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ABSTRACT 

The circadian timing system regulates key aspects of mammalian physiology. Here, we 

analysed the effect of the endogenous antioxidant paraoxonase 1 (PON1), an HDL-associated 

lipo-lactonase that hydrolyses lipid peroxides and attenuates atherogenesis, on circadian gene 

expression in C57BL/6J and PON1KO mice fed a normal chow diet (ND) or a high-fat diet 

(HFD). Expression levels of core-clock transcripts Nr1d1, Per2, Cry2 and Bmal1 were 

altered in skeletal muscle in PON1-deficient mice in response to HFD. These findings were 

supported by circadian bioluminescence reporter assessments in mouse C2C12 and human 

primary myotubes, synchronized in vitro, where administration of PON1 or pomegranate 

juice modulated circadian period length.  

 

Keywords: Circadian clock, PON1, pomegranate, skeletal muscle, circadian bioluminescence 

recording 
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INTRODUCTION 

Paraoxonases belong to a family of ester hydrolyses, involved in the detoxification of 

organophosphates and lactones. The three members of the paraoxonase family (PON1-3) 

have multifunctional roles in various biochemical pathways, such as protection against 

oxidative damage and lipid peroxidation, innate immunity, detoxification of reactive 

molecules, modulation of endoplasmic reticulum stress and regulation of cell proliferation 

and apoptosis (Aviram et al, 1998; Martinelli et al, 2013; Rosenblat & Aviram, 2009). 

Paraoxonase-1 (PON1) is the most studied enzyme of the family, based on its antioxidative 

properties and its protective role in oxidative stress, inflammation and liver diseases. PON1 is 

found mainly in serum where its association with high-density lipoprotein (HDL) is 

responsible for many of the anti-atherogenic and cardioprotective characteristics of HDL 

(Rosenblat & Aviram, 2009). PON2 on the other hand is not present in serum and is 

ubiquitously expressed in all body cells, including skeletal muscle and heart (Mackness et al, 

2010). 

Accumulating evidence has shown that PON1 has a protective effect on the development of 

cardiovascular diseases (CVD) and diabetes (Aviram et al, 2000b; Koren-Gluzer et al, 2011). 

Studies in Pon1-knockout and Pon1-transgenic mice suggest that PON1 protects against the 

development of diabetes and its cardiovascular complications mostly through its antioxidant 

properties (Aviram et al, 1999; Rozenberg et al, 2008). Furthermore, it was demonstrated that 

in skeletal muscle PON1 attenuates insulin resistance and promotes glucose uptake by 

enhancing GLUT4 expression (Koren-Gluzer et al, 2013). These data are further supported 

by the protective role of HDL–associated PON1 and pomegranate juice (which activates 

PON1) against CVD and diabetes in humans (Aviram et al, 2000a; Aviram et al, 2000b; 

Mastorikou et al, 2006). 
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In peripheral organs a large number of key metabolic functions are subject to daily 

oscillations, such as carbohydrate and lipid metabolism (Adamovich et al, 2015) but also 

xenobiotic detoxification by the liver, kidney or small intestine (Bass, 2012; Dibner & 

Schibler, 2015). These rhythmic oscillations are organized by the circadian clock and have 

evolved to anticipate diurnal variations and to provide the organism with an adaptive 

advantage. The circadian clock is driven by a master pacemaker, located in the 

suprachiasmatic nucleus (SCN) of the hypothalamus, which is orchestrating subsidiary 

oscillators in peripheral organs (Albrecht, 2012). At the molecular level, circadian rhythms 

rely on a signaling network of transcriptional and translational feedback loops. In mammals, 

the core clock machinery is driven by a functional interplay of the BMAL1 and CLOCK 

activators and the PER and CRY repressors proteins. In addition, the CLOCK/BMAL1 

complex also activates a second auxiliary feedback loop, involving the nuclear orphan 

receptors REV-ERB and ROR, which contributes to the cyclic transcription of Bmal1 and 

Clock (Dibner & Schibler, 2015). 

Recent data have indicated a critical role for the circadian clock in both muscle health and 

whole body homeostasis. More than 2300 genes in mouse skeletal muscle are expressed in a 

circadian pattern and participate in a wide range of functions, such as myogenesis, and 

metabolism (Harfmann et al, 2015). Furthermore, disruption of Clock or Bmal1 leads to 

structural and functional alterations at the cellular level in skeletal muscle. In ClockΔ19 and 

Bmal1−/− mutant mice, the observed effects include alteration in myofilament organization 

and reduction in mitochondrial volume and respiration (Andrews et al, 2010). Moreover, 

muscle specific loss of Bmal1 results in impaired insulin-stimulated glucose uptake due to 

reduced protein levels of GLUT4 (Dyar et al, 2014). In addition, we have recently 

demonstrated that the circadian clock, operative in human primary skeletal myotubes, is 

regulating basal myokine secretion (Perrin et al, 2015). 
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In view of the emerging role of PON1 in insulin resistance, we aimed in this study to explore 

the connection between PON1, its activator, the polyphenolic, punicalagin-rich pomegranate 

juice, and the circadian clock in skeletal muscle. For this, we analyzed circadian gene 

expression in vivo in the PON1KO mouse model and further investigated whether PON1, or 

pomegranate, can modulate period length in mouse skeletal muscle cells (C2C12) and human 

primary myotubes synchronized in vitro. 

 

MATERIALS AND METHODS 

Animals and Diets  

Eight-week-old male C57BL/6 or PON1KO mice were fed a normal or a high-fat diet for 8 

weeks. C57BL/6 mice were purchased from Jackson Laboratories (Bar Harbor, ME). 

Generation of PON1KO mice with the C57BL/6 background has been previously described 

(Shih et al, 1998) and mice were generously given by Dr. Diana M. Shih, Department of 

Medicine, University of California, Los Angeles, CA. All animal studies were conducted 

according the National Institutes of Health guideline and were approved by the Technion 

Ethics Committee for Experimentation in Animals.  

The diets, TD06416 (10% kcal, low fat) and TD06414 (60% kcal, high fat), were purchased 

from Harlan (Madison, WI, USA). A detailed description of the diets can be found in 

Supplementary Table 1. The mice were individually housed under controlled temperature 

with 12 h light-dark cycles and had free access to water and a standard rodent diet for 7 days. 

For the study, the mice were divided into four groups. Group 1 57BL/6c control mice (n=10) 

were fed a normal diet (control ND); group 2 57BL/6c control mice (n=6) were fed a high-fat 

diet (control HFD); group 3 Pon1 knockout mice (n=6) were fed a normal diet (PON1KO 

ND); and group 4 Pon1 knockout mice (n=6) were fed a high-fat diet (PON1KO HFD). The 
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food was changed at 3-day intervals to avoid oxidation of the fat or other dietary components. 

Weekly body weight and fasting glucose levels for each mouse were determined throughout 

the study.  

 

Cell culture 

C2C12 mouse myoblast cells (Yaffe & Saxel, 1977) were maintained at a subconfluent 

condition in growth medium containing DMEM GlutaMAX (Thermo Fisher) with 4.5 g/L 

glucose, 100 µg/ml streptomycin, and 10% fetal calf serum (Sigma). Differentiation into 

myotubes was induced in near-confluent cells (~80% confluence) by lowering the serum 

concentration to 2%. Cells were maintained in the differentiation medium for 5-7 days until 

myoblasts had fused into polynucleated myotubes. For bioluminescence recording, C2C12 

cells were transduced with lentiviral particles harboring the Bmal1-luc reporter construct 

(Pulimeno et al, 2013). Cells were treated with Blasticidin (5 µg/ml) to select for resistant 

colonies. 

Primary skeletal myoblasts were derived from donor biopsies with informed consent obtained 

from all participants (see Supplementary Table 2 for donor characteristics). Cells were 

purified and differentiated into myotubes as previously described (Perrin et al, 2015). Briefly, 

myoblast cells were cultured in growth medium (HAM F-10 supplemented with 20% fetal 

bovine serum (FBS; Thermo Fisher)), 1% penicillin/streptomycin (Invitrogen), 0.5% 

Gentamycin (AppliChem) and 0.5% Fongizone (Thermo Fisher) at 37°C. After reaching 

confluence, myoblasts were differentiated into myotubes during 7 - 10 days in DMEM with 

1g/L glucose, supplemented with 2% FBS. Muscle cell differentiation was characterized by 

the fusion of myoblasts into polynucleated myotubes. 

 

Real Time PCR 
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mRNA levels of Nr1d1, PER2, Cry2 and Bmal1 in mice skeletal muscle were determined in 

all groups by quantitative PCR (qPCR). For this, mice were fasted for 4 hours before 

sacrifice. Mouse triceps brachii muscles were collected and immediately frozen in liquid 

nitrogen. Total RNA was extracted using the MasterPureTM RNA purification kit (Epicentre 

Biotechnologies). cDNA was generated from 1 µg of total RNA using the Thermo Fisher 

VersoTM cDNA kit. Products of the reverse transcription were subjected to qPCR using 

TaqMan gene expression analysis. Quantitative PCR was performed on the Rotor-Gene 6000 

Corbett Life science instrument (Qiagen). Results were normalized to GAPDH expression. 

The primers for all analyzed genes were designed by PrimerDesign (South Hampton, UK). 

 

Recombinant PON1 (rePON1), pomegranate juice 

RePON1was generated by directed evolution as described previously (Aharoni et al, 2004) 

and stored at 4°C. PON1 storage buffer (50mM Tris, pH 8.0, 50mM NaCl, 1mM CaCl2, and 

0.1% v/v Tergitol) was supplemented with 0.02% (w/v) sodium azide. Before adding rePON1 

to cells tergitol was removed using Bio-Beads SM-2 (Bio-RAD). 30 mg beads were added to 

100 µl of PON1 in an Eppendorf tube. The mixture was incubated for 2 hours at 4°C in a 

rotating instrument, followed by centrifugation at 10,000 rpm and collection of the 

supernatant. This was repeated twice and the final protein concentration was determined by 

the Lowry protein assay. For the bioluminescence assay, myotubes were incubated for 24 

hours with 8 µg/ml of PON1 followed by synchronization with forskolin for 1h and medium 

change.  

Pomegranate juice (PJ) was supplied by POM Wonderful. The concentrated juice was diluted 

1/5 in H2O before use. 
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Bioluminescence recording 

C2C12 or human primary myoblasts were transduced with lentiviral particles expressing the 

Bmal1-luc reporter, as described in (Perrin et al, 2015). Cells were differentiated into 

myotubes and synchronized with forskolin (Sigma, Saint-Louis, MO, USA) at a final 

concentration of 10 µM. Following 60 min forskolin incubation at 37°C, the medium was 

changed to the phenol red - free recording medium containing 100 µM luciferin (Prolume 

LTD, USA) and cells were transferred to a 37°C light-tight Lumicycle incubator 

(Actimetrics, USA) as previously described by us (Perrin et al, 2015). Bioluminescence from 

each dish was continuously monitored using a Hamamatsu photomultiplier tube (PMT) 

detector assembly. 

 

Data analysis 

Actimetrics LumiCycle analysis software (Actimetrics LTD) was used for bioluminescence 

data analysis (Perrin et al, 2015; Pulimeno et al, 2013). Statistical analyses were performed 

using a paired Student’s t test. Differences were considered significant for p < 0.05 (*), p < 

0.01 (**) and p < 0.001 (***). 

 

 

 

RESULTS 

Chronic circadian misalignment, as it occurs in shift work, is associated with a higher 

prevalence of insulin resistance and obesity (Dibner & Schibler, 2015; Marcheva et al, 2013). 

Given the tight connection between PON1 and metabolic diseases, we aimed in this study to 

explore the potential connection between PON1 and the circadian clock in skeletal muscle. 

As previously demonstrated, PON1 deficiency caused enhanced insulin resistance in both ND 
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and HFD mice compared to their controls (Koren-Gluzer et al, 2013). To unravel whether 

this correlation might be due to changes in the molecular makeup of circadian oscillator, we 

examined the expression levels of the core-clock transcripts Nr1d1, PER2, Cry2 and Bmal1 

in skeletal muscle, using the same groups of mice. While the expression levels of Per2, Cry2 

and Bmal1 transcripts were similar between wild type and PON1KO mice fed a normal diet 

(Figure 1A), Nr1d1 expression was upregulated in PON1KO mice compared to their control 

counterparts. Moreover, HFD significantly reduced the expression levels of Nr1d1 and Per2 

in comparison to the control diet. In addition, the expression levels of Per2 became 

significantly different between wild type and PON1KO mice under HFD. Interestingly, while 

in control mice, Nr1d1 and Per2 levels were reduced upon HFD diet, the same two genes 

were elevated in PON1KO mice under HFD. Cry2 expression was upregulated in control 

mice fed a HFD but remained unchanged in PON1KO mice fed a HFD. Finally, Bmal1 levels 

were not significantly altered in response to the different diets.  

Next, we asked whether exogenous supply of PON1 could directly influence the circadian 

clock machinery. To this end, in vitro experiments were performed using differentiated 

C2C12 myotubes, cultured for 24 hours in the presence of increasing concentrations of 

recombinant PON1 (0-10 arylesterase U/ml), with subsequent assessment of circadian 

transcript expression levels. Incubation with PON1 led to a dose-dependent decrease in Per2 

expression whereas it caused a dose-dependent increase in Cry2 expression in C2C12 

myotubes (see Figure 1B).  

Circadian bioluminescence recording in living cells allows for the study of molecular clocks 

in mammalian peripheral tissues as previously demonstrated by us (Mannic et al, 2013; 

Pulimeno et al, 2013). We applied this powerful methodology to assess clock properties in 

mouse C2C12 cells and human primary skeletal myotubes established from human donor 

biopsies and differentiated in vitro (see Supplementary Table 2 for donor characteristics). 
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C2C12 cells, stably expressing the circadian Bmal1-luc reporter were differentiated into 

myotubes, incubated for 24 hours with 8 µg/ml of recombinant PON1 (rePON1), and 

subsequently synchronized with a forskolin pulse. High-amplitude self-sustained oscillations 

were recorded for the Bmal1-luc reporter. Preincubation with rePON1 for 24h extended the 

period length by 0.47h ± 0.11h (Figure 2A). Next, we assessed the influence of pomegranate 

juice, a major effector of paraoxonase gene expression, on the period length in human 

primary muscle cells. To this end, human primary muscle cells from 4 donors with an 

average BMI of 25.75 ± 1.69 and an average donor age of 62.5 ± 4 (Supplementary Table 2) 

were analyzed. Differentiated human skeletal myotubes were pretreated with pomegranate 

juice for 24h with subsequent forskolin synchronization and bioluminescence recording 

performed as described in (Perrin et al, 2015). Pomegranate incubation led to a significant 

increase in period length from 25.9h ± 0.25h in untreated cells to 27.3h ± 0.29h (p < 0.05) in 

pomegranate treated cells (Figure 2B and C). 

 

 

 

DISCUSSION 

In recent years, there has been a tremendous amount of interest in the circadian regulation of 

metabolic processes. Misalignment of circadian rhythms as it occurs due to social jet-lag, 

shift work or frequent time-zone changes, is associated with an increased risk of metabolic, 

endocrine, and cardiovascular abnormalities (Scheer et al, 2009). Furthermore, a number of 

metabolites display a rhythmic profile, as has been recently shown for lipids (Adamovich et 

al, 2015). Mice with circadian clock ablation develop hyperphagia, obesity, hyperglycemia 

and hypoinsulinemia (Turek et al, 2005). Moreover, mice fed a high-fat diet show an increase 

in period length as early as one week following the start of the calorie dense chow (Kohsaka 
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et al, 2007). Here, we show that high fat diet feeding affects circadian gene expression in 

skeletal muscle in comparison to regular chow (Figure 1). These data confirm previous 

results from hypothalamus, fat and liver of mice fed a high calorie diet (Kohsaka et al, 2007). 

Interestingly, the response to HFD differed between wild type and PON1 deficient animals 

(Figure 1). In PON1KO mice Pon2, Pon3 and potentially other genes may have been 

modulated as a compensatory mechanism in response to loss of PON1. These compensatory 

effects might play a role in the metabolic response to high fat diet and might influence 

circadian gene expression in skeletal muscle in PON1KO mice in response to HFD.  

In an agreement with these findings, we further demonstrate that incubation with increasing 

doses of PON1 modulates core-clock gene expression in mouse C2C12 skeletal myotubes 

(Figure 1). However questions remain concerning the mechanism underlying this effect. 

Incubation of recombinant PON1 with macrophages results in cellular binding and 

internalization of PON1, leading to PON1 localization in the cytoplasmic compartment (Efrat 

& Aviram, 2008). Whether skeletal muscle cells are able to internalize rePON1 protein is not 

known, but it has been demonstrated that exogenous PON1 upregulates GLUT4 expression 

and enhances glucose uptake in C2C12 myotubes at a concentration of 4.5 U/ml (Koren-

Gluzer et al, 2013). Therefore, PON1 has beneficial effects on mouse skeletal muscle cells in 

the context of insulin resistance.  

Interestingly, we observed differential changes in Per2 and Cry2 expression levels in 

response to HFD in mouse skeletal muscle in vivo, but also in the response to PON1 

incubation of C2C12 myotubes in vitro (Figure 1). PER2 and CRY proteins are usually 

considered co-repressors of the circadian clock. However, it has been recently shown that 

PER2 is rather a modulator than a co-repressor of CRY2 and might play different roles at 

different circadian phases. It was proposed that PER suppresses CRY activity during an early 

phase and acts as a transcriptional repressor with CRY at a later phase thereby buffering the 
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effect of CRY (Akashi et al, 2014). Opposite effects on expression levels as we have 

observed here with regard to gene expression could be due to this interaction.  

It has been reported that loss of Cry1 results in short circadian periods, whereas a loss of 

Cry2 results in longer periods, indicating that these proteins have an important regulatory role 

in the control of circadian period length (van der Horst et al, 1999). We therefore questioned 

whether the observed effects on Cry2 and Per2 gene expression would translate into changes 

in period length. To investigate this connection, we performed circadian bioluminescence 

recordings in skeletal muscle cells pre-incubated with either PON1 or pomegranate juice 

(Figure 2). Of note, both PON1 and pomegranate increased circadian period length in skeletal 

muscle. However, the effect of pomegranate might not be restricted to PON1 alone, as 

pomegranate not only increases Pon1 gene expression and activity but also leads to an 

increase in Pon2 gene expression and Pon3 activity (Rosenblat et al, 2003; Shiner et al, 

2007). 

Taken together, these data show in a convincing manner that PON1 is able to modulate 

circadian clock properties. However, whether Pon1 expression itself follows a circadian 

pattern is not known. To address this question, we queried two computational resources, 

which were recently developed for the analysis of large-scale circadian data sets whether the 

expression of Pon1 in skeletal muscle follows a circadian pattern. Both databases, the 

CircaDB database (circadb.hogeneschlab.org), comprising of mammalian circadian gene 

expression profiles (Pizarro et al, 2013) and the CircadiOmics database 

(http://circadiomics.igb.uci.edu/), which integrates transcriptomics data with proteomic and 

metabolomics datasets (Patel et al, 2012), identified Pon1 gene expression in skeletal muscle 

as being circadian by JTK_CYCLE. Pon1 expression levels in skeletal muscle were 100 

times lower compared to liver (Zhang et al, 2014), however, these results indicate that PON1 

might have an additional tissue specific function. Further analysis using CircaDB and the 
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JTK_CYCLE algorithm identified circadian expression of Pon1 also in aorta, liver and 

adrenal gland. Pon2 was circadian in distal colon, adrenal gland, aorta, white adipose tissue 

and liver and Pon3 expression was circadian in lung, aorta, adrenal gland, liver and 

macrophages. Taken together these results suggest that the paraoxonase gene family is 

expressed in a circadian manner, which might play an important role in the cellular response 

to oxidative stress. This is further supported by a recent pilot study suggesting that the PON1 

effector pomegranate extract can affect daily rhythms of serum lipids and oxidative stress 

markers (Hayek et al, 2014). In their function as biomarkers of oxidative stress paraoxonases 

resemble peroxiredoxins, a highly conserved class of peroxidases that are rhythmic across all 

domains of life including bacteria, archae and eukaryota (Edgar et al, 2012). There is 

emerging evidence that the circadian oscillator is driving daily redox cycles that involve the 

antioxidant peroxiredoxin proteins (Reddy & Rey, 2014). Remarkably, these circadian cycles 

of peroxiredoxin oxidation/reduction are operative in human and mouse red blood cells, 

which are incapable of transcription and translation (Cho et al, 2014; O'Neill & Reddy, 

2011). The potential role of such peroxiredoxin cycles in coupling the circadian oscillators to 

the metabolic clock stays to be unravelled. In view of the functional resemblance between 

peroxiredoxins and paraoxanases, this exciting discovery sheds an interesting light on our 

newly described link between circadian clock and PON1.  

This work is the first to characterize the effect of PON1 and pomegranate on the 

skeletal muscle circadian oscillator and its critical impact on period length. It might therefore 

pave the way for future studies that may link defects in these pathways with insulin 

resistance, obesity, and T2D.  
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Figure 1. PON1 and HFD modulate circadian gene expression (A) Eight-week-old male 

C57BL/6 or PON1KO mice were fed normal or high fat diet for 8 weeks. The mice were 

fasted for 4 hours before sacrifice. Mouse triceps brachii muscles were collected and frozen 

in liquid nitrogen. mRNA levels of Nr1d1, PER2, Cry2 and Bmal1 in mice skeletal muscle 

were determined by quantitative PCR. Values were normalized to GAPDH expression. 

Results are represented as mean ± SEM, (n ≥ 5), *p < 0.05, **p < 0.01, ***p < 0.001. (B) 

Differentiated C2C12 myoblasts were cultured for 24 h in the presence of increasing PON1 

concentrations (0–10 arylesterase U/ml) in the medium. Per2 and Cry2 mRNA expression 

levels were assessed by qPCR. Results represent mean ± SEM, (n = 3), ***p < 0.001. 
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Figure 2. PON1 and pomegranate increase circadian period length. (A) C2C12 cells, 

stably expressing the Bmal-luc reporter, were differentiated into myotubes. Differentiated 

cells were incubated for 24 hours with 8 µg/ml of PON1 followed by synchronization with 

forskolin (10 µM, 60 min) and transfer to the Actimetrics LumiCycle for bioluminescence 

recording. Data show the fold increase in period length in the PON1 treated cells compared to 

the average period length of the control cells (n=4). Data represent the mean ± SD. (B) 

Human primary myoblasts were transduced with lentiviral particles expressing the Bmal1-luc 

reporter. Cells were differentiated into myotubes, preincubated with pomegranate juice (PJ) 

for 24h, followed by synchronization with forskolin and transferred to the Actimetrics 

LumiCycle for bioluminescence recording (n=4). Data represent the mean ± SEM. *p < 0.05. 

(C) Oscillation profile of human myotubes representative of 4 independent experiments (one 

donor per experiment).  
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Supplementary Table 1. Composition of the diets 
 

Ingredients Low fat diet (g%) High fat diet (g%) 
 

Casein  210.0 265.0 
L-Cystine  3.0 4.0 
Maltodextrin  50.0 160.0 
Sucrose  325.0 90.0 
Lard  20.0 310.0 
Soybean Oil  20.0 30.0 
Cellulose  37.15 65.5 
Mineral Mix, AIN-93G-MX 
(94046) 

35.0 48.0 

Calcium Phosphate, dibasic 2.0 3.4 
Vitamin Mix, AIN-93-VX 
(94047) 

15.0 21.0 

Corn Starch 280.0 0 
 

 

 

 

 

 

 

Supplementary Table 2. Characteristics of human donors 

 

Characteristics of donors for skeletal muscle biopsies 

Donor Sex Age 
(years) BMI (kg/m2) Biopsy source 

#1 M 57 28.10 Gluteus maximus 
#2 M 62 24.30 Gluteus maximus 
#3 F 65 25.85 Gluteus maximus 
#4 F 66 24.77 Gluteus maximus 
N=4 M=2, F=2 62.5 ± 4 25.75 ± 1.69   
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