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MANIFOLDS: HAUSDORFFNESS VERSUS HOMOGENEITY

MATHIEU BAILLIF AND ALEXANDRE GABARD

(Communicated by Alexander N. Dranishnikov)

Abstract. We analyze the relationship between Hausdorffness and homo-
geneity in the frame of manifolds not confined to be Hausdorff. We exhibit
examples of homogeneous non-Hausdorff manifolds and prove that a Lindelöf
homogeneous manifold is Hausdorff.

1. Introduction

Our purpose here is to analyze the relationship between Hausdorffness and ho-
mogeneity in the frame of manifolds. We give the word manifold its broadest sense,
that is, a topological space locally homeomorphic to the Euclidean space Rn of a
fixed dimension (without assuming the Hausdorff separation axiom).

Recall that a connected Hausdorff manifold M is homogeneous, i.e. for each
x, y ∈ M , there is a homeomorphism h : M → M taking x to y (see [9] or [10, p.
150]).

This property is true only under the Hausdorff assumption. Without it, one may
well have a nonhomogeneous manifold, for example the well-known line with two
origins: take two copies of the real line R and identify all corresponding points of the
copies but the origin (Figure 1). This yields a one-dimensional manifold in which
the two origins cannot be separated.1 Notice though that a point different from the
origins can be separated from any other point, so the manifold is not homogeneous.
Another well-known example of a non-Hausdorff manifold is the branching line
obtained by identifying the points < 0 in the two copies of R (Figure 1).

One may think that homogeneity is a sufficient condition to characterize, in the
realm of manifolds, those which are Hausdorff. We show that this is not the case
by exhibiting two examples. The first, called the complete feather or everywhere
branching line F will be discussed in §2. It was first defined by Haefliger and Reeb
in [4] and is constructed by “grafting” lines to all points of a line and iterating this
process indefinitely (see Figure 2).

Here F is a non-Hausdorff homogeneous 1-manifold but it is neither separable2

nor Lindelöf.3 It furthermore has some interesting contractibility properties: it is
contractible but not strongly (i.e. in such a way that the collapsing point stays fixed
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1We say that two points of a topological space can be separated if there are two disjoint open

sets containing one of them each.
2A space is separable if it has a countable dense subspace.
3A space is Lindelöf if each open cover has a countable subcover.
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FIGURE 1. Classical constructions of non-Hausdorff manifolds.
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FIGURE  2. Haefliger-Reeb's construction of the
plume complète  (here called complete feather).
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FIGURE 3. Another example of homo-
geneous non-Hausdorff manifold.
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during the deformation), even though each point has such a strongly contractible
neighborhood. This answers a question left open in [3].

Our second example is the everywhere doubled line D, a “continuous” version of
the line with two origins in which we perform the duplication process at all points
(Figure 3 tries to give a representation). The line D is homogeneous, separable but
neither Hausdorff nor Lindelöf. A discussion of this example is the object of §3.
The quest for a Lindelöf example is ruled out by the following:

Theorem 1.1. A homogeneous Lindelöf manifold is Hausdorff (and therefore is
metrizable).4

This will be proved in §4. The proof uses that a manifold is a Baire space5 (since
a space that is locally Baire6 is in fact Baire). Alternatively we can also argue that
a (not necessarily Hausdorff) locally compact space is Baire, a fact that is usually
proved only for Hausdorff spaces (see for instance [1]) but which remains valid in
this more general setting (see §5).

2. The complete feather F

Let us first give a loose description of F . The idea is to start with the usual real
line and to add branches (as in the branching line) at any x ∈ R. This results in
a “hairy line”, with branches at level 1. Then, we continue the process by adding
new branches at level 2 to all points in branches in level 1, and so on indefinitely.
The resulting space F is a 1-manifold whose homogeneity comes from the fact that
we can “flip” a branch at level i with a branch at level i + 1. It is also contractible.

4Recall that a Lindelöf Hausdorff manifold is metrizable; this follows from Urysohn’s metriza-
tion theorem, since Lindelöf and locally second countable imply second countable.

5Every countable intersection of dense open sets is dense.
6For any property P attributable to a space, a space is said to be locally P if each of its points

has a neighborhood with the property P.
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FIGURE  4. Typical neighborhoods of points
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FIGURE  5. Proving homogeneity.
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Now we give the formal definition. The underlying set of F is
{

s : s = (s0, . . . , sn) for some n ≥ 0, si ∈ R,
and s0 < s1 < · · · < sn−1 ≤ sn

}
.

Notice that the last inequality is not strict. One should interpret the sequences of
length 1 as the usual real line, those of length ≤ 2 as the hairy line, and so on. In
fact, the first n entries of a sequence (s0, . . . , sn) indicate positions where branching
has taken place while the last entry parameterizes the “remainder” of the branch.
We topologize F with the order topology for the following partial order:

(s0, . . . , sn) < (t0, . . . , tm) iff n ≤ m, si = ti for i = 0, . . . , n − 1 and sn < tn.

Notice that (s0, . . . , sn) and (s0, . . . , sn, sn) are incomparable and have the same
predecessors. The feather F is a “tree” in the sense that the predecessors of any
point are totally ordered.

Proposition 2.1. F is a connected homogeneous non-Hausdorff 1-manifold.

Notice that F is nonseparable. In fact there is even an uncountable family of
pairwise disjoint open sets in F .

Proof. One sees immediately that F is a non-Hausdorff manifold, since the intervals
are homeomorphic to R and the points of the form (s0, . . . , sn) and (s0, . . . , sn, sn)
cannot be separated. Connectedness is also easy. To see that F is homogeneous,
we first show that given any point s = (s0, . . . , sn) ∈ F , there is a homeomorphism
of F sending s to (sn) ∈ F . We first consider the map hs : F → F that flips the
two “branches” emanating from (s0, . . . , sn−1) (see Figure 5). It is given by the
formula

hs(r)=

⎧⎪⎪⎨
⎪⎪⎩

(s0, ..., sn−2, rn, rn+1, ..., rm) if r= (s0, ..., sn−2, sn−1, rn, rn+1, ..., rm),
(s0, ..., sn−2, sn−1, rn−1, rn, ...,rm) if r= (s0, ..., sn−2, rn−1, rn, ..., rm) and rn−1>sn−1,

(s0, ..., sn−2, sn−1, sn−1) if r= (s0, ..., sn−2, sn−1),
r otherwise.

One sees easily that hs is a homeomorphism (actually it is an involution). For
s = (s0, . . . , sn) ∈ F and k ≤ n, let s(k) = (s0, . . . , sn−k). Then, hs(n−1) ◦ · · · ◦
hs(1) ◦ hs(s) = (sn). To finish the proof, it suffices to remark that for t ∈ R the
map (s0, . . . , sn) �→ (s0 + t, . . . , sn + t) is a homeomorphism. �
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Lemma 2.2. F is contractible.

Proof. The idea is to contract all points of the form (s0, . . . , sn−1, sn) on the point
(s0, . . . , sn−1, sn−1) between time 1

n+1 and 1
n . For x ∈ R and t ∈ [0, 1], let ϕx

t :
R → R be defined by

ϕx
t (y) =

{
y if y < x,

(1 − t)y + tx if y ≥ x.

Then, ϕx
0 = id, and ϕx

1(y) = x for all y ≥ x. If s = (s0, . . . , sn) ∈ F , we let φt(s) =
(s0, . . . , sn−1, ϕ

sn−1
t (sn)), so φ1(s) = (s0, . . . , sn−1, sn−1). If s = (s0, . . . , sn), we

write t′ = n(n + 1)t − n and define

ht(s) =

⎧⎨
⎩

s if n = 0 or t ≤ 1
n+1 ,

φt′(s) if n �= 0 and t ∈ [ 1
n+1 , 1

n ],
ht((s0, . . . , sn−1)) if n �= 0 and t > 1

n .

The definition is implicit, but this causes no problem: we proceed by induction on
n. Thus, h0 = id and h1(s) = (s0, s0) if s = (s0, . . . , sn) with n > 0, h1((s0)) = (s0).
We then define ht((s0)) = ht((s0, s0)) = (s0 − t + 1) for t ∈]1, 2]. It is not difficult
to see that ht is continuous and that h2(F ) is included in the sequences of length
1 which are homeomorphic to R and thus contractible. �

A space X is strongly contractible to the point p if there exists a homotopy
ht : X → X such that h0 = id, h1 ≡ p and ht(p) = p for all t. D. Gauld [3] showed
that if X is contractible, locally strongly contractible to p and completely regular
at p, then X is strongly contractible to p. Further he asked whether “completely
regular” could be dropped; the complete feather F gives a counterexample since:

Lemma 2.3. F is not strongly contractible to any of its points.

Proof. Call twins the pairs of points of F of the form {(s0, . . . , sn), (s0, . . . , sn, sn)}.
Any sequence (s0, . . . , sn−1, s

m
n ) (m ∈ N) with sm

n ↗ sn converges to both twins.
Thus, if one of the twins moves, the other must also move. Since any point of F
has a twin, the result follows. �

3. The everywhere doubled line D

We can build D either as an inductive limit or with two copies of the line with
an exotic topology. We give the latter construction. The underlying set of D is
R × {0, 1}. Points of D with zero second coordinate are called “down”, the others
“up”. A base for the topology is given by usual open sets downstairs with a finite
(eventually zero) number of points removed and lifted upstairs, that is, subsets of
the form

UO,F = (O\F ) × {0} ∪ F × {1},
where O ⊂ R is open and F ⊂ O finite. Such subsets will be called waves. It is
immediate that the waves are closed under finite intersections. We topologize D
with the topology given by this base.

Proposition 3.1. The everywhere doubled line D is a connected non-Hausdorff
homogeneous separable 1-manifold.

Proof. First, it is clear that D is non-Hausdorff, since two points x, y having the
same first coordinate cannot be separated. It is also immediate that Q × {0} is
dense in D and that any wave UO,F where O = ]a, b[ is homeomorphic to R. This
proves that X is a separable 1-manifold. Connectedness is also easy.
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To check homogeneity, we begin by observing that the translations ts : (t, i) �→
(t + s, i) with s ∈ R are clearly homeomorphisms. This settles the case where the
two given points have the same second coordinates. If not, use the map exchanging
up and down at one value of the abscissae

es : (t, i) �→
{

(t, 1 − i) if t = s,
(t, i) if t �= s,

which is a homeomorphism, since it acts simply by adding or removing an oscillation
to a given wave (or eventually does nothing at all if s is outside the wave’s range).

�

Note. Working with reflections and exchange maps, we even see that X is involu-
torially homogeneous (i.e. the homeomorphism taking x to y can always be chosen
to be an involution).

Remarks. As a variant of this construction we can also triple each point of the
line. This gives a counterexample to an erroneous claim made by Fuks-Rokhlin
who asserted that any one-dimensional manifold becomes disconnected after one
removes two suitably chosen points (see [2, p. 135]).

It is known that a Hausdorff connected manifold of dimension ≥ 1 has cardinality
the continuum (see Spivak [7] or Nyikos [5]). The same construction as above start-
ing with R × κ for κ any cardinal shows that (homogeneous) connected manifolds
can have arbitrarily large cardinality.

4. Proof of Theorem 1.1

We will prove the following:

Theorem 4.1. Let X be a topological space which is homogeneous, Lindelöf, locally
Hausdorff and Baire. Then X is Hausdorff.

Theorem 1.1 is then immediate. We will need the following application of Zorn’s
lemma:

Lemma 4.2. Let X be a locally Hausdorff space. Then for each point x ∈ X, there
exists a Hausdorff dense open set Ux containing x.

Proof of Lemma 4.2. Let x ∈ X. Consider Ox the set of all Hausdorff open sets
containing x, ordered by inclusion. Since X is locally Hausdorff, Ox is nonempty.
We check that Ox is inductive. Let C be a totally ordered subset of Ox. As usual
let V =

⋃
U∈C

U be the natural upper bound of C. Then V is open and Hausdorff:
given two points in V (say y, z), each of them belongs to some Vy, Vz ∈ C. But
since C is totally ordered, both points belong to one of them (say Vy) and can thus
be separated by open sets of Vy, which are also open in X.

By Zorn’s lemma, there is a Ux maximal in Ox. We check its density. So, let Ω
be a nonempty open set of X. We can assume that Ω is Hausdorff. If Ω ∩ Ux = ∅,
since Ω and Ux are Hausdorff, so is their union, and thus Ux ∪ Ω ∈ Ox, which
contradicts the maximality of Ux. �

Proof of Theorem 4.1. By homogeneity, it is enough to prove the existence of a
point x0 ∈ X which can be separated from every other point y ∈ X.

For all x ∈ X let Ux � x be given by Lemma 4.2. The collection (Ux)x∈X

is an open cover of X from which we extract a countable subcover (Uxi
)i∈N (by
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Lindelöfness). Since the Uxi
are dense open sets and X is Baire, their intersection⋂

i∈N
Uxi

is dense and so in particular nonempty. Any point x0 in this intersection
is separable from any other y ∈ X: since the (Uxi

)i∈N cover X, y is in Uxi
for some

i ∈ N; but so does x0, and since Uxi
is Hausdorff, x0 and y can be separated. �

Remarks. The preceding results raised some problems we found worth mentioning
here. Firstly, the Lindelöf condition in Theorem 1.1 is in a sense too strong, since
it implies metrizability and there are nonmetrizable Hausdorff manifolds.

Problem 4.3. In Theorem 1.1, can Lindelöf be replaced by a weaker condition
in order to ensure the Hausdorffness but not necessarily the metrizability of the
manifold?

Secondly, the homogeneous non-Hausdorff manifolds F and D both contain an
uncountable (closed) discrete subset: Take one point in each branch at level one in
F and all the “up” points in D. So, another problem is

Problem 4.4. Is there a homogeneous non-Hausdorff manifold that contains no
uncountable (closed) discrete subset, or even stronger, that is hereditarily separa-
ble?7

(Whether there are nonmetrizable HS Hausdorff manifolds or not is known to
be independent of ZFC. Under CH, Rudin-Zenor [6] constructed a nonmetrizable
HS manifold. On the other hand Szentmiklóssy [8] showed that under MA+¬CH,
every locally compact HS Hausdorff space is HL(= hereditarily Lindelöf) and so
metrizable if a manifold. The result in [8] is actually stated with compact instead
of locally compact, but the above follows by taking the one-point compactification.)
A negative answer to the first part of Problem 4.4 would yield that ω1-compact8 is
an answer to Problem 4.3.

5. About the Baire property

We call a space quasi-compact if from any open cover one may extract a finite
subcover, and we call it compact if moreover it is Hausdorff.

Theorem 5.1 (Baire slightly extended). Let X be a locally compact (not necessarily
Hausdorff) space. Then X is a Baire space.

The following lemma shows that the classical nesting argument used in the proof
of Baire’s theorem can be applied to X.

Lemma 5.2. Let X be a locally compact space. Then for each x ∈ X and each
neighborhood V � x there is a compact neighborhood U ⊂ V of x (X is then said
to be microcompact).

Proof. Let us denote by Vx the set of all neighborhoods of x. Recall that a compact
space is regular, i.e. for each point x ∈ X and each V ∈ Vx, there is a closed set
F ∈ Vx with F ⊂ V . Let V ∈ Vx, and let K be a compact neighborhood in Vx.
Then clearly V ∩ K ∈ VK

x , i.e. is a neighborhood of x in K. So, there is F ∈ VK
x

a closed set of K with F ⊂ V ∩K. So F is compact, contained in V and it is easy
to check that F ∈ Vx. �

7In short it is HS, and this means that every subspace is separable.
8A discrete closed set is at most countable.
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Using the classical nesting argument, this implies Theorem 5.1.

Remarks. Locally compact cannot be weakened to locally quasi-compact, since a
countably infinite set with the finite complement topology is a quasi-compact space
which is not Baire. This space is in fact microquasi-compact, that is, has the
property given in Lemma 5.2 with ‘compact’ replaced by ‘quasi-compact’. The
following chart summarizes the relations between the local compactness properties
and how they stand with respect to Baire (jagged arrows mean “does not imply”).

microcompact

locally compact

microquasi-compact

locally quasi-compact

Baire

quasi-compactcompact

5.1
5.

2

manifolds
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