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ASYMPTOTIC EXPANSIONS AND BACKWARD
ANALYSIS FOR NUMERICAL INTEGRATORS

ERNST HAIRER* AND CHRISTIAN LUBICHY

Abstract. For numerical integrators of ordinary differential equations we compare
the theory of asymptotic expansions of the global error with backward error analysis. On
a formal level both approaches are equivalent. If, however, the arising divergent series
are truncated, important features such as the semigroup property, structure perservation
and exponentially small estimates over long times are valid only for the backward error
analysis. We consider one-step methods as well as multistep methods, and we illustrate
the theoretical results on several examples. In particular, we study the preservation of
weakly stable limit cycles by symmetric methods.

Key words. Asymptotic expansions, backward error analysis, one-step methods,
multistep methods, long-time behavior.

1. Introduction. Together with an autonomous system of ordinary
differential equations

(1.1) v =f),  y0)=yo

we consider a numerical solution sequence

Yo, Y1,Y2,Y3,-- -,

obtained either by a one-step method or by a multistep method. We assume
that a constant stepsize h is used so that y, ~ y(nh), where y(t) stands for
the exact solution of the problem. The aim of the techniques described in
this article is to gain insight into the dynamics of the numerical solution.
We discuss the following two techniques:

Asymptotic expansion. This theory was developed by Henrici [17], in
the thesis of Gragg [6] and by Stetter [24] in order to justify extrapolation
methods. It consists in deriving an asymptotic expansion

(1.2) g(t) = y(t) + her(t) + hea(t) + .. .,

such that y, = g(nh) + O(RN*), if the series (1.2) is truncated after the
RN -term.

Backward analysis. This technique has its origin in numerical linear
algebra. For ordinary differential equations it has been used in the works
of Griffiths & Sanz-Serna [7], Feng Kang [5], Sanz-Serna [23], Yoshida [29]
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2 ERNST HAIRER AND CHRISTIAN LUBICH

and many others. The idea of backward error analysis consists in searching
for a modified differential equation

(1.3) §' =f@)+hf2(@)+ R f:@)+....  §(0) =yo,

such that y,, = g(nh) + O(RN+1) on finite time intervals, if the series (1.3)
is truncated after the AN ~!-term.

Outside numerical analysis, the problem of interpolation of discrete
mappings by a continuous flow has been considered e.g. by Moser [20].
The subject of asymptotic expansions has older roots, as can be seen from
the following quotations taken from [3]:

Wherefore it is highly desirable that it be clearly and rigorously shown why
series of this kind, which at first converge very rapidly and then ever more
slowly, and at length diverge more and more, nevertheless give a sum close
to the true one if not too many terms are taken, and to what degree such a
sum can safely be considered as exact. (C.F. Gauss 1799)

Divergent series are in their entirety an invention of the devil and it is a
disgrace to base the slightest demonstration on them. (N.H. Abel 1826)

2. One-step methods. We first consider one-step methods written
as Yny1 = Pu(yn), and we assume that the function ®,(y) admits an
expansion

2

Buly) =y + i)+ 5w N))

+ %(asf”(ﬂf)(y)+a4f'f'f(y)) +o.

This assumption is not essential, but all important methods have a Taylor
series expansion of such (or similar) form.

(2.1)

Asymptotic expansion. In order to obtain the h-independent coeffi-
cient functions e;(t), we insert the ansatz (1.2) into g(t+h) = @ (y(t)), we
expand all appearing expressions at h = 0, and we compare the coefficients
of like powers of h. This yields

y' = fly), y(0) = yo

1
(22) e =fye+5la - DN, a0)=0
e;:f'(y)ej—|—gj(y7el7...7ej,1), e;(0) =0, j=2,3,...
Here, the expressions g; also depend on first and higher derivatives of e;
(for i < j —2), but this dependence can be recursively eliminated with the
help of the differential equations for e;.
Backward analysis. Here, we put y := y(t) for a fixed ¢t and we expand
the solution of (1.3) into a Taylor series

gt +h) =y+h(fy)+nhf2(y) +h*f3(y) +...)
h2

+ o (@) +hfsw) + ) (f) +hfaly) )+
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Inserting this relation into §(t + h) = ®,(y), expanding, and comparing
like powers of h yields recursion formulas for the coefficient functions f;(y)
of (1.3) such as

faly) = 530 = DS 1)
o) = 5 (a3~ D" D) + (s~ D7 1)

— 5 (750) + 7).

In both cases the coefficient functions (e;(t) for the asymptotic expan-
sion and f;(y) for the backward analysis) are uniquely determined. This
implies that, neglecting O(h")-terms (for arbitrary N), both approaches
yield the same function y(¢). Hence, on a formal level, the theory of asymp-
totic expansions of the global error and backward error analysis are equi-
valent. We next investigate the effect of truncation in the series (1.2) and
(1.3), respectively.

2.1. Examples. As a first example we consider the blow-up equation

(2.3) y =9  y(0)=1

with exact solution y(¢) = 1/(1 —t). It has a singularity at t = 1. We apply
the explicit Euler discretization v, 11 = y, + hy? with stepsize h = 0.02.

For the convenience of the reader we include here a Maple program
that computes the first nn=6 terms of the modified equation.!

> fcn 1=y -> y~2:
> nn := 6:
> fcoel[l] := fecn(y):
> for n from 2 by 1 to nn do
> modeq := sum(h”j*fcoel[j+1], j=0..n-2):
diffy[0] := y:
for i from 1 by 1 to n do
diffy[i] := diff(diffy[i-1],y)*modeq:
od:
ytilde := sum(h"k*diffy[k]/k!, k=0..n):
res := ytilde-y-h*fcn(y):
tay := convert(series(res,h=0,n+1),polynom):

V V V V V VvV V

!The differential equation (line 1) and the number of desired terms (line 2) of the
modified equation can easily be adapted. For other numerical methods one only has to
change the line 11, e.g., for the

implicit Euler method by > res := ytilde-y-h*fcn(ytilde):,

trapezoidal rule by > res := ytilde-y-h*(fcn(y)+fcn(ytilde))/2:,

implicit midpoint rule by > res := ytilde-y-h*fcn((y+ytilde)/2):.
An extension to systems of differential equations is straightforward.
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> fcoe[n] := -coeff(tay,h,n):
> od:
> simplify(sum(h”j*fcoe[j+1], j=0..nn-1));
The output of this program is the truncated modified equation
~ ~ 3. 8 _ 31 _ 157 _
(2.4) v’ :y2—hy3—|—h2§y4—h3§y5+h4€y6—h5ﬁy7i... .

To obtain the asymptotic expansion, we insert the ansatz (1.2) into (2.4)
and compare like powers of h. This immediately leads to y' = f(y) with
y(0) =yo =1 and

el =2ye; —y°, e1(0)=0

3
ey = 2yes +ei — 3y’e; + 3 yt, e2(0) = 0.

L ] L
| asymptotic expansion /’ | backward analysis
i 201

20

FiGc. 1. Numerical solution (black points) and ezact solution (dashed curve) for
the blow-up equation (2.3) together with the truncated approzimations, obtained by the
asymptotic expansion (left picture) and by backward error analysis (right picture)

In Fig.1 we present the exact solution y(t) = 1/(1 — t) (dashed curve)
together with the numerical solution (bullets). The left picture also shows
the expansion (1.2) truncated after 1,2, 3, and 4 terms. The right picture
shows the solutions g(t) of the modified equation (2.4), when truncated af-
ter 1,2,3, and 4 terms. We can observe a significant difference between the
two approaches. Whereas all functions e;(t) of the asymptotic expansion
have a singularity at ¢ = 1, the solutions y(t) of the truncated modified
equation approximate very well the numerical solution beyond the singu-
larity at ¢+ = 1 (observe that the numerical solution y, 1 = y, + hy? exists
for all times without any finite singularity).

As a second example we consider the linear equation

(2.5) v =Xy,  y(0)=wo
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with exact solution y(t) = e*yo. We apply the implicit midpoint rule with
stepsize h, i.e.,

_142/2
C1—2z/2

Yn41 = R(Ah) Yn, R(Z)

This linear problem is an exceptional situation, because the function y/(¢)
is given in analytic form and the series in (1.2) and (1.3) converge. Indeed,
we have

(2.6) (1) = exp (3 log(ROW)) ).

This function exactly satisfies y(nh) = R(Ah)"yo = y,. Let us study the
effect of the truncation of the series (1.2) and (1.3), respectively, on the
function g(t).

Differentiation of (2.6) yields the modified differential equation y’' =
%log(R()\h)) -y. If we expand this equation into powers of h, and if we
truncate it after N terms, we obtain as solution

2.7)  Gn(t) = exp (/\t(l F 2R, 4+ N Ay 4.+ /\zthNbN))yo.,
and we see that the relative error due to this truncation is
(2.8) (g(t) - gN(t)) / J(t) ~ const -At(Ah)2N+2

provided that Ak and At(Ah)2N+2 are sufficiently small.
On the other hand, in the theory of asymptotic expansions, the series
for y(t) or equivalently that of (2.7) is truncated after N terms which gives

(2.9) Tn(t) = e (1 F2RZ (M) + ..+ A2Nh2NcN(At))y0.,

where ¢;(0) = 0 and ¢;(¢) is a polynomial of degree j. The relative error of
this truncation behaves asymptotically like

(ﬂ(t) - ﬂN(t)) / J(t) ~ const -(A)NTT(AR)ZVH2 /(N 4+ 1)1 .

The truncation error (2.8) of the backward error analysis grows linearly in
time, whereas that of the asymptotic expansion grows polynomially with
high degree. This phenomenon is illustrated in Fig. 2, where we have plot-
ted the relative errors (y, — yn(nh))/y, as functions of time for the values
A =1and h = 1. Again we observe that the numerical solution is much
better approximated by the backward error analysis than by the asymptotic
expansion of the global error.
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asymptotic expansion backward analysis

200

Fi1G. 2. Relative error (yn — gn (nh))/yn of the implicit midpoint rule applied to
the linear problem y' = Ay with A\ = 1 and stepsize h = 1

2.2. Properties of backward analysis. We summarize here some
important features of backward error analysis, which are indispensable for
the study of the dynamics of numerical solutions over long time intervals.
For this we consider the truncated modified equation

(2.10) ' =f@)+hfo@)+.. +hVN @), §0)=wo

and we denote its solution by yx (), or by yn(t,yo) if we want to indicate
its dependence on the initial value.

Semigroup property. Since the differential equation (2.10) is auto-
nomous, we have yn(t + s,90) = yn (t,Yn(s,y0)). This property makes it
possible to study the global error y, —yn(nh) by looking at the error made
in one step and by studying its propagation in time.

Structure preservation. If a suitable integrator is used, the modified
equation (2.10) shares the same properties as the original problem. For
example, if the problem (1.1) is Hamiltonian and if the numerical method
is symplectic, the modified system (2.10) is also Hamiltonian [1, 8]. If
(1.1) is a reversible system and if the numerical method is symmetric, the
modified system is also reversible [16]. Moreover, if the vector field of
(1.1) lies in some Lie algebra and if the method is a so-called “geometric
integrator”, the vector field of the modified equation lies in the same Lie
algebra (see, e.g., Reich [22]).

Ezponentially small estimates. If the vector field f(y) is real analytic
and if the truncation index N in (2.10) is chosen as N = const /h with a
suitable constant, then it holds (with some v > 0)

y1 — g (h) = O(e /M.

Different proofs of such an estimate can be found in Benettin & Giorgilli [1],
Hairer & Lubich [13], and Reich [22]. These papers also give interesting ap-
plications of backward error analysis to the study of the long-time behavior
of numerical solutions.
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One may ask which of these properties remain valid for the trun-
cated asymptotic expansions. Since for the functions e;(t) we usually have
e;(h) # 0, we get different expansions according to as we start at yo or at
y1 = P, (yo). Hence, the semigroup property does not hold for asymptotic
expansions. For the example y' = Ay with A = ¢ (the harmonic oscillator)
we consider the symplectic midpoint rule as in subsection 2.1. The func-
tion gy (t) obtained by backward error analysis satisfies |yn (t)] = |yo| as
the exact solution y(t) = e'yy does. For the function 7y (t), obtained by
truncation of the asymptotic expansion, this property is lost. Hence, we
do not have structure preservation for the asymptotic expansions. Expo-
nentially small estimates for the local error y; — yn(h) are not very useful
in the context of asymptotic expansions, because the semigroup property
does not hold.

The above properties of backward error analysis assume that the one-
step method is applied with constant stepsize, and it is known from nu-
merical experiments that a standard use of variable stepsizes destroys the
favorable longtime behavior. In some situations (e.g., planetary orbits with
large eccentricity) the use of variable stepsizes is indispensable for an effi-
cient integration. There, it is possible to reparametrize time [19, 25, 16, 18]
or to scale the Hamiltonian [9, 22] so that the use of constant stepsizes for
the new problem corresponds to a variable stepsize integration of the orig-
inal one.

3. Multistep methods. It is well-known that multistep methods
have many advantages when constant stepsizes are used. They can be im-
plemented very efficiently, and it is easy to construct high order, explicit,
symmetric methods. It is therefore of interest to investigate the longtime
behavior of multistep methods.

3.1. Numerical phenomena. We describe two situations where cer-
tain multistep methods exhibit an excellent longtime behavior, similar to
symmetric or symplectic one-step methods.

Preservation of weakly stable limit cycles. We consider the nonlinear
oscillator (Van der Pol equation)

(3.1) (" =—q+1-¢"q, =001,

which has a stable limit cycle close to the circle of radius 2. It is known
(Stoffer [26], Hairer & Lubich [14]) that symmetric or symplectic one-step
methods give qualitatively correct numerical solutions even when the step-
size is much larger than . Fig. 3 shows the numerical solutions obtained by
three different multistep methods. For the strictly stable explicit Adams
method (A) the numerical solution spirals outwards and tends to a wrong
limit cycle. The explicit midpoint rule (B) shows large oscillations around
the correct solution. Method (C), which is symmetric and whose growth
parameters are all positive, spirals inwards to an asymptotically correct
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F1G. 3. Numerical solution of the following second order multistep methods applied
to Van der Pol’s equation (3.1) with initial value (qo,qy) = (2.6,0) and with constant
stepsize h = 0.3: (A) the 2-step explicit Adams method; (B) the explicit midpoint rule;
and (C) the symmetric method Yyniy1 = Yyn—1 + h(Bfnsr1 + 2(1 — B)fn + Bfn—1) with
[ =0.7. The starting value y1 is computed by the explicit Fuler method.

limit cycle. We shall explain this phenomenon in Sect. 4 with the help of a
backward error analysis for multistep methods.

Outer solar system. The movement of the five outer planets around
the sun is described by the system

(32) p'=-Hyp.q), d =Hypq),
where the Hamiltonian is given by
1 m;m
0) =5 m;'nipi- ZZ T ﬂ
i=0 i=1 j=0 qi — 4y

with p;,¢; € R?. We consider initial values from September 5, 1994 2.
Fig. 4 presents the numerical results of three different multistep methods.
Ounly method (C) shows the correct behavior. It is the partitioned method

k
Z QiPnt+i = —h Z ﬁz pn+z Qn+1)

(3.3) =20 W
Y gt = hY | BiHy (Dot nts)
i=0 i=0

where the generating polynomials are
p(¢) = (¢ = 1)(¢* = 2cos(4m/9)C + 1)(¢* — 2 cos(87/9)¢ + 1)
p(¢) = (¢~ 1)(¢* — 2cos(2m/9)¢ + 1)(¢* — 2 cos(6m/9)¢ + 1)

and o(¢), o(¢) are such that the resulting method is explicit, symmetric
and of order 4. It is important that p(¢) and p(¢) have no common zero
other than (; = 1.

2The data for this problem can be obtained on request.
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FiGc. 4. Numerical trajectories of the five outer planets, obtained with (A) the 4-
step explicit Adams method; (B) the symmetric method ynya —yYn = h(8frnt3 —4fny2+
8fn+1)/3; and (C) the partitioned multistep method (3.3), all applied with constant
stepsize h = 100 (earth days).

For the moment we cannot rigorously explain this behavior. We hope
that an extension of the backward error analysis to partitioned multistep
methods (see [10]) will allow us to prove the observed long-time behavior.

3.2. Asymptotic expansion. We recall here the form of the asymp-
totic expansion of the global error. It will serve as a motivation for the
ansatz of the backward error analysis of multistep methods. For the differ-
ential equation y' = f(y) we consider the multistep method

k k
=0 1=0

whose generating polynomials are p(¢) = Zf:o a;¢t and o(¢) = Zf:o Bt
For ease of presentation, we assume that the roots of p(({), denoted by
G = 1,(,...,(, are distinct and different from zero. For stability all
these roots have to satisfy |(;| < 1. We then consider the index set

I:{(\":C;n& l:nk |m7«20/<#1}:{<2,,Ck,<k+1,}

and we often write ¢ € 7 in order to indicate (;, € Z. Gragg [6] (see also [12])
proved that the numerical solution of the multistep method (3.4) admits
for arbitrary N an expansion of the form

N
(85)  ya=ymh)+ > (D Gesulnh))hd + ORNT).

j=1 teTu{1}

Here y(#) is the solution of (1.1), and the functions e;¢(t) for 1 < ¢ < k are
a solution of the differential equation

(36) e;z = )‘lf’(y)ejz + fcn (y, {elm} 1<i<y )7
1<m<k
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where A\, = o(¢0)/(¢ep'(¢e)) is the growth parameter (as introduced by
Dahlquist [4]) and the inhomogeneity in (3.6) is given recursively. The
functions e, (¢) for € > k 4+ 1 are given by algebraic relations of the form

(3.7) ejr = fen (yv{eim} 1<i<j )
1<m<k

The initial values for (3.6) have to be computed from the starting values
Yo, Y1,---,Yk—1. Gragg [6] assumes that these starting values possess a Tay-
lor series expansion of the form y; = y;(h) = yjo+hy;1+h?yj2+..., and he
shows that the validity of (3.5) forn € {0,1,...,k—1} uniquely determines
the initial values e;¢(0) for 1 < ¢ < k as functions of {y;o,y;1,y;2....} for
j=0,1,....k—1.

3.3. Backward analysis. We collect all functions in (3.5) that are
multiplied by ¢j* into one function, and therefore search for a formal repre-
sentation of the numerical solution of (3.4) as

(3.8) yn = §(nh) + Y (ize(nh).
teT

We are interested to represent the functions y(¢) and z,(t) as the solution of
an autonomous system of differential (and algebraic) equations. This can
be achieved by inserting (3.8) into (3.4), by Taylor series expansions, and
by equating expressions of like powers of h. The details of this construction
are given in [10]. The result is a system of the form

g':f(ﬂ)-l-fcnl(h,ﬂ.,z2,....,zk)
(3.9) 2o =MNf'(@)ze + feny(h, Y, 29, ... 2,) for =2,k
ze = h feny(h, g, 20, ..., 2,) for €>k+1,

where Ay = 0((¢)/(Cep'(Ce)) is the growth parameter of (3.4) corresponding
to (¢, and fen,(h,y, 22, ..., 2x) are formal series in powers of h. We call
the differential equation for y principal modified equation and those for z,
parasitic modified equations. It turns out that the functions fen, are linear
combinations of expressions like

Rredf" G (F@), @), F@))

(310) hOCQf’/(g)(ZQ723)
hesf' @) " @) (f' @)z f(@))-
These are meaningful compositions of derivatives of f(y) with zs,..., 2k

appearing as factors. The coefficients ¢; only depend on the multistep
method, and the exponent in A" equals the number of appearances of the
symbol f minus 1. Moreover, an expression that is independent of zo, . . ., 2

automatically belongs to fen,. If an expression contains z;,,...,z;, as

factors, it belongs to fcn, where the index ¢ is determined by (, = (;, - .. .-
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Ci,,- As a consequence, the first expression of (3.10) belongs to fen,, the
last one to fens, and the second one belongs to feng if (2(s =1 or to fen,
if (23 = (;. It follows that the expressions in fen, either are independent
of z9,...,z, or they are at least quadratic in zo, ..., 2.

Let us briefly discuss the truncation of the formal series in (3.9),
which is necessary for a rigorous backward error analysis. Consider for
example the case (o = —1 so that (3 = 1. The expressions f”(y)(z2, 22),
FO ) (20, 22, 20, 22), FOF) (22, 20, 22, 29, 22, 2), ... usually all appear in
feny. Hence, in contrast to the theory for one-step methods, there appears
an infinite number of expressions in fen, corresponding to the same power
of h. Fortunately, it turns out that for real analytic f(y) the sum of these
expressions converges absolutely [10], so that only the terms containing
RN, RNt as a factor will be removed. We denote the solution of the
resulting system again by y(¢) and z,(t).

Semigroup property. The initial values for the differential part in
the modified equation (3.9) can be obtained from the starting approxi-
mations yo,y1,...,ys—1 as follows: we expand the solution y(ih), z,(ih)
of the truncated system (3.9) into powers of h, and we insert the result
into (3.8) for n € {0,1,...,k — 1}. This gives a nonlinear system for
y(0), 22(0), ..., 2z£(0) which, by the implicit function theorem, yields a lo-
cally unique solution. This unique correspondence between the starting
approximations yg, y1, . .., yx_1 and the initial values for (3.9) implies that

the values {y,} defined by (3.8) (where §(t) and z,(¢) are the solution of
the truncated modified system) satisfy the semigroup property.

Structure preservation. If the starting values yo,y1,...,yr—1 are such
that z2(0) = 23(0) = ... = 2,(0) = 0, then we have z,(t) = 0 for all ¢
and the (truncated) principal modified equation becomes independent of
29,y 2k, 1€,

(3.11) J'=f@) +hfi1(@) + WP f2(5) +

This is the key element for defining structure preserving properties:

a) We call a multistep method symplectic if, applied to a Hamilto-
nian system, the modified equation (3.11) is Hamiltonian. Unfortunately,
multistep methods cannot be symplectic (see [28, 11]).

b) We call a multistep method symmetric if, applied to a reversible
system, the modified equation (3.11) is reversible. This turns out to be
equivalent to the usual definition of symmetric multistep methods.

Ezponentially small estimates. Let y(x) and z;(x) be the solution
of the principal and parasitic modified equations, truncated after the ™Y
terms, and assume that the multistep method is weakly stable, symmetric,
and that all zeros (s of p(¢) are roots of unity. If N = const /h with a
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suitable constant, then the expressions (3.8) satisty

k k
(3.12) > iynii =Y Bif (ynsi) = Oe /7).
i=0 i=0

A proof of this estimate is given in [10]. Using the unique correspondence
between starting values yg, . . ., yx_1 of the multistep method and the initial
values yq, 220, - - -, 2zko Of the truncated modified differential equation (see
above) this means that the following diagram commutes up to terms of
order O(e~ /).

Yo, - -3 Yk—1 — 5072207...7Zk0
flow of
multistep (3.9)
3.13 ethod _
o1 E I(2,4) y(h),Gaza(h), ..., Cezr(h)

— (up to O(e /"))

Yty Yk — Y15 2215 -+ -5 2kl

The study of the long-time behavior of multistep methods can be done
along the following lines: (i) study the solutions of the principal and para-
sitic modified differential equation, (ii) bound the size of the solutions z,(t);
they should be small and of size O(h?), (iii) study the propagation of the
exponentially small perturbations. An illustration of this technique will be
given in Sect. 4.

4. Application: Preservation of weakly stable limit cycles.
As an illustration, we show how backward analysis explains the behavior
of numerical integrators applied to systems with a weakly stable periodic
orbit. We consider Van der Pol’s equation

(4.1) ¢=p, P=-q+tel-¢@)p (0<e<k1).

4.1. One-step methods. We consider applying a one-step method
of order p whose stability function satisfies

|R(in)] =1 for neR

For

(4.2) A= (_01 (1))

we then have

1
7 log R(hA) = wA with w =14+ O(h?) .
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Therefore, the modified differential equation (1.3) for this method applied
o (4.1) becomes

(4.3) ¢'=wp, P =-wi+e(l-q*)p+0(d),

where § = h” and the O(ed) term represents a function of (¢,p) which
together with its derivatives is bounded by const -ed. With the symplectic
change to polar coordinates § = v2asing, p = V2acosyp, the system
becomes

a = e2a(l —2asin? @) cos? ¢ + O(e6)

!/

(4.4) 9 .
¢ = w—¢(1l—-2asin”p)cosysing + O(&d) .

The dependence on the angle ¢ in the leading terms can be eliminated by a
coordinate transform which is O(z)-close to the identity (cf.[2, 26]). In the
new variables (a, @) the system becomes of a form where the coefficients of
¢ are the averages over ¢ of the previous coeflicients:

"= ca(l-La) + 0(e?) + O(=6)

(4.5) [ w+@(52)+0(66).

€ )

Ignoring the O(...) terms, it is seen that this system has the weakly stable
periodic orbit @ = 2, which is O(g) close to the circle §2 + p2 = 4 in the
original variables. By an invariant manifold theorem [21], it follows that the
periodic orbit persists under the O(g?) + O(ed) perturbation, and that the
limit cycle of the modified equations (4.3) is O(h?)-close to the limit cycle
of Van der Pol’s equation. By the same invariant manifold theorem and the
finite-time estimates between the numerical solution and the solution of the
modified equation, it finally follows that the numerical method has a weakly
attractive invariant closed curve that is O(e=?/") close to the limit cycle of
the modified equation. See [14, 26, 27] for more details and for extensions
of such a result to the preservation of weakly attractive invariant tori of
more general dissipatively perturbed Hamiltonian systems.

4.2. Multistep methods. We now explain the numerical behavior
shown in Fig. 3. We consider the symmetric two-step scheme

Yntl = Yn—1 + h(ﬁfn+1 + 2(1 - ﬁ)fn + Bfnfl) .
For z € C near 0, we factor the characteristic polynomial
¢F=1=2(BC +2(1 = B)C+B) = (1= 28) (¢ = (1(2)) (¢ = (=)

with (1(0) = 1, (2(0) = —1. Because of the symmetry of the method we
have

IC1(im)| = [G(in)| =1 for 7 e R
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The numerical solution of the method applied to y' = Ay, with A of (4.2),
is of the form

yn = C1(hA) v + G (hA) vy = g(nh) + (—1)"22(nh) ,
where y(t) and z,(¢) are solutions of the differential equations

log (¢ (hA)) y = wAy, w=1+0O(h?
log(—C2(hA)) 20 = pAzs, = Ay + O(h?).

1
46 "

22 = n
Here Ay = (33 — 2)/2 is the growth parameter of the root —1.

We write (¢(¢),p(t)) and (Q(t), P(t)) in the roles of y(t) and z,(t)
of the modified differential equations (3.9). The equations for (g(t),p(t))
are (4.3) with w of (4.6), with § = h? + Q? + P? and with O(s) pertur-
bation functions depending on (g,p, @, P). The differential equations for
(Q(t), P(t)) are of the form

Q' = uP+O(=5)

UD P Q- 25Q (- 7)P) + ()

We express (¢, p) in the variables (a, $) of (4.5), and search for a transfor-

mation
< f_?, ) = (1+5@.%)) ( g )

which eliminates the dependence on @ in the leading terms of (4.7). We
obtain

(48) ( “ ) =u<01 g(1la)> ( ¢ ) £ O(2) + O(c)

provided that S satisfies
9S/0p = u(AS — SA+ B) ,

where B = B(a, @) contains the difference between the coefficients of = in
(4.7) and their angular averages. This equation can be solved for S by
Fourier expansion whenever u # k/2 with k € Z.

For @ = 2, the matrix in (4.8) has eigenvalues —1pu(e + iv4 —¢?).
Ignoring the O(...) perturbation terms, the system (4.8) therefore has 0 as
a weakly attractive equilibrium if and only if u > 0, that is, for g > 2/3
in the numerical scheme. The O(s?) + O(ed) terms are again taken into
account by an invariant manifold theorem, provided that Q(0) = O(h)
and P(0) = O(h), which is satisfied if the starting values of the multistep
method are O(h) close to each other. The invariant manifold theorem of
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[21] yields that for § > 2/3 the combined system (4.5) and (4.8) has a
weakly attractive invariant curve (@, @, 13) parametrized by @, whose first
component is O(h?) close to the exact limit cycle of Van der Pol’s equation,
and whose further components are of size O(h?).

Using the diagram (3.13), it is seen that the numerical solution of Van
der Pol’s equation is of the form

n qn Qn
() =G+ (3)
where the mapping (qo, Po, Qo, Po) — (q1,P1,—Q1,—P1) differs only by
O(ge=7/") (in the C' sense) from the time-h flow of the modified differential
equations (4.3) and (4.7). The additional factor € as compared to (3.13)
results from the fact that no truncation is necessary in the linear modified
differential equations (4.6). The invariant manifold theorem finally shows
the existence of a weakly attractive invariant curve of the above mapping
that is exponentially close to the limit cycle of the modified equations.
All combined, this shows that, for § > 2/3, the numerical method has a
weakly attractive curve that is O(h?) close to the limit cycle of Van der
Pol’s equation. This explains the favorable numerical behavior in Fig. 3C.
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