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Abstract

Hundreds of loci have been associated with blood pressure (BP) traits from many genome-wide association studies. We
identified an enrichment of these loci in aorta and tibial artery expression quantitative trait loci in our previous work in
∼100 000 Genetic Epidemiology Research on Aging study participants. In the present study, we sought to fine-map known
loci and identify novel genes by determining putative regulatory regions for these and other tissues relevant to BP. We
constructed maps of putative cis-regulatory elements (CREs) using publicly available open chromatin data for the heart,
aorta and tibial arteries, and multiple kidney cell types. Variants within these regions may be evaluated quantitatively for
their tissue- or cell-type-specific regulatory impact using deltaSVM functional scores, as described in our previous work. We
aggregate variants within these putative CREs within 50 Kb of the start or end of ‘expressed’ genes in these tissues or cell
types using public expression data and use deltaSVM scores as weights in the group-wise sequence kernel association test
to identify candidates. We test for association with both BP traits and expression within these tissues or cell types of
interest and identify the candidates MTHFR, C10orf32, CSK, NOV, ULK4, SDCCAG8, SCAMP5, RPP25, HDGFRP3, VPS37B and
PPCDC. Additionally, we examined two known QT interval genes, SCN5A and NOS1AP, in the Atherosclerosis Risk in
Communities Study, as a positive control, and observed the expected heart-specific effect. Thus, our method identifies
variants and genes for further functional testing using tissue- or cell-type-specific putative regulatory information.

http://www.oxfordjournals.org/
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Introduction
Genetic studies of complex disorders have identified hundreds
to thousands of variants in the human non-coding genome.
However, despite significant mapping progress, we do not yet
know the identity of most of the underlying genes and variants,
nor have a mechanistic understanding of how these genes,
individually and together, contribute to a phenotype. Thus, we
need to consider how such genomic studies can improve our
knowledge of trait physiology. One approach would be to focus
genetic analyses on organs and tissues of interest.

Pritchard and colleagues have hypothesized that the majority
of genome-wide association study (GWAS) signals may be func-
tionally spurious and arise from genes’ peripheral to the core
functions affected in a trait or disease (1). These false positives
dominate because most genes in a cell type are connected by
gene expression to one another through very shallow functional
networks, a working hypothesis that fails to explain the sta-
bility of network perturbations (robustness) or their specificity
(phenotypic effects) (2–4). To resolve this question, connecting
genotypes to phenotypes through gene expression variation
is of primary importance since expression quantitative trait
loci (eQTL) are identifiable causal factors (5,6). However, uti-
lizing gene expression in trait-related tissues is necessary (7),
as genes exert their activities in the context of a core genetic
network with intrinsic (cell autonomous) and extrinsic (non-
autonomous) feedback (8).

Transcription within mammalian genomes is locally regu-
lated within chromatin segments called topological associating
domains (TADs), largely invariant across cell types and of vari-
able sizes, but generally 200–1000 kilobases (kb), depending on
callers (9,10). TADs contain numerous dispersed spatiotemporal
expression cis-regulatory elements (CREs or enhancers) that
allow binding of various transcription factors (TF) to enable gene
expression control (11). Many enhancers are recognized by their
DNaseI hypersensitivity (DHS), Assay for Transposase-Accessible
Chromatin using sequencing (ATAC-seq) assays (12) or adjacent
histone (H3K4me1, H3K4me3, H3K27ac) modifications (13,14).
Their phenotypic importance is evident from the fact that only
2.6% of the genome comprises DHS and histone marks (15)
but explains ∼30% of the heritability of traits (16). Thus, trait
variation is from sequence changes within TFs, their binding
sites (TFBS) and CREs, all detectable through epigenomic marks
in cell lines and tissues. In this study, we propose an approach
wherein these types of epigenomic data are used to identify
genes within a GWAS locus in tissues of interest.

The analyses we propose are enabled by numerous pub-
lic genomic resources. The Encyclopedia of DNA Elements
(ENCODE) Project (https://www.encodeproject.org/) has gener-
ated open chromatin, RNA and DNA sequencing and histone
modification data, among other data types. The Genotype-
Tissue Expression (GTEx) Project (https://www.gtexportal.org/)
includes genotype and expression data across 53 tissues and
is useful as a reference transcriptome and eQTL dataset. These
public resources also enable the development of an annotation
score, deltaSVM (17), in which the quantitative impact of a non-
coding variant on tissue- or cell-type-specific gene regulation
is predicted, based on a reference training set of regulatory
regions. In this study, we exemplify this reverse genetic
approach by focusing on blood pressure (BP) and QT interval
variation.

Although the roles of the kidney and adrenal gland are
well established in BP regulation and syndromes (18–20), our
previous work in the Kaiser Permanente Research Program on

Genes, Environment and Health (RPGEH) Genetic Epidemiology
Research on Adult Health and Aging (GERA) (21,22) study
demonstrated that associated variants at BP GWAS loci were
enriched in eQTLs specific to the aorta and tibial arteries.
Expanding on this work in this study, we aimed to connect
groups of proximal putative regulatory variants within and
around each gene to both the gene’s expression and also to
BP traits, inferring that the gene’s expression in a potentially
relevant tissue affected the regulation of BP. To accomplish this,
we undertake this study with three main steps: (1) establish
a putative CRE catalog from open chromatin experiments in
tissues/cell types of interest, (2) score the predicted functional
regulatory impact of the variants within these putative CREs
(‘putative CRE variants’) and (3) take the putative CRE variants
within a window around each gene and test them in aggregate
using a gene-based test (Fig. 1). More specifically, within each
artery dataset, we identified putative CREs and, by extension,
putative CRE variants, for every gene, and tested these variants
in aggregate for association with BP in the GERA study, as well
as with expression in the GTEx study. We used the sequence
kernel association test (SKAT) (23) for these association analyses,
with each variant weighted by their deltaSVM score, to up-
weight variants with greater predicted effects on gene regulatory
activity. We supplemented our expression analyses with the
software MetaXcan (24) to test whether the predicted expression
of genes in each individual could be associated with BP. Prior to
the novel BP gene discovery analyses of tissue involvement,
and as a positive control, we first examined genes for the
cardiac trait QT interval for which there is strong functional
evidence of primarily heart involvement, using data from the
Atherosclerosis Risk in Communities (ARIC) (25,26) study. Finally,
we examined the effects of putative regulatory variation for
monogenic BP syndrome genes, all known to be renal or adrenal
disorders, in four available kidney cell types to test for a group
effect on BP.

Our results demonstrate the feasibility of identifying
BP genes by tissue, which we expect will facilitate more
comprehensive functional analyses of BP genes and BP control
mechanisms.

Results
We conducted several tissue-specific analyses to identify tissues
and genes of interest for BP regulation using the GERA study; an
overview of our analysis scheme is shown in Figure 1. We initially
focused on identifying tissues relevant to BP GWAS loci and sub-
sequently expanded on this by using tissue-specific information
to analyze putative CRE variation of genes in these tissues. The
aim was to identify specific genes and variants of interest at
these GWAS loci. We also studied putative regulatory variation at
20 monogenic syndromic hypertension and hypotension genes
in several kidney cell types. To begin, our study also includes
an analysis of QT interval as a positive control to demon-
strate the identification of well-characterized genes for that
trait.

Constructing CRE maps

Our previous eQTL and subsequent partitioned heritability anal-
yses (see Supplementary Material, Methods and Results and
Tables S1 and S2) indicated that regulatory elements in specific
tissues are of interest in BP studies. With knowledge of tis-
sues highly relevant to characterizing BP GWAS loci, our next

https://www.encodeproject.org/
https://www.gtexportal.org/
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Figure 1. Overview of putative CRE identification and SKAT analysis.

aim was to test each gene’s putative cis-regulatory variation
for association with both gene expression and BP, in a tissue-
specific context. This is expected to assist in identifying novel
genes of interest, as well as provide tissue- or cell-type-specific
information about known genes.

We first constructed CRE maps or a catalog of experimentally
determined open chromatin, for the aorta and tibial arteries,
as well as four kidney cell types (renal cortical epithelial cell,
glomerular endothelial cell, epithelial cell of proximal tubule
and glomerular visceral epithelial cell), because of the known
involvement of the kidney in BP regulation (18,19), using ENCODE
data (Supplementary Material, Table S3; Fig. 1, step I) (though
many monogenic forms of BP disorders occur due to an effect of
the adrenal gland on renal function (20)). These CRE maps were
completed as an extension of the construction of our recent car-
diac CRE map (27). We specifically focused on identifying puta-
tive enhancers for the aorta and tibial arteries (see Methods).
We subsequently used these maps for training with the software
gkm-SVM (28,29) in order to generate deltaSVM functional scores
for all non-coding variants from the 1000 Genomes European
ancestry sample, to be tested for association on a gene-level
basis (Fig. 1, step II). The performance for each model is available
in Supplementary Material, Table S4 (AUC range, 0.84–0.96), with
the best performance in the renal cell types. A possible reason for
the improved performance of the renal cell types is that the data

were from individual cell types as opposed to a mixture of cell
types comprising the arteries. The magnitude of the deltaSVM
score for a variant reflects its predicted impact on regulatory
functional activity, while its sign reflects the prediction with
respect to the reference allele. Therefore, to represent the pre-
dicted impact of each variant irrespective of allele, we show the
distributions of the absolute values of the deltaSVM scores for
the arteries and kidney cell types in Supplementary Material,
Figure S1.

Tissue-specific gene identification

As our emphasis in this section is to connect a gene’s putative
CRE variants to both a phenotype of interest and to its expression
in relevant tissues, we first describe the overall analysis scheme
as applied to a general phenotype of interest (Fig. 1, step III). We
then describe how we applied these analyses, first to the QT
interval in the ARIC study, as proof of principle to demonstrate
the utility of these analyses, and then to our BP traits of interest
in the GERA study.

We defined gene’s ‘cis’-regulatory variants in this analysis
as those variants falling in putative CREs within 50 kb of the
gene’s start and end. We tested their aggregate effect for each
gene using SKAT (23), for association tests with the pheno-
type(s) of interest in the relevant population, SBP and DBP in
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the GERA study and QT interval in the ARIC study. SKAT is a
test that has generally been used to study groups of variants
together and is useful when variants can have bidirectional
effects; rare variants are more highly weighted than common
variants by default. In addition to the default weights, we ran
the analysis using equal weights for all variants. We finally used
the tissue- or cell-type-specific deltaSVM scores for the ana-
lyzed variants as weights for a customized SKAT test, the score
scaling with the effect of the variant on functional regulatory
activity.

We then tested these groupings with expression data from
GTEx v6p in the tissues of interest to link variants in the genes
of interest to their gene expression. The groupings tested in
the GTEx data with expression were not always identical to
the groupings tested in the GERA or ARIC studies because of
differences in imputation quality score filtering, missingness of
genotypes from genotype probabilities to hard call conversion
and variants present in the reference populations studied. How-
ever, this analysis still connects a given gene to its expression
and to the phenotype via a highly overlapping set of CRE variants
and was completed this way to test the most complete set of
variants available meeting our criteria. In addition to testing
putative regulatory variants with gene expression in GTEx, we
used MetaXcan (24) to augment SKAT to identify any new asso-
ciations by this method. This software predicts the association of
gene expression with a phenotype, given genotypes for the pop-
ulation of interest based on training from reference genotypes
and expression data.

Analysis of CREs in QT interval

As mentioned earlier, we considered the cardiac trait QT interval
first to demonstrate proof of concept for tissue-specific gene
identification. The QT interval is the time in ms between the
onset of the Q wave and the end of the T wave in the surface 12-
lead electrocardiogram (30), which has ∼30% heritability (31–34).
In our recent work, we have demonstrated that a significant
proportion of the heritability is explained by predicted cardiac
regulatory variants (27). We analyzed the genes at previously
published QT interval GWAS loci to determine whether or not
a heart-specific effect could be observed. Two of the genes with
major effects in a GWAS and functionally validated in QT interval
heritability are NOS1AP (34–36) and SCN5A (36,37). The full results
are presented in the Supplementary Material, Text S1 results,
Table S5 and Figures S2 and S3; to summarize here briefly, we
aimed to discover if a heart-specific effect could be revealed
for each of these two genes. We observed a heart specificity
for SCN5A; NOS1AP showed signal across all the cell types in
the equal-weighted analyses, though considerably attenuated in
some of the deltaSVM-weighted non-heart tissues. Considering
both sets of effects, certainly variants with detectable signals
present in open chromatin regions specific to the relevant tis-
sue/cell types will allow the detection of a tissue-specific signal,
as for SCN5A. It also appears, however, that gene-level signals
may be captured by analyses in which all variants are weighted
equally and when local open chromatin boundaries across tis-
sues/cell types overlap considerably, especially when variants
with strong signals are present within these shared regions. In
this situation, we will not necessarily be able to differentiate
between different tissue/cell types. Weighting with the tissue-
specific deltaSVM scores introduces an additional tier of tissue
specificity and is based on global open chromatin differences
and is also not expected to be impacted by linkage disequilib-

rium (LD) in the ways that the other two weighting schemes are,
as the generation of the scores are only dependent on sequence
context. Finally, using the default weights shows least concor-
dance with the other two sets of results, indicating that for this
analysis, rare variants are not driving the signal as compared
to common variants. This is as expected, as we prioritized non-
coding variation for these analyses, and the rare variants with
larger effects expected to make a detectable contribution are
more likely to be in the exome.

Analysis of CREs at GWAS loci for BP regulation

We then applied these analyses to the tissues of interest for
BP regulation, namely, aorta, tibial artery and four kidney cell
types, in a subset of 71 404 unrelated GERA EUR individuals.
We tested 14 548 genes expressed at reads per kilobase of tran-
script, per million mapped reads (RPKM) ≥0.3 in 197 aorta GTEx
samples and 13 963 genes expressed at RPKM ≥0.3 in 285 tibial
artery GTEx samples for the SKAT analyses. We used summary
statistics available from 80 792 individuals (38) to maximize the
sample size for which the MetaXcan analyses were run, for the
aorta and tibial arteries. Results for each of the arteries are pre-
sented in Tables 1 and 2 and, more completely, in Supplementary
Material, Tables S6–S9. In some cases, shared variants drive the
positive signal for multiple genes at the same locus; expression
in the relevant tissue or cell type may pinpoint a specific gene.
However, it may be noted that the genes CERS5, COX14 and RP4-
605O3.4 are all present at the same locus in the arteries (Tables 1
and 2), but evidence of expression association is present for
many of these genes; this may be indicative of proximal variants
affecting different genes or pleiotropy of single variants affecting
expression of multiple genes.

On the whole, the 25 genes reported here across aorta and
tibial artery genes have been identified at previous BP loci (39).
While there are several genes in each analysis with interesting
associations with BP traits, here we only highlight the genes that
have statistical significance of P < 1 × 10−4 for both expression
and BP in the aorta analyses (Tables 1 and 2). In our previous
work, the aorta was demonstrated as the greatest outlier in
an analysis of eQTL enrichment among GTEx tissues for BP
traits (38). These genes include MTHFR (40,41) (SBP), C10orf32 (40)
(SBP), CSK (SBP), NOV (42) (DBP), ULK4 (43) (DBP), SDCCAG8 (DBP),
SCAMP5 (DBP), RPP25 (DBP), HDGFRP3 (DBP), VPS37B (DBP) and
PPCDC (DBP). Most of these genes are present at or near previ-
ously replicated BP GWAS loci; SDCCAG8 was identified as part
of Hoffmann et al. (38). It is noteworthy that both SCAMP5 and
PPCDC are neighboring genes but have independent expression
support in the same tissue.

Analysis of CREs for monogenic BP genes

We also studied the genes involved in monogenic forms of
hypotension or hypertension in four kidney cell types available
from the ENCODE project (see earlier). As the expression data
available for kidney are insufficient, we studied each cell type
individually and carried out only SKAT analyses for these genes;
the results are in Supplementary Material, Tables S10 and S11.
The most notable result is that of CYP17A1 (Supplementary
Material, Table 3), which shows an effect (P ∼ 10−5–10−7) across
all four cell types in the unweighted variants analyses for SBP
only, and more specifically, only in the glomerular endothelial
cell (p.SKAT.dsvm = 3.64 × 10−8) in the deltaSVM-weighted
results. However, as C10orf32 is a gene of interest at the same
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Table 1. Aorta and tibial arteries SBP SKAT and MetaXcan results

Tissue Gene p.sbp.dsvm p.sbp.def p.GTEx.dsvm p.GTEx.def p.MetX Previous

Aorta NR3C1 5.44 × 10−6 0.064 0.002 0.529 – FALSE
WBP1L 6.66 × 10−6 0.085 2.72 × 10−4 0.137 1.35 × 10−5 FALSE
SBF2 9.27 × 10−6 2.58 × 10−5 0.003 0.022 2.01 × 10−5 TRUE
CLCN6 1.07 × 10−5 2.32 × 10−6 0.014 2.63 × 10−4 0.028 TRUE
MTHFR 1.08 × 10−5 4.22 × 10−6 1.85 × 10−5 0.015 0.001 TRUE
C10orf32 1.68 × 10−5 0.026 4.63 × 10−15 0.059 – TRUE
RP4-605O3.4 4.51 × 10−5 0.069 0.016 0.425 – FALSE
COX14 4.51 × 10−5 0.069 7.64 × 10−4 0.338 0.034 TRUE
CSK 6.34 × 10−5 0.110 3.18 × 10−5 0.579 1.24 × 10−4 TRUE
ULK3 6.34 × 10−5 0.952 0.001 0.164 9.14 × 10−4 TRUE

Tibial artery CLCN6 9.65 × 10−9 2.62 × 10−4 5.07 × 10−8 3.58 × 10−6 2.67 × 10−9 TRUE
MTHFR 9.65 × 10−9 2.62 × 10−4 8.79 × 10−8 0.161 0.076 TRUE
C10orf32 6.98 × 10−8 0.004 3.07 × 10−14 7.30 × 10−8 – TRUE
HOXC-AS1 4.00 × 10−5 0.638 3.24 × 10−6 0.194 – FALSE
CCDC6 4.49 × 10−5 0.151 3.32 × 10−4 0.035 1.08 × 10−4 FALSE
ATE1 5.67 × 10−5 0.583 8.74 × 10−4 0.086 0.816 FALSE
SOX7 6.76 × 10−5 0.036 0.007 0.121 – FALSE
AGT 8.29 × 10−5 0.090 0.001 6.97 × 10−6 0.937 TRUE
NT5C2 8.75 × 10−5 1.44 × 10−4 0.004 0.163 0.006 TRUE
DHX33 9.67 × 10−5 0.372 3.67 × 10−7 0.033 0.277 FALSE
SFMBT1 1.15 × 10−4 0.521 0.003 0.363 0.006 FALSE
NPPA 1.16 × 10−4 0.003 0.007 0.025 – TRUE
ERI1 1.33 × 10−4 0.280 0.001 0.185 – FALSE
BCL2L2 1.59 × 10−4 0.009 5.20 × 10−4 0.356 – FALSE
BCL2L2-PABPN1 1.59 × 10−4 0.009 0.013 0.717 – FALSE
NPPA-AS1 1.66 × 10−4 0.003 1.89 × 10−23 4.67 × 10−10 – FALSE
C1orf132 1.74 × 10−4 0.055 0.009 0.400 – FALSE
RPAIN 1.89 × 10−4 0.627 0.003 0.479 0.546 FALSE
CTC-524C5.2 1.89 × 10−4 0.627 0.000162827 0.301 – FALSE

Tissue, artery tissue analyzed; p.sbp.∗ , P-values from SKAT analysis of BP in GERA with deltaSVM (dsvm) or default (def) weights; p.GTex.∗, P-values from SKAT analysis
of expression in GTEx with deltaSVM (dsvm) or default (def) weights; p.MetX, MetaXcan P-value; previous, TRUE if found at a previously identified GWAS locus from
the UKB list, FALSE otherwise.

locus, based on the artery results above, we examined and noted
that the results are somewhat similar for this gene, although
not as striking, due to variant set sharing in the SKAT analyses
for these genes; the breakdown of individual variants analyzed
for these two genes is in Supplementary Material, Table S12.
The variant rs3824754, with an SBP association P = 1.40 × 10−11,
appears in the groupings of both genes for all four cell types,
but has the highest deltaSVM magnitude in the endothelial
cell. Additionally, there is a set of four variants with SBP
association (P < 1 × 10−4; rs284853, rs284854, rs284855, rs284856),
which only appear in the glomerular endothelial cell type. We
observed that while CYP17A1 was similarly associated with, or
demonstrated evidence of association with, SBP in the deltaSVM
and unweighted variants analysis for the aorta and tibial arteries
(Table 1), the analysis of variants in GTEx for the same tissues
did not reflect any significant association (P > 0.01). In contrast,
C10orf32 demonstrated significant association with SBP and
with expression in GTEx for the aorta and tibial arteries (Table 1).
The same four variants unique to the glomerular endothelial cell
type above with strong associations with SBP are also present in
the artery groupings. Three of these variants (rs284854, rs284855,
rs284856) are eQTLs for C10orf32 in the aorta and tibial arteries;
these variants, however, do not show association with CYP17A1
expression in these tissues (all P > 0.03 for aorta, all P > 0.21
for tibial artery, from eQTL data available from the GTEx portal

(https://www.gtexportal.org/), accessed 09/08/17). Additionally,
as the CYP17A1 gene primarily demonstrates an adrenal effect in
the monogenic disorder (44), we also examined the associations
of these three variants in the GTEx portal with adrenal gland
expression data for both genes; all have P > 0.26 for CYP17A1
and P > 0.04 for C10orf32. This may reflect an endothelial-cell-
specific effect for C10orf32 rather than a tissue-type effect,
especially as this locus has been identified in several previous BP
GWAS studies (40,43,45–47); it may also not be very informative
for the kidney, though suitable expression data for kidney would
be required to assess this (Table 3).

Quantile–quantile (QQ) plots are shown in Supplementary
Material, Figures S4–S15 for each of the six tissues and two BP
phenotypes and each of three delta SVM weighting schemes.
Although the deltaSVM weighting scheme demonstrates a
greater enrichment of genes than the default weighting scheme,
the equal weighting scheme marginally presents the greatest
enrichment. In many cases, deltaSVM discriminates between
different tissue/cell types while equal-weighted results do not;
this is especially clear with the QT interval results.

We analyzed the union of genes that met significance in the
association analysis with BP, regardless of association of expres-
sion, to maximize our gene list for annotation, using DAVID
6.8 (48,49). The results are shown in Supplementary Material,
Table S13.

https://www.gtexportal.org/
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Table 2. Aorta and tibial arteries DBP SKAT and MetaXcan results

Tissue Gene p.dbp.dsvm p.dbp.def p.GTEx.dsvm p.GTEx.def p.MetX Previous

Aorta NOV 1.40 × 10−8 0.664 4.26 × 10−5 1 0.102 TRUE
ULK4 1.75 × 10−8 0.001 2.49 × 10−22 0.094 2.95 × 10−10 TRUE
COX14 1.35 × 10−7 0.138 7.64 × 10−4 0.338 0.003 TRUE
IGFBP3 3.41 × 10−7 0.006 0.011 0.842 – FALSE
SDCCAG8 6.92 × 10−7 0.359 5.57 × 10−6 0.481 2.95 × 10−9 TRUE
CEP170 7.06 × 10−7 8.44 × 10−7 2.52 × 10−4 3.59 × 10−4 0.002 TRUE
CSK 9.93 × 10−7 0.068 3.18 × 10−5 0.579 7.93 × 10−5 TRUE
ULK3 9.93 × 10−7 0.826 0.001 0.164 2.09 × 10−4 TRUE
SCAMP5 3.98 × 10−6 0.009 6.70 × 10−8 4.15 × 10−10 1.93 × 10−5 FALSE
RPP25 4.67 × 10−6 0.928 3.58 × 10−17 4.79 × 10−9 – FALSEa

HDGFRP3 1.52 × 10−5 0.578 3.90 × 10−7 0.042 0.001 TRUE
COX4I2 2.12 × 10−5 0.003 0.002 0.729 – FALSE
SBF2 2.27 × 10−5 0.004 0.003 0.022 7.41 × 10−4 TRUE
RNF40 2.39 × 10−5 0.242 2.74 × 10−4 0.338 – TRUE
RP11-382A20.2 4.82 × 10−5 0.627 0.005 0.066 – FALSE
RNASEH2C 7.50 × 10−5 7.50 × 10−5 0.002 0.002 0.690 TRUE
SLC25A37 1.16 × 10−4 0.121 4.01 × 10−4 0.537 0.169 FALSE
SENP2 1.36 × 10−4 0.711 0.004 0.202 0.050 TRUE
VPS37B 1.46 × 10−4 7.73 × 10−5 8.50 × 10−6 2.03 × 10−4 3.43 × 10−5 FALSE
ZNF652 1.69 × 10−4 1.69 × 10−4 8.73 × 10−4 8.73 × 10−4 1.53 × 10−5 TRUE
NR3C1 2.21 × 10−4 0.018 0.002 0.529 – FALSE
PPCDC 2.25 × 10−4 0.009 6.68 × 10−8 4.82 × 10−8 0.002 FALSE

Tibial artery NOV 1.70 × 10−8 0.731 7.00 × 10−6 0.943 1.44 × 10−6 TRUE
CERS5 1.66 × 10−6 0.004 3.41 × 10−4 3.55 × 10−4 1.17 × 10−4 TRUE
COX14 1.66 × 10−6 0.004 4.26 × 10−5 6.54 × 10−4 0.004 TRUE
RP4-605O3.4 1.66 × 10−6 0.004 1.57 × 10−7 2.36 × 10−7 – FALSE
JAG1 4.59 × 10−6 0.032 0.018 0.304 – TRUE
ULK4 5.69 × 10−6 0.008 2.78 × 10−11 0.158 5.40 × 10−12 TRUE
IPO9 6.08 × 10−6 0.416 0.009 8.59 × 10−4 0.952 FALSE
LIMA1 1.86 × 10−5 0.638 0.008 0.926 0.120 TRUE
NAV1 3.83 × 10−5 0.554 2.64 × 10−4 0.010 – FALSE
COX4I2 3.92 × 10−5 0.360 1.94 × 10−4 0.656 – FALSE
UBN1 4.23 × 10−5 0.417 3.19 × 10−7 0.299 1.51 × 10−5 TRUE
SCAMP5 5.29 × 10−5 0.331 4.47 × 10−11 5.09 × 10−5 8.04 × 10−8 FALSE
RNASEH2C 5.88 × 10−5 0.056 0.006 0.006 0.831 TRUE
CEP120 6.36 × 10−5 0.003 4.43 × 10−5 0.123 1.63 × 10−5 TRUE
CLCN6 7.30 × 10−5 0.001 5.07 × 10−8 3.58 × 10−6 1.16 × 10−5 TRUE
MTHFR 7.30 × 10−5 0.001 8.79 × 10−8 0.161 0.086 TRUE
SDCCAG8 9.04 × 10−5 0.130 4.55 × 10−5 0.273 8.08 × 10−8 TRUE
ACSF3 1.05 × 10−4 5.00 × 10−4 0.003 0.548 0.328 FALSE
RPP25 1.11 × 10−4 0.559 4.36 × 10−12 0.001 – FALSEa

COX5A 1.11 × 10−4 0.559 0.004 0.053 – TRUE
MKL2 1.12 × 10−4 0.031 0.017 0.020 – FALSE
VPS37B 1.40 × 10−4 5.38 × 10−4 2.08 × 10−15 1.12 × 10−14 0.007 FALSE
FAM20B 1.91 × 10−4 0.690 3.35 × 10−5 0.337 0.030 FALSE
PLA2G4B 2.10 × 10−4 1 3.41 × 10−7 0.320 0.005 FALSE
ALDH2 2.15 × 10−4 0.658 5.44 × 10−8 1.26 × 10−6 0.002 FALSE
DUSP15 2.39 × 10−4 0.008 0.018 0.923 0.028 FALSE
RP11-65J21.3 2.40 × 10−4 0.660 0.015 0.382 – FALSE
MAPKBP1 2.52 × 10−4 0.077 7.04 × 10−5 0.056 0.019 FALSE
JMJD7 2.54 × 10−4 0.077 1.47 × 10−9 0.203 3.34 × 10−4 FALSE
CENPW 2.79 × 10−4 0.075 0.004 0.066 0.002 FALSE
ATF1 2.81 × 10−4 0.639 4.80 × 10−19 9.06 × 10−5 2.13 × 10−5 FALSE

Tissue, artery tissue analyzed; p.dbp.∗ , P-values from SKAT analysis of BP in GERA with deltasvm (dsvm) or default (def) weights; p.GTex.∗, P-values from SKAT analysis
of expression in GTEx with deltaSVM (dsvm) or default (def) weights; p.MetX, MetaXcan P-value; previous, TRUE if found at a previously identified GWAS locus from
the UKB list, FALSE otherwise
aRPP25 has been previously identified in GWAS, but our method to identify genes at GWAS loci was conservative and missed this gene; see text

Discussion
Our previous genetic analyses identified the aorta and tibial
arteries as relevant to BP regulation (38). In this study we have
now identified several genes with regulatory variants linking

significantly to both BP traits and to expression data in these tis-
sues, most at previously replicated BP loci. Although the involve-
ment of the kidney is well established in BP regulation through
physiological evidence, we sought to identify genes at any of
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Table 3. Kidney SBP and DBP SKAT results for CYP17A1

Experiment Cell-type SBP DBP

p.bp.dsvm p.bp.def p.bp.dsvm p.bp.def

ENCSR000EOK Renal cortical epithelial cell 0.069 0.018 0.505 0.337
ENCSR000EOM Glomerular endothelial cell 3.64 × 10−8 0.013 0.053 0.187
ENCSR000EPW Epithelial cell of proximal tubule 0.006 0.045 0.360 0.262
ENCSR785BDQ Glomerular visceral epithelial cell 0.008 0.020 0.551 0.355

the hundreds of BP GWAS loci in a broader set of tissues. We
examined groupings of multiple proximal and putatively causal
regulatory variants defined around genes within a single tissue
in order to identify specific genes of interest. We also examined
QT interval genes at previous GWAS loci to highlight the identi-
fication of functionally characterized genes for this trait.

We identified several genes of potential interest to the aorta/
arteries for BP, mostly at previously identified GWAS loci: MTHFR,
C10orf32, CSK, NOV, ULK4, SDCCAG8, SCAMP5, RPP25, HDGFRP3,
VPS37B and PPCDC. We note here that our method of identifying
genes at previous loci was conservative: RPP25 was not present
in this list but is present just outside the TAD boundary used.
In addition to its role in the progression of various cancers,
the NOV gene has been identified as a player in angiogenesis
(50,51) and vascular homeostasis (52). The ULK4 gene has been
previously associated with DBP (43), and variation in this gene
has also been associated with aortic disease and acute aortic dis-
sections (53). The association of a homozygous variant (C677T)
in its neighboring gene, MTHFR, has long been associated with
BP and vascular disease (54–57); more generally, this locus has
been identified in large BP GWAS (40,41). The locus including
C10orf32 has been identified previously (40) and neighbors the
well-studied CYP17A1 gene. Though we initially examined only
the latter among kidney cell types, because of its known role
in monogenic hypertension, we note that both genes show BP
association in endothelial contexts as well, but it is C10orf32
that has strong expression support in the artery datasets in
our study, while CYP17A1 does not (58). The gene SDCCAG8
is a centrosomal protein linked with nephronophthisis-related
ciliopathies (OMIM: Senior–Loken syndrome-7, 613 615; Bardet–
Biedl syndrome-16, 615 993, and Airik et al. (59)) and is expressed
in the kidney and lung epithelia (59). The CSK gene, encoding a
tyrosine kinase, is at a previous BP GWAS locus (60) and has been
found to be associated with SBP in young children (61); there is
also prior evidence through experiments in mouse aortas that
this gene regulates BP through Src (62). Finally, the SCAMP5 and
PPCDC genes (within the same locus) (40), and RPP25 (43), are
previously identified BP genes.

As mentioned above, one major limitation in our study is
the statistical power of the SKAT eQTL analysis, with small
sample sizes available for each of the GTEx tissues. The power
of implicating effects for a given tissue also depends on its
total contribution and the numbers of eQTLs identified. The
requirement in our study that a gene meet significance for
both BP and expression therefore produced a more conservative
list. However, the QT interval results, especially for the SCN5A
gene, still illustrate the utility of this method. The availability of
additional samples in the future will contribute to the success of
this method in identifying genes of interest with greater statis-
tical power. The gene annotation analyses revealed no clear BP-
specific pathways or annotation, so these will also benefit from
producing more specific and possibly larger gene sets. Addi-
tionally, we used hard genotype calls for analysis, necessitating

some missing genotype data; the power of our methods could be
improved by using imputed probabilities of genotypes.

Our attempts to expand findings beyond the known
pathogenic coding variation with respect to the 20 genes
involved in monogenic forms of hypertension or hypotension
were inconclusive. We attribute this to the dearth of publicly
available data for the kidney at this time and expect that the
availability of more extensive data will resolve some of the issues
in further studies. Additionally, though it is beyond the scope of
this study, as the effects of many of these monogenic disorders
are likely through the adrenal gland, a full analysis of adrenal
gland data will be necessary to assess them.

The MetaXcan software has supported most of the genes
highlighted here and identified novel associations, although
there were some limitations with the availability of the models
for all genes. Additionally, our results indicated that deltaSVM
weighting might be validly discriminatory between cell types;
this is most evident with several QT interval genes, such as
NOS1AP and SCN5A. It is also suggestive of cell-type specificity
with the results for CYP17A1 in the kidney cell types. It may be
informative moving forward to characterize these BP genes at
the individual cell-type level in the arteries as well.

The question of identification of core genes networks may
be facilitated by our approach in this study, which includes
using eQTL information from tissues or cell types of interest and
genotypes to identify potentially relevant genes for a trait. As the
expansion of publicly available resources continues, more infor-
mation may be used for these purposes. Our analysis implicates
specific variants that can be functionally tested for their effect
on both gene expression and the phenotype.

Materials and Methods
Study participants and summary of genotypes,
phenotypes and association results used in this study

The full descriptions of the prior underlying studies, phenotypes
and association results for the GERA cohort are in Hoffmann et al.
(38) and are briefly recapitulated here. The Genetic Epidemiology
Research on Adult Health and Aging (GERA) cohort, part of the
RPGEH, consists of individuals from five ethnic backgrounds;
the majority is non-Hispanic white (EUR), with the remainder
including Latino, East Asians, African Americans and South
Asians. A total of 99 785 individuals were analyzed, of which
80 792 were EUR individuals. The populations were each geno-
typed on custom population-specific Affymetrix Axiom SNP
genotyping arrays (63,64) and imputed to the 1000 Genomes
Phase I Integrated Release Version 3 haplotype panel. Analyses
of GERA alone, with the results of the International Consortium
for Blood Pressure (ICBP, n = 69 396) study (65), and with the ICBP
and the UK Biobank (UKB, n = 152 081) study (66), identified 316
novel BP loci. Combined with the set of replicated BP GWAS
loci available at that time, there were a total of 390 BP loci
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we considered to be of interest. Of these, 367 had minor allele
frequency (MAF) > 0.001 in the GERA EUR study, which was used
as the reference population for the eQTL analyses described
below.

For the purpose of several of the analyses described in this
paper, we used these association results, as well as summary
statistics available from 80 792 GERA EUR individuals from the
Hoffmann et al. (38) study and genotypes from a subset of
71 404 GERA EUR ‘unrelated’ individuals (third degree or beyond,
pruned by the KING software for relationship inference) (67).
We converted genotypes prepared in the Hoffmann et al. (38)
study after imputation from IMPUTE2 genotype probability
format to PLINK ‘hard’ calls (the most likely genotype), setting
genotypes with uncertainty greater than 0.25 to missing and
retaining variants with <10% missing data, a Hardy Weinberg
equilibrium test P < 1 × 10−6, and imputation quality score ≥0.3.
In order to report univariate summary statistics within the 71 404
individuals, we used the —association option for analysis of a
quantitative trait (Wald test) with PLINK v1.9 (68). We analyzed
covariate-adjusted longitudinal systolic (SBP) and diastolic (DBP)
blood pressure in this study, as also described in Hoffmann et al.
(38).

The ARIC genotypes, phenotypes and association methods
are described in the Supplementary Material, Methods.

Ethics statement

The Kaiser Foundation Research Institute and University of Cal-
ifornia San Francisco Institutional Review Boards approved the
study (using GERA study data). Approval was granted from the
relevant institutional review boards for the participating study
centers (University of North Carolina, University of Minnesota,
University of Mississippi Medical Center, and Johns Hopkins
University) of the ARIC study. Informed, written consent was
obtained from all study participants.

GTEx genotypes and expressions

We analyzed genotypes and expression data from the Genotype-
Tissue Expression (GTEx; phs000424.v6.p1) Project (69) v6p for
the SKAT analysis (see below) from the aorta, tibial artery, heart
left ventricle and heart atrial appendage tissues. Normalized
expression was analyzed for these tissues, with the top three
principal components, available PEER factors (15–35, depending
on sample size), genotyping array platform and sex used as
covariates, all available from the GTEx portal. We used SNP-gene
associations from the associated ∗.v6p.all_snpgene_pairs.txt.gz
files from the authors’ eQTL analyses.

Partitioned heritability and generation of regulatory
element maps

Partitioned heritability analyses and generation of putative reg-
ulatory element maps and deltaSVM scores are described in the
Supplementary Material, Methods.

Gene-based testing with SKAT

We used the sequence-kernel association test (SKAT) (23,70) to
test genes with median RPKM ≥0.3 in GTEx samples for the aorta
(n = 197) and tibial (n = 285) arteries with their respective variant
sets. For each gene, we tested all variants within 50 kb of the gene

start or end, inclusive of the entire gene body, per GENCODE
v19 annotations (https://www.gencodegenes.org/releases/19.
html). The weights used were taken as the absolute value of
the deltaSVM score for each variant to reflect its predicted
impact; for comparison, we also ran SKAT using default weights
with beta density parameters [weights.beta = c(1,25), which up-
weights rare variants as compared to common variants], as well
as equal weights to all variants [weights.beta = c(1,1)]. We tested
association of each gene with adjusted SBP and DBP phenotype
residuals (see above), as well as the GTEx normalized expression
data with covariates (release v6p, https://www.gtexportal.org/),
from the aorta and tibial arteries. We restricted our primary
analyses in each of the kidney cell types to the 20 monogenic
hypertension and hypotension genes. We additionally tested
tissue- or cell-type-specific groupings in the ARIC dataset with
the adjusted QT interval phenotype using the sets for the heart
and heart tissues from GTEx, arteries and kidney cell types, as
described above.

Predicted gene expression association with BP and
gene annotation

The predicted gene expression association and gene annotation
methods are described in the Supplementary Material, Methods.

Statistical significance

Statistical significance was determined using the Benjamini–
Hochberg (71) (BH) method for multiple test correction to adjust
for the number of genes within each analysis. We made no
additional adjustments for the number of tissues, in part due
to the correlation of specific subsets (the arteries and individual
kidney cell types), and as we examined genes across multiple
analyses, for phenotype and for expression.

Data availability

The full GERA data are available through application to the
KP Research Bank Portal, http://researchbank.kaiserpermanente.
org/for-researchers/. A subset (∼78%) of dbGaP-consented GERA
participants has genotype and hypertension status phenotype
data available under the dbGaP accession code phs000674.v1.p1.
The full ARIC data cannot be shared publicly because partic-
ipants did not consent to this. ARIC data are available upon
request from the ARIC Data Coordinating Center at the Uni-
versity of North Carolina, Chapel Hill (https://sites.cscc.unc.edu/
aric/distributionagreements). The GTEx data used for the anal-
yses described in this manuscript were obtained from the GTEx
Portal and dbGaP accession number phs000424.v6.p1.

Supplementary Material
Supplementary Material is available at HMG online.
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