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Einstein-Podolsky-Rosen steering is a form of quantum nonlocality exhibiting an inherent asymmetry
between the observers, Alice and Bob. A natural question is then whether there exist entangled states which
are one-way steerable, that is, Alice can steer Bob’s state, but it is impossible for Bob to steer the state
of Alice. So far, such a phenomenon has been demonstrated for continuous variable systems, but with a
strong restriction on allowed measurements, namely, considering only Gaussian measurements. Here we
present a simple class of entangled two-qubit states which are one-way steerable, considering arbitrary
projective measurements. This shows that the nonlocal properties of entangled states can be fundamentally
asymmetrical.

DOI: 10.1103/PhysRevLett.112.200402 PACS numbers: 03.65.Ud

The nonlocality of entangled quantum states, first
pointed out by Einstein, Podolsky, and Rosen [1], was
later proven by Bell [2] to be an inherent feature of the
theory. Nowadays quantum nonlocality is considered as a
fundamental aspect of the theory and plays a central role in
quantum information processing [3,4].
The concept of steering (or Einstein-Podolsky-Rosen

steering), proposed by Schrödinger [5], brings an alter-
native approach to this phenomenon. Consider two remote
observers, Alice and Bob, who share a pair of entangled
particles. By performing a measurement on her system,
Alice can steer the state of Bob’s system. Importantly, it is
the intrinsic randomness of quantum theory that prevents
this effect from leading to instantaneous signaling. First
explored in the context of continuous variable systems
[6,7], quantum steering was recently formalized as an
information-theoretic task by Wiseman et al. [8]. Steering
finds applications in quantum information processing, e.g.,
for cryptography [9] and randomness generation [10].
Experimental investigations have been reported [11] with,
notably, a recent loophole-free experiment [12]. Steering has
also been discussed for detecting entanglement in Bose-
Einstein condensates [13] and atomic ensembles [14].
A characteristic trait of steering—distinguishing it from

both entanglement and Bell nonlocality—is an asymmetry
between the observers. As formalized in [8], a steering test
can be viewed as the distribution of entanglement from an
untrusted party. Hence, in this protocol, Alice and Bob play
different roles which are not interchangeable. Specifically,
Alice tries to convince Bob that they share an entangled
state. However, Bob does not trust Alice, and thus asks her
to remotely steer the state of his particle according to a
different measurement basis. Bob can then verify Alice’s
claim by checking a steering inequality [15], as the
violation of such an inequality implies the presence of

entanglement. Conversely, if the inequality is satisfied, Bob
will not be convinced that entanglement is present, since a
local state strategy can, in principle, reproduce the observed
data. Interestingly, steering turns out to be a form of
quantum nonlocality that is intermediate between entan-
glement and Bell nonlocality, in the sense that not all
entangled states lead to steering, and not all steerable states
violate a Bell inequality [8,11].
A natural question, already raised in Ref. [8], is then

whether there exists one-way quantum steering. That is, are
there entangled states such that steering can occur from
Alice to Bob, but not from Bob to Alice? The properties of
such states would thus be fundamentally different depend-
ing on the role of the observers. On the one hand Alice
can convince Bob that the state they share is entangled. On
the other hand, it is impossible for Bob to convince Alice
that the state is entangled since the observed behavior
can be reproduced by a local state model. Note that such a
phenomenon cannot occur for pure entangled states, which
can always be brought to a symmetric form via local basis
change (using the so-called Schmidt decomposition).
Hence, one-way quantum steering requires mixed entangled
states. So far, it was shown theoretically [16,17] and
experimentally [18] that such phenomena can occur in
continuous variable systems. However, these results hold
only fora restrictedclassofmeasurements, namely,Gaussian
measurements, and there is no evidence that this asymmetry
will persist for more general measurements. In fact, it is
known that non-Gaussian measurements are useful in this
context, as they are necessary to reveal the nonlocality of
certain entangled states [19].
Here we present a simple class of two-qubit entangled

states with one-way steering for arbitrary projective mea-
surements. First we show that steering is not possible from
Bob to Alice by constructing an explicit local hidden state
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model. Then we show that the state is nevertheless steerable
when the roles of the parties are interchanged. Making use
of techniques recently introduced in Skrzypczyk et al. [20],
we construct a steering test for demonstrating steering
from Alice to Bob. The present work thus demonstrates a
fundamental asymmetry in the nonlocal properties of
certain entangled states.
We start by introducing the scenario and fixing notations.

Consider two remote parties, Alice and Bob, sharing
an entangled quantum state ρAB. By performing a local
measurement on her particle, Alice can prepare the state of
Bob’s particle in different ways. In this work we will focus
on the case of two-qubit states ρAB and local qubit
projective measurements. Consider that Alice measures
the observable ~x · ~σ and obtains outcome a ¼ �1; here ~x
denotes a vector on the Bloch sphere and ~σ ¼ ðσ1; σ2; σ3Þ is
the vector of Pauli matrices. Then, Bob’s particle is left in
the (unnormalized) state

ρaj~x ¼ trAðρABMaj~x ⊗ IÞ; (1)

whereMaj~x ¼ ðIþ a~x · ~σÞ=2 is the projector corresponding
to outcome a. The set of unnormalized states fρaj~xg,
referred to as an assemblage, thus characterizes the experi-
ment [8,20,21]. The assemblage characterizes both the
conditional probability ofAlice’s outcome,pðaj~xÞ¼ trðρaj~xÞ,
and the (normalized) conditional state prepared for Bob
ρ̂aj~x ¼ ρaj~x=pðaj~xÞ. Note that all assemblages satisfyP

aρaj~x ¼
P

aρaj~x0 for all measurement directions ~x and ~x0,
ensuring that Alice cannot signal to Bob.
In a steering test [8], Alice wants to convince Bob that

she can steer his state. Bob, who does not fully trust Alice,
wants to verify her claim. In order to do so, he asks Alice to
make a measurement in a given direction ~x (chosen from a
given set of measurements) and then to announce her result
a. By repeating this procedure a sufficient number of times,
Bob can estimate the assemblage fρaj~xg, e.g., via quantum
state tomography. Bob’s goal is now to find out whether
(i) Alice did indeed steer his state by making a measure-
ment on an entangled state ρAB, or whether (ii) she cheated
by using a local hidden state (LHS) strategy, in which no
entanglement is involved. In this second case, Alice would
prepare a single qubit state ρλ and send it to Bob; here λ
represents a classical variable known to Alice, with an
arbitrary distribution ωðλÞ. Upon receiving a measurement
direction ~x from Bob, Alice announces an outcome a
according to a predetermined strategy pλðaj~xÞ. Hence Bob
holds the state

ρaj~x ¼
X
λ

ωðλÞpλðaj~xÞρλ: (2)

Therefore, the problem for Bob is to determine whether the
states in the assemblage fρaj~xg admit a decomposition of
the form of equation (2). If this is the case, then Bob will

not be convinced that Alice can steer his state. On the other
hand, if no decomposition of the form of equation (2) is
possible, then Bob will be convinced that Alice did steer his
state. More generally, we say that a state ρAB is unsteerable
from Alice to Bob, if the assemblage fρaj~xg admits a
decomposition of the form of equation (2) for all possible
measurement directions ~x. On the other hand, if there exists
a set of measurement directions such that the corresponding
assemblage fρaj~xg does not admit a decomposition of the
form of equation (2), we say that ρAB is steerable from Alice
to Bob.
A steering test is thus clearly asymmetrical, as the roles

played by Alice and Bob are different. Hence it is natural
to ask whether there exist entangled states ρAB that can be
steered only in one direction, say from Alice to Bob but not
from Bob to Alice. Here we show that such a phenomenon
of one-way steering occurs for simple two-qubit entangled
states, considering arbitrary projective measurements.
Specifically, we consider states of the form

ρABðαÞ ¼ αΨ− þ 1 − α

5

�
2j0ih0j ⊗ I

2
þ 3

I
2
⊗ j1ih1j

�
;

(3)

where Ψ− ¼ jψ−ihψ−j denotes the projector on the singlet
state jψ−i ¼ ðj0; 1i − j1; 0iÞ= ffiffiffi

2
p

and 0 ≤ α ≤ 1. The state
ρABðαÞ is entangled for α > 1=19ð−6þ 5

ffiffiffi
6

p Þ≃ 0.3288,
as can be checked via partial transposition [4]. We will see
that in the range 0.4983≲ α ≤ 1=2, the state ρABðαÞ is one-
way steerable. The proof is divided into two parts. First,
we show that the state is unsteerable from Bob to Alice
by constructing a LHS model for ρABð1=2Þ. Second, we
show that steering can nevertheless occur from Alice to
Bob by showing that the assemblage resulting from 14
well-chosen projective measurements on the state ρABðαÞ
with α ≳ 0.4983 does not admit a decomposition of the
form of equation (2).
No steering from B to A.—We construct a LHS model,

from Bob to Alice, for arbitrary local projective measure-
ments on ρABð1=2Þ. The model works as follows. Bob first
sends to Alice a pure qubit state of the form

ρλ ¼ ðIþ λ0~λ · ~σÞ=2; (4)

where λ0 ¼ �1, and ~λ ¼ ðλ1; λ2; λ3Þ ¼ ðcosϕ sin θ;
sinϕ sin θ; cos θÞ is a vector on the Bloch sphere distributed
according to the density

ωðθ;ϕÞ ¼ 1

2π
cos2ðθ=2Þ: (5)

That is, the probability of using a given vector ~λ depends on
its height on the Bloch sphere. Note that λ0 and ~λ represent
here the classical variables available to Bob. Upon receiv-
ing an arbitrary measurement direction ~y ¼ ðy1; y2; y3Þ
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from Alice, Bob then announces outcome
b ¼ −λ0sgnð~y · ~λÞ. Finally, Alice characterizes her state.
For convenience, we consider here the case where she
performs an arbitrary projective measurement along direc-
tion ~x ¼ ðx1; x2; x3Þ with outcome a.
Now we compute the statistics of the above model,

focusing first on the case λ0 ¼ 1. Because of the form of the
state, Eq. (3), we can take ~y ¼ ð0; sin θB; cos θBÞ without
loss of generality. Moreover, it will be convenient to use a
new reference frame such that the ê3 ¼ ð0; 0; 1Þ axis is
aligned on Bob’s vector ~y. Angles and axes in the new
frame are denoted with a tilde. First we evaluate the
distribution of ~λ in the new frame. That is, we compute
ωð~θ; ~ϕÞ, with ~λ ¼ ð~λ1; ~λ2; ~λ3Þ ¼ ðcos ~ϕ sin ~θ; sin ~ϕ sin ~θ;
cos ~θÞ. Since the new frame is obtained by performing
a rotation of −θB around the ê1 ¼ ð1; 0; 0Þ axis, we
have that λ3 ¼ − sin θB ~λ2 þ cos θB ~λ3. Moreover, since
θ ¼ arcosðλ3Þ, we have that

ωðθ;ϕÞ ¼ 1

2π
cos2

�
arcosðλ3Þ

2

�
¼ 1þ λ3

4π
: (6)

Hence we get that

ωð~θ; ~ϕÞ ¼ ð1 − sin θB sin ~ϕ sin ~θ þ cos θB cos ~θÞ=4π:

Next, we write Alice’s vector in the new frame,
~x ¼ ðcos ~ϕA sin ~θA; sin ~ϕA sin ~θA; cos ~θAÞ. Using the fact
that trð~x · ~σρλÞ ¼ ~x · ~λ, we obtain the correlation

habi ¼ −
Z

2π

0

d ~ϕ
Z

π

0

sin ~θd~θωð~θ; ~ϕÞð~x · ~λÞsgnð~y · ~λÞ

¼
Z

2π

0

d ~ϕ

�Z
π

π=2
sin ~θd~θωð~θ; ~ϕÞð~x · ~λÞ

−
Z

π=2

0

sin ~θd~θωð~θ; ~ϕÞð~x · ~λÞ
�
: (7)

Since ~x · ~λ ¼ sin ~θ sin ~θA cosð ~ϕ − ~ϕAÞ þ cos ~θ cos ~θA, we
find after a lengthy but straightforward calculation

habi ¼ −
cos ~θA
2

¼ −
~x · ~y
2

: (8)

Note that ~θA is the angle between vectors ~x and ~y.
Finally, we calculate the marginals, i.e., the local expect-

ation values for Bob

hbi ¼ −
Z

2π

0

d ~ϕ
Z

π

0

sin ~θd~θωð~θ; ~ϕÞsgnð~y · ~λÞ

¼ −
cos θB
2

¼ −
y3
2

(9)

and for Alice

hai ¼
Z

2π

0

dϕ
Z

π

0

sin θdθωðθ;ϕÞð~x · ~λÞ

¼ cos θA
3

¼ x3
3
: (10)

Note that for computing Alice’s marginal, it is more
convenient to use the original reference frame.
At this point, it is useful to note that the correlations,

Eq. (8), correspond exactly to those of the state ρABð1=2Þ.
Moreover, the marginals, Eqs. (9) and (10), have the right
form, but are in fact slightly stronger than those of
ρABð1=2Þ. In order to weaken the marginals, while keeping
the correlation unchanged, we now use the variable λ0.
Specifically, consider the distribution pðλ0 ¼ −1Þ ¼ f.
Hence, the marginals are decreased to hai¼ð1−2fÞx3=3
and hbi ¼ ð1 − 2fÞy3=2. Choosing a flipping probability
of f ¼ 1=5, we finally get

hai ¼ x3
5
; hbi ¼ 3y3

10
; habi ¼ −

~x · ~y
2

: (11)

Hence, the model simulates exactly the statistics of local
projective measurements on the state ρABð1=2Þ. The
assemblage fρbj~yg observed by Alice is thus identical to
the assemblage expected for the state ρABð1=2Þ, that is,
ρbj~y ¼ trBðρABð1=2ÞI ⊗ Mbj~yÞ, whereMbj~y¼ðIþb~y · ~σÞ=2.
Therefore, the state ρABð1=2Þ is unsteerable from Bob to
Alice. The extension to the case α < 1=2 is straightforward.
Finally, note that the above model can also be understood

as a local hidden variable model; thus, the statistics of local
projective measurements on ρABðαÞ with α ≤ 1=2 cannot
violate any Bell inequality [22]. This complements a series
of works describing entangled states admitting a local
hidden variable model [23–26].
Steering from A to B.—Wewill see now that the situation

is completely different when the roles of Alice and Bob
are interchanged. Specifically, the state ρABðαÞ with
α≳ 0.4983 is steerable from Alice to Bob. In order to
prove this, we will show that, for a well-chosen set of m
projective measurements for Alice, the resulting assem-
blage fρaj~xg obtained on Bob’s side cannot be reproduced
by any LHS model.
The observables measured by Alice are denoted Ai ¼

~xi · ~σ with i ¼ 1;…; m and outcome a ¼ �1. Bob char-
acterizes the state ρaj~xi by tomography, making measure-
ments represented by the Pauli matrices σj, with j ¼ 1; 2; 3,
outcome b ¼ �1, and σ0 ¼ I. The observed statistics are
then given by

habiij ¼ trðρABðαÞAi ⊗ σjÞ;
hbij ¼ trðρABðαÞI ⊗ σjÞ: (12)

Alice’s marginals are given by haii ¼ habii0.
Considering a given number of measurements m, we

now aim at finding the largest value of α, denoted α�, for

PRL 112, 200402 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
23 MAY 2014

200402-3



which the state ρABðαÞ is unsteerable from Alice to Bob.
That is, we want to determine the largest α such that the
statistics (12) can be reproduced by a LHS model, i.e.,

habiij ¼
X
λ

EλðiÞtrðρλσjÞ; hbij ¼
X
λ

trðρλσjÞ; (13)

where EλðiÞ ¼ pλða ¼ 1jiÞ − pλða ¼ −1jiÞ is the expect-
ation value of Alice’s outcome a for a given λ and
measurement i. Note that here the local states ρλ are not
normalized, and one has that

P
λtrðρλÞ ¼ 1.

To solve this problem we make use of a semi-definite
programming (SDP) technique recently developed in [20],
for deciding whether a given assemblage fρaj~xg belongs to
the set of “unsteerable assemblages,” that is, whether fρaj~xg
admits a decomposition of the form equation (2). Our
present problem can be solved by the following SDP:

α� ≡maxα s:t:
X
λ

EλðiÞtrðρλσjÞ ¼ habiij;
X
λ

trðρλσjÞ ¼ hbij; tr
X
λ

ρλ ¼ 1; ρλ ≥ 0 ∀ λ;
(14)

where the optimization variables are α and ρλ, and the
quantities habiij and hbij are computed as in Eq. (12). Note
that we can focus here on LHS strategies for which Alice
provides a deterministic outcome a given λ and i [20], that
is EλðiÞ ¼ �1 for i ¼ 1;…; m. Hence, we have altogether
2m possible strategies for Alice to consider. The above SDP
is then implemented for each strategy.
Using the above SDP, we can thus estimate, for a

particular choice of m measurement directions ~xi (with
i ¼ 1;…; m), the threshold value α� for which the state
ρABðαÞ is steerable from Alice to Bob. For fixedm, we then
minimize α� over all possible choices of measurement
operators for Alice, using a hill-climbing heuristic algo-
rithm. Results for m up to 14 are presented in Table I.
Notably, for m ¼ 14 we get α� ≃ 0.4983, thus implying
that the state ρABðαÞ with α ≳ 0.4983 is steerable from
Alice to Bob.
Finally, from the result of the above optimization

procedure, it is in fact possible to extract an explicit

steering inequality. Once the optimal measurement direc-
tions ~xi (i ¼ 1;…; m) have been found via the hill-climbing
algorithm, the dual of the SDP problem (14) allows us to
extract a linear steering inequality [20] of the form

Xm
i¼1

X3
j¼1

sijhabiij þ
Xm
i¼1

sAi haii þ
X3
j¼1

sBj hbij ≤ L: (15)

Such an inequality is characterized by (i) a set of real
coefficients: sij, sAi , and s

B
j , and (ii) a bound L which holds

for any LHS strategy. In the Supplemental Material [27],
we follow the above method to give explicitly a steering
inequality featuring m ¼ 13 measurements, which is vio-
lated by performing appropriate measurements (which we
give as well) on the state ρABð1=2Þ.
Discussion.—We have shown the existence of entangled

states which are one-way steerable when considering
arbitrary projective measurements. That is, the nonlocal
properties of such states depend on the role played by
the parties: while Alice can steer the state of Bob, it is
impossible for Bob to steer Alice’s state. This shows that
quantum nonlocality can be fundamentally asymmetrical.
An interesting open question is whether the present result
can be extended to the most general measurements, i.e.,
positive operator valued measures. Moreover, it would be
interesting to find an application, e.g., in quantum infor-
mation processing, of the phenomenon of one-way
steering.
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