

Archive ouverte UNIGE

https://archive-ouverte.unige.ch

Article scientifique

Article

2015

Accepted version

Open Access

This is an author manuscript post-peer-reviewing (accepted version) of the original publication. The layout of the published version may differ .

Turn-On Sulfide $\boldsymbol{\pi}$ Donors: An Ultrafast Push for Twisted Mechanophores

Verolet, Quentin; Rosspeintner, Arnulf; Soleimanpour, Saeideh; Sakai, Naomi; Vauthey, Eric; Matile, Stefan

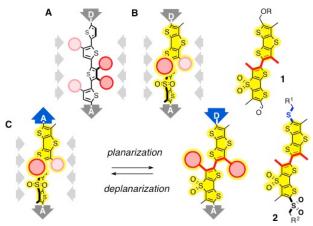
How to cite

VEROLET, Quentin et al. Turn-On Sulfide π Donors: An Ultrafast Push for Twisted Mechanophores. In: Journal of the American Chemical Society, 2015, vol. 137, n° 50, p. 15644–15647. doi: 10.1021/jacs.5b10879

This publication URL: https://archive-ouverte.unige.ch/unige:79049

Publication DOI: <u>10.1021/jacs.5b10879</u>

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.


Turn-On Sulfide π Donors: An Ultrafast Push for Twisted Mechanophores

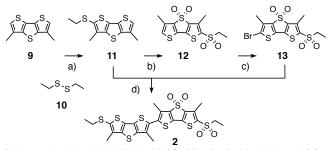
Quentin Verolet, [†] Arnulf Rosspeintner, [†] Saeideh Soleimanpour, Naomi Sakai, Eric Vauthey, * and Stefan Matile * School of Chemistry and Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland

ABSTRACT. Attached to electron-rich aromatic systems, sulfides are very weak acceptors; attached to electron-poor aromatics, they turn into quite strong donors. Here, we show that this underappreciated dual nature of sulfides deserves full consideration for the design of functional systems. Focusing on twisted push-pull systems, we thought that sulfides in the position of "pushing" substituents should act as weak acceptors in the ground state and convert into strong donors only upon coupling with the "pulling" acceptor in the planarized Applied to twisted dithienothiopheneexcited state. dithienothiophene S,S-dioxide probes, turn-on sulfide donors are shown to prevent oxidative degradation and to promote blue-shifting deplanarization in the twisted ground state and red-shifting polarization in the planar excited state. As a result, Stokes shifts increase up to 9400 cm⁻¹. Femtosecond time-resolved broadband fluorescence experiments reveal that the excited-state dynamics in the presence of conventional methoxy donors are mostly controlled by solvent relaxation. With turn-on sulfide donors, ultrafast (3.5 ps), polarityindependent, viscosity-dependent planarization from the twisted Franck-Condon S₁ state to the relaxed S₁ state constitutes the rate-limiting step. Supported by pertinent controls, these findings validate the concept of turn-on sulfide donors for general use.

Sulfide substituents on electron-rich aromatic systems are weak electron acceptors, whereas on electron-poor aromatic systems, they are quite strong electron donors. The very weakly accepting nature of sulfides with electron-rich aromatics is best appreciated with the Hammett $\sigma_p = +0.03$ of ethyl sulfides, a value referring to benzoic acids. This compares to $\sigma_p = -0.83$ for dimethylamino, $\sigma_p = -0.27$ for methoxy and $\sigma_p = -0.15$ for ethyl donors, and to $\sigma_p = +0.66$ for cyano, $\sigma_p = +0.77$ for ethylsulfone and $\sigma_p = +0.78$ for nitro acceptors. The strongly donating nature of sulfides to electron-poor aromatics is best appreciated by the deep red color of naphthalenediimides (NDIs) with two sulfides in the core, halfway between the yellow NDIs with two alkoxy and the blue NDIs with two alkylamino substituents in the core. The conversion of sulfides into strong donors for electron-poor aromatics is also well reflected in the $\sigma_p^+ = -0.60$ of methyl sulfides (for cyano acceptors, for example, $\sigma_p = \sigma_p^+ = +0.66$).

In this report, the switch of sulfide substituents from very weak acceptors to strong donors with decreasing electron deficiency of the aromatic system is used to tackle an intriguing challenge with planarizable push-pull probes.^{5,6} The design of these probes was inspired by the color change of lobsters during cooking and the origin of color vision.⁷ Namely, the combination of planarization and polarization in the ground state was envisioned to afford mechanosensitive fluorescent membrane probes⁸ that operate with changes in excitation rather than emission.^{5,6} Evolving from twisted⁹ push-pull^{8,10-12} oligothiophenes^{8,10} (Figure 1A),¹³ the currently best probes operate with fluorescent flippers. Fluorescent flippers are monomers with large surface area to better feel the environment and to keep on shining also when twisted out of

Figure 1. (A) Planarizable push-pull probes, designed to report on lateral pressure and parallel potentials with shifts in excitation. (B) Fluorescent flippers, i.e., large and shiny monomers, added to maximize mechanosensitivity and lifetime (R = -COCH₂OCH₂COOH). (C) The concept of turn-on sulfide π donors (blue).

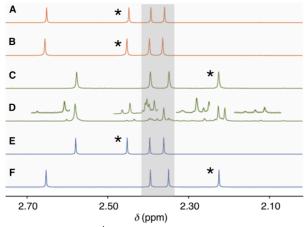

conjugation (Figure 1B).⁶ In flipper probe 1, one bithiophene was bridged with a "sulfide donor" and the other with a "sulfone acceptor." The highly fluorescent dithienothiophene S,S-dioxide¹⁴ acceptor is further strengthened with an aldehyde. Repulsion between methyl substituents and the chalcogenic of holes¹⁵ of the endocyclic sulfur atoms next to the connecting bond is used to twist the two aromatic planes out of co-planarity. In mixed membranes, disordered domains could be imaged by excitation of deplanarized flippers 1 at shorter wavelength, whereas more ordered domains were emitting upon excitation of planarized probes at longer wavelength.⁶ However, considering the concept of planarizable push-pull probes, flipper probe 1 contains a strong aldehyde acceptor but fails to integrate a strong donor. This failure is not accidental. In conjugated push-pull systems, the electron density injected by the donor is delocalized toward the acceptor. However, when twisted out of conjugation, the electron density injected by the donor accumulates on the first aromatic system, a situation that inevitably leads to oxidative degradation. ^{13,10d} Ideally, strong donors in planarizable push-pull probes would turn on only upon planarization of the aromatic system (Figure 1C). Turn-on sulfides appeared just perfect to meet this subtle challenge.

To elaborate on the concept of turn-on sulfide donors comprehensively, we decided to prepare a series of push-pull flippers 2-8 (Table 1, Scheme 1). "Turn-on" probes 2 and 4 contain sulfide substituents that should "turn on" as donors only in response to planarization and conjugation with sulfone and cyano acceptors (Figure 1C). In control probes 3 and 5, the turn-on sulfides are replaced by conventional methoxy donors. Turn-on probe 2, the key target, was readily accessible from dithienothiophene 9. The critical sulfide substituent could be introduced with disulfide 10 after deprotonation of the substrate 9 with LDA. Simultaneous oxidation of dithienothiophene and the turn-on sulfide donor of 11 with mCPBA afforded dithienothiophene S,S-oxide 12 with a

Table 1. Structure and Spectroscopic Properties of Twisted Push-Pull Probes in Solution.^a

Cpd ^b	donor ^b	acceptor ^b	$\lambda_{abs} (nm)^{c}$	$\lambda_{\rm em} \left(nm \right)^{\rm d}$	$\Delta\lambda \left(\text{nm}\right)^{e}$	$\Delta v (\text{cm}^{-1})^{\text{f}}$	$\Delta\Delta v (\text{cm}^{-1})^{\text{g}}$	QY (%) ^h
1	-CH ₂ OR ¹	-СНО	422	621	199	7800	-	-
2	-SEt	-SO ₂ Et	403	635	232	9300	+1500	29
3	-OMe	-SO ₂ Et	418	648	230	8700	+900	22
4	-SEt	-CN	411	650	239	9400	+1600	33
5	-OMe	-CN	428	681	253	9000	+1200	23
6	-H	-CN	396	543	147	7000	-800	-

^a Reported for EtOAc because of the similarity to emission in membranes (Figure 3A), other solvents gave the same trends. ^b For structures, see Figure 1, Scheme 1 and Scheme S2 (7: A = -CN, D = -N(n-Pr)₂),; **8**: A = -COR², D = -N(n-Pr)₂). ^c Wavelength λ_{abs} of absorption maximum (2: ε = 19.7 mM⁻¹cm⁻¹, **3**: ε = 15.9 mM⁻¹cm⁻¹). ^d Wavelength λ_{em} of emission maximum (excitation at λ_{abs}). ^c Stokes shift in wavelength (nm, λ_{em} - λ_{abs}). Stokes shift in frequency (wavenumbers, ν_{abs} - ν_{em}). ^g Change of Stokes shift compared to original 1. ^h Fluorescence quantum yield in CHCl₃ relative to rhodamine G (94% in EtOH). QYs are unrelated to planarization kinetics from FC to the relaxed S₁ excited state.



Scheme 1. a) 1. LDA, THF, -78 °C, 30 min; 2. **10**, THF, rt, 12 h, 70%; b) mCPBA, CH₃Cl, rt, 12 h, 53%; c) NBS, AcOH, CH₂Cl₂, reflux, 24 h, 66%; d) 1. LDA, SnCl(Bu)₃, THF, -78 °C, 1 h; 2. Pd(PPh₃)₄, DMF, 70 °C, 2 d, 38%.

sulfone acceptor. The activated sulfone 13 was obtained by bromination with NBS, and Stille coupling with sulfide 11 afforded flipper 2 in overall four straightforward steps only. For future probe development, it is important to note that the introduction of sulfide turn-on donors from their respective disulfides is compatible with a broad variety of functional groups. Flippers 3-8 were prepared analogously, details on their synthesis can be found in the Supporting Information (Schemes S1-S2).

In the ¹H NMR spectrum of **5**, the signals of the methyl protons next to the cyano acceptor and the methoxy donor appeared downfield and upfield of the methyl protons in the middle of the fluorophore, respectively (Figure 2C), and the spectrum changed completely within hours (Figure 2D). Consistent with the sulfide acting as stabilizing acceptor in the twisted ground state of **2**, the proximal methyl protons were downfield shifted (Figure 2A), and the fluorophore remained intact for more than a week under ambient conditions, in solution, in the light (Figure 2B). Identical trends were found with regard to photostability. Under constant irradiation at 435 nm for long time, the decrease of emission intensity of probe **2** with turn-on sulfide donors with time was 8.2 times slower than that of carboxyfluorescein and 37.8 times slower than that of the unstable probe **3** with conventional methoxy donors.

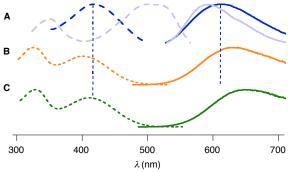
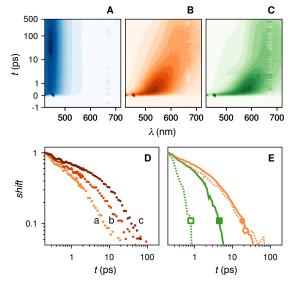

The emission maximum of the original probe 1 in membranes is close to that in EtOAc (Figure 3A, solid). The large difference between the absorption maxima of 1 in EtOAc (and all other solvents) and solid-ordered membranes is thought to originate from ground-state planarization (Figure 3A, dashed). The absorption maximum of turn-on probe 2 in EtOAc was found at λ_{abs} = 403 nm (Figure 3B, dashed, Table 1). This compared to 1 blue-shifted absorption was in agreement with an increased ground-

Figure 2. Part of the ¹H NMR spectra of **2** (A; re-measured after 6 days, B), **5** (C; re-measured after 6 hours, D), **4** (E) and **3** (F). The signals of the methyls next to sulfide (*, A, B, E) and methoxy substituents (*, C, F) and the region of those in the middle of the chromophores (grey area) are highlighted. D: Peak patterns from degradation side products are reproduced in magnified form just above the original spectrum.

state deplanarization in the absence of a strong push-pull dipole, i.e., with a weakly withdrawing sulfide acceptor at the partially decoupled, electron-rich dithienothiophene. The emission of turn-on probe 2 at $\lambda_{em}=635$ nm was red-shifted compared to 1 (Figure 3B, solid, Table 1). This red shift was in agreement with a strengthened push-pull dipole in the planar S_1 state, i.e., the presence of turned-on sulfide donors. Blue shift in absorption and red shift in emission added up to a large Stokes shift, increasing by $\Delta\Delta\nu=+1500~\text{cm}^{-1}$ from original 1 to $\Delta\nu=9300~\text{cm}^{-1}$ for turn-on probe 2 (Table 1, entry 2). 16

Compared to original 1, the presence of conventional methoxy donors in 3 shifted the emission to the red but failed to shift the absorption significantly to the blue (Figure 3C, Table 1). An increased Stokes shift by only $\Delta\Delta\nu=+900~{\rm cm}^{-1}$ was the result, that is not much more than half the $\Delta\Delta\nu=+1500~{\rm cm}^{-1}$ obtained with turn-on donors in 2 (Figure 3C, Table 1). Cyano instead of sulfone acceptors caused global red shifts (Table 1, entries 2-5). These uniform shifts implied slightly increased ground-state planarization and excited-state polarization. Despite their smaller $\sigma_{\rm p}$, cyano groups are thus slightly stronger acceptors than sulfones in these systems. Partially preserved blue-shifted absorption in 4 compared to 1 showed that the stronger cyano acceptors are


Figure 3. Absorption (left) and emission spectra (right) of 1 (A), 2 (B) and 3 (C) in EtOAc and 1 in solid-ordered membranes (DPPC vesicles at 25 °C; A, light blue). Spectra in A are from ref. 6.

insufficient to turn on sulfide donors in the twisted ground state. As a result, the Stokes shift with turn-on donors combined with cyano acceptors in 4 was with $\Delta \nu$ = +9400 cm⁻¹ the largest found in this series. However, compared to conventional methoxy donors in 3 and 5, the increase of the Stokes shift with turn-on sulfide donors was more pronounced in combination with sulfones in 2 (+600 cm⁻¹) than with cyano acceptors in 4 (+400 cm⁻¹, Table 1).

Controls **6** without any substituent in the donating position gave the expected large blue shifts in absorption and emission with significantly reduced Stokes shift ($\Delta\Delta\nu$ = -800 cm⁻¹, Table 1, entry 6). Amino donors combined with cyano and ketone acceptors in 7 and **8**, respectively, removed essentially all fluorescence in EtOAc. Appreciable emission only in the least polar solvents such as hexane (7: λ_{abs} = 445 nm, λ_{em} = 635 nm, $\Delta\nu$ = 6900 cm⁻¹; **8**: λ_{abs} = 420 nm, λ_{em} = 642 nm, $\Delta\nu$ = 8400 cm⁻¹) implied that fluorescence quenching occurs by photoinduced intramolecular electron transfer from the amino donor, ^{8d} independent of the nature of the acceptor.

A novel, extremely versatile broadband fluorescence upconversion technique, 17 unrivaled in photometric precision, was applied to gain direct insight into the conformational and energetic relaxation processes in real-time. Contrary to the monomeric control 12 (Figure 4A), the time-resolved emission spectra of 2 and 3 in EtOAc showed a large red shift with time (using times larger 0.2 ps, Figures 4B and C). The time-resolved emission spectra of 2 with turn-on and 3 with conventional donors were quite similar. In EtOAc, the characteristic instability of 3 was nicely visible with the mismatch at the transition from the linear to the logarithmic recording range at 2 ps (30 min delay between the two measurements; Figure 4C, compare 2D). Persistent red shifts of almost 1500 cm⁻¹ $(t_{1e} > 0.2 \text{ ps})$ in non-polar solvents and their slowing-down with increasing solvent viscosity supported that the spectral-shift dynamics in hydrophobic solvents report on the planarization of 2 in the excited state (Figure 4D). The 1/e time associated with the planarization of 2 in the S₁ state increased from $t_{1e} = 1.5$ ps at 0.3 cP in *n*-hexane (Figure 4D, a) to t_{1e} = 8.0 ps at 2.8 cP in *n*-hexadecane (Figure 4D, c).

In going from apolar cyclohexane to moderately polar EtOAc, the time constant of the red-shift dynamics for **3** with the methoxy group as donor increased from $t_{1e} = 0.45$ ps up to $t_{1e} = 1.8$ ps (Figure 4E, \square , \blacksquare). This is in clear contrast to the red-shift dynamics for **2**, with turn-on sulfides, which showed basically no dependence on the solvent polarity and were distinctly slower than for **3** in apolar and polar solvents ($t_{1e} \approx 3.5$ ps, Figure 4E, \bigcirc , \bigcirc).

Figure 4. Time-resolved broadband emission spectra of **12** (A), **2** (B) and **3** (C) in EtOAc. (D) Normalized shift of the position of the emission maximum with time, $shift = [\nu(t) - \nu(\infty)]/[\nu(0.2ps) - \nu(\infty)],$ with ν being the frequency of the fluorescence maximum, ^{19b} after excitation at 400 nm (100 fs pulse) for **2** in alkanes of different viscosity (a, n-hexane, 0.3 cP; b, c-hexane, 0.9 cP; c, n-hexadecane, 2.8 cP). (E) Same for **2** (O, \bullet) and **3** (\Box , \blacksquare) in solvents of different polarity (ethyl acetate (\bullet , \blacksquare), cyclohexane (O, \Box)).

These observations allow for two conclusions. Firstly, the excited-state planarization (the exclusive dynamics being monitored in apolar solvents) is distinctly slower for 2 than for 3. The conventional strong donor in 3 thus supports planarization already in ground state, as expected for push-pull systems and demonstrated by red-shifted absorption. Thus planarization from the less twisted Franck-Condon (FC) S_1 state to the planar relaxed S_1 state requires little structural rearrangement. In clear contrast, turn-on donors in 2 support deplanarization while acting as acceptors in the ground state, as expected for pull-pull systems and demonstrated by blue-shifted absorption. As a result, they need correspondingly larger amplitude motion, and thus more time, to planarize from the more twisted FC state to the relaxed S_1 state while transforming from weak acceptors to strong donors.

Secondly, when moving toward polar solvents, the slower diffusive solvent relaxation starts to dominate the relaxation dynamics of the S_1 state of $\bf 3$. In clear contrast, planarization of $\bf 2$ is slower than solvent relaxation and thus the excited-state dynamics of $\bf 2$ are independent of solvent polarity. This could indicate that in $\bf 2$, planarization is a prerequisite for the excited-state charge transfer, which may be interpreted as a direct experimental support of the concept of turn-on sulfide donors. These insights could be secured only with ultrafast broadband fluorescence in a judicious choice of solvents, thus allowing us to assign the time-scales of the different relevant relaxation processes without the complications arising from overlapping spectral contributions when using transient absorption spectroscopy¹⁸ or the limited access to spectral lineshapes in single wavelength fluorescence measurements. 19,20

Direct evidence for a twisted FC S₁ state from time-resolved emission spectra was in agreement with strong positive solvato-chromism of the emission but not the absorption maxima (Figures S1-S6). This key characteristic of planarizable push-pull probes^{5,6}

contrasts clearly to positive solvatochromism in both absorption and emission found for standard push-pull fluorophores with planar ground and excited states. The dependence of emission maxima on polarity index was linear and similar for all push-pull probes (slope $v_f = 13300\text{-}17400 \text{ cm}^{-1}$, $2 < 4 \le 3 < 5$). As with the Stokes shifts, solvatochromism of 6 without additional donor was much weaker ($v_f = 7600 \text{ cm}^{-1}$, Figure S6).

In summary, the dual nature of sulfide substituents is applied to tackle a most annoying challenge with planarizable push-pull probes, i.e., rapid decomposition with strong donors. Blue shifts in absorption confirm sulfides as weak, stabilizing and deplanarizing acceptors in the twisted ground state, whereas red shifts in emission confirm their transformation into polarizing donors upon planarization in the excited state. Demonstrating the usefulness of time-resolved broadband emission spectra to address significant questions, direct experimental evidence for the ultrafast, polarityindependent and viscosity-dependent planarization from the twisted FC S₁ state to the equilibrium S₁ state could be secured. Compared to controls with conventional donors, turn-on donors provide access to twisted probes that, i) most importantly, are stable, ii) have maximal Stokes shifts, iii) reasonable quantum yields, and iv) mechanosensitive excited-state dynamics that are controlled by planarization rather than by solvation. 16 These findings became possible with the concept of turn-on sulfide donors, i.e., the conversion from very weak acceptors for electron-rich aromatics² to strong donors for electron-poor aromatics.^{1,3} Compared to isostructural sulfur redox switches,^{6,12,21} the more subtle concept of turn-on sulfide donors has attracted much less attention for the design of functional systems. The reported results suggest that it certainly could, maybe should.

ASSOCIATED CONTENT

Supporting Information. Detailed experimental procedures. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Authors

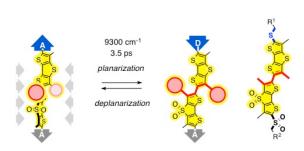
stefan.matile@unige.ch, eric.vauthey@unige.ch

Author Contributions

[†]These two authors contributed equally.

Notes

The authors declare no competing financial interest.


■ ACKNOWLEDGMENTS

We thank the NMR and the Sciences Mass Spectrometry (SMS) platforms for services, and the University of Geneva, the European Research Council (ERC Advanced Investigator), the Swiss National Centre of Competence in Research (NCCR) Chemical Biology, the NCCR Molecular Systems Engineering and the Swiss NSF for financial support. E. V. and A. R. thank N. P. Ernsting (Humboldt University, Berlin) for continuous support and advice on the fluorescence up-conversion set-up.

■ REFERENCES

(1) Bernardi, F.; Mangini, A.; Epiotis, N. D.; Larson, J. R.; Shaik, S. J. Am. Chem. Soc. 1977, 99, 7465-7470.

- (2) (a) Hammett, L. P. J. Am. Chem. Soc. **1937**, *59*, 96-103. (b) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. **1991**, *91*, 420-427.
- (3) Misek, J.; Vargas Jentzsch, A.; Sakurai, S.; Emery, D.; Mareda, J.; Matile, S. *Angew. Chem. Int. Ed.* **2010**, *49*, 7680-7683.
- (4) Kishore, R. S. K.; Kel, O.; Banerji, N.; Emery, D.; Bollot, G.; Mareda, J.; Gomez-Casado, A.; Jonkheijm, P.; Huskens, J.; Maroni, P.; Borkovec, M.; Vauthey, E.; Sakai, N.; Matile, S. *J. Am. Chem. Soc.* **2009**, *131*, 11106-11116.
- (5) Fin, A.; Vargas-Jentzsch, A.; Sakai, N.; Matile, S. Angew. Chem. Int. Ed. 2012, 51, 12736-12739.
- (6) Dal Molin, M.; Verolet, Q.; Colom, A.; Letrun, R.; Derivery, E.; Gonzalez-Gaitan, M.; Vauthey, E.; Roux, A.; Sakai, N.; Matile, S. *J. Am. Chem. Soc.* **2015**, *137*, 568-571.
- (7) (a) Gamiz-Hernandez, A. P.; Angelova, I. N.; Send, R.; Sundholm, D.; Kaila, V. R. I. *Angew. Chem. Int. Ed.* **2015**, *54*, 11564-11566. (b) Helliwell, M.; Regan, A. C.; Watt, C. I. F. *Phys. Chem. Chem. Phys.* **2015**, *17*, 16723-16732. (c) Baumeister, B.; Matile, S. *Chem. Eur. J.* **2000**, *6*, 1739-1749.
- (8) (a) Karpenko, I. A.; Collot, M.; Richert, L.; Valencia, C.; Villa, P.; Mély, Y.; Hibert, M.; Bonnet, D.; Klymchenko, A. S. *J. Am. Chem. Soc.* **2015**, *137*, 405-412. (b) López-Duarte, I.; Chairatana, P.; Wu, Y.; Pérez-Moreno, J.; Bennett, P. M.; Reeve, J. E.; Boczarow, I.; Kaluza, W.; Hosny, N. A.; Stranks, S. D.; Nicholas, R. J.; Clays, K.; Kuimova, M. K. Anderson, H. L. *Org Biomol. Chem.* **2015**, *13*, 3792-3802. (c) Schmid, S.; Schneider, E. M.; Brier, E.; Bäuerle, P. *J. Mater. Chem.* **B 2014**, *2*, 7861-7865. (d) Woodford, C. R.; Frady, E. P.; Smith, R. S.; Morey, B.; Canzi, G.; Palida S. F.; Araneda R. C.; Kristan W. B.; Kubiak, C. P.; Miller, E. W.; Tsien, R. Y. *J. Am. Chem. Soc.* **2015**, *137*, 1817-1824.
- (9) (a) Macchi, G.; Milián Medina, B.; Zambianchi, M.; Tubino, R.; Cornil, J.; Barbarella, G.; Gierschner, J.; Meinardia, F. *Phys. Chem. Chem. Phys.* **2009**, *11*, 984-990. (b) Ho, H.-A.; Najari, A.; Leclerc, M. *Acc. Chem. Res.* **2008**, *41*, 168-178.
- (10) (a) Nesterov, E. E.; Skoch, J.; Hyman, B. T.; Klunk, W. E.; Bacskai, B. J.; Swager, T. M. *Angew. Chem. Int. Ed.* **2005**, *44*, 5452-5456. (b) Maerz, B.; Wiedbrauk, S.; Oesterling, S.; Samoylova, E.; Nenov, A.; Mayer, P.; de Vivie-Riedle, R.; Zinth, W.; Dube, H. *Chem. Eur. J.* **2014**, *20*, 13984-13992. (c) Sotgiu, G.; Galeotti, M.; Samorí, C.; Bongini, A.; Mazzanti, A. *Chem. Eur. J.* **2011**, 17, 7947-7952.
- (11) Fujisawa, K.; Humbert-Droz, M.; Letrun, R.; Vauthey, E.; Wesolowski, T. A.; Sakai, N.; Matile, S. *J. Am. Chem. Soc.* **2015**, *13*, 11047-11056.
- (12) (a) Sakai, N.; Houdebert, D.; Matile, S. *Chem. Eur. J.* **2003**, *9*, 223-232. (b) Winum, J.-Y.; Matile, S. *J. Am. Chem. Soc.* **1999**, *121*, 7961-7962.
- (13) Alonso Doval, D.; Dal Molin, M.; Ward, S.; Fin, A.; Sakai, N.; Matile, S. *Chem. Sci.* **2014**, *5*, 2819-2825.
- (14) Barbarella, G.; Di Maria, F. Acc. Chem. Res. 2015, 48, 2230-2241.
- (15) Beno, B. R.; Yeung, K.-S.; Bartberger, M. D.; Pennington, L. D.; Meanwell, N. A. *J. Med. Chem.* **2015**, *58*, 4383-4438.
- (16) As an amorphous solid, turn-on probe 2 is highly fluorescent, whereas in single crystals, 2 is fully planarized and does not fluoresce. Studies on ground-state planarization in confined space are ongoing and will be reported in due course.
- (17) (a) Zhang, X.-X.; Würth, C.; Zhao, L.; Resch-Genger, U.; Ernsting, N. P.; Sajadi, M. *Rev. Sci. Instr.* **2011**, *82*, 063108. (b) Sajadi, M.; Quick, M.; Ernsting, N. P. *Appl. Phys. Lett.* **2013**, *103*, 173514.
- (18) Siebert, R.; Winter, A.; Schubert, U. S.; Dietzek, B.; Popp, J. J. Phys. Chem. C 2010, 114, 6841-6848.
- (19) (a) Sluch, M. I.; Godt, A.; Bunz, U. H. F.; Berg, M. A. *J. Am. Chem. Soc.* **2001**, *123*, 6447-6448. (b) Maroncelli, M.; Fleming, G. *J. Chem. Phys.* **1987**, *86*, 6221-6239.
- (20) Involvement of a twisted intramolecular charge-transfer (TICT) state can be excluded because the substantial red shift of the fluorescence observed in apolar solvents and the polarity-independent excited-state dynamics of 2 cannot be rationalized in terms of a TICT state.
- (21) (a) Dado, G. P.; Gellman, S. H. J. Am. Chem. Soc. 1993, 115, 12609-12610. (b) Zhao, Y.; Beuchat, C.; Mareda, J.; Domoto, Y.; Gajewy, J.; Wilson, A.; Sakai, N.; Matile, S. J. Am. Chem. Soc. 2014, 136, 2101-2111.

