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, Sébastien Loisel
	��
�

,
Jean Côté
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Abstract

The overset grid nicknamed ”Yin-Yang” grid is singularity free and has quasi-uniform grid spacing. It is
composed of two identical latitude/longitude orthogonal grid panels that are combined to cover the sphere
with partial overlap on their boundaries. The system of shallow-water equations (SWEs) is a hyperbolic
system at the core of many models of the atmosphere. In this paper, the SWEs are solved on the Yin-Yang
grid by using an implicit and semi-Lagrangian discretization on a staggered mesh. The resulting scalar
elliptic equation is solved using a Schwarz-type domain decomposition method, known as the optimized
Schwarz method, which gives better performance than the classical Schwarz method by using specific Robin
or higher order transmission conditions.
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1 Introduction

We use a domain decomposition method to solve the system of shallow-water equations (SWEs)
using the Yin-Yang grid on the sphere. In this grid system the globe is partitioned into two identical
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latitude/longitude orthogonal grid panels that are combined to cover the sphere with partial overlap
on their boundaries, and we consider the hyperbolic problem in each subdomain over a given time
interval and using the same time step.

The local solver is the same fully implicit semi-Lagrangian method as in the GEM operational
model [1]: uniform Arakawa staggered C-Grid, 2-time-level iterative semi-Lagrangian scheme
with in time interpolated advecting wind, iterative non-linear solver for the positive definite
Helmholtz problem, iterative treatment of the Coriolis terms by grouping them with non-linear
terms, and metric terms using the Lagrange multiplier approach [2]. We use the semi-Lagrangian
time discretization scheme in spherical coordinates to approximate the Lagrangian derivative along
particle trajectories defined by the velocity field. A finite-volume method is used for the spatial dis-
cretization. This discretization is implemented independently on each quasi-uniform lat/long part
grid. The trajectories are computed for each grid panel in 3D Cartesian geometry with the restric-
tion that the trajectories are confined to the surface of the sphere. We adopt the two-time scheme to
evaluate a field on a trajectory. The value at an upstream point is determined by the cubic Lagrange
interpolation either in the Yin (if this point is in Yin) or the Yang grid panel.

The implicit treatment of the terms responsible for gravity waves in the SWEs gives rise to a 2d
elliptic boundary value problem that must be solved at each time step. We use here a domain de-
composition method, where the solution of the global elliptic problem is obtained by iteratively
solving the corresponding two subproblems separately on the Yin and the Yang grids, and updating
the values at the interfaces. In recent years, much attention has been given to domain decompo-
sition methods for solving linear elliptic problems that are based on a partitioning of the domain
of the physical problem. The initial idea of the Schwarz method was given by Schwarz [3] as a
method for proving existence and uniqueness of solutions in irregular domains for the Laplace
equation. The method is now used as an iterative method in modern applied mathematics, see for
example Quarteroni and Valli [4]. The classical alternating Schwarz method consists of solving
iteratively subdomain problems and using the subdomain solutions to update the interface condi-
tions of neighboring subdomains. Because the two subgrids of the Yin-Yang grid do not match,
the update is done by cubic Lagrange interpolation and this corresponds to Dirichlet interface
condition. To improve the performance of the classical domain decomposition methods we use
optimized Schwarz methods, see Gander [6] and references therein.

The paper is organized as follows: in Section 2, we present the model formulation, in Section 3
the various Schwarz methods, in Section 4 numerical results and finally concluding remarks in
Section 5.
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2 Formulation

In this section we briefly review the basic ideas of the semi-Lagrangian implicit solver.

2.1 Governing equations and time discretization

The governing equations on each (Yin or Yang) subgrid are the shallow-water equations on a
rotating sphere of radius � . The implicit semi-Lagrangian time discretization proceeds as in Yeh
et al. [1], and is

������� �	�
accurate. The resulting equation for the unknowns 
 , � , the wind images

[wind divided by ����
���� ], and � the perturbation geopotential from the reference geopotential ���
at forecast time

�
are� 
 ����� ��� �� � � ��"!$# � !&% � % � �('*),+ % (1)� � � � � 
-� �� �/.1032 � � �� � # � !&% � % � �('*)54 % (2)67 �"�(8:9 � � �<;;1= �� �>� �@?BAC � !&% � % � �('*) ; % (3)

where),+,' � 
 � � � � � �� � � ��D! #�E !GF % � F&% � � �H�JI �LK	MN
 % (4))54O' � � � ��� 
 � �� �/.P032 � � �� � #�E ! F % � F % � � ��� I ��K�MQ� % (5)) ; ' 67 � � 8:9 � � �<;;1= �� � � �@?HAC E !GF % � F % � � ��� I % (6)

and ? and
�

are the divergence and Coriolis parameter respectively and are defined by? ' �.1032 � � � � 
�D! � .P032 � � �� � � % � 'SR�T 2VU 9N�XW (7)

Here
T

is the angular speed of the Earth’s rotation and ! F , � F are the upstream longitude and
latitude at time

� � ���
of the fluid element arriving at the grid point ! , � at the forecast time

�
,� ' ���ZY R

and K	M[
 and K	M\� are the metric corrections terms computed following C ôt é [2].
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Fig. 1. The Yin-Yang grid system.

In the two time-level semi-Lagrangian discretization we need to estimate the trajectories of the
fluid elements. On the sphere the trajectories are great circles whose parameters, for centered
schemes, are determined by the winds at time

� � �
calculated by linear interpolation of the wind

vector. In (1)-(3), the value of the various fields at an upstream point is determined by cubic
Lagrange interpolation in either the Yin or the Yang grid panel.

2.2 Spatial discretization

The Yin-Yang grid in its most basic shape is shown in Fig. 1. It has two grid components which
are geometrically identical. They are combined to cover a spherical surface with partial overlap on
their borders. Each component is in fact a part of the latitude-longitude grid: each component grid
is defined in spherical polar coordinates by� ���� � K���� ��� � � �LK�� �	� � ��
��� � K�
�� ! � 
��� ��K�
 � % (8)

where K�
 % K�� are small buffers, which are proportional to the respective grid-spacings, required
for a minimum overlap in the overset methodology. A uniform cell-integrated finite-volume dis-
cretization on a staggered Arakawa C grid is used for each subgrid to discretize equations (1)-(3).
This means the arrival points at time

�
for 
 , � and � are all staggered with respect to one another.

For uniform resolution, this becomes the usual staggered finite difference formulation.

The right-hand sides
) +

and
)54

in (1) and (2) are first interpolated to the scalar grid using 1d
cubic Lagrange interpolation. The results denoted by

)��+
and

)��4
, where the superscript � refers to
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the scalar grid, are then interpolated at the upstream position ! F , � F . Next, the metric correction
terms K	M[
 � and K	M\� � are added, on the scalar grid, to ensure that horizontal displacements are
spherically constrained��� ) �+�� � ) �4 �/' E ) �+ � ! F % � F � �LK	M[
 � � ) �+ � !&% � � � ) �4 � ! F % � F � �LK	M\� � � ) �4 � !&% � � I W (9)

The increments
� ) �+

and
� )��4

are then interpolated back to 
 and � grids, respectively, using 1d
cubic Lagrange interpolation and the results denoted by

� )�� +
and

� )�� 4
to be added to the starting

values at grid points to get the final right-hand sides
) +

and
)54

.

2.3 A model time step

For each subdomain, a Crank-Nicolson iteration then consists of

(1) computation of the trajectories,
(2) computation of the right hand sides of the momentum and continuity equations without metric

effects,
(3) interpolation to the upstream point,
(4) inclusion of the metric effects,
(5) computation of the right hand side of the positive definite Helmholtz equation and iterative

solution with communication of the geopotential,
(6) updating of the wind.

In practice we perform 2 Crank-Nicolson iterations per time step and 2 iterations in the non-linear
Helmholtz problem solver.

3 Optimized Schwarz method

In this Section, we first show that the shallow-water equations with implicit time discretization
lead to a sequence of positive definite Helmholtz problems which can be solved by domain decom-
position methods. We then analyze the convergence of Schwarz domain decomposition methods
with Dirichlet and Robin transmission conditions for positive definite Helmholtz problems in 1d.
Finally, we present second-order transmission conditions for the 2d positive definite Helmholtz
problem on the sphere with two subdomains corresponding to the Yin-Yang grid.
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3.1 1d linear shallow-water equations

The governing equations are the 1d linear shallow-water equations on the circle ��� % R ��� . This do-
main is divided into two overlapping subdomains. We show that the periodic solutions ( � and � ) of
the SWEs can be obtained by updating the geopotential in the two subdomains with an optimized
Schwarz method. The global solution can also be recovered when the two subdomain (scalar) grids
do not match and even when there is no overlap. The generalization to 2d is straightforward.

We have chosen subdomains of identical size, but other cases could be analyzed as well. We use�
grid points for the scalar ( � -grid) and

� � � grid points for the wind ( � -grid) in both angular
subdomains

T
�
' ��� % �N� K�� and

T
�
' � � % R �N� K�� , where K is the overlap. The discretized equations

on each subdomain
T
	

, � ' � % R are

���
	�

�� � �� ��� 	�
��� � � ��� 	�
�� ' ) � 	�
��� % � ' � % W W W % � � � % (10)��� 	�
�� � �"�� ��� 	�
� � ���

	�

� F �� ' ) � 	�
; � % � ' � % W1W W % � % (11)

where �"� is a positive constant and) � 	�
��� ' � F � 	�
� � � �� � F � 	�
��� � � � F � 	�
�� % � ' � % W W W % � � � %) � 	�
; � ' � F � 	�
� � � � �� � F � 	�
� � � F � 	�
� F �� % � ' � % W W W % � W (12)

If the grids match, and this is the case analyzed here, then K '���� �
is a multiple of the angular

grid spacing
�

. Periodicity, continuity and uniqueness imply� � � 
�
' � � � 
� F ��� % � � � 
� ' � � � 
� � ��� % � � � 
� ' � � � 
� F ��� F � % � � � 
� � �

' � � � 
� � ��� %
� � �


� ' � � �



� F � � F � % � � � 
� ' � � �



� � ��� W (13)

Given fields at the previous time step ( � F � 	�
 and � F � 	�
 ), the two subdomains calculate in par-
allel their right-hand-sides

) � 	�
� and
) � 	�
; . Extra communication is necessary at initial time

( � �
	�

� , � �

	�

� , � � 	�
� , � � 	�
�!� � ) to calculate extended right-hand-sides

) � 	�
� � and
) � 	�
� � using (12). By subtract-

ing Eq. (10) expressed at two neighboring points
� � � and

�
we have

� �
	�

� � � �

	�

� F �� � � � �� � � � 	�
��� � � R � � 	�
� �>� � 	�
� F �� �

' ) � 	�
��� � ) � 	�
��� F �� � % � ' � % W W W % � � � W (14)
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This latter equation is used with Eq. (11) in order to eliminate � �
	�


and to obtain the discretized
elliptic equation for � � 	�
 which we solve iteratively with iteration index � ' � % W W W % � M���� in each
subdomain,� � � 	�
�� ���� � � R � � 	�
�� �� � � � 	�
�� �� F �� � �
	 ��� 	�
�� �� '�) � 	�
� � % � ' � % W W W % � % (15)

where) � 	�
� � ' � � ) � 	�
; �� � � � � � ) � 	�
� � � ) � 	�
� � F �
�

� % 	 ' � ��
� � � W (16)

For each subdomain
T
	

, � ' � % R , we use at the subdomain boundaries the transmission conditions� � 	�
�� �� � � � 	�
�� ��R � �
� � 	�
� ��� 	�
�� ��
'�
 � 	�
�� ��

' � ��� F 	�
�� � F �� � � � � ��� F 	�
�� � F �� F �R � �
� � 	�
� ����� F 	�
�� � F �� %� � 	�
�� �� � � � � � 	�
�� �� F �R � �
� � 	�
� � � 	�
�� �� '�
 � 	�
�� ��
' ����� F 	�
�� � F �

� � ����� F 	�
�� � F ��R � �
� � 	�
� � ��� F 	�
�� � F �
� W (17)

We use the discretized elliptic equation (15) and the transmission conditions (17) in order to elimi-
nate from the subdomain

T
	
equations the unavailable values � � 	�
�� �� and � � 	�
�� ��!� � that are in subdomainT � F 	 at the current time step. The 4 scalars � � 	�
� are chosen to optimize the convergence rate of the

Schwarz method and are precomputed analytically. The system (15-17) is solved iteratively with
the initial values provided by the values � F � 	�
 of the previous time step.

After the elliptic solver we have an extended updated vector of geopotential
� � � 	�
�� �������� % � � 	�
�� �������� % W W W % � � 	�
�� �������� % � � 	�
�� ��������!� � � in each subdomain. The two subdomains can up-
date an extended vector of wind � �

	�

in parallel

� �
	�

� ' ���� ) � 	�
��� � �� � � 	�
�� � �������� � � � � 	�
�� � ������� �� % � ' � % W W1W % � W (18)

These become the past values for the next time step, and all the needed information is local and
only


 � 	�
�� �� and

 � 	�
�� �� of (17) need to be exchanged at the level of the Schwarz method.
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3.2 Convergence analysis for the periodic 1d positive definite Helmholtz problem

We now study the convergence of the Schwarz method at the continuous level, using closed form
solutions in each subdomain. The novelty here is in the periodicity of the global domain and
solution. The sphere is periodic in any direction and the impact of periodicity needs to be studied
before the iterative Schwarz methods are applied to the Yin-Yang grid.

3.2.1 Iterative solution at the continuous level

To find iteratively a periodic solution of the positive definite Helmholtz problem on the circle,� 	 � � 
 
 � � '�)
on

T ' ��� % R ��� % 	�� � % (19)

we decompose the circle
T

into two overlapping subdomainsT
�
' ��� % � ��K � % T

�
' � � % R � ��K � % with

T ' T
��� T � % (20)

and use an optimized Schwarz iteration of the form� 	 � � 
 
 � � � � 
�� � ' ) � � 
 on
T

� % � 	 � � 
 
 � � � � 
�� � ' ) � � 
 on
T

� %� � � 
� � � � 
�� � � � �N' � � � 
� � � � 
�� � F � � R � � % � � � 
� � � � 
�� � � � �N' � � � 
� � � � 
�� � F � � � � %� � � 
� � � � 
�� � � ���LK �N' � � � 
� � � � 
�� � F � � ����K � % � � � 
� � � � 
�� � � R � ��K �N' � � � 
� � � � 
�� � F � � K � % (21)

where the
� � 	�
� are interface operators to be specified in each subdomain

T 	
, � ' � % R , and which

can involve derivatives of � . In practice, they depend on parameters that are chosen to accelerate
the convergence of the iterative process. To analyze the convergence of iteration (21), we use on
each subdomain at iteration � the closed form solution� � 	�
�� � � ! �/' � � 	�
�� � ��� 
 � 
 � 	�
�� � � F � 
 '	� � � 
 � F � 
�
 6�7 � � 	�
�� �
 � 	�
�� � A�
C % (22)

where � '�� 	 and the coefficients � � 	�
�� � , 
 � 	�
�� � are determined by the transmission conditions from
the previous iteration. The matrix relation between the coefficients at 2 consecutive iterations
is the transition matrix whose spectral radius (eigenvalue of greatest modulus) determines the
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convergence rate of the iterative process. To simplify the following development, we introduce the
interface locations ! � 	�
� of each subdomain and their images �! � 	�
� in the other subdomain, i.e.,! � � 
�

' � % ! � � 
�
' � ��K % ! � � 
�

' � % ! � � 
�
' R ���LK %

�! � � 
�
'SR � % �! � � 
�

' � ��K % �! � � 
�
' � % �! � � 
�

' K�W (23)

With this notation, the transmission conditions in (21) become� � 	�
� � � 	�
�� � � ! � 	�
� �N' � � 	�
� � ��� F 	�
�� � F � � �! � 	�
� � %� � 	�
� � � 	�
�� � � ! � 	�
� �N' � � 	�
� � ��� F 	�
�� � F � � �! � 	�
� � W (24)

Rewriting this relation in matrix form using the closed form solutions (22), we get

�
�
	�

6�7 � � 	�
�� �
 � 	�
�� � A 
C '���

�
	�

6�7 � ��� F 	�
�� � F �
 ��� F 	�
�� � F � A 
C % (25)

where the matrices are given by

�
�
	�
 ' 6�7 � � 	�
� � � 
������	 � � 	�
� � F � 
������	� � 	�
� � � 
������
 � � 	�
� � F � 
������
 A�
C % ��

�
	�
 ' 6�7 � � 	�
� � � � 
������	 � � 	�
� � F � � 
������	� � 	�
� � � � 
������
 � � 	�
� � F � � 
������
 A�
C W (26)

The transition matrix is then obtained by considering the 2 subdomains simultaneously

� ' 6�7 � � F �

� �

 ��

� �



� F �

� �

 ��

� �

 �

A�
C W (27)

Considering a double iteration, � �
has the same eigenvalues as the reduced

R�
 R
iteration matrix

� � � % K � ' � F �

� �

 ��

� �

 � F �

� �

 ��

� �

 W (28)

3.2.2 Classical Schwarz method

By choosing the
� � 	�
� to be equal to the identity in (21), we obtain the classical Schwarz method.

This means that each subdomain is providing as boundary condition to the other the solution on
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Fig. 2. Convergence factor of the classical Schwarz method for overlap � varying from � to � and fixed����� �	��
 .
its domain. The convergence factor obtained from (28) is then

�
classical Schwarz

� � % K � ' E � ��
 � � � � I �� � � � � � 
 � � 
 � � % and

��� �� � classical Schwarz
' � if K ' � %�

classical Schwarz � � if K � �XW (29)

Fig. 2 shows the convergence factor of the classical Schwarz method for the overlap K varying
from � to � with � set to 1. There is a lack of convergence for zero overlap and slow convergence
for practical overlap greater than zero but small. For these reasons, the classical Schwarz method
is in general used as a preconditioner in preconditioned Krylov methods and rarely as an iterative
solver by itself.

3.2.3 Optimized Schwarz method with Robin transmission conditions

The slow convergence of the classical Schwarz method motivates the development of optimized
Schwarz methods which run at the same or at little extra cost. The improvement comes from
changing the transmission conditions to include derivatives. The general form of the transmission
conditions then depends on parameters that can be chosen to optimize the convergence rate. The
extra cost is in the determination of the optimized parameters, but they can be precomputed once
and for all for a given geometry and problem setting.
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 .
We consider here transmission operators of the form� � 	�
� ' � 
Q�
� � 	�
� % (30)

where the � � 	�
� are real constants to be determined. In this case the analysis is more involved, but
as before, the convergence factor is obtained by computing the spectral radius of

�
. We find

�
�
	�
 ' 6�7V� � � 	�
� � � � � � 
������	 � � � 	�
� � � � � F � 
������	� � � 	�
� � � � � � 
������
 � � � 	�
� � � � � F � 
������
 A 
C % ��

�
	�
 ' 6�7V� � � 	�
� � � � � � � 
������	 � � � 	�
� � � � � F � � 
������	� � � 	�
� � � � � � � 
������
 � � � 	�
� � � � � F � � 
������
 A 
C�

Optimized Robin
� � % K � ' � U 9�� � 	 �	 � � � 	 �
 � � � 
 �	 � � � 
 �
 � E � E � % K � � � � 
� % � � � 
� % � � � 
� % � � � 
� I I W (31)

This optimization problem can be solved analytically, giving � ' � . The optimized Robin coef-
ficients obtained are � � � 
�

' � ����� 9	� � � � � 
 F � 
�
�Z�

, � � � 
�
' � � � � 
� , � � � 
�

' � � .10 �
� � � � � 
 F � 
�
�Z�

, and� � � 
�
' � � � � 
� . Fig. 3 illustrates how the use of Robin transmission conditions with the optimal

coefficients above leads to an iterative method where the maximum error vanishes in the third
iteration. The first iteration is needed to compute solutions of the subdomain problems in both
subdomains that correspond to some arbitrary initial guess at the interfaces. The two following
iterations are then required for the error to vanish, according to (30), which implies that with the
optimal choice, the iteration matrix

�
vanishes identically. It is interesting to note that for the

periodic problem, three iterations are needed with the optimal choice to obtain the exact solution,
whereas for non-periodic problems, two iterations suffice.
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3.3 Optimized Schwarz method for 2d positive definite Helmholtz problems on the sphere

By eliminating the wind components 
 and � from the shallow-water equations on the sphere, we
obtain a positive definite Helmholtz equation for the geopotential � ,

� � ' 	 � � � � '�) % in ����� � % (32)

where � stands for the unit sphere centered at the origin, 	 is the same positive parameter given in
(16), and

)
is the corresponding right-hand-side function.

We decompose the sphere into two overlapping domains as shown in Fig. 1. On each grid we
use local spherical coordinates, with constant radial direction, and we rewrite the positive definite
Helmholtz problem in the form

� � ' 	 � � �.1032 � � � � � � ��D! �
� � � �� � � � ��� 9N� � �� � '�) W (33)

Similar to the 1d case, we solve iteratively in each subdomain the discretized problems

	 ��� 	�
�� �� � � � �.P032 � � � � � 	�
�� ���� �
� � � R � � 	�
�� �� � � �>� � 	�
�� �� F �

� �
� �


� � � 	�
�� �� � � � � � R � � 	�
�� �� � � �>� � 	�
�� �� � � F �� ��� ����9N� � � � 	�
�� �� � � � � � � � 	�
�� �� � � F �R � � '�) � 	�
�� �� � � % � ' � % W1W W % � ��� ' � % W W W % 	 % (34)

where
� 
 , � � are the grid spacings and

�
,
	

the grid-point numbers along the longitudinal and
latitudinal direction respectively. Collecting terms in (34) leads to� R � � �	����9[� �R � �� ��� 	�
�� �� � � F � � �.1032 � � � � �
 ��� 	�
�� �� F �

� � � � 	 � R.P032 � � � � �

 � R

� ��
� ��� 	�
�� �� � �� �.10�2 � � � � �
 � � 	�
�� �� � �

� � � R � � � ����9[� �R � �
� � � 	�
�� �� � � � �

'�) � 	�
�� �� � � % � ' � % W W W % � ��� ' � % W W W % 	 W (35)

Following ideas in Gander [6],we use on the interfaces between the subdomains discretizations of
the higher order transmission conditions� � � 	�
�� �� 
 	 �
� � 	�
� � � 	�
�� � �
� � 	�
� � � � � 	�
�� �� � �	 ' � � ��� F 	�
�� � F �� 
 	 � � � 	�
� � ��� F 	�
�� � F � �
� � 	�
� � � � ��� F 	�
�� � F �� � �	 on � �

	�

� % (36)



Optimized Schwarz methods 13

where � �
	�

� ��� ' � ����� � � are the boundaries on the panel � of the Yin-Yang grid and � �

	�

� and � � 	�
�

are real parameters introduced to optimize the performance of the method. The symbol �
��� � stands

for the normal derivative of each subdomain and �
��� � is the corresponding tangential derivative.

Note that when all � � 	�
� go to infinity, while the � �
	�

� stay bounded, we recover the classical Schwarz

method, which is known for its weakness to handle the lowest modes and its slow convergence.
Setting � �

	�

� ' � , for all

�
and � , we obtain the Schwarz method with Robin transmission conditions,

for which we need to find the optimal parameters � � 	�
� to obtain best performance. The second-order
Schwarz method corresponds to the case when the � �

	�

� are not necessarily zero. We have obtained

these coefficients numerically assuming the coefficients � �
	�

� and � � 	�
� are equal in both subdomains,

i.e.

� � �


� ' � � � 
� % � � � 
� ' � � � 
� % (37)

where moreover the coefficients are assumed to be independent of the boundary
�
. For those ap-

proximate optimal values of the parameters � �
	�

� and � � 	�
� the corresponding methods converge in a

small number of iterations and the convergence is much better than the convergence of the classical
Schwarz method. This gain more than compensates for the extra cost of computing the needed ad-
ditional derivatives. Furthermore, the optimized Schwarz methods converge even without overlap
between subdomains, while the classical Schwarz method stagnates in that case. Having a small
overlap however between subdomains further improves the performance of the optimized Schwarz
methods.

4 Numerical Results

We illustrate now the above developments by numerical results. We first present 1d linear results to
show that the experimental results are in agreement with the theoretical prediction. Next we present
passive advection and the elliptic solver in 2d. We have not yet validated the full 2d shallow-water
model on the Yin-Yang grid but the necessary elements of advection and the elliptic solver have
been thoroughly tested.
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4.1 Linear 1d shallow-water equations on a circle

We perform numerical experiments for our linear SWEs model problem on the circle ��� % R ��� . The
initial conditions are

� � ! � '�� � .P032 � � ! � ��� � 2VU 9 � � ! � %� � ! � '�� ; .1032 � � ! � ��� ; 2VU 9 � � ! � � ! � ��� % R ��� % (38)

where the integer wave number � ' R � and the amplitudes
�
�
' R ��� Y � , � � ' R ��� Y � , � ; '� ��� � Y � � and � ; ' � ��� � Y � � are real, � � '	� � � � 
�
 W
� ��� � ��� � Y � � , and � ' � W 
�� � R3R ��� � . The

angular domain ��� % R ��� is decomposed into two non overlapping subdomains
T

�
' ��� % ��� andT

�
' � � % R ��� . We use a Crank-Nicolson discretization in time and a finite-volume discretization in

space in each subdomain, with a time step
���

of 2 hours and uniform angular mesh parameter
�

equal to � Y � � � . We compare the numerical solution against the exact discrete solution given by

� � !&% � �3'�� � .10�2 � � ! � .1032 � �/� � � � � .1032 � � ! � 2VU 9 � �/� � ��� � 2ZU 9 � � ! � .1032 � �/� � � ? � 2VU 9 � � ! � 2VU 9 � �/� �� � ! % � �3'�� ; .P032 � � ! � .1032 � �/� � � � ; .P032 � � ! � 2ZU 9 � �/� � ��� ; 2VU 9 � � ! � .10�2 � �/� � � ? ; 2ZU 9 � � ! � 2ZU 9 � �/� � % (39)

where the amplitudes are�
�
' � � ;� � � % ? � ' � ;� � � % � ; ' ��� � � � � % ? ; ' � � � � � % (40)

and the frequency is given by� ' �� ��� . ����9�� � � � � �� 2ZU 9 � � � Y R3�� � Y R � % � ' �H�ZY R W (41)

For the values of the earth radius � , the time step
���

and the reference geopotential � � given above,
we compute 	 ' � 
XW
��� using (16). The coefficients used in the optimized Robin transmission
conditions are precomputed for this 	 , as shown in Sub-subsection 3.2.3, and are found to be� � � 
�

' � �XW 
�
 R , � � � 
�
' � � � � 
� , � � � 
�

' � �XW 
�
 R and � � � 
�
' � � � � 
� . For this 	 , the analytic expressions

of the coefficients happen to give the same numerical values in both subdomains. We simulate
the evolution of linear SWEs over a period of 48 hours. The numerical geopotential against the
exact discretized geopotential at the end of the simulation on domain

T
� are displayed in Fig. 4,

the same kind of results are obtained on
T

� . We present in Fig. 5 the difference between the
numerical and the exact discretized geopotential perturbation (respectively wind) at the end of the
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Fig. 4. Exact discretized and calculated geopotential on Domain � � for the SWEs after ��� hours .
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Fig. 5. Error in calculated geopotential and calculated velocity on Domain � � for the SWEs after ��� hours .

simulation. The difference should be 0 at full convergence of the iterative process. It is shown
that the global exact discretized periodic solution for the linear 1d SWEs is obtained by the above
domain decomposition where the local solutions are not periodic. This is obtained by doing only
a few communications between the two subdomains in the iterative domain decomposition solver.
We note that because the 2d grids we consider are tensor products of 1d grids, the generalization
of the strategy of eliminating the wind in favor of solving only a distributed elliptic problem for
the geopotential to 2d is straightforward.
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Fig. 6. Advection of the cosine bell in the Yin-Yang grid.

4.2 2d advection on the Yin-Yang grid

We consider the ”cosine bell” test problem proposed by Williamson et al. [5]. This problem is
widely used to test discretizations of the global advection equation� �� � � 
.1032 � � ��"! � �.1032 � �� � # � � ! % � % � � ' �XW (42)

The initial scalar distribution is defined by

� � ! % � % � � ' ���� ���
� � � � .P032 � ��� Y ) �R if � � ) %
� if ���

) % (43)

where
) ' � Y 
 , � � ' � � � ��� and � is the great circle distance between

� !&% � � and the center of
the scalar distribution

� !��V% � � � ,
�
' � ��� .1.P032 � 2VU 9N� � 2VU 9N�[� .10�2 � � .P032 � .1032 � ! � !�� � � W (44)

The advecting wind is given by

� ' � � � � .10�2 � .1032 � � .1032 ! 2ZU 9N� 2ZU 9 � � %
� ' � � � 2VU 9 ! 2VU 9 � % (45)
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Fig. 7. Evolution of the normalized maximum difference during one revolution.

where the wind speed is � � ' R � Y � , � ' � R days which is equivalent to about
� ��� Y � , and

� is the orientation of the advecting wind. This solution should rotate without any change of
shape. We use the semi-Lagrangian time discretization in spherical coordinates to approximate
the Lagrangian derivative in (42) along the trajectories defined by the velocity field as in C ôt é
and Staniforth [9]. The trajectories are calculated for each grid panel (Yin and Yang) in the three
dimensional Cartesian geometry with the restriction that the trajectories are confined to the surface
of the sphere. The value of the scalar field at an upstream point is determined by cubic Lagrange
interpolation either in the Yin or the Yang grid panel. We ran two tests, where the above cosine
bell is advected once around the sphere with the orientations � ' � and � Y R . Since the Yin-Yang
grid is pole free, these two tests are equivalent. The simulations are carried out with the resolution
of � � � 
 � � on both the Yin and the Yang grid, which is equivalent to a global horizontal resolution
of
R � � � � . A time step of two hours is used, and it requires � � � time steps (

R ��� hours) to rotate the
cosine bell one full revolution around the Earth. Fig. 6 shows that there is no distortion in the shape
of the bell at the end of the simulation. The bell structure is maintained in the Yin-Yang grid even
where the bell passes trough the overlapped region. The time evolution of the normalized infinite
error norm is presented in Fig. 7, and as can be seen the trend and the norm are comparable to
those in Jacob-Chien et al. [7], and the norm after 12 days remains small and is equal

R��
.

4.3 2d positive definite Helmholtz problem on the Yin-Yang grid

We perform now numerical experiments for the positive definite Helmholtz equation (32) on the
surface of the sphere. We decompose the surface using the Yin-Yang grid, where each panel is
discretized with a uniform grid of spacing

� 
 , � � along the longitudinal and latitudinal direction
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Fig. 8. Left: Convergence behavior for the methods analyzed for the two subdomains case. Right:
Screen-shots of solutions and the error in the Yin-Yang grid.

respectively and we use the same number of grid-points in both directions, i.e.,
� ' 	

. The
overlap between the two subgrids is controlled by the buffer parameters K 
 and K�� that are pro-
portional to the grid-spacing in each direction. The two panels of the Yin-Yang grid cannot have
a zero overlap throughout because of the geometry, but they can have very small overlap at some
boundaries when K 
 and K�� are small. We chose a right-hand-side in (32) so that the global solution
on the surface of the sphere is� � !&% � � ' .10�2 � � 2VU 9 � � 2VU 9 ! .P032 ! W (46)

We use the finite difference scheme with five points given in (35) with the transmission conditions
in (36). For the optimized Schwarz method with Robin transmission conditions (i.e., �
�

	�

� ' � )

in the Yin-Yang grid, the best values of � � 	�
� are evaluated numerically. To this end, we vary the
coefficient � � 	�
� , supposed to be independent of the boundary, for a fixed

� ' � � � and count the
number of iterations to obtain a relative residual of � � F � . The best values of � � 	�
� are found to
be � � � 
� ' � � � 
� ' � � W � . Similarly the optimized values (Optimized 2) for Schwarz method with
second order transmission conditions are evaluated numerically and are

� � � 
� ' � � � 
� ' � � W 
 R�� % � � �


� ' � � � 
� ' � � W���� � W (47)

Fig. 8 shows a comparison between the number of iterations of the classical Schwarz method and
the optimized ones for 	 ' � � ' � � � and the overlap ( K 
 and K�� ) are at least one grid-spacing,
to reach a relative residual of � � F � . This figure shows, as we expected, how tremendously the
optimized Schwarz methods improve the behavior of the classical Schwarz method when they are
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Classical Schwarz Taylor 0 method Taylor 2 method Optimized 0 method

h � ��
���� � � ��� � ��
���� � � ��� � ��
���� � � ��� � ��
���� � � ���

1/50 184 184 22 22 16 16 12 12

1/100 184 284 22 27 16 19 12 16

1/150 183 389 21 31 15 21 11 19

1/200 184 497 22 36 16 24 12 22
Table 1
Number of iterations of the classical Schwarz method compared to the optimized Schwarz methods for the
Yin-Yang grid system with � ��
 .
used as iterative solvers. We also compare the classical Schwarz method and the above optimized
Schwarz methods to zeroth and second order Taylor Schwarz methods (C ôt é et al., [8]). These
methods use a low frequency expansion (about 0) of the optimal parameters which are obtained
through Fourier analysis. In Table 1, we vary the grid-spacing and we compare the number of
iterations of each method. We consider two situations: one with constant overlap �

' � Y � � , and
the other one with varying overlap �

' �
, (
� 
 or

� � ), where � here measures the size of the
smallest region between the two panels of the Yin-Yang grid. When the overlap is maintained
constant, all the aforementioned methods converge independently of the grid size

�
. This is a well

known property of the classical Schwarz method, but it does not mean that the classical Schwarz
method is optimal: also the zeroth and second order Taylor Schwarz methods and the optimized
Schwarz methods have the same property, but with an order of magnitude less iterations, and this
at the same cost per iteration. In Fig. 8, we present some screen-shots of the numerical solutions
computed with the second order optimized Schwarz method compared to the exact solutions in the
two panels of the Yin-Yang grid.

5 Conclusion

In this paper, we have examined the application of Schwarz domain decomposition methods
(DDM) to the solution of the shallow-water equations (SWEs) in the context of atmospheric mod-
eling with a new horizontal grid nicknamed ”Yin-Yang”. We have first examined the linear SWEs
in 1d. We have considered a periodic global domain and local non-periodic subdomains and solu-
tions. It was shown that the optimized Schwarz method allowed us to recover the periodic solution
of the linear SWEs with high accuracy. The convergence analysis of the 1d optimized Schwarz
method yielded a practical formula for the optimized coefficients in the transmission conditions.
The 2d case of the elliptic solver on the sphere for the Yin-Yang grid was treated numerically. We
have shown that specific transmission conditions based on a linear combination of the function,
its normal and second-order tangential derivatives yielded a dramatic improvement of the conver-
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gence rates. The use of optimized Schwarz methods on the Yin-Yang grid is new. We have not yet
validated the full 2d SWEs model on the Yin-Yang grid, but 2d passive semi-Lagrangian advec-
tion has been thoroughly tested for this grid. The 2d semi-Lagrangian advection scheme maintains
the bell structure in the Yin-Ying grid even when the bell passes through the overlap region, and
the distribution goes from one panel to the other. The normalized maximum error remains very
small even after 12 days of evolution. In future work, we will complete the validation of the SWEs
with the Yin-Yang grid using a real data case (case number 7) of Williamson et al. [5]. We will
also study how to accelerate optimized Schwarz methods with Krylov methods, like it is done for
classical Schwarz methods in general. Finally, an interesting and more involved question is the
extension of the present study to three dimensions.
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