'm' Vga

where dv is the volume element and VI is the perturbation of the potential
energy. The actual energy W(nrs) of any one of these resultant levels is
then Wp(m) plus one of the roots of Eq. (7). If all the non-diagonal terms of
the type H/'„"&' ™and S'„"&',are zero for a particular l and m then the
root corresponding will be 8'=?F„"~',and r and s can be indentified with
the quantum numbers l and m of the unperturbed wave function. Other-
wise r and s cannot be identified with l and ns, but represent quantum num-
bers corresponding to a new coordinate system. In other words, if the co-
ordinate system for the perturbed function is in the first approximation equal
to the principal coordinate system for the unperturbed function then r and
s can be identified with l and m. But if these two coordinate systems are
not equal in the first approximation then the two quantum number sets
cannot be identified and non-diagonal terms appear in the above deter-
minant. The problem is to choose a coordinate system for the unperturbed
function by proper combination of the wave functions such that this de-
terminant is all diagonal, and failing this, to make it have as few non-diagonal
terms as possible.

In the case considered, symmetry shows that sperical coordinates are the
best ones to use for 0'0. The perturbing energy

Vq = (Z'e'/r) —(Ze'/2r &)
—(Zes/2rp)

Here Z = 2 and Z' will be determined later to make the perturbation energy
zero. These last terms can be expanded in a series of Legendre polynomials,
and

~4 E.Schroedinger, Ann. d. Physik 80, 452 (2926).
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Z8
pp

r

Z8
po

r

Zg2psa
P&,(cos 0) when r) p

y2a+1

Z&2&2a

P2 (c—os tl) when r(p.
p2a+1

(8)

Using the unperturbed wave function from Eq. (3), the perturbation energy
becomes a function of e, I, I' and m, p and a,'(=a/2Z'), namely, W„"~"„

Since the angle Q onlyenters in the e' ~ factor the above energy cannot be
non-diagonal in m and the only non-diagonal terms possible will be those in
l as is shown. An application of the recurrence formulas of the type:

ppm pm

1 mppm —[3(2l+3)(I+m)(l+m 1)P( —
2 (9)

2(2I—1)(2I+ 1)(2I+ 3)

+2(2I+1)(V+I 3m)P—~~+3(2/ 1)(f m—+1)—(I—m+2)P~+~]

etc.
shows that W„"~" ™(for I /I') is zero unless I =I'+2s where s is an integer.
This can only happen when n is 3 or greater and therefore there will be no
non-diagonal terms in the first two levels, and but one pair when n=3.

The expressions for these energies were calculated for the first three
values of n and the exponentials expanded to give a series in c=d/a =2p/a,
the distance between the nuclei in terms of the first Bohr orbit of the hy-
drogen atom as a unit. For instance

Z' 1"'-" —+——(8/ )+8(Z'/Z)'
Z G

is expanded into a series in c, and the perturbed energy

W(1sc) =R [8g—4g' —16c'g'/3+16c'g'/3 —16c4g'/5+64c'g'/45+ . ]

where g=Z'/Z. In this lowest state the series converges quite slowly and
is not as well adapted for calculation as the actual energy expression. For
the higher states, however, the series is a satisfactory approximation of the
complicated set of exponentials in the actual expression, and is simpler than
it.

The quantity g(=Z'/Z) is adjusted so that W,'0, ——0 for a given c.
Then the energy W(1so) =4Rg' is equal to the perturbed energy for the par-
ticular value of c chosen. This method "stretches" the wave function as
discussed earlier. However, in the higher states, especially when n)2,
the difference 1 —g is very small, and it is then easier and nearly as accurate
to set g=1 and compute the resulting value of TV„"~' as a function of c,
and add it to WD(rc) =4R to obtain the perturbed energy.

The series for the various perturbed energies for the higher states are
tabulated in Table II as functions of c.
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TABLE II.
W(2Po) =R [2g—g'+2g'c'/15 —9g'c4/140+ 7gsc'/180+ ' ~ ~ ]
W(2Ps) =R[2g—

g —g'c /15+g'c'/140 —gsc6/180+ ~ ~ ~ ]
W(2sc ) =R [2g —

g
—2g'c'/3+ 2g'c'/3 —7gsc /20+ 11g'c'/90+

4 16e "/'
W(3Pa) =R —+ [c'+2c'/3 22—c4/63+ 8c'/567+

9 405

4 8e "/'
W(3d~) =R —+ [c'+2c'/3+20c4/163 —4c'/ 81+ ~ ~ ~

9 2835

4 16e "/'
W(3dg) =R —— [c'+2c'/3+17c'/ 81+10c'/729+ ~ ~ .

9 2835

4 8e—2c/3

W(3Pvr) =R —— [c'+2c'/3+2 c'/ 21+ 8c'/567+
9 405

The two states having a non-diagonal term are

32o 32e "/'
WI2c ——R [c'+2c'/3+ 8c'/9+ 8c'/27+ ~ ~ ~ ]2835

3pp 16e—2c/3

W38s = —R —[c'—c'/3+c'/15+0+ ~ ~ ~ ]81

320 8e
—2c/3

Wsm=R —[19c /9 —8c /27 —16c /567 —4cc/1601+
225(2) ~/2

And the resulting energy levels are

300 320

2
300 320

W(3d(r) =4R/9+
2

300 320-(W...—W„.)
4

—+{W3oo)

300 320
(W30p W32p) 32p

4
+ ( 3oo)

The values of the energies in units of R are given in Table III for five
values of c.

TABLE III

iSo
2Po
2p~
2so.
3Po
3do-
3d2r
3dB
3P~
3so

4.000
1.000
1.000
1.000
.444
444

.444

.444

.444
444

0.25

3.742
1.008
.996
.968
.446
.445
.444
444

.443

.434

0.50

3.318
1.031
.980
.910
.453
.449
.446
.443
.439
~ 412

0.75

3.015
1.065

.955

.861

.462

.455

.447

.441

.434

.387

1.00

2.750
1,120

.921

.822

.471

.465

.450

.439

.428

.363

Notice that the sequence of the levels does not agree with that given
by Hund" for small values of nuclear separation. Hund's sequence, how-
ever, was obtained by a purely qualitative process, and so is likely to be
in error. Furthermore the calculations here have assumed no relativity or
spin fine structure separation of the levels in the excited levels in the united
atom. This would impose a different sequence of very small energy dif-
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ferences for very small values of c; but this sequence would soon be wiped
out, for the sequence given above would soon become the predominating
one.

Notice also that the energies of 'all the promoted states are perturbed
downward (i.e. , these energies become larger numerically) and those of the
unpromoted states are perturbed upward.

PERTURBATIQN METHQD I I

The second method of obtaining approximate values of the energy as a
function of p is a modification of the method used by Heitler and London, "
utilizing the fact that 0' is known for p = ~, and has been given by Eq. (6).
It can be assumed that to the first approximation 4 retains its form as p is
made "less than" infinity. The change in the energy levels will be due to
the slight effect of the distant nucleus on the'electron. When the electron
is about the first nucleus the perturbing energy is e'Z„/r2, and when about
the second nucleus is e'Z„/r, Thu.s when ++ U&dv is integrated in the range
—1&x&0, U& is Z„e'/—r&= —Z„e'/p(y —x), and in the range 0&x&+1
it is —Z„e'/r, = —Z„e'/p(y+x).

When p & ~ the normalizing factor is no longer N„, and the best way to
determineit is by actual integration. From Eq. (4), (N„) '= ,'fP, 'dv+-2rfg, 'dv-
+f/&1P&dv But t.he first terms are equal and so (N, ) '=fPPdv+fg&fudv=
N~+Nv, for convenience, where, if b =p/na„, u=yb and v=xb

N~=2x(ua„)' [2(u —b)] e " [L„q r(2u —2b) j'du
1

(u' —v') [ (b+v) j v " [Lp~ ( b+ v)]'dv (10)
—a

Nv= 2x(ua„)' [2(u —b) ] e . [L„q q(2u —2b) ]'du
1

1

(u' —v') [4(b' —v')]~" Lq+ (2b+2v) Lq+ (2b —2v) dv. (11)
—1

Similarly the integral

(12)

and the perturbed energy is thus

W(u b ts) = W (1$)+UA/(NA+NB) + UB/(NA+ NB)

= W„(u)+A+ B.
'~ Heitler and London, Zeits. f. Physik 44, 455, (1927).

I d = v + P = —2 'z( ) ' f f2 ( —b) I
- '-. fl (2 2b) ]

' d„ — —
1

1

I(" ')'['('+")j ' " [ ~+-('v+")]'
—1

+(u —v) [2(b—v)] e+" [Lq+~(2b —2v)]'

+2(u —v) [4(b' —v')]~12 La~ (2b+2v) Lq~ (2b —2v) jdv



DIATOMIC MOLECULES AND W'A UE MECHANICS 943

The plus sign is taken for the symmetric case and the minus for the antisym-
metric.

The non-diagonal terms in the energy determinant of Eq. (7) are all zero
here, for the wave functions have been so chosen that t/, /(r, )"' is orthogonal
for different values of n, k and nz, and the integral of the product of a sym-
metric and antisymmetric + gives the difference between two equivalent in-
tegrals, and is thus also zero.

The perturbed energies l4"(n, k, rn) have been calculated for the states
n =1 and n =2 as functions of c. They are given in Table IV.

TAsr.z IV

w(1$ }=z

W{2p~) =Z

w(2$ }=a

W(3pt7) =Z

W(3do.) =R

w(4f ) =z

w(2p~) =z

w(3d )=z

2+ (C2+2c+2) e
—c

1+—
c 4+(4.2/3+4c+4) e-

(c2+2c+2)e
—c

1+—.
c 4 —(4c'/3+4c+4)e '

~ 1 4—2e—c 2e—c/2+ (C2/4+3c) e
—c/—+

4 (2c+6)—(c+6)e '+(ca/12+3c /2+7c) e '/2

1 4—2e-c 2e—c/2 (c2/4+ 3C)e
—c/2—+

4 (2c+6)—(c+6)e '—(c'/12+3c2/2+7c) e '/

4+(2c+2)e c (c2/2+2c+6) e-c/2+ (Sc4/96 —c'/12 —3c'/4+c) e—+4 (2c—6)+(c'+Sc+6)e
—c+(c5/60 —c'/4 —c'/2+c) e '/'

1 4+(2c+2)e-c (c'/2+2c+6) e-c/2 (5c4/96 —c3/12 —3c2/4+c) e-c/2—
+

4 (2c 6)+(c2+Sc+6)e—c (c~/60 c /4 —c /2+c}e c/2

] 8 2ce-c (2C+ 8)e-c/2+ (~c3/8 C2/6+7i c /8) e- /

+ ~

4 2c 2 —(c/2+2) e '+ (3~c'/256+ ~c'/8+37i-c/8) e '/'

1 1 8—2ce c—(2c+8)e '/' —(7fc'/8 —c'/6+7f. c'/8)e '/

+ ~

4 2c 2 —(c/2+2) e c (37fc /256+ ~C2/8+37f. c/8) e
—c/

The values of these energies in units of R are given for several values of
c in Table V.

TABLE V

1$0.
2ply
2p~
2$0.
3pa
3dtT
3d7r
4fo.

1.702
1.454
.698
.642
.443
.671
.575
.524

1.516
1.442
.619
.572
.428
.712
.580
.610

5

1.405
1.377
.555
.508
. 421
.700
.550
~ 571

7.5

1 ~ 269
1.260

.475

.455

.408

.618

.475

.550

10

1.200
1.200
.450
~ 400
.400
.520
.450
.520

20

1.100
1.100
.350
.337
.337
.367
.350
.367

1.000
1.000

.250

.250

.250

.250

.250

.250

The calculations become invalid for small values of c since the wave
function in this case is no longer even approximately like that for c= ~.
Due to the character of the wave function it should be expected that the
calculations for the promoted states will cease to be valid at a larger c than
those for the unpromoted states. In no case, however, should it be expected
that this perturbation method be valid for c less than 3 or 4. Several curves



when extended to c =1 coincided almost exactly with the value of the energy
calculated by method I. This was considered fortuitous however, for several
other curves gave wide discrepancies at c = 1.

So the method used was to plot the curves obtained by method I from
c =0 to c =1, and those obtained by method II from c =3 to c = ~, and to

2 3 4 5
C

20 50 100 oo

Fig. 2. Electronic energy curves for lowest two states.

~ll in the intermediate gaps by a smooth curve. In case of any doubt as to
which curve joins which, the nodal reasoning discussed earlier is the criterion
used.

~ 4fo'

3pTT
3&5

~=3dd —3po'

-05

ps@, ~ & 3dd

~ PPTT

-10—~
pcf

1 2 3 4 5
G

20 50. f00 oo

Fig. 3. Electronic energy curves for upper states.

Fig. 2 shows curves for the 1so. and 2po. states. The abscissa is in terms
of 10c/(c+5) in order to get the whole range O~c~~ in the figure. The
ordinate is in terms of R. The solid lines represent the parts of the curves
which could be calculated, and the intermediate dashed lines represent the
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extrapolated portions. The dotted line below the iso curve is that calculated
by Burrau for this same state and is probably fairly correct throughout the
whole range of c. This is the only independent check available for the curves,
but the good agreement indicates that the other curves are not far from the
actual values.

Fig. 3 shows the curves for the other levels on a magnified energy scale.
These curves are but the electronic energies as functions of c. The po-

tential energy V(nlm) of the molecule is the electronic energy plus the energy
of repulsion of the nuclei E„=Z„'e"'/d. Potential energy curves for all the
various states are shown in Fig. 4.

'0'"'&&p&

Bdd

-I.O

2 5 4 5 10 20 50 i00

Fig. 4. Potential energy curves.

Only three of these curves show minima, those corresponding to the
1so, the 3do and the 4fa states. Therefore to this degree of approximation
the molecule H2+ is only stable in these three states of all the ones considered.
The other states, with their curves, cannot be considered as having no mean-
ing however, for transitions from stable to unstable states have been used to
explain certain experimental results. ""

The value of V at the minimum point shall be called V„(nlm), and the
value of c at the minimum shall be c„(nlm). The values of the calculated
V are

V (isa) = 1.142R = 15.49 volts

V„(3do)=0.350R=4.74 volts

V (4') =0.309R=4.19 volts.

The energy of dissociation Ez(nlm) is the difference W'„—U, and has the
values

En(iso) =0.142R=1.93 volts

En(3do) =0.100R= 1.35 volts

En(4fo) =0.059R =0.80 volts.

"Winans and Stueckelberg, Proc. Nat. Acad &4p 867 (1928).
'7 Smyth and Condon, Proc. Nat. Acad. 14, 871 (1928).
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The value for the normal .tate agrees fairly well with the one experimentally
determined value available. This value is the ionization potential of H~,
which is 16.1v.' The va'ue given here would be the ionization potential of
H, 13.5v, plus the disso' ation energy of H2, 4.3v, minus the difference be-
tween W„and the 1sa curve at c=1.6 (the equilibrium separation of the
H2 normal state), 1.5v, giving a value of 16.3v as ionization potential of
H2 expected from these curves.

The values of c are

c„(1so)=2.1u=1.12X10 ' cm

c (3do) =7.6a=4. 10X10—' cm

c„(4fo ) =9.4a = 5 .06X 10 ' cm.

These values of c may differ considerably from the correct values, since all
three minima fall on the p on of the curve which is least accurately known.
It is possible that the trc - values are all somewhat smaller than those cal-
culated.

There are few experimental data available to check these u .es. C. J.
Brasefield is at present making measurements on " iectronic bands
corresponding to these levels, and so an experimental check should be forth-
coming shortly.

The results above have been rather surprising, since it has been expected
that all unpromoted states have minima and that no prom'-' "d. state could
have a minimum. ' There has been no theoretical justification ~sr this ex-
pectation, however, and the above results show it to be erroneous. For even
if the minima for the two promoted states 3do and 4fo are not actually as
deep as these first approximations indicate, the curves for both these sl"
start downward as c is decreased from infinity, and at c = 20, where the first
approximation should stj,11 give fairly accurate results, the energy for these
two states is definitely b 'ow the value of 8 „;thus showing that they must
have a minimum point and a finite c„. It seems fairly certain that the pair
of states 2so and 3p0 have no minimum, for the energy curves corresponding
to these states are above S' for every finite value of c'. Thus two promoted
states, 3do and 4fo, have minima, and one unpromoted state, 2so, has no
minimum.

However the energies for the levels 2p~, 3dz remain practical&-'-; equal
to TV„ throughout the range ~ &c&10, and a second approxim (.ion may
show that these states have slight minima. But these minima, if they exist,
wiLl have large values of ~ and small values of ED, and so will be relatively
unstable.

No determination was made of the size of the second or hj.gher orders of
approximation, due to the prohibitive difficulty of such calculations. There
is no proof that the method of successive approximations used above gives
such a rapidly converging series that the first term is sufhcient or evt.n in-

~8 E. Franck und P. Jordan, Anregung von Quantenspriingen Hand. d. Phys. XXIII.
Springer, Berlin (1926).
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dicative, except that in the cases where calculation by other methods
and where experimental data were available these irst terms checked fairly
well.

Work is being carried on by V. Guillemin and C. Zener to obtain these
same curves by a completely different method of approximation. It will
greatly strengthen belief i,n the general validity of the wave-mechanical
perturbation methods if these new curves check the ones presented above.

Having now obtained the energy curves for one electron, the problem of
the many electron diatomic molecule can be attacked next. For instance, the
hydrogen molecular electronic energy can be considered as being due to the
sum of the individual electronic energies as given above, plus the energy of
interaction between the electrons. The writers are calculating a set of curves
of this type.

The authors wish to express their appreciation of the aid rendered by
Professor E. U. Condon in the preparation of this paper.
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