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Abstract

Gene expression is a heritable cellular phenotype that defines the function of a cell and can lead to diseases in case of
misregulation. In order to detect genetic variations affecting gene expression, we performed association analysis of single
nucleotide polymorphisms (SNPs) and copy number variants (CNVs) with gene expression measured in 869 lymphoblastoid
cell lines of the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort in cis and in trans. We discovered that
3,534 genes (false discovery rate (FDR) = 5%) are affected by an expression quantitative trait locus (eQTL) in cis and 48 genes
are affected in trans. We observed that CNVs are more likely to be eQTLs than SNPs. In addition, we found that variants
associated to complex traits and diseases are enriched for trans-eQTLs and that trans-eQTLs are enriched for cis-eQTLs. As a
variant affecting both a gene in cis and in trans suggests that the cis gene is functionally linked to the trans gene expression,
we looked specifically for trans effects of cis-eQTLs. We discovered that 26 cis-eQTLs are associated to 92 genes in trans with
the cis-eQTLs of the transcriptions factors BATF3 and HMX2 affecting the most genes. We then explored if the variation of
the level of expression of the cis genes were causally affecting the level of expression of the trans genes and discovered
several causal relationships between variation in the level of expression of the cis gene and variation of the level of
expression of the trans gene. This analysis shows that a large sample size allows the discovery of secondary effects of human
variations on gene expression that can be used to construct short directed gene regulatory networks.
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Introduction

Genome-wide association studies (GWAS) have discovered a

large number of loci implicated in many complex traits and

diseases [1]. The vast majority of variants discovered are found in

non-coding regions (88%), which challenges the interpretation of

their functional effect [1]. One way to overcome this challenge is

to look for associations between variants and an intermediate

cellular phenotype, such as gene expression. Expression quantita-

tive trait loci (eQTL) analysis have been successful in mapping

variants to gene expression in several cell types providing a better

understanding of the genetics of gene expression, and revealing

functional impacts of variants associated with complex traits and

diseases [2–10].

Most studies so far were conducted on relatively small sample

sizes [11], limiting the power to detect variants affecting gene

expression in cis and to a greater extent in trans, as trans-eQTLs

typically have weaker effect sizes than cis-eQTLs [12]. Detecting

eQTLs with small effect sizes is indeed important, as a variant can

have a weak effect in the tissue sampled but a strong effect in the

tissue relevant for a specific disease. Furthermore, small effects in

cis can be important if the associated gene plays a substantial role

in a cellular process. A large sample size also allows the discovery

of variants that are both cis and trans-eQTLs, suggestive of a

regulatory relationship between the cis regulated gene and the

trans regulated gene.

Here we measured gene expression in Lymphoblastoid cell lines

(LCLs) from 869 genotyped individuals of the Avon Longitudinal

Study of Parents and Children (ALSPAC) cohort in order to map

single nucleotide polymorphisms (SNPs) and copy number variants

(CNV) with minor allele frequency .1% to gene expression in cis

and in trans. We then investigated trans effects of cis-eQTLs and

used causal models to investigate the mechanism by which a

variant can affect the expression of a gene in cis and in trans.
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Results

In order to better understand how genetic variations affect gene

expression in LCLs, we associated 2’290’057 imputed single-

nucleotide polymorphisms (SNPs) from the HapMap2 reference

set and 3329 copy number variants (CNVs) to gene expression in

869 individuals from the ALSPAC cohort. We first looked for cis-

eQTLs, defined as variants associated with gene expression in a

2 MB window surrounding the transcriptional start site (TSS). We

used spearman rank correlation to test for association between

20’745 probes on autosomes, measuring the expression of 14’835

genes, and variants present in the windows. A gene-based

significance threshold was determined by permuting all expression

phenotypes 1000 times (Methods). We discovered that 3534

genes had a cis-eQTL at a false discovery rate (FDR) of 5% (3498

due to SNPs, 36 due to CNVs) (Table S1, Table S2). As shown

previously [5,9], we found that cis-eQTLs cluster around the TSS

(Figure S1). CNVs were more often cis-eQTLs than expected by

chance (i.e: if SNPs and CNVs had the same probability to be a

cis-eQTL, we would expect the same fraction of CNVs and SNPs

in our cis-eQTL results than in the whole data set) (odd ratio: 7.1,

Fisher’s exact test pvalue,2.2e-16), suggesting that CNVs are

more likely to affect gene expression than SNPs. We observed a

strong correlation (rho = 0.98, pvalue = 1e-13) between sample size

and the number of genes with a cis-eQTL discovered (Figure S2).

Although, it appears that the rate of discovery is decreasing for

large sample sizes, it is likely that further increases in sample size

would allow the discovery of more genes with at least one cis-

eQTL.

In order to detect genes affected by more than one cis-eQTL,

we performed conditional regression by removing the effect of the

cis-eQTL(s) on gene expression and repeating the association

analysis on the residuals until no significant associations could be

detected (Methods) [13,14]. We found that 694 genes (19.6% of

the genes with a cis-eQTL) have at least two independent cis-

eQTLs (Figure S3). For 374 genes (53.9%), independent cis-

eQTLs were located in the same recombination interval, showing

that variants in linkage disequilibrium can have different

functional effects on gene expression. In order to evaluate the

importance of independent cis-eQTLs on the heritability of gene

expression, we obtained heritability estimates from the MUTHER

cohort in LCLs [2]. On average, the heritability of genes with

multiple cis-eQTLs was greater than for genes with only one cis-

eQTL detected (mean heritability = 0.24 for genes with one cis-

eQTL, mean heritability = 0.38 for genes with multiple eQTLs,

Mann-Whitney U test pvalue,2.2e-16). For each gene with

multiple eQTLs, we compared the heritability explained by the

best eQTL to the heritability explained by all independent eQTLs

using a linear model where the standard normal expression of the

gene is explained by the best eQTL or all independent eQTLs

(Methods). We observed that the best eQTL explains on average

46% of the heritability of the traits while all independent eQTLs

explain on average 57% of the heritability of gene expression

(Figure 1). These results show that independent cis-eQTLs are

detected preferentially in genes with a relatively high genetic

component of their expression and that independent cis-eQTLs

explain 11% more of the heritability of the gene expression on

average than using only the best cis-eQTL.

Several studies have shown that the effect of variants on gene

expression is tissue dependent [5,9,10,15]. Indeed, some eQTLs

can have different effect sizes in cells of different developmental

origin [9] or can be detected only in specific tissues [5,9,10,15].

However, the estimated tissue sharing of eQTLs has steadily

increased in function of the cohort sample sizes, ranging from

20%–31% [5] with a small cohort to 56–83% in a larger cohort

[2], questioning the relevance of interrogating different tissues. In

order to address this question, we took advantage of the large

sample size of the ALSPAC cohort to investigate the effect of

sample size on tissue sharing. We obtained cis-eQTLs detected in

LCLs, skin and adipose tissues from the MUTHER cohort [2],

one of the largest studies investigating eQTL tissue specificity. We

assessed tissue sharing as a function of sample size in a continuous

manner by matching cis-eQTLs detected by the MUTHER study

(1%FDR) with the pvalues detected for the same associations in

different subsets of individuals of the ALSPAC cohort and

computed the p1 statistic (estimate of the proportion of true

positives in a pvalue distribution) for each sample size [16]. We

observed little tissue sharing for small sample sizes (30.6% with

adipose tissue, 34.8% with skin, and replicated 46.9% in LCLs for

50 individuals) (Figure 2). In contrast, using the entire ALSPAC

cohort, we replicated 79.2% of the eQTLs in LCLs, detected by

the MUTHER project, and estimated tissue sharing to be 61.6%

for adipose tissue and 61.7% for skin cells. We did not observe an

increase in the p1s for LCL and skin cells after 600 individuals,

while the sharing of MUTHER adipose eQTLs with ALSPAC

LCLs continued to increase slightly for larger sample sizes

(Figure 2). We found stronger concordance in the directionality

of eQTLs replicating within LCLs (1.8% with opposite direction-

ality at 5% FDR) compared to eQTLs shared across tissues (10.4%

with opposite directionality in skin and 10.5% in adipose tissue at

5%FDR). These results indicate that a relatively large proportion

of cis-eQTLs detected in one tissue cannot be detected in other

tissues and support the idea that one should perform eQTL

analysis in different tissues in order to map all regulatory variants

in the genome.

We next investigated whether we could detect variants affecting

gene expression in trans. We defined trans-eQTLs as variants

affecting gene expression at a distance greater than 5 MB from the

TSS or on another chromosome. We used spearman rank

correlation to test for association between 21’634 probes,

measuring the expression of 14’441 genes on autosomes and

chromosome X, and all variants further than 5 MB from their

TSS. A genome-wide significance threshold was determined by

permuting a subset of the expression phenotypes 1000 times

Author Summary

Humans differ in their genetic sequences at millions of
positions but only a subset of these differences have a
functional effect. In order to detect functional genetic
differences, we assessed the impact of common genetic
variants on gene expression in 869 individuals and
discovered that the expression of many genes is affected
by common variants in cis or in trans. We show that the
effect of some variants on gene expression cannot be
detected in other tissues, highlighting the tissue specificity
of gene regulation. In addition, we show that variants
associated to common diseases are more likely to affect
gene expression in cis and in trans. Finally, we show that
variants affecting gene expression in cis often affect gene
expression in trans, which suggests that the trans effects
are due to the cis genes expression. We tested this
hypothesis and discovered several cases of genes regulat-
ed in trans by a cis regulated gene in a causal manner. This
shows that a population-based strategy with a large
number of individuals has the potential to detect
secondary effects of common variants that can be used
to construct short directed regulatory networks.
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(Methods). We discarded trans associations of CNVs when the

gene associated was on the same chromosome or on a

chromosome with SNPs correlated with the CNV (r2.0.1) as

some CNVs appeared to be mismapped (Text S1). In addition, we

discarded all significant associations of CNVs with an imbalance in

copy number between males and females, as this resulted in the

false trans associations of the CNVs with genes differentially

expressed between males and females. After filtering, we

discovered trans-eQTLs for 48 genes (FDR = 5%) (45 due to

SNPs and 3 to CNVs) (Table 1, Table S2, Table S3). We

assessed the replication of the trans-eQTLs using the MUTHER

cohort [2], a twin cohort, which we separated in two sets of

unrelated individuals (group 1: 340 individuals, group 2: 338

individuals). We replicated 22 trans-eQTLs (of 40 tested) with a

pvalue,0.05 in the first group and 19 in the second group

(union = 23). In order to validate the array-based trans-eQTLs

with an independent technology, we used the GEUVADIS [17]

cohort (373 individuals with RNA-seq in LCLs) and replicated 11

trans-eQTLs (of 32 tested). As for cis-eQTLs, CNVs were more

often trans-eQTLs than expected by chance (i.e: if SNPs and

CNVs had the same probability to be a trans-eQTL, we would

expect the same fraction of CNVs and SNPs in our trans-eQTL

results than in the whole data set) (odd ratio: 45.8, Fisher’s exact

test pvalue = 5e-5). Two variants, rs1156058 and rs705170, were

associated with a total of 14 and 7 genes in trans respectively

(Figure S4). We also found that rs4781011, located on

chromosome 16 within 5 kb of the TSS of the gene CIITA (class

II, major histocompatibility complex transactivator), a gene known

to activate in trans the HLA locus on chromosome 6, was a trans-

eQTLs of CD74 on chromosome 5, a protein that regulates

Figure 1. (A) Histogram of heritability explained by the best cis-eQTL and (B) all independent cis-eQTLs for genes with more than one cis-eQTL. (C)
Heritability explained by independent cis-eQTLs compared to the heritability explained by their best cis-eQTL for genes with more than one cis-eQTL.
(D) Heritability of genes with one cis-eQTL (red) and more than one cis-eQTL (black) compared to heritabilty explained by all available eQTLs.
doi:10.1371/journal.pgen.1004461.g001
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antigen presentation. This analysis shows that it is much more

difficult to detect trans-eQTLs than cis-eQTLs at the same false

discovery rate. Although our replication cohorts had a sample size

representing only roughly 40% of the discovery cohort, we

replicated approximately 50% of the trans-eQTLs attempted. This

encouraging result suggests that more trans-eQTLs could be

replicated with a bigger replication cohort and that our trans-

eQTLs detection methodology is efficient.

Genome-wide association studies (GWAS) found many SNPs

associated with diverse phenotypes but the mechanistic link

between the GWAS-SNP and the phenotype remains unclear

for the vast majority of the associated SNPs. One possibility is that

a GWAS-SNP affects gene expression, which then leads to the

phenotype. It was previously shown that trait associated SNPs

were more likely to be cis-eQTLs [18]. However, since the

publication of this result, many more GWAS were performed,

increasing dramatically the number of variants associated with

complex traits and a much larger number of eQTLs were

discovered in this study. In order to confirm that GWAS identified

variants are more likely to be cis-eQTLs and to investigate if a

similar relationship exists for trans-eQTLs, we accessed the catalog

of published genome-wide association studies (http://www.

genome.gov/gwastudies/) on 19 March 2012. 5381 SNPs

reported in the catalog at that date were genotyped in our study.

We looked for GWAS-SNPs overlapping eQTLs and found that

850/3 (15.8%/0.06% of the GWAS-SNPs) GWAS-SNP co-

localized with variants significantly associated in cis/trans (Table
S5) (Table S6). This is significantly more than using SNPs

matched to the GWAS-SNPs for distance to closest gene and

minor allele frequency (for cis-eQTLs, median = 585, pvalue,

0.001) (for trans-eQTLs, median = 0, pvalue,0.01) (Figure S5).

This confirms that many GWAS-SNPs are probably playing a role

on disease susceptibility by affecting gene expression in cis and that

trait associated SNPs are also more likely to be trans-eQTLs [19].

We next sought to determine whether trans-eQTLs were also

cis-eQTLs, as this may indicate that the genes regulated in cis play

a role in the regulation of the trans genes. We examined the

overlap between trans-eQTLs and cis-eQTLs and found that 5

(18.5%) of the unique trans-eQTLs were also associated with gene

expression in cis. This overlap is significantly greater than the

overlap obtained using variants matched to the trans-eQTLs for

distance to closest gene and minor allele frequency (1000

permutations, median = 0, pvalue,0.001) (Figure S6). We find

that the cis-eQTLs of two transcription factors, BATF3 and

HMX2, are associated to the most genes in trans. The cis-eQTL of

BATF3, a gene involved in the differentiation of CD8a+ dendritic

cells and IL17-producing T helper cells [20,21], is a trans-eQTL

of 14 genes, distributed on 8 chromosomes. The cis-eQTL of

HMX2 is a trans-eQTL of 7 genes distributed on 4 chromosomes.

Figure 2. Tissue sharing (p1) of cis-eQTLs between ALSPAC
LCLs and cis-eQTLs detected by the MUTHER cohort in LCLs
(black), skin (red) and adipose tissues (green) tissues in
function of the ALSPAC sample size. Error bars represent the 5%
and 95% confidence interval and lines show the best polynomial fit of
the data.
doi:10.1371/journal.pgen.1004461.g002

Table 1. Top 15 trans-eQTLs (5% FDR).

SNP gene Probe Chr SNP Chr gene rho 2log10(pvalue)

rs10876864 BEND4 ILMN_1740094 12 4 20.7 128.4016

rs7192 ERG ILMN_1768301 6 21 20.45 43.7952

CNVR8164.1 IL37 ILMN_1697710 22 2 0.443 42.3473

rs3823342 NDUFS1 ILMN_1728810 6 2 0.435 40.6971

rs2734975 TPD52L2 ILMN_2323633 6 20 0.371 28.9582

rs13292096 LOC645688 ILMN_1772888 9 17 20.341 24.3602

rs10902222 SHFM1 ILMN_1794505 11 7 0.341 24.3479

rs10876864 DCAF16 ILMN_1753440 12 4 20.339 24.0678

rs6776967 STX19 ILMN_1775587 3 3 20.332 23.0584

rs11881477 CCM2 ILMN_1784352 19 7 0.292 17.7835

CNVR2845.48 CSNK2A1 ILMN_2386355 6 20 20.296 17.6496

rs1682809 CRISP1 ILMN_1758212 19 6 20.286 17.1069

rs1156058 NAPSB ILMN_2109416 1 19 20.279 16.3070

rs1156058 CCR6 ILMN_1690907 1 6 20.278 16.1857

CNVR6703.1 DUSP22 ILMN_1784352 16 6 0.277 16.0514

doi:10.1371/journal.pgen.1004461.t001

Cis and Trans Effects of Human Genomic Variants on Gene Expression
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HMX2 is a transcription factor directing development of inner ear

and hypothalamus in mice [22] and deletion of the chromosomal

region containing HMX2 in human is associated to inner ear

malformations, vestibular dysfunction and hearing loss [23]. Other

genes with a cis-eQTL that is also a trans-eQTL are: GNA15, a G

protein, S1PR4, a G protein coupled receptor, PIDD, an effector

of p53 apoptosis in mice and CRIPAK, an inhibitor of the PAK1

transcription factor. These results show that we can detect

potential new functional targets of important genes in LCLs by

combining cis-eQTLs and trans-eQTLs.

In order to detect more possible functional relationships

between genes regulated in cis and in trans by the same variants,

we looked for the trans effects of the subset of variants that were

found to be cis-eQTLs. Since we discovered 3475 variants

associated to 3534 genes in cis, a trans-analysis of this subset of

variants has the advantage of reducing the number of tests

performed and therefore allows us to discover more trans effects of

cis-eQTLs. Before investigating which cis-eQTLs are affecting

which genes in trans, we first aimed to assess how many trans

effects of cis-eQTLs could be detected if we had a much larger

sample size. We used spearman rank correlation to test for

associations between 23’935 probes, measuring the expression of

16’505 genes and all unique cis-eQTLs further than 5 MB from

the TSS. We obtained approximately 23’935 trans association

pvalues per cis-eQTL and computed the p1 statistics (estimate of

the proportion of true positives in a pvalue distribution) on each set

of pvalues, resulting in 3475 p1 estimates [16]. These estimates

represent the proportion of probes that are affected in trans by the

3475 variants that are cis-eQTLs, without being able to pinpoint

all individually significant effects. We observed that a large

number of cis-eQTLs are affecting a large number of probes in

trans (52% of the cis-eQTLs have a p1 .0) ranging from a few

probes affected to up to 37.2% of the probes (median = 0.004603

corresponding to 110 probes) (Figure 3A). Interestingly, the

variant with the most trans effects (37.2% of the probes), rs482519,

is the cis-eQTL of WHSC1 (Wolf-Hirschhorn Syndrome candi-

date1), a histone methyltransferase. A potential explanation for

this result it that variation of the level of expression of this histone

methyltransferase could affect the expression of many genes by

modifying chromatin accessibility. The second variant with the

most trans effects (33.5% of the probes), rs2978387, is the cis-

eQTL of ZNF16 (Zinc Finger Protein 16), a protein that may act

as a transcription factor. The third variant with the most trans

effects (32.1% of the probes), rs12196956, is the cis-eQTL of

TBC1D22B (TBC1 domain family member 22B), a protein that

may act as a GTPase-activating protein for Rab family protein.

Furthermore, we observed a negative correlation between the

strength of the cis-eQTLs and the number of probes affected in

trans (spearman rho = 20.1, pvalue = 4.2e-10), suggesting that

strong cis-eQTLs may be selected against in the population for

genes modulating the expression of many genes. These results

show that cis-eQTLs can have trans effects on many genes, which

have direct consequences on regulatory network perturbations.

Although we estimated that a large number of cis-eQTLs are

affecting many genes in trans, we would need a very large sample

size to detect all of them at a reasonable false discovery rate. In

order to assess which cis-eQTL is affecting which genes in trans, a

genome-wide significance threshold was determined by permuting

all expression phenotypes 1000 times (Methods). 92 genes had

significant trans-effects due to cis-eQTLs (FDR = 5%) (Table S4).

We replicated 31 associations (of 79 tested) in the first set of twins

of the MUTHER cohort, 22 in the second set (union = 34) and 27

in GEUVADIS (of 75 tested). We discovered substantially more

trans-effects of the cis-eQTLs of BATF3 and HMX2 with 39 and

18 genes regulated in trans respectively (Figure 3B). Other

examples of cis-eQTLs with several significant trans associations

include the cis-eQTL of PSMG1 (proteasome assembly chaperone

1) affecting 3 genes in trans and the cis-eQTL of BRWD1

(bromodomain and WD repeat-containing protein 1), which may

be a transcriptional activator [24], also affecting 3 genes in trans.

We did not find significant effects of the cis-eQTL of WHSC1,

indicating that the large number of effects on gene expression have

too small effect sizes to be discovered individually given our sample

size. In total we found that 26 variants are cis-eQTLs of 27 genes

and trans-eQTLs of 92 genes. 4 genes associated in cis to a cis/

trans-eQTLs also had independent cis-eQTLs. We regressed out

the effect of the main eQTLs on the trans genes expression and

found that in 95% of the cases the independent eQTLs had the

same allelic effect as the main eQTLs, i.e. the high expressing

allele of the main eQTL has the same effect - high or low – in the

trans gene as the high expressing allele of the second independent

eQTL in 95% of the cases. This concordance further highlights

the biological relevance of these trans eQTLs since their

downstream biological effects, mediated by the modulation of

the cis genes, are replicated by independent variants. 1 indepen-

dents cis-eQTL (associated to HMX2) was also significantly

associated to 1 gene in trans (5% FDR) and had the same allelic

effect as the main eQTL. The strong concordance in allelic effects

between main cis-eQTLs and independent cis-eQTLs indicate

that for those 4 genes, most of the trans effects are due to

variations in the level of expression of the cis gene.

We then explored whether the trans associations of the cis-

eQTLs were causally due to the variation in the expression level of

the cis genes. We assessed the likelihood of three different models

using two methods: Bayesian networks and a causal inference test

(CIT) (Methods) [25]. The first model (SCT) states that the

variant is affecting the expression level of the cis gene, which then

leads to variation in the level of expression of the trans gene. The

second model (INDEP) states that the trans effect and the cis effect

are independent and the third (STC) unlikely model states that the

variant is affecting the level of expression of the trans gene, which

then affects the level of expression of the cis gene. We observed

that 100%/100%/94% of the SCT/STC/INDEP models detect-

ed by the CIT method are also detected as the best model by

Bayesian networks. Conversely, 86%/33%/100% of the SCT/

STC/INDEP models called by Bayesian networks were also

detected as the best model by CIT. By taking the overlap of the

two methods, we obtain 19 SCT, 2 STC and 49 INDEP

relationships. We found causal effects (SCT) of CRIPAK on AVP,

CCL5 on NPSR1, BATF3 on three genes and HMX2 on 14 genes

(Table 2). The large representation of INDEP relationships is due

to several factors. First, false positives will be called INDEP

because their association is not due to the cis gene expression. As

we found 92 trans associations of cis-eQTLs at a 5% FDR, we

expect ,5 INDEP relationships due to false positives. In addition,

we expect 1 INDEP relationship because one cis-eQTLs is

associated to two genes in cis and 2 genes in trans in total. It is

unlikely that both of the cis associated genes would have causal

effect on one trans associated gene leading to INDEP calls for 1

relationship. Finally, we observed that 34 INDEP associations are

due to the cis-eQTL of BATF3. The INDEP relationships show

that the trans gene associations are not due to the cis gene

expression. However, they could be due to change in the structure

of the protein if other functional variants, such as non-synonymous

SNPs or splice variants, are in linkage disequilibrium with the cis-

eQTLs. Alternatively, the cis-eQTLs could be affecting the

expression of non-coding RNA in the vicinity of the cis genes

that could drive the trans associations.

Cis and Trans Effects of Human Genomic Variants on Gene Expression
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As we hypothesised that the trans-effects of some cis-eQTLs

could be due to changes in the protein structure, we investigated

the trans effects of 11564 non-synonymous SNPs discovered by the

1000 genome project and genotyped in the ALSPAC cohort. We

used spearman rank correlation to test for associations between the

23’935 probes, measuring the expression of 16’505 genes and all

non-synonymous SNPs further than 5 MB from the TSS. We first

looked at large effects that could be detected given our sample size

and found that 9 genes were affected in trans by non-synonymous

SNPs (5% FDR) (Table S7). We replicated 4 associations (of 6

tested) in the first set of twin of the MUTHER cohort, 4 in the

second set (union = 4) and 1 (of 7 tested) in GEUVADIS. We then

looked at the global effects of non-synonymous SNPs on gene

expression in trans by looking at the proportion of true positive in

the distribution of the trans association pvalues for each variant

using the p1 statistic [16]. We found that non-synonymous SNPs

have significantly less trans effects on gene expression than cis-

eQTLs (Mann-Whitney U test, pvalue = 1.8e-9) (Figure S7), as

observed previously [4]. This result is compatible with the

observation that common regulatory SNPs have more effects on

complex traits and common diseases than common non-synony-

mous SNPs.

Finally, we explored the trans effects of the 5381 SNPs

associated with complex traits and diseases in order to detect

potential effects of these variants on gene expression and

discovered that 66 of them are significantly associated to 10 genes

in trans (5% FDR) (Table S8). We replicated 6 associations (of 7

tested) in the first set of twin of the MUTHER cohort, 6 in the

second set (union = 6) and none in GEUVADIS (of 3 tested). For

example, we found that rs11171739, which is associated to type 1

diabetes, is a trans-eQTL of DCAF16, as previously shown in

monocytes [26] and is also a trans-eQTL of BEND4. We also

found that rs4781011, which is associated to ulcerative colitis, is a

trans-eQTL of CD74, a protein involved in immune response.

rs2227139, which is associated to hematological parameters was

associated in trans to ERG, which regulates hematopoiesis and the

function of adult hematopoietic stem cells [27]. These results show

that we can detect downstream effects of disease-associated

variants, an important step to understand the relevant biological

pathways in common diseases.

Discussion

The large sample size of the ALSPAC cohort allowed us to

discover that 3534 genes are affected by genetic variants in cis and

48 in trans. We found that CNVs are enriched in the best

associations per gene in cis and to an even greater extent in trans.

This enrichment is not surprising as CNVs are more likely to

disrupt regulatory elements than SNPs due to their size [8]. This

result indicates that CNVs are more likely to be causal than SNPs

in genetic diseases resulting from the misregulation of gene

expression. Several examples of genetic disorders, such as aniridia,

sex-reversal and holo-prosencephaly are already known to be

caused by duplications or deletions of CNVs located in non-coding

regions of developmental genes [28]. We found that SNPs

associated with complex traits and common diseases are more

likely to be cis and trans-eQTLs than matched variants. Although

some of these overlaps might be coincidental [3], these results

further confirm that a significant fraction of trait associated SNPs

are acting at the gene expression level.

We observed that many eQTLs detected in skin and adipose

tissues could not be detected in LCLs irrespectively of the sample

size, showing that a significant fraction of eQTLs is tissue specific.

Therefore, eQTL studies in many different tissues are needed in

order to map all regulatory variants in the human genome and

understand their precise tissue specific effect, a necessary step to

understand why a specific tissue becomes the ‘‘disease’’ tissue and

not other tissues.

We estimated that 52% of the cis-eQTLs have trans-effects on

gene expression ranging from a few probes to up to 37.2% of the

Figure 3. Trans-effects of cis-eQTLs. (A) Histogram of the proportion of probes (p1) affected in trans by each cis-eQTL that could be detected
with a very large sample size. The cis-eQTLs of several genes is highlighted in black. (B) Histogram of the number of genes significantly affected in
trans by cis-eQTLs (5% FDR) detected with 869 individuals.
doi:10.1371/journal.pgen.1004461.g003
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probes. The large number of trans-effects of cis-eQTLs is

concordant with the fact that on average 65% of the heritability

of gene expression is trans to the gene in LCLs [2]. As we can

detect only a minority of these effects at a reasonable false

discovery rate with our relatively large sample size, it indicates that

most of the trans-effects of the cis-eQTLs are of small effect sizes.

If complex traits and common diseases have the same underlying

architecture as gene expression, a substantial part of the missing

heritability will then be due to many common variants of very

small effect sizes.

Using Bayesian networks and causal inference tests [25], we

could detect 19 cases where a variant affects the expression of a

gene in cis that is causally affecting the expression of a gene in

trans (14 due to the cis-eQTL of HMX2). For example, the level of

expression of CRIPAK, a protein implicated in cytoskeleton

remodelling and influencing PAK1 mediated estrogen transactiva-

tion activity [29], is causally affecting the level of expression of

AVP (arginine vasopressin), a hormone with anti-diuretic effects

on the kidney and affecting social behaviour [30]. Taken together,

these results show that population based strategies allow to detect

important relationships between genes. Ultimately, this type of

approach performed with larger sample sizes will allow us to

uncover the cascade of events that lead a disease associated

variants to the disease phenotype.

Methods

Ethical approval
Ethical approval for the study was obtained from the ALSPAC

Ethics and Law Committee and the Local Research Ethics

Committees.

Study sample
ALSPAC is a prospective birth cohort which recruited pregnant

women with expected delivery dates between April 1991 and

December 1992 from Bristol UK. 14,541 pregnant women were

initially enrolled with 14,062 children born. Detailed information

on health and development of children and their parents were

collected from regular clinic visits and completion of question-

naires. A detailed description of the cohort is available on our

website (http://www.bristol.ac.uk/alspac/researchers/) and has

been published previously [31]. Please note that the study website

contains details of all the data that is available through a fully

searchable data dictionary (http://www.bris.ac.uk/alspac/

researchers/data-access/data-dictionary/).

DNA has been extracted as described previously from blood

samples collected from cord blood at research clinics [32].

Lymphoblastoid cell lines were established by transforming

lymphocytes from blood samples taken when the study partici-

pants were 9 years old, with Epstein Barr Virus.

Genotyping data
ALSPAC individuals were genotyped using the Illumina

HumanHap550 quad genome-wide SNP genotyping platform by

23andMe subcontracting the Wellcome Trust Sanger Institute,

Cambridge, UK and the Laboratory Corporation of America,

Burlington, NC, USA. Markers with ,1% MAF, .5% missing

genotypes or which failed an exact test of Hardy-Weinberg

equilibrium (P,561027) were excluded from further analysis.

Any individuals who did not cluster with the CEU individuals in

multidimensional scaling analysis, who had .3% missing data,

minimal or excessive heterozygosity (.33% or ,31%), evidence

of cryptic relatedness (.10% IBD) or incorrect gender assign-

ments were excluded from further analysis. After data cleaning

315,807 SNPs were left. Imputation was carried out using MACH

1.0.16, Markov Chain Haplotyping [33,34], using CEPH individ-

uals from phase 2 of the HapMap project as a reference set.

Imputed markers with imputation quality r2,0.8, with MAF,1%

or which failed an exact test of Hardy-Weinberg equilibrium (P,

561027) were excluded resulting in a total of 2’290’057 high

quality SNPs. The CNVs were genotyped using a targeted Agilent

105K CGH array. The design of the array and the methodology

for analyzing the array data was previously described in details

[35].

Gene expression data
LCL’s from unrelated individuals were grown under identical

conditions and cells frozen in RNAlater. RNA was extracted using

an RNeasy extraction kit (Qiagen) and was amplified using the

Illumina TotalPrep-96 RNA Amplification kit (Ambion). Expres-

sion profiling of the samples, each with two technical replicates,

were performed using the Illumina Human HT-12 V3 BeadChips

(Illumina Inc) including 48,804 probes where 200 ng of total RNA

was processed according to the protocol supplied by Illumina. Raw

data was imported to the Illumina Beadstudio software and probes

with less than three beads present were excluded. Log2 -

transformed expression signals were then normalized with quantile

normalization of the replicates of each individual followed by

quantile normalization across all individuals. We restricted our

analysis to 23’935 probes tagging genes annotated in Ensembl.

Principal component analysis was performed on 931 individuals. 62

individuals with principal component 1 or 2 greater than one

standard deviation of the population were excluded from further

analysis. Raw expression data are available upon request at http://

www.bristol.ac.uk/alspac/researchers/data-access/policy/.

eQTL analysis
All eQTL analysis were performed at the single variant level

and assumed an additive model. We used spearman rank

correlation to test for association between probe expression and

genotype. For the cis-analysis, we limited the variants tested to

variants present in a 2 MB window surrounding the transcription

start site of the gene and we filtered out probes containing SNPs

with minor allele frequency .1% according to the 1000 genomes

project dataset [36]. To assess significance, we permuted all

expression probes 1000 times and kept the best pvalue per gene

after each permutation. For each gene, we ranked the permu-

tation pvalues and assessed whether a variant in the non-

permuted data had a lower association pvalues than the

permutation threshold considered. We then computed the false

discovery rate associated with the permutation threshold and

subsequently selected the permutation threshold that provides a

5% false discovery rate.

For the trans analysis, we tested all variants except variants

present in a 5 MB window surrounding the transcription start site.

In order to remove false positives, we excluded probes mapping to

multiple locations according to ReMOAT [37]. To assess

significance, we permuted 1000 times 288 random probes, each

corresponding to one gene. As each probe is tested by

approximately the same number of SNPs and as we used

spearman rank correlation, which is robust to outliers, we treated

our permutations as if we had permuted one probe 288’000 times.

We combined all pvalues obtained from the permutations

(288*1000), ranked them and increased the genome-wide pvalue

threshold until we reached a 5% false discovery rate (correspond-

ing to a pvalue of 9.5e-11).

For the trans analysis of cis-eQTLs, we tested all unique cis-

eQTLs except variants present in a 5 MB window surrounding the
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TSS. In order to remove false positives, we excluded probes

mapping to multiple locations according to ReMOAT [37]. To

assess significance, we permuted all expression probes 1000 times.

As for the trans analysis of all variants, we combined all pvalues

obtained, ranked them and increased the genome-wide pvalue

threshold until we reached a 5% false discovery rate (correspond-

ing to a pvalue of 7.6e-8).

For the trans analysis of non-synonymous SNPs and SNPs

associated to complex traits and diseases, we tested all SNPs except

variants present in a 5 MB window surrounding the TSS. In order

to remove false positives, we excluded probes mapping to multiple

locations according to ReMOAT [37]. To assess significance, we

permuted 1000 random probes, corresponding to 1000 genes,

10000 times. As for the other trans analysis, we combined all

pvalues obtained, ranked them and increased the genome-wide

pvalue threshold until we reached a 5% false discovery rate

(corresponding to a pvalue of 2.0e-9 for non-synonymous SNPs

and 5.4e-10 for SNPs associated to complex traits and diseases).

Conditional regression
For each gene with an eQTL, we performed linear regression of

the best variant on the standard normalized probe expression and

kept the residuals. We repeated the association analysis on the

residuals using spearman rank correlation and kept any SNPs

passing the gene-based permutation threshold obtained during the

initial association analysis. We repeated this procedure regressing

out all previous best associations until no variants were significant.

Heritability explained by cis-eQTLs
For each gene with cis-eQTL(s), we computed the variance

explained (r2) by the best cis-eQTLs or all independent cis-eQTLs

on the standard normalized probe expression using the lm()

function in R. We then obtained the heritability explained by

dividing the heritability of the probe with the variance explained

by the cis-eQTL(s). If the variance explained by the cis-eQTL(s)

was greater than the heritability estimate of the probe, the

heritability explained was set to 1.

Matched SNPs in enrichment analysis
We matched each significant variant (cis-eQTLs, trans-eQTLs

or GWAS SNPs) with a variant with the same minor allele

frequency in our data set (61%) and distance to the closest gene

(62 kb).

Causal models
Bayesian networks (BN) are directed acyclic graphs where nodes

represent random variables and edges represent the conditional

dependences among nodes. The direction of the edges between

two nodes can be interpreted as causal relationships and allowed to

infer causality in genetics studies previously [38–40].

Likelihood methods are commonly used to compare different

BN and estimate the most likely—that is, the set of causal

relationships among the different variables that better agrees with

the data. In a BN, every node is associated with a probability

distribution and, together with the conditional dependencies

represented by the edges, forms the join probability distribution

of the network. BN satisfy the local Markov property—that is,

each variable is conditionally independent of its non-descendants

given its parent variables. The Markov property allows the

decomposition of the joint probability distribution of the network

into a set of local distributions, which allows to easily calculate the

likelihood of a given BN.

We used the R package bnlearn [41] to calculate the maximum

likelihood of three different networks that we defined using eQTLs

as anchors. In the first network (SCT), we fixed the first node as

the eQTL genotype with a forward directional edge to the second

node (standard normalized cis gene expression) and a second

forward directional edge starting from the second node to the third

node (standard normalized trans gene expression). For the second

network (STC), we fixed the first node as the eQTL genotype with

a forward directional edge to the second node (standard

normalized trans gene expression) and a second forward

directional edge starting from the second node to the third node

(standard normalized cis gene expression). For the third network

(INDEP), we fixed the first node as the eQTL genotype with a

forward directional edge to a node representing the standard

normalized cis gene expression and a second forward directional

edge starting from the first node to a node representing the

standard normalized trans gene expression.

Different networks often have different complexities and it is

common to use a score that takes into account the network

complexity instead of the raw likelihood to compare different

networks. We used the Akaike Information Criterion (AIC) score

(AIC = 2k-2ln(L), where k is the number of parameters (5 for all

models in our case) and L is the maximum likelihood) to compare

our networks. To compare how good is a network compared to

another, we used the relative likelihood of one network against the

other. If we have two networks, N1 and N2 and AIC(N1)#

AIC(N2), then the relative likelihood of N2 with respect to N1 is

defined as: exp((AIC(N1)–AIC(N2))/2). We kept only networks

where the best model was at least ten times more likely than the

second best model. In order to have high confidences in our calls,

we required that the Causal Inference Test (CIT), described

previously [25], also calls the same model as the most likely. The

CIT is a semi-parametric method that tests a series of conditions

and then provides p-values for the SCT and STC models. If none

of them has a pvalue,0.05, it makes a call for the INDEP model,

and if both of them are significant it makes no call. In order to take

into account multiple testing with the CIT method and to reduce

the number of networks resulting in a ‘‘no call’’ by the CIT, we

used Bonferroni corrected pvalues for model calling instead of the

nominal pvalue of 0.05.
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