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ASYMPTOTIC EXPANSIONS AND BACKWARDANALYSIS FOR NUMERICAL INTEGRATORSERNST HAIRER� AND CHRISTIAN LUBICHyAbstract. For numerical integrators of ordinary di�erential equations we comparethe theory of asymptotic expansions of the global error with backward error analysis. Ona formal level both approaches are equivalent. If, however, the arising divergent seriesare truncated, important features such as the semigroup property, structure perservationand exponentially small estimates over long times are valid only for the backward erroranalysis. We consider one-step methods as well as multistep methods, and we illustratethe theoretical results on several examples. In particular, we study the preservation ofweakly stable limit cycles by symmetric methods.Key words. Asymptotic expansions, backward error analysis, one-step methods,multistep methods, long-time behavior.1. Introduction. Together with an autonomous system of ordinarydi�erential equations y0 = f(y); y(0) = y0(1.1)we consider a numerical solution sequencey0; y1; y2; y3; : : : ;obtained either by a one-step method or by a multistep method. We assumethat a constant stepsize h is used so that yn � y(nh), where y(t) stands forthe exact solution of the problem. The aim of the techniques described inthis article is to gain insight into the dynamics of the numerical solution.We discuss the following two techniques:Asymptotic expansion. This theory was developed by Henrici [17], inthe thesis of Gragg [6] and by Stetter [24] in order to justify extrapolationmethods. It consists in deriving an asymptotic expansioney(t) = y(t) + he1(t) + h2e2(t) + : : : ;(1.2)such that yn = ey(nh) +O(hN+1), if the series (1.2) is truncated after thehN -term.Backward analysis. This technique has its origin in numerical linearalgebra. For ordinary di�erential equations it has been used in the worksof Gri�ths & Sanz-Serna [7], Feng Kang [5], Sanz-Serna [23], Yoshida [29],�Dept. de Math�ematiques, Universit�e de Gen�eve, CH-1211 Gen�eve 24, Switzerland;E-mail: Ernst.Hairer@math.unige.ch, URL: http://www.unige.ch/math/folks/hairer/yMathematisches Institut, Universit�at T�ubingen, Auf der Morgenstelle 10, D-72076T�ubingen, Germany. E-mail: lubich@na.uni-tuebingen.de1



2 ERNST HAIRER AND CHRISTIAN LUBICHand many others. The idea of backward error analysis consists in searchingfor a modi�ed di�erential equationey 0 = f(ey ) + hf2(ey ) + h2f3(ey ) + : : : ; ey(0) = y0;(1.3)such that yn = ey(nh) +O(hN+1) on �nite time intervals, if the series (1.3)is truncated after the hN�1-term.Outside numerical analysis, the problem of interpolation of discretemappings by a continuous 
ow has been considered e.g. by Moser [20].The subject of asymptotic expansions has older roots, as can be seen fromthe following quotations taken from [3]:Wherefore it is highly desirable that it be clearly and rigorously shown whyseries of this kind, which at �rst converge very rapidly and then ever moreslowly, and at length diverge more and more, nevertheless give a sum closeto the true one if not too many terms are taken, and to what degree such asum can safely be considered as exact. (C.F. Gauss 1799)Divergent series are in their entirety an invention of the devil and it is adisgrace to base the slightest demonstration on them. (N.H. Abel 1826)2. One-step methods. We �rst consider one-step methods writtenas yn+1 = �h(yn), and we assume that the function �h(y) admits anexpansion �h(y) = y + hf(y) + h22! a2(f 0f)(y)+ h33! �a3f 00(f; f)(y) + a4f 0f 0f(y)�+ : : : :(2.1)This assumption is not essential, but all important methods have a Taylorseries expansion of such (or similar) form.Asymptotic expansion. In order to obtain the h-independent coe�-cient functions ej(t), we insert the ansatz (1.2) into ey(t+h) = �h�ey(t)�, weexpand all appearing expressions at h = 0, and we compare the coe�cientsof like powers of h. This yieldsy0 = f(y); y(0) = y0e01 = f 0(y)e1 + 12!(a2 � 1)(f 0f)(y); e1(0) = 0(2.2) e0j = f 0(y)ej + gj(y; e1; : : : ; ej�1); ej(0) = 0; j = 2; 3; : : :Here, the expressions gj also depend on �rst and higher derivatives of ei(for i � j � 2), but this dependence can be recursively eliminated with thehelp of the di�erential equations for ei.Backward analysis. Here, we put y := ey(t) for a �xed t and we expandthe solution of (1.3) into a Taylor seriesey(t+ h) = y + h�f(y) + hf2(y) + h2f3(y) + : : :�+ h22! �f 0(y) + hf 02(y) + : : :��f(y) + hf2(y) + : : :�+ : : : :



ASYMPTOTIC EXPANSIONS AND BACKWARD ANALYSIS 3Inserting this relation into ey(t + h) = �h(y), expanding, and comparinglike powers of h yields recursion formulas for the coe�cient functions fj(y)of (1.3) such asf2(y) = 12! (a2 � 1)f 0f(y)f3(y) = 13!�(a3 � 1)f 00(f; f)(y) + (a4 � 1)f 0f 0f(y)�� 12!�f 0f2(y) + f 02f(y)�:In both cases the coe�cient functions (ej(t) for the asymptotic expan-sion and fj(y) for the backward analysis) are uniquely determined. Thisimplies that, neglecting O(hN )-terms (for arbitrary N), both approachesyield the same function ey(t). Hence, on a formal level, the theory of asymp-totic expansions of the global error and backward error analysis are equi-valent. We next investigate the e�ect of truncation in the series (1.2) and(1.3), respectively.2.1. Examples. As a �rst example we consider the blow-up equationy0 = y2; y(0) = 1(2.3)with exact solution y(t) = 1=(1�t). It has a singularity at t = 1. We applythe explicit Euler discretization yn+1 = yn + hy2n with stepsize h = 0:02.For the convenience of the reader we include here a Maple programthat computes the �rst nn=6 terms of the modi�ed equation.1> fcn := y -> y^2:> nn := 6:> fcoe[1] := fcn(y):> for n from 2 by 1 to nn do> modeq := sum(h^j*fcoe[j+1], j=0..n-2):> diffy[0] := y:> for i from 1 by 1 to n do> diffy[i] := diff(diffy[i-1],y)*modeq:> od:> ytilde := sum(h^k*diffy[k]/k!, k=0..n):> res := ytilde-y-h*fcn(y):> tay := convert(series(res,h=0,n+1),polynom):1The di�erential equation (line 1) and the number of desired terms (line 2) of themodi�ed equation can easily be adapted. For other numerical methods one only has tochange the line 11, e.g., for theimplicit Euler method by > res := ytilde-y-h*fcn(ytilde):,trapezoidal rule by > res := ytilde-y-h*(fcn(y)+fcn(ytilde))/2:,implicit midpoint rule by > res := ytilde-y-h*fcn((y+ytilde)/2):.An extension to systems of di�erential equations is straightforward.



4 ERNST HAIRER AND CHRISTIAN LUBICH> fcoe[n] := -coeff(tay,h,n):> od:> simplify(sum(h^j*fcoe[j+1], j=0..nn-1));The output of this program is the truncated modi�ed equationey 0 = ey 2�hey 3+h2 32 ey 4�h3 83 ey 5+h4 316 ey 6�h5 15715 ey 7� : : : :(2.4)To obtain the asymptotic expansion, we insert the ansatz (1.2) into (2.4)and compare like powers of h. This immediately leads to y0 = f(y) withy(0) = y0 = 1 ande01 = 2ye1 � y3; e1(0) = 0e02 = 2ye2 + e21 � 3y2e1 + 32 y4; e2(0) = 0:
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Fig. 1. Numerical solution (black points) and exact solution (dashed curve) forthe blow-up equation (2.3) together with the truncated approximations, obtained by theasymptotic expansion (left picture) and by backward error analysis (right picture)In Fig. 1 we present the exact solution y(t) = 1=(1 � t) (dashed curve)together with the numerical solution (bullets). The left picture also showsthe expansion (1.2) truncated after 1; 2; 3, and 4 terms. The right pictureshows the solutions ey(t) of the modi�ed equation (2.4), when truncated af-ter 1; 2; 3, and 4 terms. We can observe a signi�cant di�erence between thetwo approaches. Whereas all functions ej(t) of the asymptotic expansionhave a singularity at t = 1, the solutions ey(t) of the truncated modi�edequation approximate very well the numerical solution beyond the singu-larity at t = 1 (observe that the numerical solution yn+1 = yn +hy2n existsfor all times without any �nite singularity).As a second example we consider the linear equationy0 = �y; y(0) = y0(2.5)



ASYMPTOTIC EXPANSIONS AND BACKWARD ANALYSIS 5with exact solution y(t) = e�ty0. We apply the implicit midpoint rule withstepsize h, i.e., yn+1 = R(�h) yn; R(z) = 1 + z=21� z=2 :This linear problem is an exceptional situation, because the function ey(t)is given in analytic form and the series in (1.2) and (1.3) converge. Indeed,we have ey(t) = exp� th log�R(�h)��y0:(2.6)This function exactly satis�es ey(nh) = R(�h)ny0 = yn. Let us study thee�ect of the truncation of the series (1.2) and (1.3), respectively, on thefunction ey(t).Di�erentiation of (2.6) yields the modi�ed di�erential equation ey 0 =1h log�R(�h)� � ey. If we expand this equation into powers of h, and if wetruncate it after N terms, we obtain as solutioneyN(t) = exp��t�1 + �2h2b1 + �4h4b2 + : : :+ �2Nh2NbN��y0;(2.7)and we see that the relative error due to this truncation is�ey(t)� eyN(t)�.ey(t) � const ��t(�h)2N+2(2.8)provided that �h and �t(�h)2N+2 are su�ciently small.On the other hand, in the theory of asymptotic expansions, the seriesfor ey(t) or equivalently that of (2.7) is truncated after N terms which giveseyN(t) = e�t�1 + �2h2c1(�t) + : : :+ �2Nh2NcN (�t)�y0;(2.9)where cj(0) = 0 and cj(t) is a polynomial of degree j. The relative error ofthis truncation behaves asymptotically like�ey(t)� eyN (t)�.ey(t) � const �(�t)N+1(�h)2N+2�(N + 1)! :The truncation error (2.8) of the backward error analysis grows linearly intime, whereas that of the asymptotic expansion grows polynomially withhigh degree. This phenomenon is illustrated in Fig. 2, where we have plot-ted the relative errors �yn� eyN(nh)��yn as functions of time for the values� = 1 and h = 1. Again we observe that the numerical solution is muchbetter approximated by the backward error analysis than by the asymptoticexpansion of the global error.
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2 termsFig. 2. Relative error (yn � eyN (nh))=yn of the implicit midpoint rule applied tothe linear problem y0 = �y with � = 1 and stepsize h = 12.2. Properties of backward analysis. We summarize here someimportant features of backward error analysis, which are indispensable forthe study of the dynamics of numerical solutions over long time intervals.For this we consider the truncated modi�ed equationey 0 = f(ey ) + hf2(ey ) + : : :+ hN�1fN (ey ); ey(0) = y0(2.10)and we denote its solution by eyN(t), or by eyN (t; y0) if we want to indicateits dependence on the initial value.Semigroup property. Since the di�erential equation (2.10) is auto-nomous, we have eyN(t + s; y0) = eyN�t; eyN(s; y0)�. This property makes itpossible to study the global error yn�eyN(nh) by looking at the error madein one step and by studying its propagation in time.Structure preservation. If a suitable integrator is used, the modi�edequation (2.10) shares the same properties as the original problem. Forexample, if the problem (1.1) is Hamiltonian and if the numerical methodis symplectic, the modi�ed system (2.10) is also Hamiltonian [1, 8]. If(1.1) is a reversible system and if the numerical method is symmetric, themodi�ed system is also reversible [16]. Moreover, if the vector �eld of(1.1) lies in some Lie algebra and if the method is a so-called \geometricintegrator", the vector �eld of the modi�ed equation lies in the same Liealgebra (see, e.g., Reich [22]).Exponentially small estimates. If the vector �eld f(y) is real analyticand if the truncation index N in (2.10) is chosen as N � const =h with asuitable constant, then it holds (with some 
 > 0)y1 � eyN (h) = O(e�
=h):Di�erent proofs of such an estimate can be found in Benettin & Giorgilli [1],Hairer & Lubich [13], and Reich [22]. These papers also give interesting ap-plications of backward error analysis to the study of the long-time behaviorof numerical solutions.



ASYMPTOTIC EXPANSIONS AND BACKWARD ANALYSIS 7One may ask which of these properties remain valid for the trun-cated asymptotic expansions. Since for the functions ej(t) we usually haveej(h) 6= 0, we get di�erent expansions according to as we start at y0 or aty1 = �h(y0). Hence, the semigroup property does not hold for asymptoticexpansions. For the example y0 = �y with � = i (the harmonic oscillator)we consider the symplectic midpoint rule as in subsection 2.1. The func-tion eyN(t) obtained by backward error analysis satis�es jeyN (t)j = jy0j asthe exact solution y(t) = eity0 does. For the function eyN (t), obtained bytruncation of the asymptotic expansion, this property is lost. Hence, wedo not have structure preservation for the asymptotic expansions. Expo-nentially small estimates for the local error y1 � eyN(h) are not very usefulin the context of asymptotic expansions, because the semigroup propertydoes not hold.The above properties of backward error analysis assume that the one-step method is applied with constant stepsize, and it is known from nu-merical experiments that a standard use of variable stepsizes destroys thefavorable longtime behavior. In some situations (e.g., planetary orbits withlarge eccentricity) the use of variable stepsizes is indispensable for an e�-cient integration. There, it is possible to reparametrize time [19, 25, 16, 18]or to scale the Hamiltonian [9, 22] so that the use of constant stepsizes forthe new problem corresponds to a variable stepsize integration of the orig-inal one.3. Multistep methods. It is well-known that multistep methodshave many advantages when constant stepsizes are used. They can be im-plemented very e�ciently, and it is easy to construct high order, explicit,symmetric methods. It is therefore of interest to investigate the longtimebehavior of multistep methods.3.1. Numerical phenomena. We describe two situations where cer-tain multistep methods exhibit an excellent longtime behavior, similar tosymmetric or symplectic one-step methods.Preservation of weakly stable limit cycles. We consider the nonlinearoscillator (Van der Pol equation)q00 = �q + "(1� q2)q0; " = 0:01;(3.1)which has a stable limit cycle close to the circle of radius 2. It is known(Sto�er [26], Hairer & Lubich [14]) that symmetric or symplectic one-stepmethods give qualitatively correct numerical solutions even when the step-size is much larger than ". Fig. 3 shows the numerical solutions obtained bythree di�erent multistep methods. For the strictly stable explicit Adamsmethod (A) the numerical solution spirals outwards and tends to a wronglimit cycle. The explicit midpoint rule (B) shows large oscillations aroundthe correct solution. Method (C), which is symmetric and whose growthparameters are all positive, spirals inwards to an asymptotically correct
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Fig. 3. Numerical solution of the following second order multistep methods appliedto Van der Pol's equation (3.1) with initial value (q0; q00) = (2:6; 0) and with constantstepsize h = 0:3: (A) the 2-step explicit Adams method; (B) the explicit midpoint rule;and (C) the symmetric method yn+1 = yn�1 + h(�fn+1 + 2(1 � �)fn + �fn�1) with� = 0:7. The starting value y1 is computed by the explicit Euler method.limit cycle. We shall explain this phenomenon in Sect. 4 with the help of abackward error analysis for multistep methods.Outer solar system. The movement of the �ve outer planets aroundthe sun is described by the systemp0 = �Hq(p; q); q0 = Hp(p; q);(3.2)where the Hamiltonian is given byH(p; q) = 12 5Xi=0 m�1i pTi pi � 5Xi=1 i�1Xj=0 Kmimjkqi � qjkwith pi; qi 2 R3 . We consider initial values from September 5, 1994 2.Fig. 4 presents the numerical results of three di�erent multistep methods.Only method (C) shows the correct behavior. It is the partitioned methodkXi=0 �ipn+i = �h kXi=0 �iHq(pn+i; qn+i)kXi=0 b�iqn+i = h kXi=0 b�iHp(pn+i; qn+i)(3.3)where the generating polynomials are�(�) = (� � 1)(�2 � 2 cos(4�=9)� + 1)(�2 � 2 cos(8�=9)� + 1)b�(�) = (� � 1)(�2 � 2 cos(2�=9)� + 1)(�2 � 2 cos(6�=9)� + 1)and �(�), b�(�) are such that the resulting method is explicit, symmetricand of order 4. It is important that �(�) and b�(�) have no common zeroother than �1 = 1.2The data for this problem can be obtained on request.
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Fig. 4. Numerical trajectories of the �ve outer planets, obtained with (A) the 4-step explicit Adams method; (B) the symmetric method yn+4�yn = h(8fn+3�4fn+2+8fn+1)=3; and (C) the partitioned multistep method (3.3), all applied with constantstepsize h = 100 (earth days).For the moment we cannot rigorously explain this behavior. We hopethat an extension of the backward error analysis to partitioned multistepmethods (see [10]) will allow us to prove the observed long-time behavior.3.2. Asymptotic expansion. We recall here the form of the asymp-totic expansion of the global error. It will serve as a motivation for theansatz of the backward error analysis of multistep methods. For the di�er-ential equation y0 = f(y) we consider the multistep methodkXi=0 �iyn+i = h kXi=0 �if(yn+i);(3.4)whose generating polynomials are �(�) =Pki=0 �i�i and �(�) =Pki=0 �i�i.For ease of presentation, we assume that the roots of �(�), denoted by�1 = 1; �2; : : : ; �k, are distinct and di�erent from zero. For stability allthese roots have to satisfy j�`j � 1. We then consider the index setI = �� = �m22 � : : : � �mkk �� mi � 0; � 6= 1	 = ��2; : : : ; �k; �k+1; : : :	and we often write ` 2 I in order to indicate �` 2 I. Gragg [6] (see also [12])proved that the numerical solution of the multistep method (3.4) admitsfor arbitrary N an expansion of the formyn = y(nh) + NXj=1� X`2I[f1g �ǹej`(nh)�hj +O(hN+1):(3.5)Here y(t) is the solution of (1.1), and the functions ej`(t) for 1 � ` � k area solution of the di�erential equatione0j` = �`f 0(y)ej` + fcn �y; feimg 1�i<j1�m�k �;(3.6)



10 ERNST HAIRER AND CHRISTIAN LUBICHwhere �` = �(�`)=��`�0(�`)� is the growth parameter (as introduced byDahlquist [4]) and the inhomogeneity in (3.6) is given recursively. Thefunctions ej`(t) for ` � k + 1 are given by algebraic relations of the formej` = fcn �y; feimg 1�i<j1�m�k �:(3.7)The initial values for (3.6) have to be computed from the starting valuesy0; y1; : : : ; yk�1. Gragg [6] assumes that these starting values possess a Tay-lor series expansion of the form yj = yj(h) = yj0+hyj1+h2yj2+ : : :, and heshows that the validity of (3.5) for n 2 f0; 1; : : : ; k�1g uniquely determinesthe initial values ej`(0) for 1 � ` � k as functions of fyj0; yj1; yj2; : : :g forj = 0; 1; : : : ; k � 1.3.3. Backward analysis. We collect all functions in (3.5) that aremultiplied by �ǹ into one function, and therefore search for a formal repre-sentation of the numerical solution of (3.4) asyn = ey(nh) + X̀2I �ǹz`(nh):(3.8)We are interested to represent the functions ey(t) and z`(t) as the solution ofan autonomous system of di�erential (and algebraic) equations. This canbe achieved by inserting (3.8) into (3.4), by Taylor series expansions, andby equating expressions of like powers of h. The details of this constructionare given in [10]. The result is a system of the formey 0 = f(ey ) + fcn1(h; ey; z2; : : : ; zk)z 0̀ = �`f 0(ey )z` + fcn`(h; ey; z2; : : : ; zk) for ` = 2; : : : ; k(3.9) z` = h fcn`(h; ey; z2; : : : ; zk) for ` � k + 1;where �` = �(�`)���`�0(�`)� is the growth parameter of (3.4) correspondingto �`, and fcn`(h; ey; z2; : : : ; zk) are formal series in powers of h. We callthe di�erential equation for ey principal modi�ed equation and those for z`parasitic modi�ed equations. It turns out that the functions fcn` are linearcombinations of expressions likeh3c1f 000(ey )�f(ey ); f(ey ); f(ey )�h0c2f 00(ey )�z2; z3�(3.10) h3c3f 0(ey )f 00(ey )�f 0(ey )z2; f(ey )�:These are meaningful compositions of derivatives of f(y) with z2; : : : ; zkappearing as factors. The coe�cients cj only depend on the multistepmethod, and the exponent in hr equals the number of appearances of thesymbol f minus 1. Moreover, an expression that is independent of z2; : : : ; zkautomatically belongs to fcn1. If an expression contains zi1 ; : : : ; zim asfactors, it belongs to fcn` where the index ` is determined by �` = �i1 � : : : �



ASYMPTOTIC EXPANSIONS AND BACKWARD ANALYSIS 11�im . As a consequence, the �rst expression of (3.10) belongs to fcn1, thelast one to fcn2, and the second one belongs to fcn1 if �2�3 = 1 or to fcn`if �2�3 = �`. It follows that the expressions in fcn1 either are independentof z2; : : : ; zk or they are at least quadratic in z2; : : : ; zk.Let us brie
y discuss the truncation of the formal series in (3.9),which is necessary for a rigorous backward error analysis. Consider forexample the case �2 = �1 so that �22 = 1. The expressions f 00(ey )(z2; z2),f (4)(ey )(z2; z2; z2; z2), f (6)(ey )(z2; z2; z2; z2; z2; z2); : : : usually all appear infcn1. Hence, in contrast to the theory for one-step methods, there appearsan in�nite number of expressions in fcn` corresponding to the same powerof h. Fortunately, it turns out that for real analytic f(y) the sum of theseexpressions converges absolutely [10], so that only the terms containinghN ; hN+1; : : : as a factor will be removed. We denote the solution of theresulting system again by ey(t) and z`(t).Semigroup property. The initial values for the di�erential part inthe modi�ed equation (3.9) can be obtained from the starting approxi-mations y0; y1; : : : ; yk�1 as follows: we expand the solution ey(ih); z`(ih)of the truncated system (3.9) into powers of h, and we insert the resultinto (3.8) for n 2 f0; 1; : : : ; k � 1g. This gives a nonlinear system forey(0); z2(0); : : : ; zk(0) which, by the implicit function theorem, yields a lo-cally unique solution. This unique correspondence between the startingapproximations y0; y1; : : : ; yk�1 and the initial values for (3.9) implies thatthe values fyng de�ned by (3.8) (where ey(t) and z`(t) are the solution ofthe truncated modi�ed system) satisfy the semigroup property.Structure preservation. If the starting values y0; y1; : : : ; yk�1 are suchthat z2(0) = z3(0) = : : : = zk(0) = 0, then we have z`(t) � 0 for all `and the (truncated) principal modi�ed equation becomes independent ofz2; : : : ; zk, i.e., ey 0 = f(ey ) + hf1(ey ) + h2f2(ey ) + : : :(3.11)This is the key element for de�ning structure preserving properties:a) We call a multistep method symplectic if, applied to a Hamilto-nian system, the modi�ed equation (3.11) is Hamiltonian. Unfortunately,multistep methods cannot be symplectic (see [28, 11]).b) We call a multistep method symmetric if, applied to a reversiblesystem, the modi�ed equation (3.11) is reversible. This turns out to beequivalent to the usual de�nition of symmetric multistep methods.Exponentially small estimates. Let ey(x) and z`(x) be the solutionof the principal and parasitic modi�ed equations, truncated after the hNterms, and assume that the multistep method is weakly stable, symmetric,and that all zeros �` of �(�) are roots of unity. If N = const =h with a



12 ERNST HAIRER AND CHRISTIAN LUBICHsuitable constant, then the expressions (3.8) satisfykXi=0 �iyn+i � h kXi=0 �if(yn+i) = O(e�
=h):(3.12)A proof of this estimate is given in [10]. Using the unique correspondencebetween starting values y0; : : : ; yk�1 of the multistep method and the initialvalues ey0; z20; : : : ; zk0 of the truncated modi�ed di�erential equation (seeabove) this means that the following diagram commutes up to terms oforder O(e�
=h):y0; : : : ; yk�1  ! ey0; z20; : : : ; zk0????y multistepmethod(3.4) ???y 
ow of(3.9)ey(h); �2z2(h); : : : ; �kzk(h)= (up to O(e�
=h))y1; : : : ; yk  ! ey1; z21; : : : ; zk1(3.13)
The study of the long-time behavior of multistep methods can be donealong the following lines: (i) study the solutions of the principal and para-sitic modi�ed di�erential equation, (ii) bound the size of the solutions z`(t);they should be small and of size O(hp), (iii) study the propagation of theexponentially small perturbations. An illustration of this technique will begiven in Sect. 4.4. Application: Preservation of weakly stable limit cycles.As an illustration, we show how backward analysis explains the behaviorof numerical integrators applied to systems with a weakly stable periodicorbit. We consider Van der Pol's equationq0 = p ; p0 = �q + "(1� q2)p (0 < "� 1) :(4.1)4.1. One-step methods. We consider applying a one-step methodof order p whose stability function satis�esjR(i�)j = 1 for � 2 R:For A = � 0 1�1 0�(4.2)we then have 1h logR(hA) = !A with ! = 1 +O(hp) :



ASYMPTOTIC EXPANSIONS AND BACKWARD ANALYSIS 13Therefore, the modi�ed di�erential equation (1.3) for this method appliedto (4.1) becomeseq 0 = !ep ; ep 0 = �!eq + "(1� eq 2)ep+O("�) ;(4.3)where � = hp and the O("�) term represents a function of (eq; ep ) whichtogether with its derivatives is bounded by const � "�. With the symplecticchange to polar coordinates eq = p2a sin', ep = p2a cos', the systembecomes a0 = " 2a(1� 2a sin2 ') cos2 '+O("�)'0 = ! � "(1� 2a sin2 ') cos' sin'+O("�) :(4.4)The dependence on the angle ' in the leading terms can be eliminated by acoordinate transform which is O(")-close to the identity (cf. [2, 26]). In thenew variables (ba; b') the system becomes of a form where the coe�cients of" are the averages over ' of the previous coe�cients:ba 0 = " ba(1� 12ba) +O("2) +O("�)b' 0 = ! +O("2) +O("�) :(4.5)Ignoring the O(: : :) terms, it is seen that this system has the weakly stableperiodic orbit ba = 2, which is O(") close to the circle eq 2 + ep 2 = 4 in theoriginal variables. By an invariant manifold theorem [21], it follows that theperiodic orbit persists under the O("2)+O("�) perturbation, and that thelimit cycle of the modi�ed equations (4.3) is O(hp)-close to the limit cycleof Van der Pol's equation. By the same invariant manifold theorem and the�nite-time estimates between the numerical solution and the solution of themodi�ed equation, it �nally follows that the numerical method has a weaklyattractive invariant closed curve that is O(e�
=h) close to the limit cycle ofthe modi�ed equation. See [14, 26, 27] for more details and for extensionsof such a result to the preservation of weakly attractive invariant tori ofmore general dissipatively perturbed Hamiltonian systems.4.2. Multistep methods. We now explain the numerical behaviorshown in Fig. 3. We consider the symmetric two-step schemeyn+1 = yn�1 + h(�fn+1 + 2(1� �)fn + �fn�1) :For z 2 C near 0, we factor the characteristic polynomial�2 � 1� z���2 + 2(1� �)� + �� = (1� z�) �� � �1(z)� �� � �2(z)�with �1(0) = 1, �2(0) = �1. Because of the symmetry of the method wehave j�1(i�)j = j�2(i�)j = 1 for � 2 R:



14 ERNST HAIRER AND CHRISTIAN LUBICHThe numerical solution of the method applied to y0 = Ay, with A of (4.2),is of the formyn = �1(hA)nv1 + �2(hA)nv2 = ey(nh) + (�1)nz2(nh) ;where ey(t) and z2(t) are solutions of the di�erential equationsey 0 = 1h log��1(hA)� ey = !Aey; ! = 1+O(h2)z02 = 1h log���2(hA)� z2 = �Az2; � = �2 +O(h2):(4.6)Here �2 = (3� � 2)=2 is the growth parameter of the root �1.We write (eq(t); ep(t)) and (Q(t); P (t)) in the roles of ey(t) and z2(t)of the modi�ed di�erential equations (3.9). The equations for (eq(t); ep(t))are (4.3) with ! of (4.6), with � = h2 + Q2 + P 2 and with O("�) pertur-bation functions depending on (eq; ep;Q; P ). The di�erential equations for(Q(t); P (t)) are of the formQ0 = �P +O("�)P 0 = ���Q� 2"eq epQ+ "(1� eq 2)P �+O("�) :(4.7)We express (eq; ep ) in the variables (ba; b') of (4.5), and search for a transfor-mation � QP � = �I + "S(ba; b')� bQbP !which eliminates the dependence on b' in the leading terms of (4.7). Weobtain  bQ0bP 0 ! = �� 0 1�1 "(1� ba)� bQbP !+O("2) +O("�)(4.8)provided that S satis�es@S=@ b' = �(AS � SA+B) ;where B = B(ba; b') contains the di�erence between the coe�cients of " in(4.7) and their angular averages. This equation can be solved for S byFourier expansion whenever � 6= k=2 with k 2 Z.For ba = 2, the matrix in (4.8) has eigenvalues � 12�(" � ip4� "2).Ignoring the O(: : :) perturbation terms, the system (4.8) therefore has 0 asa weakly attractive equilibrium if and only if � > 0, that is, for � > 2=3in the numerical scheme. The O("2) + O("�) terms are again taken intoaccount by an invariant manifold theorem, provided that Q(0) = O(h)and P (0) = O(h), which is satis�ed if the starting values of the multistepmethod are O(h) close to each other. The invariant manifold theorem of



ASYMPTOTIC EXPANSIONS AND BACKWARD ANALYSIS 15[21] yields that for � > 2=3 the combined system (4.5) and (4.8) has aweakly attractive invariant curve (ba; bQ; bP ) parametrized by b', whose �rstcomponent is O(hp) close to the exact limit cycle of Van der Pol's equation,and whose further components are of size O(hp).Using the diagram (3.13), it is seen that the numerical solution of Vander Pol's equation is of the form� qnpn� = � eqnepn�+�QnPn � ;where the mapping (eq0; ep0; Q0; P0) 7! (eq1; ep1;�Q1;�P1) di�ers only byO("e�
=h) (in the C1 sense) from the time-h 
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