
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article scientifique Article 2024                                     Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

DSDApp: An Open-Access Tool for Definitive Screening Design

Hayasaka, Ryoichiro; Hänisch, Jens; Cayado Llosa, Pablo

How to cite

HAYASAKA, Ryoichiro, HÄNISCH, Jens, CAYADO LLOSA, Pablo. DSDApp: An Open-Access Tool for 

Definitive Screening Design. In: Journal of open research software, 2024, vol. 12, n° 1, p. 2. doi: 

10.5334/jors.462

This publication URL: https://archive-ouverte.unige.ch/unige:180505

Publication DOI: 10.5334/jors.462

© The author(s). This work is licensed under a Creative Commons Attribution (CC BY 4.0) 

https://creativecommons.org/licenses/by/4.0

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:180505
https://doi.org/10.5334/jors.462
https://creativecommons.org/licenses/by/4.0


SOFTWARE 

METAPAPER

DSDApp: An Open-Access 
Tool for Definitive Screening 
Design
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JENS HÄNISCH 

PABLO CAYADO 

ABSTRACT
Definitive Screening Design (DSD) is a powerful design of experiment technique 
employed to find significant factors (parameters) and optimize the factor levels in 
many experiments of different fields. However, making its design and analyzing 
the obtained results usually requires expensive software or advance programming 
knowledge. Therefore, the authors of this work developed a web application, called 
“DSDApp”, with which users can make designs and analyze the results of DSD without 
statistical and programming efforts. DSDApp can generate DSD tables, make second-
order models, and optimize factor levels to obtain max/min/target output values.
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(1) OVERVIEW

INTRODUCTION
Design of experiments (DOE) includes various statistical 
approaches for planning, executing and analysing 
experiments in a systematic and efficient way. Definitive 
Screening Design (DSD) [1] is a particularly useful DOE 
technique in fields such as material engineering [2, 3, 
4], chemistry [5, 6] and biology [7, 8], where numerous 
factors are involved in the experiments. The DSD has 
significant advantages over conventional DOEs. Most 
conventional DOE techniques are for experiments with 
two levels (e.g. –1/+1) for all factors. If there is a second-
order effect of factor A (i.e. AA) that deals with two levels, 
a conventional DOE cannot find an optimal condition 
that may exist between the two levels. Even though 
some conventional DOEs can deal with three levels (e.g., 
–1/0/+1), such as L18 orthogonal array, the second-order 
effects often involve correlations with other factor effects. 
This implies that ambiguity may remain in the process of 
building models. In contrast, DSD deals with three levels 
(low, middle, and high values) of the factors (parameters) 
and the correlations between the factors are minimized. 
These features are useful for building second-order 
models and finding the optimal levels of factors in the 
investigated parameter windows of the experiments.

However, designing and analyzing DSD experiments 
typically requires commercial software (e.g., JMP, 
Design-Expert and Minitab) or programming knowledge 
(e.g., R or Python), which is, in many cases, a barrier 
for researchers to employ DSD in their experiments. 
Considering this situation, the authors of this work 
developed DSDApp, a free web application that provides 
an effortless way to use DSD for researchers with a lack 
of access to commercial software packages or statistical 
programming knowledge.

The user-friendly interface of DSDApp allows users to 
design DSD experiments, to create second-order models 
(including main effects, two-factor interactions and 
quadratic effects) and to perform parameter optimization 

to obtain desirable objective values. The app can be used 
in a very simple way only by button-clicking, which makes 
DSDApp a more attractive and easier option to employ 
DSD than existing R packages (e.g., “daewr”) or Python 
libraries (e.g., “definitive-screening-design”) that require 
statistical programming experience.

DSDApp is particularly profitable for researchers 
in small research or academic organizations or 
companies without access to commercial software. 
Also, those without any previous experience with DOE 
techniques or with limited experience in the use of 
DSD may benefit from the app because of its simpler 
and more intuitive operation compared to commercial 
software that offer complicated functionalities for 
more specialized needs. Overall, DSDApp is expected 
to extend the use of DSD and broaden experiments in 
various research and development fields.

IMPLEMENTATION AND ARCHITECTURE
As shown in Figure 1, DSDApp offers three main 
functionalities: planning definitive screening designs, 
making regression models, and optimizing parameters. 
The detailed usage of DSDApp is explained in the 
following sections.

PLANNING DSD
In the “Plan” tab, one can create a DSD table with 4 to 12 
factors. The process should start by changing the levels 
(low: –1, middle:0, high:1) of the factors. These levels are 
corresponding to the minimum, middle, and maximum 
values of the factors. Figure 2 shows an example of 
a six-factor (A, B, C, D, E, F) DSD table generated by 
DSDApp. Each row is an experimental run that users 
should execute with the factor levels given, and collect 
result Y. According to Ref. 9, two or more “fake factors” 
should be considered when constructing a DSD table for 
better effect detection performance. Fake factors do not 
correspond to the actual variables (therefore no need to 
consider when doing experiments), but only act when 
building a model as described in Appendix.

Figure 1 Overview of DSDApp.
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The table generated can be downloaded as a csv file 
by clicking on “Download.” In the experiment, the actual 
data should be recorded and added in a new column in 
the downloaded csv file.

In Figure 2, instead of actual data, the checkbox 
“Generate the sample data” was ticked to generate 
sample data given by:

= 3+2A + 4B – C +3D –2AA –2 )AB + CC + , ~ N .3(0, = 0y ε ε σ  (1)

This model will be used for testing the app in the section 
“Quality control”.

MAKING MODELS
Before making the models, it is necessary to upload 
the file with the DSD table and experimental result(s). 
Multiple objective variables can be included in the added 
columns. By clicking on “Browse” (Figure 3), it is possible 
to upload a csv/txt file in the DSDApp from your computer.

The models can be built by following the steps below.

1. Set the result column as an objective variable “Y”, 
input variables (A, B, C, D) as “X,” and fake factors 
(E, F) as “Fake Factor.”

2. Click on “Find active terms” to obtain active main 
factors and second-order factors (Step 1). The 
detection of main and second-order factors is 
described in the tab “Step 1” as shown in Figure 4.

3. After pressing “Find active terms,” the possible 
first- and second-order terms appear in “X1” and 
“X2” tab automatically, following the model building 
strategy detailed in the Appendix. The user can 
consider which terms should be included in the model 
and manually add/remove factors of interest (Step 2).

4. (Optional) If the user manually altered terms in “X1”, 
press “Regenerate X2” to regenerate terms in “X2” by 
combining the first-order terms selected in “X1.” This 
procedure is optional if the user is satisfied with the 
terms that automatically appeared in “X1” and “X2” 
after pressing “Find active terms”.

5. Click on “Build model” to make a model with the 
terms “X1” and “X2.” The summary of the model is 
described in the tab “Step2” as shown in Figure 5.

Figure 2 Planning of DSD. By clicking “Download” in the left 
bottom corner, users can download the table shown in the right.

Figure 3 Uploading of DSD and experiment result.

Figure 4 Step 1: Detecting main factors and second-order terms.

Figure 5 Step 2: Model making based on terms X1 and X2. The 
model information and the bar graph represent the coefficients 
of the terms. The red scatter plot displays how well the model 
can explain the obtained values.
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DSDApp employs a model-selection strategy tailored for 
DSD, where active main (first-order) factors are detected 
first and then second-order terms related to main factors 
are included [9]. For example, when main factors A and 
B are active (or set as X1), possible second-order terms 
(X2) are AA, AB and BB. To avoid overfitting, the second-
order terms are included to minimize Akaike Information 
Criteria with finite correction (AICc). See the Appendix for 
a more detailed explanation.

After creating the model, the prediction of the output 
value is possible in the tab “Predict”. The input vector × 
(or the factor levels) can be set to specified values, as it 
can be seen in Figure 6. The prediction value yx0 at x0 = [1, 
A, B, C, D, …] and its prediction interval is calculated as:

( )
0

–12 t
/2, – 0 0( )± )1+n py t xα σx X X x  (2)

where X is the design matrix of DSD, α is the significance 
level (0.05), n is the number of runs, p is the number of 
terms in the model (including the intercept term) and 

/2,n ptα −  is t-value with two-sided confidential level α and 
the degree of freedom n-p.

OPTIMIZING FACTOR LEVEL
DSDApp offers the possibility to optimize the parameters, 
i.e., to find the optimal set of parameters for the main 
factors to obtain the desired objective variable(s). DSDApp 
transforms the objective value y into a “desirability 
function” that evaluates how satisfactory y is on a scale 
from 0 “not satisfactory” to 1 “completely satisfactory.” 
Figure 7 illustrates the desirability functions for three 
different cases: minimization, maximization and tuning 
y at a specific value. For minimizing and maximizing, the 
individual desirability function D1 is expressed as:
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where yallowable refers to the minimum required value 
that the user wishes to secure, and ytarget refers to the 
ideal value. In the case of minimization, for example, 
if y > yallowable, D1 gets smaller than 0.01 as shown in 
Figure 7(a). This value of D1 is small enough to consider y 
as unsatisfactory when y > yallowable and, therefore, y tends 
to be smaller than yallowable. In the case of maximization, 
the value of D1 gets smaller when y < yallowable as shown 
in Figure 7(b), and thus y tends to be larger than yallowable. 
Note that y cannot get much smaller (or larger) than 
ytarget because D1 remains stable when y < ytarget for 
minimization, and y > ytarget for maximization.

Figure 7(c) shows the individual function D2 for tuning 
at a certain level ytarget. The function D2 was expressed as:

( ) ( )
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The desirability functions are calculated for various 
sets of the factor levels x (e.g., x = [–0.5,+0.2, 0, …, 1]). 
The set x that maximizes the desirability is the optimal 
parameter set. For the optimization calculation, limited-
memory quasi-Newton code for bound-constrained 
optimization (L-BFGS-B) is employed (the function 
“optim” in R language can do the optimization).

In the case of having multiple objective variables, 
multi-objective optimization is also possible. Instead of 
maximizing individual desirability, the total desirability

( )1/

total =1
=

nn

ii
D D∏  (5)

is maximized; where i is the iterator corresponding to 
n objective variables. If no parameter set can meet all 
the limitations, i.e., if some of the desirability functions 
are zero, then Dtotal is evaluated as 0. In such situation, 
broadening a bit the limitations (yallowable) of some objective 
variables can be helpful to obtain an optimization result.

Figure 6 Prediction of output variable at specified input variables.
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The optimization procedure is as follows.

1. Click on “Register model” as shown in Figure 5. The 
registered model shows up in the selector in Figure 8.

2. Click on “Set” button to define the purpose (minimize/ 
maximize/target) and lower or raise the limits.

3. Click on “Maximize desirability” to optimize total 
desirability Dtotal. “Maximize desirability” needs to be 
clicked several times because optimization starts 
from different initial points and can lead to different 
optimal conditions.

4. For multiple output values, it is necessary to register 
all the models and set their purposes of optimization 
individually.

QUALITY CONTROL
DSDApp has been validated by using a six-factor DSD 
table and simulated observations. The DSD table includes 
columns A-D as real factors and E and F as fake factors as 
shown in Table 1 (same as the table in Figure 5). Then, we 
generated simulated data y using the predefined models 
(same as the equation in Figure 2).

= 3+2A + 4B – C +3D –2AA –2 )AB + CC + , ~ N .3(0, = 0y ε ε σ  (1).

The users can verify the app functionality by 
checking whether or not the model built based 
on observation y is similar to the predefined model  
(1).

Afterwards, the model below was built based on 
the generated data using DSDApp as shown in “Model 
Information” in Figure 5.

= 2.886+2.018A + 4.014B – 0.917C +2.904D –1.968AB

     –1.9355AA +1.106CC

y  (6)

As shown in Figure 9, the coefficients of the built model 
(6) and the original model (1) are similar, but with 
slight differences. To confirm that these differences are 
negligible compared to the variation ε, another set of the 
input points was introduced and the prediction validity of 
the model was checked.

Figure 7 Desirability functions; (a) minimization, (b) maximization, and (c) tuning (at ytarget = 2) with ylower = 1 and yupper = 3.

Figure 8 Optimization.

NO. A B C D E F Y

1 0 1 –1 –1 –1 –1 5.812 

2 0 –1 1 1 1 1 2.055 

3 1 0 –1 1 1 –1 7.749 

4 –1 0 1 –1 –1 1 –3.521 

5 –1 –1 0 1 –1 –1 –3.901 

6 1 1 0 –1 1 1 1.754 

7 –1 1 1 0 1 –1 5.146 

8 1 –1 –1 0 –1 1 3.221 

9 1 –1 1 –1 0 –1 –1.827 

10 –1 1 –1 1 0 1 9.908 

11 1 1 1 1 –1 0 8.454 

12 –1 –1 –1 –1 1 0 –7.883 

13 0 0 0 0 0 0 2.814 

Table 1 Data and simulated result.
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Table 2 shows the confirmation points at the edge 
of the experimental space, where the maximum 
prediction error is expected to be observed. Figure 
10 shows the correlation between predicted values 
ŷ based on the model (6) (vertical axis) and the true 
values y generated by the original function (horizontal 
axis) for the same input parameters as in Table 2. The 
blue dots correspond to y and ŷ at the DSD points, 

and the red dots to the confirmation points. By using 
the values of y and ŷ, the residual sum of squares for 
the confirmation points is calculated as 0.156, which 
is smaller than the original standard error σ = 0.30. 
Thus, the constructed model (6) fits well with the true 
model (1). Nevertheless, one should be cautious when 
several quadratic effects and two-factor interactions 
are active because these effects in DSD sometimes 
have relatively strong correlations [1]. In such a case, 
several possible models should be evaluated in later 
experiments to see which model is the most useful and 
reliable.

Similar tests in this section can be done by users’ 
defined equations. For example, “test.R” generates CSV 
files (DSD8-with-Y1.csv, DSD8-with-Y2.csv) with a DSD 
table and sample data by a hand-made equation. Users 
can upload the generated CSV files in DSDApp, and then 
check if the built models are similar to user’s predefined 
models.

(2) AVAILABILITY

OPERATING SYSTEM
Windows (tested on Windows 10)

PROGRAMMING LANGUAGE
R 3.6.3 (R.4.0)

ADDITIONAL SYSTEM REQUIREMENTS
Users can access to DSDApp at https://my-first-dsd.
shinyapps.io/DSDApp_ver2/ on a web browser app.

For local usage, Rstudio is needed. Open server.R or 
ui.R in Rstudio, then click on “Run App.”

DEPENDENCIES
R packages daewr, shiny, and shinythemes.

LIST OF CONTRIBUTORS
P.C. conceptualized the idea and, together with J.H., 
provided supervision. R.H. developed the app and carried 
out tests to check its correct operation. All authors were 
involved in the writing of the original and the revised 
manuscript.

SOFTWARE LOCATION
Code repository

Name: GitHub
Identifier: https://github.com/long-rh/DSDApp
Licence: MIT License
Date published: 03/12/2022

LANGUAGE
English

Figure 9 Comparison between the true model (1) in Table 2 
and the built model.

A B C D Y Ŷ

1 –1 –1 –1 0 –0.02245

–1 1 –1 –1 4 3.938109

1 1 –1 –1 4 3.977689

–1 –1 1 –1 –10 –9.52573

–1 1 1 –1 2 2.237702

1 1 1 –1 2 2.277282

–1 –1 –1 1 –2 –1.83913

1 –1 –1 1 6 5.963744

1 1 –1 1 10 9.963885

Table 2 Confirmation points (A, B, C, D). y is generated by the 
original function (see Test 1 in Table 3), and ŷ is generated by 
the model (9).

Figure 10 Predicted and true values for DSD points (blue) and 
confirmation points (red) in Table 5. The fact that all the points 
align on the black line shows that the prediction agrees well 
with the original values.

https://my-first-dsd.shinyapps.io/DSDApp_ver2/
https://my-first-dsd.shinyapps.io/DSDApp_ver2/
https://github.com/long-rh/DSDApp
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(3) REUSE POTENTIAL

DSDApp, accessible at https://my-first-dsd.shinyapps.
io/DSDApp_ver2/, is designed for researchers and 
experimenters working in various fields who wish to 
include DSD in the experimental routine. Its intuitive 
interface allows users to navigate the application easily 
through button clicks.

The app is suitable for numerous applications where 
efficient and systematic experimentation is crucial. For 
example, in material engineering [3, 4], factors such 
as solution concentration, heating temperature, and 
humidity can be correlated with each other and need to 
be optimized for superior material properties.

Although specific examples of DSDApp usage have 
not been provided in literature, its potential applications 
are evident in the wide range of fields that rely on DSD 
as part of the experimental process. In Table 3, three 
examples are provided to show the potential of the use 
of the DSDApp on data already available in literature. For 
each reference, the DSD condition table and results were 
uploaded in DSDApp, the model generated in the app and 
compared to the one in the literature. The first example 
[5] shows that the models in literature and the app are 
almost the same. The models in the second example [7] 
were slightly different, but the terms with * (marked as 
significant in the literature) were successfully identified as 
active in DSDApp, too. In the final example [1], although 
the coefficients of the model were not provided in the 
ref. [1] the same active terms were identified in DSDApp 
and in the publication. Note that the models based on 
experimental results can be built by different model-
selection strategies [10], which causes differences in the 
resulting models. Also, the terms that should be included 
in the model depend on the knowledge and experience 
of the researcher in the field. Therefore, the models in 
literature and DSDApp are not always the same. The 
users have to keep in mind that DSD employs the specific 
model-selection strategy explained in detail in the 
Appendix.

Future development of DSDApp will include the ability 
to perform mixed-level DSD with two- and three-factors, 
allowing experimenters to incorporate blocking factors 

or categorical factors. This enhancement will further 
expand the app’s applicability to researchers who require 
more complex experimental designs.

For questions about using the app or inquiries 
regarding its application to specific research areas, R.H. 
and P.C. can be contacted via email. They can provide 
guidance and support to any user that wants to use the 
DSDApp for their experiments.

ADDITIONAL FILE

The additional file for this article can be found as follows:

•	 Appendix. Model-selection strategy in DSDApp. DOI: 
https://doi.org/10.5334/jors.462.s1
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