
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Thèse 2020                                     Open Access

This version of the publication is provided by the author(s) and made available in accordance with the 

copyright holder(s).

Characterizing the non-linear evolution of dark energy models

Hassani, Farbod

How to cite

HASSANI, Farbod. Characterizing the non-linear evolution of dark energy models. Doctoral Thesis, 

2020. doi: 10.13097/archive-ouverte/unige:143066

This publication URL: https://archive-ouverte.unige.ch/unige:143066

Publication DOI: 10.13097/archive-ouverte/unige:143066

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:143066
https://doi.org/10.13097/archive-ouverte/unige:143066


UNIVERSITÉ DE GENÈVE
Section de Physique
Département de Physique Théorique

FACULTÉ DES SCIENCES
Professeur Martin Kunz

Characterizing the non-linear evolution of dark
energy models

THÉSE

présentée à la Faculté des sciences de l’Université de Genève
pour obtenir le grade de

Docteur ès sciences, mention physique

par
Farbod Hassani

de
Téhéran (Iran)

Thése N◦0000

GENÈVE
Atelier de reproduction de la Section de Physique

2020





ABSTRACT

In this thesis we mainly focus on characterizing the non-linear evolution of dark
energy and modified gravity models with the aim to probe some of these models
precisely while treating all cosmological components including the dark energy
part accurately. This treatment of dark sector is especially required by the future
high precision cosmological surveys.

In Chapter 1 we discuss the standard model of cosmology and some estab-
lished ideas which are necessary for the rest of this thesis. We will also talk about
the importance of the effective field theory description of dark energy models and
how one can implement this general description in N -body codes.

We introduce k-evolution a relativistic N -body code, designed to simulate
clustering dark energy while keeping all the relevant non-linear terms in Chapter
2. However, in this chapter we show the results for when the clustering dark
energy becomes non-linear due to following the dark matter particles. We specif-
ically focus on k-essence with a speed of sound much smaller than unity but we
lay down the basis to extend the code to other dark energy and modified gravity
models.

Chapter 3 is dedicated to study of cosmological observables on the past light
cone of a fixed observer in the context of clustering dark energy. In this chap-
ter we focus on observables that probe the gravitational field directly, namely
the integrated Sachs-Wolfe and non-linear Rees-Sciama effect (ISW-RS), weak
gravitational lensing, gravitational redshift and Shapiro time delay.

In Chapter 4 based on k-evolution and gevolution codes we quantify the non-
linear effects from clustering dark energy through an effective parameter µ that
encodes the additional contribution of a dark energy fluid or a modification of
gravity to the Poisson equation. We also discuss how the parametric form of µ
can be used to improve Fisher forecasts or Newtonian N -body simulations for
clustering dark energy models.

In Chapter 5 we discuss non-linear terms in the Effective Field Theory of
Dark Energy (EFT of DE) for k-essence model. We study such models in 3+1
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dimensions using cosmological N -body simulation k-evolution and we show that
several k-essence simulations seem to blow up as a function of parameters. This
led us to an interesting question of blow-up in partial differential equations of
the hydrodynamic type appearing in cosmological dark energy simulations. We
have discovered the non-linear instability and studied it analytically in 1+1 di-
mensions.

In Chapter 6 we discuss about the possibility of detecting the relativistic
corrections in cosmological N -body simulations. We give a recipe for the needed
temporal and spatial resolution of an N -body simulation such that one can detect
the relativistic corrections in a specific orbit.

In Chapter 7 we introduce MG-evolution, an N -body code based on gevolu-
tion for parametrised modifications of gravity. This code is built based on the
combination of parametrised linear model with a parametrisation of the highly
nonlinear regime extrapolated from modified spherical collapse computations.
We test MG-evolution against linearised and Chameleon f(R) gravity and the
normal branch of the Dvali-Gabadadz-Porrati braneworld model with and with-
out Vainshtein type screening mechanism.

Chapter 8 is devoted to the study of the turn-around radius – special radius
that the inwards gravitational attraction and the outwards expansion of the
Universe cancel each other – as a probe of gravity.

Our conclusions and outlook are summarized in Chapter 9.

ii



This thesis is wholeheartedly dedicated to my beloved family, Mona,
Eshrat, Mitra, and Ali, and dear Jean-Pierre.





ACKNOWLEDGEMENTS

First of all, I would like to express my deep gratitude to my supervisor, Martin
Kunz for his invaluable supports during my Ph.D, for his motivation, patience,
and kindness. I could not have imagined having a better supervisor in my Ph.D.

I am also extremely grateful to Jean-Pierre Eckmann, who supported me in
all phases of my Ph.D. Talking to him during the coffee sessions was the most
important part of my Ph.D.

I would like to express my special thanks to Julian Adamek, who is my role
model in numerical cosmology, and Peter Wittwer, who showed me how to be
pedantic.

I am grateful to my collaborators Julian Adamek, Jean-Pierre Eckmann, Martin
Kunz, Lucas Lombriser, Steen H. Hansen, Benjamin L’Huillier, Arman Shafieloo,
Filippo Vernizzi, Pan Shi, Shant Baghram and Hassan Firouzjahi.

I would like to express my very great appreciation to my friends and colleagues
(in alphabetical order):

Mahmoud Reza Amini, Amir Nezam Amiri, Hossein Ayoubi, Mohammad Reza
Ayromlou, Reza Babatabar, Shant Baghram, Abdol Ali Banihashemi, Enis Bel-
gacem, Camille Bonvin, Benjamin Bose, Joyce Byun, Giulia Cusin, Charles
Dalang, David Daverio, Yves Dirian, Azadeh Moradinezhad Dizgah, Ruth Dur-
rer, Aghile Ebrahimi, Golshan Ejlali, Farida Farsian, Andreas Finke, Pierre
Fleury, Jérémie Francfort, Antonia Frassino, Tomohiro Fujita, Basundhara Ghosh,
Mina Ghodsi, Reza Golpayegani, Sedighe Hashemi, Soumya Jana, Goran Jelic-
Cizmek, Arash Jofrehei, Joe Kennedy, Ali Khadem, Abbas Khanbeigi, Hasti
Khorami-Nezhad, Nima Khosravi, Francesca Lepori, Elisabetta Majerotto, Shahram
Maleki, Reza Mansouri, WilliamMatthewson, Mani Mohammadi, Milad Moham-

v



madi, Tahmasb Moshiri, Zahra Nazlabadi, Viraj Nistane, Felipe Oliveira, Sohrab
Rahvar, Jacques Rougemont, Alireza Vafaei Sadr, Farshad Seifollahi.

I want to thank my hosts for their hospitality during my visits, especially David
Mota, Hans Winther, Arman Shafieloo, Benjamin L’Huillier, Shant Baghram,
Nima Khosravi, Sohrab Rahvar and Encieh Erfani.

Finally, I wish to express my very great appreciation to my family members,
Mona Jalilvand, Mitra Rabiei, Ali Hassani, Eshrat Sharifi, Andia Hassani, Ashraf
Kabiri, Ghasem Jalilvand and Hamed Jalilvand for their support throughout my
study.

vi



JURY MEMBERS

• Prof. Jean-Pierre Eckmann
Département de Physique Théorique & Section de Mathématiques, Uni-
versité de Genève, Switzerland

• Prof. Lucas Lombriser
Département de Physique Théorique & Center for Astroparticle Physics,
University of Geneva, Switzerland

• Prof. David F. Mota
Institute of Theoretical Astrophysics, University of Oslo, 0315 Oslo, Nor-
way

• Prof. Romain Teyssier
Institute for Computational Science, University of Zurich, Winterthur-
erstrasse 190, 8057 Zurich, Switzerland

• Prof. Martin Kunz
Département de Physique Théorique & Center for Astroparticle Physics,
University of Geneva, Switzerland

I would like to appreciate them all for accepting to be part of the Jury for
my Thesis defense.

vii





LIST OF PUBLICATIONS

The following articles have been considered as part of this thesis:

• Farbod Hassani, Julian Adamek, Martin Kunz and Filippo Vernizzi,
k-evolution: a relativistic N-body code for clustering dark energy,
JCAP 12, 011 (2019), arXiv:1910.01104.

• Farbod Hassani, Julian Adamek and Martin Kunz
Clustering dark energy imprints on cosmological observables of the gravita-
tional field,
Submitted to Monthly Notices of the Royal Astronomical Society, arXiv:2007.04968.

• Farbod Hassani and Lucas Lombriser
N-body simulations for parametrised modified gravity ,
Monthly Notices of the Royal Astronomical Society 2020 497 (2): 1885-
1894, arXiv:2003.05927.

• Jean-Pierre Eckmann and Farbod Hassani,
The detection of relativistic corrections in cosmological N-body simulations,
Celestial Mechanics and Dynamical Astronomy 132, 2 (2020), arXiv:1909.04652.

• Farbod Hassani, Benjamin L’Huillier, Arman Shafieloo, Martin Kunz
and Julian Adamek,
Parametrising non-linear dark energy perturbations,
JCAP 04, 039 (2020), arXiv:1910.01105.

• Steen H. Hansen, Farbod Hassani, Lucas Lombriser, Martin Kunz,
Distinguishing cosmologies using the turn-around radius near galaxy clus-
ters,
JCAP 01, 048 (2020), arXiv:1906.04748.

ix

https://arxiv.org/abs/1910.01104
https://arxiv.org/abs/2007.04968
https://arxiv.org/abs/2003.05927
https://arxiv.org/abs/1909.04652
https://arxiv.org/abs/1910.01105
https://arxiv.org/abs/1906.04748


• Farbod Hassani, Pan Shi, Julian Adamek, Martin Kunz, Peter Wittwer
A new instability in clustering dark energy,
in preperation

x



RÉSUMÉ

Dans cette thèse, nous nous concentrons principalement sur la caractérisation
de l’évolution non linéaire des modèles d’énergie noire et de gravité modifiée
dans le but de sonder certains de ces modèles avec précision tout en traitant
avec précision toutes les composants cosmologiques, y compris la partie d’énergie
sombre. Ce traitement du secteur sombre est particulièrement requis par les
futurs levés cosmologiques de haute précision.

Dans le chapitre 1, nous discutons du modèle standard de la cosmologie et
de quelques idées établies qui sont nécessaires pour la suite de cette thèse. Nous
parlerons également de l’importance de la description effectif de la théorie des
champs des modèles d’énergie noire et de la manière dont on peut implémenter
cette description générale dans les codes à N -corps.

Nous introduisons k-evolution, un code relativiste à N -corps, conçu pour
simuler le clustering d’énergie noire tout en conservant tous les termes non
linéaires pertinents dans le chapitre 2. Cependant, dans ce chapitre, nous mon-
trons les résultats pour le moment où l’énergie sombre de regroupement devient
non linéaire en raison du mouvement des particules de matière noire. Nous nous
concentrons spécifiquement sur k-essence avec une vitesse du son beaucoup plus
petit que l’unité mais nous posons les bases pour étendre le code à d’autres
modèles d’énergie noire et de gravité modifiée.

Le chapitre 3 est dédié à l’étude des observables cosmologiques sur le cône de
lumière passéd’un observateur fixe dans le contexte de regroupement de l’énergie
noire. Dans ce chapitre, nous nous concentrons sur les observables qui sondent
le champ gravitationnel directement, à savoir l’effet Sachs-Wolfe intégré et l’effet
Rees-Sciama non linéaire (ISW-RS), lentille gravitationnelle faible, décalage vers
le rouge gravitationnel et retard Shapiro.

Dans le chapitre 4 basésur les codes k-evolution et gevolution, nous quan-
tifions les effets non-linéaires du regroupement d’énergie noire via un paramètre
effectif µ qui encode la contribution supplémentaire d’un fluide d’énergie sombre
ou d’un modification de la gravitéà l’équation de Poisson. Nous discutons égale-
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ment comment la forme paramétrique de µ peut être utilisée pour améliorer les
prévisions de Fisher ou les simulations Newtoniennes à N -corps pour regrouper
les modèles d’énergie noire.

Dans le chapitre 5, nous discutons des termes non linéaires dans le description
effectif de la théorie des champs des modèles d’énergie noire (EFT de DE) pour
le modèle k-essence. Nous étudions ces modèles en 3 + 1 dimensions en utilisant
une simulation cosmologique N -corps k-evolution et nous montrons que plusieurs
simulations k-essence semblent exploser en fonction des paramètres. Ceci nous
a conduit à la question intéressante de la divergence dans les équations aux
dérivées partielles de type hydrodynamique apparaissant dans les simulations
cosmologiques d’énergie noire. Nous avons découvert l’instabilité non linéaire et
l’avons étudiée analytiquement en dimensions 1 + 1.

Dans le chapitre 6 nous discutons de la possibilité de détecter les corrections
relativistes dans les simulations cosmologiques N -corps. Nous donnons une re-
cette pour la résolution temporelle et spatiale nécessaire d’une simulation de
N -corps telle que l’on puisse détecter les corrections relativistes dans une orbite
spécifique.

Dans le chapitre 7 nous introduisons MG-evolution, un codeN -corps basé sur
la gevolution pour les modifications paramétriques es de la gravité. Ce code est
basé sur la combinaison du modèle linéaire paramétré avec une paramétrisation
du très non linéaire régime extrapolé à partir de calculs d’effondrement sphérique
modifiés. Nous testons MG-evolution contre la gravité linéarisée et Chameleon
f(R) et la normale branche du modèle braneworld Dvali-Gabadadz-Porrati avec
et sans mécanisme de criblage de type Vainshtein.

Le chapitre 8 est consacréà l’étude du rayon de retournement - rayon spécial
où l’attraction gravitationnelle vers l’intérieur et l’expansion vers l’extérieur de
l’Univers s’annulent - en tant que sonde de gravité.

Nos conclusions et perspectives sont résumées dans le chapitre 9.
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NOTATIONS

List of symbols used in the thesis

a scale factor

H Hubble parameter (H0 denotes Hubble parameter to-
day)

H comoving Hubble parameter H = aH

h reduced Hubble parameter h = H0/100

τ , τ0 conformal time (today)

t ,t0 cosmic time (today)

χ comoving distance χ = η0 − η

z redshift

n, n̂ line-of-sight direction

r relative position of two objects r = x1 − x2

Φ,Ψ Bardeen potentials

δ, δm matter density contrast in Poisson gauge

ψN the Newtonian gravitational potential

δcountm counting density (rest mass per coordinate volume)

v(x) velocity perturbation
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v(x) velocity potential v = −∇v

cs speed of sound

θ ∇iv
i

∆ the comoving density contrast (total-matter variable)

χ defined as Φ−Ψ

Kνµ the extrinsic curvature tensor

π scalar field perturbation

∆x normalized cross power spectrum

Pm(k) matter power spectrum

ξ(θ) two-point correlation function

C` angular power spectrum

ψ lensing potential

κ convergence defined as −1
2∇̂

2ψ

γ1 and γ2; γ shear components; complex shear

ε ellipticity

qab second moments of brightness distribution

P`(X) Legendre polynomials

Y`m(θ, φ) Spherical harmonics

Jn(x) Bessel functions

j`(x) Spherical Bessel functions

δij, δD Kronecker and Dirac delta functions

εijk Levi-Civita tensor
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ABBREVIATIONS

Abbreviations

ΛCDM Cosmological constant Cold dark matter

FLRW Freidmann-Lemaître-Robertson-Walker

GR General relativity

CMB Cosmic microwave background

LSS Large-scale structures

BAO Baryon acoustic oscillations

RSD redshift-space distortion

ISW-RS Integrated Sachs-Wolfe and Rees-Sciama effect

SPT Standard perturbation theory

EFT Effective field theory

EFT of DE Effective field theory of dark energy

PM Particle Mesh scheme

P3M Particle-Particle-Particle Mesh
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3.14 Left: The ISW-RS angular power spectra for two different cos-
mologies, (w0 = −0.9, c2

s = 1) and ΛCDM with standard and low
value of As, the amplitude of scalar perturbations. Right: The
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5.8 Top: The scalar field and its time derivatives on the 1+1 D lat-
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Bottom: The scalar field and its spatial derivative on the lattice
for different times are shown. Due to the numerical noises appear-
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6.3 Left: The absolute value of the perihelion shift as a function
of the normalized relativistic parameter β = Υ/Υ0, where Υ0 is
the relativistic parameter for Mercury-Sun. The red region shows
where the method will fail to discriminate the relativistic peri-
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√
Υ, while the perihelion

distance scales like 1
Υ . In all the methods the slope of the curve
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Right: The same representation as a function of eccentricity e.
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1+e
1+e0 and 1−e
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6.7 Comparison of linear vs. bilinear interpolation. Left: Behavior as
a function of the theoretical relativistic parameter β. The green
line shows the relativistic perihelion advance and therefore the
green/magenta area determines the regions for β where one can/-
cannot detect the perihelion advance. Note that for the parame-
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8.1 This figure exemplifies that the turn-around radius is hard to iden-
tify uniquely. The green dots represent all particles out to 10
virial radii around a large galaxy cluster. The central blue re-
gion is one virial radius, and the red circle is a guide-the-eye line.
The red, triangular symbols represent galaxies which happen to
have zero radial velocity with respect to the central galaxy cluster.
The corresponding radius is the turn-around radius. Along direc-
tions with massive substructures the potential is highly non-trivial
(and non-spherical) and hence the turn-around radius depends on
the direction in which it is measured. Left panel: The zero ra-
dial velocity galaxies (colour-coded red) are selected from a thin
slice perpendicular to the line-of-sight. Right panel: All the (al-
most spherically distributed) galaxies with zero radial velocity are
colour-coded red. . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

8.2 Peculiar velocity as a function of radial distance. The 49 green
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8.3 Peculiar velocity as a function of radial distance. The 49 lines
each represent particles in a cone on the sky. Many of the direc-
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8.7 ΛCDM v.s. k-essence with w = −0.9 and c2
s = 1 (correspond-

ing to a quintessence model). The turn-around radius for the
quintessence model with w = −0.9 (red symbols, red solid line) is
seen to have essentially the same dependence on mass as ΛCDM
(blue symbols, blue dashed line). These two models cannot be dis-
tinguished when measuring the turn-around radius for 100 galaxy
clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

8.8 ΛCDM v.s. scalar dark sector interaction (SDSI). The turn-around
radius for the SDSI model (red symbols, red solid line) is seen to
have moved to slightly higher turn-around radius for the same
mass, when compared to ΛCDM (blue symbols, blue dashed line).
The SDSI mass-dependence of the virial mass may be approxi-
mated with a straight line of the form in equation (8.5), using
r15 = 5.4± 0.08 and αr = −0.7± 0.3. Measuring the turnaround
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Chapter 1
INTRODUCTION

The fundamental questions about the origin and evolution of the Universe, the
meaning of time and the possible futures for the Universe, have long been major
issues of study in the human history. Cosmology is the science1 to systematically
answer these questions through theories being tested by experiments and obser-
vations. If we look at the history of the Universe and we map it to a year, only
very recently compared to the cosmic time we have been able to know how the
Universe evolves and what it is made of, which makes the current millennium
very special. The Fig. 1.1 shows the cosmic calendar from when the Universe
(according to the currently accepted model) has been started to today approxi-
mately when I’m writing this thesis. This timeline shows how little our knowledge
is as we only recently (compared to the age of Universe) had the chance to do
science, especially doing cosmology and at the same time nonetheless how much
we know.

Looking at Fig. 1.1 in this calendar about 0.22 cosmic seconds ago (in 1927 of
Georgian calendar) based on the observations of Edwin Hubble we obtained the
observational basis for the expansion of the universe. According to the Hubble-
Lemaître law, objects (mainly galaxies) are moving away from us at velocities
proportional to their distance. The velocity of the galaxies according to this
effect has been determined by measuring the redshift, a shift to the red color in
the spectrum due to the Doppler shift.

Then, in 1965, (0.12 cosmic seconds) Arno Penzias and Robert Woodrow
Wilson, by chance detected the cosmic microwave background (CMB) radia-

1Science: An attempt to systematically model the structure and evolution of a system.
Falsifiability and validity through experiment and observation are the key properties that a
model has to possess.
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tion.2 Afterward several surveys have been launched, including NASA Cosmic
Background Explorer (COBE) satellite that orbited in (1989-1996 /0.07-0.05 cos-
mic seconds) which detected the large scale anisotropies of the CMB with a low
resolution. In 1998 (0.05 cosmic seconds) we have obtained evidence for dark en-
ergy Perlmutter et al. [1999], Riess et al. [1998a], an unknown component which
is responsible for the accelerated expansion of the Universe. In 2001 (0.04 cos-
mic second), NASA launched WMAP, to make more precise measurements of
the CMB anisotropies over the full sky. Finally, the most precise CMB space
mission, Planck was launched in 2009.

According to all of these observations the standard model of cosmology ΛCDM
(or the cosmological constant cold dark matter) with 6 parameters and with an
initial conditions of almost Gaussian nature, has by far been the simplest model
that successfully predicts and explains the cosmological and astronomical obser-
vations. The important properties that either are predicted or explained by the
standard model of cosmology are Durrer [2015]

• The observed abundances of elements in the Universe, mainly hydrogen,
deuterium, helium, and lithium

• The statistics of the large scale structure of the Universe

• The existence of the CMB and its anisotropies

• The observed late time accelerated expansion of the Universe

In spite of all of its successes there are still challenging questions related to the
nature of dark energy of dark matter and physics of the early universe. Among
these we can point out some of the most significant ones as follows (see e.g.
Bullock & Boylan-Kolchin [2017], Del Popolo & Le Delliou [2017] for a review),
which are still unknown.

• The cosmological constant problems, including the fine tuning problem and
the cosmic coincidence problem.

• The tensions between low and high redshift observations, e.g. between the
2013 Planck parameters and σ8 obtained from the large scale structure
data, tension in the value of H0 from Planck with type one Supernovae
data, tension between The Planck 2015 data and CFHTLenS weak lensing.

• low-` (large angle) anomalies in the WMAP and Plank CMB data, e.g.
a quadrupole-octuple alignment, a power hemispherical asymmetry and a
cold spot.

2photons reaching us from an early stage of the universe.
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• The small scales problems like,

– the core/cusp problem,
– the missing satellite problem,
– the angular momentum catastrophe,

c© Eric Fisk Wikipedia contributors [2020a]

Figure 1.1: A graphical view of the Cosmic Calendar, from the early Universe to
today mapped into a year,

The reason for the observed accelerating expansion of the Universe are among
the most important mysteries in cosmology, and probably in theoretical physics.
Although ΛCDM is a successful model which agrees well with the current cos-
mological observations, Λ (the cosmological constant) is not a well motivated
parameter by any fundamental theory and it suffers from severe problems in-
cluding fine-tuning of the initial conditions of the Universe and the coincidence
problem (for a review of the cosmological constant problems see e.g. [Martin,
2012a]). These theoretical issues of Λ and the aforementioned tensions in the
ΛCDM model that have emerged over the past years have encouraged cosmolo-
gists to propose an abundance of dark energy (in the form of an additional “dark”
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fluid with negative pressure or a scalar field) and modified gravity models (in the
form of a general relativity modification) to explain the late-time accelerating
expansion [Clifton et al., 2012a, Joyce et al., 2016a]. Due to the large number
of possible modified gravity and dark energy theories, the effective field theory
(EFT) approach and the parametrization frameworks have been developed and
have become most-liked over the past years.

In this thesis, toward understanding the nature of cosmic acceleration we
explore various effects coming from dark energy and modified gravity models
well into the nonlinear regime. We use the EFT framework in Chapters 2, 4, 8, 3
and 5 to study the so called k-essence theory in the EFT form. Furthermore, we
use the parametrization framework in Chapter 7 and 8 to explore the numerous
cosmological implications from the possible modifications of gravity.

In the following subsections we will review the standard materials and tech-
niques that will be useful for the rest of the thesis. In Sections 1.1 and 1.2 we
discuss the standard model of cosmology at the background level, i.e. considering
a spatially maximally symmetric Universe. In Section 1.3 we study the cosmo-
logical perturbation theory around a homogenous and isotropic background. The
Section 1.4 is devoted to the practical tools in order to statistically measure the
properties of inhomogeneities in the Universe. In Section 1.5 we will have a
brief look on the idea of dark energy and modified gravity models and in Section
1.6, in detail, we discuss the effective field theory approach. In Section 1.7 we
talk about the cosmological N -body simulations and why they are important to
cosmology.

1.1 The isotropic and homogenous Universe

The simplest model that one can consider for the Universe is obtained using the
homogeneity and isotropy assumptions of the matter3 distribution. According
to Einstein’s field equations the geometric property of the Universe is defined
based on the matter distribution. As a result the 3 dimensional space should
also be homogenous and isotropic, in other words any geometrical quantity on
the constant time manifolds, for example the 3D Ricci scalar and extrinsic cur-
vature should be independent of the position and direction. However, this of
course does not necessarily hold for the 4D geometrical objects like the 4D Ricci
scalar as they can be time dependent (for a detailed discussion see e.g. Amen-
dola & Tsujikawa [2010], Dodelson [2003], Durrer [2008], Padmanabhan [1996],
Padmanabhan [2000], Padmanabhan [2002, 2010], Weinberg [2008])

The assumption of 3D isotropy and homogeneity defines a set of equivalent
observers, the special observer who sees the Universe homogenous and isotropic.

3dark matter, dark energy and radiation.
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Other observers that have a relative velocity with respect to these observers or
using a peculiar coordinate to do measurements, they see an anisotropic and
inhomogeneous Universe. We, for example, are among these "bad" observers
that see the Universe anisotropic, because according to our relative velocity we
see the cosmic microwave background radiation anisotropic (we see a dipole in
the CMB which is detected by Plank, WMAP and COBE satellite).

Considering the coordinate (t, xα) for the special observers (who sees the
Universe isotropic and homogenous) we can write a general space-time interval
as following,

ds2 = gµνdx
µdxν = −g00dt

2 − 2g0idtdx
i + σijdx

idxj, (1.1)

where σij is the spatial part of the line element. We are going to simplify the
line element according to the symmetries we have. The isotropy of the Universe
implies that g0i = 0 since a non-zero value of these elements means that the mea-
sured quantity, and as a result, the geometrical objects depend on the direction
of measurement. Moreover if we use the proper time of clocks carried by these
observers we have g00 = 1. The line element then is written as,

ds2 = −dt2 + σijdx
idxj. (1.2)

At any time the three-metric σij is homogenous and isotropic. According to
the isotropic assumption which is equivalent to the spherical symmetry in the
three-metric we can write,

σijdx
idxj = a(t)2

[
λ2(r)dr2 + r2

(
dθ2 + sin2 θdφ2

)]
. (1.3)

Now we can use the three dimensional Ricci scalar and the symmetries to simplify
the previous expression. The 3D Ricci scalar, or the scalar curvature, reads

3R = σijRij =σij
[∂Γlij
∂xl
− gij ∂Γlil

∂xj
+ σijΓlijΓmlm − σijΓmil Γljm

]
= 3

2a2r3
d

dr

[
r2
(

1− 1
λ(r)2

)]
, (1.4)

where for i, j, l = 1, 2, 34 and the Christoffel symbols Γijk on the 3D hypersurfaces
are defined as,

Γijk = 1
2g

il

(
−∂glj
∂xk

+ ∂gkl
∂xj

+ ∂gjk
∂xl

)
. (1.5)

The homogeneity implies that 3R as a three dimensional geometrical object
should be independent of the position (here r), i. e. 3R should be a constant.

3
2a2r3

d

dr

[
r2
(

1− 1
λ(r)2

)]
= const. (1.6)

4According to our convention the Greek letters indices span the space-time coordinates
(0,...,3) and the latin letters indices span the space coordinates (1, . . . , 3)
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Integrating over r results in,

r2
(

1− 1
λ(r)2

)
= c1r

4 + c2, (1.7)

where c1 and c2 are constants. Avoiding a singularity at r = 0 implies c2 = 0,
and thus we have

λ2 = 1
(1− c1r2) . (1.8)

When c1 6= 0 we can rescale r to have c1 = +1 or c1 = −1 and the full metric
reads,

ds2 = −dt2 + a(t)2
[

dr2

1− kr2 + r2
(
dθ2 + sin2 θdφ2

)]
, (1.9)

where a(t) scales the spatial metric and is called the scale factor. The previ-
ous metric is called the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric
which is an exact solution of Einstein’s field equations and it describes a spa-
tially maximally symmetric (isotropic and homogeneous) universe. The spatial
hypersurfaces of the FLRW metric have positive, zero and negative curvature for
respectively k = +1, k = 0 and k = −1.

1.1.1 The geometrical properties of the FLRW metric
In order to have a geometrical intuition of the FLRW metric it is better to use
the following coordinate for different values of the spatial curvature k

χ =
∫ dr√

1− kr2
=



sin−1(r) k = 1

r k = 0

sinh−1(r) k = −1

, (1.10)

moreover, we change the time coordinate from the real time to the conformal
time defined by dτ = dt/a(t). Then the metric reads,

ds2 = a(τ)2
[
−dτ 2 + dχ2 + f 2(χ)

(
dθ2 + sin2 θdφ2

)]
, (1.11)

where f is

f(χ) =



sin(χ) k = 1

χ k = 0

sinh(χ) k = −1

. (1.12)
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1.1. The isotropic and homogenous Universe

The metric in (1.11) is especially useful since the curvature has gone into the
angular part of the metric, so we can more easily study the distances. Let us
now study the geometrical properties of this metric for different values of k.

For k = 0 the spatial part of the metric represents the flat Euclidian three-
dimensional space. For k = 1, the spatial part of the metric describes a three
sphere of radius a embedded in a flat four dimensional Euclidian space. We can
show such a 3-Sphere as,

x2
1 + x2

2 + x2
3 + x2

4 = a2, (1.13)

where xi are the cartesian coordinates of the four dimensional space. The metric
on the 3-Sphere embedded in the higher dimension is written as

dL2 = dx2
1 + dx2

2 + dx2
3 + dx2

4 . (1.14)

We can express the 3-Sphere by three angular coordinates (γ, θ, φ) instead, de-
fined by

x1 = a cos γ sin θ sinφ, x2 = a cos γ sin θ cosφ,

x3 = a cos γ cos θ, x4 = a sin γ.
(1.15)

Substituting the new coordinate in the metric (1.14) we obtain

dL2 = a2
[
dγ2 + sin2 γ

(
dθ2 + sin2 θdφ2

)]
, (1.16)

which is the same expression as (1.9) for k = 1. In fact the whole space of a
positive curvature model is covered by the angle ranges 0 ≤ γ ≤ π; 0 ≤ θ ≤
π; 0 ≤ φ < 2π in which results to a finite volume:

V =
∫ 2π

0
dφ
∫ π

0
dθ
∫ π

0
dγ
√
σ = a3

∫ 2π

0
dφ
∫ π

0
sin θdθ

∫ π

0
sin2 χdχ = 2π2a3,

(1.17)
where σ is the determinant of the 3D metric.

In the case of k = −1 we have a hyperboloid geometry embedded in a four-
dimensional Lorentzian space. The line element in Lorentzian space is

dL2 = dx2
1 + dx2

2 + dx2
3 − dx2

4 . (1.18)

On the other hand a three-dimensional hyperboloid embedded in a 4D Lorentzian
space is represented by the relation

x2
4 − x2

1 − x2
2 − x2

3 = a2. (1.19)
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Like the 3-Sphere we can represent this hyperboloid with 3 angles (γ, θ, φ) defined
by

x1 = a sinhχ sin θ sinφ, x2 = a sinhχ sin θ cosφ ,

x3 = a sinhχ cos θ, x4 = a coshχ ,
(1.20)

which by substituting to the line element we can see that this metric corresponds
to the FLRW metric with k = −1. An important point about this space is that γ
is not bounded anymore and the angles ranges are 0 ≤ φ ≤ 2π; 0 ≤ θ ≤ π; 0 ≤
γ ≤ ∞. This space, unlike the positive curvature space, has an infinite volume.

From now on during this thesis we alway assume k = 0 which is consistent
with the cosmological observations.

1.2 The cosmological dynamics

Using the line element written for the maximally symmetric Universe (1.9) we
obtain the cosmological dynamics by solving the Einstein equations,

Gµ
v = 8πGT µv , (1.21)

where T µv is the energy momentum of the components and Gµ
v is the Einstein

tensor and is defined by the Ricci scalar and the Ricci tensor:

Gµν ≡ Rµν −
1
2gµνR . (1.22)

The Christoffel symbols, the Ricci scalar and the the Ricci tensor are defined
similar to the their 3D versions in (1.5) and (1.4) while now the indices span the
space-time coordinates,

Γρµν ≡
gρλ

2 (∂µgνλ + ∂νgµλ − ∂λgµν) , (1.23)

Rµν ≡ ∂αΓαµν − ∂νΓαµα + ΓαβαΓβµν − ΓαβνΓβµα , (1.24)

R ≡ Rµ
µ = gµνRµν . (1.25)

The left hand side of the Einstein equation (1.22) specifies the geometric prop-
erties of the space-time and the right hand side characterizes the energies and
momenta of the particles. For the FLRW metric with zero curvature k = 0 the

8



1.2. The cosmological dynamics

Christoffel symbols Γρµν using the Eq. (1.23) are:

Γ0
00 = 0, Γ0

0i = Γ0
i0 = 0,

Γ0
ij = aȧ δij, Γi0j = Γij0 = ȧ

a
δij,

Γ1
11 = 0, Γ1

22 = −r, Γ1
33 = −r sin2 θ,

Γ2
33 = − sin θ cos θ, Γ2

12 = Γ2
21 = Γ3

31 = Γ3
13 = 1

r
,

Γ3
23 = Γ3

32 = cot θ,

(1.26)

where ȧ ≡ da
at

and t is the cosmic time. Note that gαν satisfies the relation
gµρgρν = δµν , where δνµ is Kronecker’s delta

(
δνµ = 1 for µ = ν and δνµ = 0 for µ 6= ν

)
.

Unlike the Kronecker’s delta δµν is not a tensor 5, however it shares similar prop-
erties i. e. (δµν = 1 for µ = ν and δµν = 0 for µ 6= ν) which is useful to write the
results in a compact way. The Ricci tensor and the Ricci scalar are computed
by equations (1.24) and (1.25)

R00 = −3
(
H2 + Ḣ

)
, R0i = Ri0 = 0, Rij = a2

(
3H2 + Ḣ

)
δij , (1.27)

R = 6
(
2H2 + Ḣ

)
, (1.28)

where H ≡ ȧ/a is the Hubble parameter and represents the expansion rate of
the Universe. The Einstein tensor components, using the equation (1.22) reads

G0
0 = −3H2, G0

i = Gi
0 = 0, Gi

j = −
(
3H2 + 2Ḣ

)
δij , (1.29)

where we have used Gµ
ν = gµαGαν .

1.2.1 The stress energy tensor
The stress energy tensor contains all the information about the energy content
of the Universe. This tensor is symmetric as a result of the Einstein equation
and the symmetry of the Einstein tensor Gµν . The assumption of isotropy and
homogeneity implies that T µ0 must be zero and T ji must be diagonal with equal
values T 1

1 = T 2
2 = T 3

3 . Thus, in the FLRW space-time the energy-momentum
tensor can only take the perfect fluid form:

T µv = (ρ+ P )uµuν + Pδµv , (1.30)

where uµ = (−1, 0, 0, 0) is the four velocity in the comoving coordinates, ρ and
P correspond respectively to the density and the pressure of the perfect fluid.

5Under coordinate transformation this object does not transform correctly.
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1.2.2 Friedmann Equations
From the (0, 0) and (i, i) components of the Einstein equations Eq. (1.21) we
obtain,

H2 = 8πG
3

∑
X

ρX , (1.31)

3H2 + 2Ḣ = −8πG
∑
X

PX , (1.32)

where the sums are over all cosmological species. Combining the two equations
we can write an equation for ä,

ä

a
= −4πG

3 (ρ+ 3P ) , (1.33)

which is equivalent to the continuity equation if we multiply by a2 and take a
time derivative,

ρ̇+ 3H(ρ+ P ) = 0 . (1.34)
It is worth mentioning that the equivalence of the two equations comes from the
fact that the Einstein tensor satisfies the Bianchi identities, i.e., the covariant
derivative of the Einstein tensor vanishes, ∇µG

µ
ν = 0, and from the Einstein

equations the same symmetry should be hold in the stress-energy tensor i.e.,
∇µT

µ
ν = 0. The conservation of the stress-energy tensor gives the same equation

as Eq. (1.34) in the FLRW background. That is why the equation (1.34) is called
the conservation or continuity equation.

We can rewrite the first Friedman equation Eq. (1.31) in the following form,

Ωr + Ωm + ΩDE = 1 , (1.35)

where ΩX ≡ 8πGρX
3H2 . The density parameters respectively correspond to the

relativistic particles, non-relativistic matter and dark energy. Once we have the
equation of the state P = P (ρ) we can solve the aforementioned equations to
obtain a(t), ρ(t) and P (t).

For a constant linear equation of state P = wρ the continuity equation
Eq. (1.34) gives , ρ ∝ a−3(1+w). As a result for non-relativistic matter (w ' 0)
ρm ∝ a−3, for relativistic particles (w = 1/3) is ρm ∝ a−4 and for the cosmological
constant (w = −1) ρ is a constant. The negative pressure from the cosmological
results in the late time cosmic acceleration which has been approved by many
cosmological observations. However, the cosmic acceleration could be produced
with values of w other than −1 and yet be consistent with the cosmological data.
Using the density relation for each component and Eq. (1.35) we can rewrite the
equation in the following form,

H2 = H2
0

(
Ω0

Λ + Ω0
ka
−2 + Ω0

ma
−3 + Ω0

ra
−4
)
, (1.36)

where H0 is the current value of the Hubble constant.
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1.2. The cosmological dynamics

1.2.3 The Hubble Law and cosmic redshift
The light emitted by a distant observer is stretched while traveling due to the
expansion of the Universe. This effect is similar to the Doppler shift in the
frequency of a wave in classical physics but this happens because the emitter
is receding from us and according to General Relativity the cosmic expansion
dilutes the photons’ energy. In the 1920s Slipher and Hubble realised that the
measured wavelength λo of absorption lines of distant astronomical objects is
larger than the wavelength λe measured in the laboratories. We define the red-
shift as follows

z ≡ λo
λe
− 1 = ao

ae
− 1 , (1.37)

where a0 and ae are respectively the scale factors at the observation time and at
the emission time.

For the small values of recessional velocity v compared to the speed of light,
we have λ0 ' (1 + v/c)λe from the Doppler effect which results in,

z ' v/c . (1.38)

In an expansing Universe the physical r and comoving χ distances of the objects
are related by the scale factor at each time,

~r = a(t)~χ . (1.39)

Taking the time derivative of the previous relation gives,

~̇r = H~r + a~̇χ , (1.40)

where the first term appears due to the cosmic expansion and the second term is
peculiar velocity vp and is the movement of an object with respect to the Hubble
flow. It is obvious that in a maximally symmetric Universe the peculiar velocities
should vanish because these velocities are different at different positions which
is in contradiction with the homogeneity and isotropy of the Universe.

Slipher in 1912 for the first time measured the spectrum of a galaxy, M31,
which for many years was the highest measured velocity for any object which was
about −300kms−1. He continued measuring velocities of “nebulas” for several
years, his “catalogue” appearing in Eddington’s book “The Mathematical Theory
of Relativity”, published in 1924.

However, only after Robertson’s work, Slipher’s measurement was interpreted
as being due to the cosmic expansion. The main problem at the time was ig-
norance of the distances to the galaxies and also Robertson’s work was largely
diregarded.

Hubble, based on previous works, reported an extragalactic distance for 18
galaxies and was able to plot the relationship between distance and recession
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velocity. Most of Hubble’s data for velocity came from Slipher’s measurements.
Hubble, in fact, wrongly interpreted the velocity-distance relationship to the de-
Sitter effect in a static de Sitter Universe 6, not to cosmic expansion - Robertson
had already done that. De Sitter in 1933 wrote the linear expansion law taking
into account of redshift-distance relation in the de Sitter model. But then the
Friedmann-Lemaître model was acknowledged by physicists. That acceptance
was mainly due to the later paper of Eddington in 1930 in which he “rediscovers”
the papers of Friedmann and Lemaître. This of course was after Robertson
had published his paper in 1929 claiming that the redshift was due to cosmic
expansion, and also after Hubble’s redshift-distance relationship (see Jones [1997]
for the history of cosmology).

1.2.4 Comoving distance
The lights we observe from distant objects are traveling on a light cone and
satisfy the geodesic equation

ds2 = −c2dt2 + a2(t)dχ2 = 0 . (1.41)

Considering the case in which light travels from t = te at distance χ = χe
(redshift z) and reaches us at t = to at χ = 0 (z = 0), and using the line element,
gives us a distance which is defined as,

dc ≡ χ1 =
∫ χ1

0
dχ = −

∫ t1

t0

c

a(t)dt , (1.42)

where dc is called the comoving distance.

In this section we have studied a homogenous and isotropic Universe and we
derived the FLRW metric and the Friedmann equations. The homogeneity and
isotropy are a good approximation of the Universe at large scales. However, we
know that these symmetries are not respected at smaller scales anymore and in
the next section we will perturb the FLRW metric and we study the evolution
of the perturbations in such an Universe.

1.3 The cosmological perturbation theory
The Friedmann model that has been discussed so far describes a maximally
symmetric Universe. However we know that the Universe is not homogenous

6de Sitter effect: lights emitted from particles at rest in the de Sitter static Universe are
redshifted. The situation is, in fact, far more complicated than was thought and was not
attributed properly until the mid 1930 ’s. One difficulty is that particles placed at a point in
the de Sitter Universe start to also accelerate away from the reference point. This brings an
additional effect to the redshift.
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1.3. The cosmological perturbation theory

and isotropic at all scales and the presence of the structures including ourselves
break the symmetry at small scales. In fact, it is believed that the structures we
see in the Universe grew out of small fluctuations which originated from the early
universe. In order to study the formation of such structures in the Universe, we
need to understand how the small fluctuations around the maximally symmetric
Universe evolve and eventually result in the non-linear structures (see Amen-
dola & Tsujikawa [2010], Dodelson [2003], Durrer [2008], Padmanabhan [1996],
Padmanabhan [2000], Padmanabhan [2002, 2010], Weinberg [2008] for a detailed
discussion about the subject).

A metric that deviates from a maximally symmetric space can be written as
the sum of an FLRW part which respects all the symmetries plus a perturbed
metric;

gµν = g(0)
µν + δgµν , (1.43)

where the perturbed part is assumed to be small compared to the background
metric.

In General Relativity the equations should be invariant under a general co-
ordinate transformation. This implies that the splitting between an unpertubed
metric and a perturbed one is not unique. We can of course choose a special
coordinate frame and write down the equations, but it would be very confusing
if we change the background metric by changing the coordinates. So we intend
to keep the FLRW metric as the background whenever we make a general trans-
formation. This procedure suggests a class of infinitesimal transformations that
does not change g(0)

µv , while the perturbed metric δgµν is subject to change. This
class of coordinate transformations are called gauge transformations.

To be specific we consider a general coordinate transformation from the co-
ordinate system xµ to another x̂µ as

xµ −→ x̂µ = xµ + εµ(x) . (1.44)

The metric tensor as a result is transformed as,

ĝµν(x̂) = ∂xλ

∂x̂µ
∂xρ

∂x̂ν
gρλ(x) . (1.45)

As discussed previously, this transformation is a pure coordinate transformation
which in general changes the background and perturbation quantities. As ex-
plained above it is more convenient to work with the “gauge transformations”
which only transform the perturbations. In fact after the coordinate transforma-
tion we relabel the coordinates by dropping the hat on the coordinate argument,
which means that we are dealing with two different points on the manifold, since
x in two coordinates are assigned with two different but near physical points. So
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the gauge transformation on the metric tensor results in,

∆hµν(x) ≡ ĝµν(x)− gµν(x)
=ĝµν (x̂κ − εκ)− gµν(x) = ĝµν(x̂)− ∂ρgµν(x)ερ − gµν(x)

= ∂xλ

∂ (xµ + εµ)
∂xρ

∂ (xν + εµ)gρλ(x)− gµν(x)− ∂ρgµν(x)ερ − gµν(x)

=− ḡλµ(x)∂ε
λ(x)
∂xν

− ḡλν(x)∂ε
λ(x)
∂xµ

− ∂ḡµν(x)
∂xλ

ελ(x),

(1.46)

where we have denoted the gauge transformation with ∆. It is obvious that the
background metric under the gauge transformation remains unchanged as we
demanded, but it may contribute in first order perturbations.

∆ḡµν = ˆ̄gµν(t)− ḡµν(t) = 0 +O(ε) . (1.47)

There are often two approaches to deal with the gauge problem in cosmology.
The first is to fix a specific gauge, i.e., to choose conditions on the space-time
coordinates which completely remove the gauge freedom, the second is to work
with a basis of gauge invariant variables, but this approach usually leads to
unintuitive variables and complicated equations Brandenberger [2004]. Using the
first approach (fixing a specific gauge), we can choose a specific coordinate which
is called the Newtonian gauge and the observers in this gauge detect a velocity
field and measure a gravitational potential. This gauge is particularly interesting
as the metric tensor in this gauge is diagonal which simplifies the calculations and
leads to straightforward geodesic equations. Moreover, the metric perturbation
in this gauge plays the role of the gravitational potential in the Newtonian limit
and as a result has a simple physical explanation. Plus, the two scalar potentials
in this gauge are identical to the gauge-invariant Bardeen potentials ΦA and
ΦH (see Ma & Bertschinger [1995a] for a discussion about the Newtonian and
Synchronous gauges).

We start with the most general perturbed metric about the background
FLRW written in the form gµν = g(0)

µν + δgµν as

δgµν = a(τ)2

 −2Ψ −Bi

−Bi (−2Φδij + hij)

 , (1.48)

where Ψ and Φ are respectively the temporal and spatial scalar perturbations, Bi

is the vector perturbation and hij is the tensor perturbation. Using the scalar-
vector-tensor (SVT) decomposition we can recover the 4 scalars, 4 vectors, and
two tensors degrees of freedom in the metric as we can decompose the vector
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perturbation part Bi into the curl-free (longitudinal) and divergence-free (trans-
verse) components,

Bi = B⊥i +B
‖
i where ~∇ ·B⊥ = ~∇×B‖ = 0. (1.49)

Also we can decompose the tensor perturbations similarly,

hij = h
‖
ij + h⊥ij + h

(S)
ij . (1.50)

Here,
h
‖
ij =

(
∇i∇j −

1
2δij∇

2
)

Φ(h) , (1.51)

where Φh is a scalar and we have assumed that hij is traceless a tensor, and

h⊥ij = ∇ih
⊥
j +∇jh

⊥
i (1.52)

where h⊥i is a divergenceless vector. The two physical degrees of freedom left in
the tensor modes h(S)

ij correspond to the two polarisations of gravitational waves.
After the SVT decomposition we can rewrite the “scalar” perturbations of the
metric in the following form,

δgµν = a2(τ)

 −2Ψ −B,i

−B,i −2Φδij + Φ(h)
,ij

 . (1.53)

Fixing the gauge to the Newtonian gauge will remove two scalar degrees of free-
dom as we have

B = Φ(h) = 0. (1.54)
At the end the line element in the Newtonian gauge is written as,

ds2 = a(τ)2
[
−(1 + 2Ψ)dτ 2 + (1− 2Φ)δijdxidxj

]
. (1.55)

It is important to note that in first order perturbation theory the equations for
the scalars, vectors and tensors decouple and one can study each independently.
Moreover, in this section we neglect the vector and tensor perturbations since
the tensorial modes are coupled to matter only for anisotropic perturbations and
vectorial modes (if present initially) decay in time as 1/a (see for detailed dis-
cussion Amendola & Tsujikawa [2010], Dodelson [2003], Durrer [2008], Weinberg
[2008] and also Chapter 4 where we discuss the generation of vector and tensor
perturbations due to the non-linear structure formation).

To obtain the first order Einstein field equations we decompose the Einstein
tensor and the stress energy tensor into the background and perturbed part,
similar to what we did to the metric;

Gµ
ν = Gµ(0)

ν + δGµ
ν , T µν = T µ(0)

ν + δT µν , (1.56)
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which help us to solve the equations perturbatively, i.e.,

Gµ(0)
ν = T µ(0)

ν , (1.57)

δGµ
ν = 8πGδT µν . (1.58)

Eq. (1.57) gives the Friedmann equations we obtained in the previous section,
while Eq. (1.58) results in the equations for the evolution of the metric perturba-
tions. To compute δGµ

ν we need to calculate the first order geometric quantities,
i.e., δΓµνλ, δRµν and δR.

The perturbed Christoffel symbols δΓµvλ read,

δΓµνλ = 1
2δg

µα (gαν,λ + gαλ,α − gνλ,α) + 1
2g

µα (δgαν,λ + δgαλ,α − δgνλ,α) . (1.59)

Next, we have to calculate perturbations in the Ricci tensor and in the Ricci
scalar;

δRµν = δΓαµν,α − δΓαµα,ν + δΓαµνΓ
β
αβ + ΓαµνδΓ

β
αβ − δΓαµβΓβαν − ΓαµβΓβαν

δR = δgµαRαµ + gµνδRαµ,
(1.60)

and finally the perturbed Einstein tensors are obtained by,

δGµν = δRµν −
1
2δgµνR−

1
2gµνδR , (1.61)

δGµ
ν = δgµνGαν + gµαGαν . (1.62)

For the metric written in the Newtonian gauge the perturbed Einstein tensors
read,

δG0
0 =2a−2

[
3H (HΨ + Φ′)−∇2Φ

]
,

δG0
i =2a−2 (−Φ′ −HΨ)|i ,

δGi
j =2a−2

[(
H2 + 2H′

)
Ψ +HΨ′ + Φ′′ + 2HΦ′

]
δij ,

+ a−2
[
∇2(Ψ− Φ)δij − (Ψ− Φ)i|j

]
,

(1.63)

where the subscript “|” shows a 3D covariant derivative and ∇2f ≡ f ;λ
;λ .

To write down the Einstein’s equations we need to also specify the matter
source and determine the perturbed energy-momentum tensor δT µv , which also
let us to obtain the first order continuity equation δT µν;µ = 0.

To determine the perturbed stress energy tensor, we need to calculate the
perturbed four-velocity uµ ≡ dxµ

ds . Considering only first order perturbations, we
have

uµ =
[

1
a
(1−Ψ), vi

a

]
,

uµ = gµνu
ν = [−a(1 + Ψ), avi] , .

uµu
µ = −1 ,
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where vi = dxi
dτ = adxi

dt is the peculiar velocity of matter with respect to the
expansion. For a single fluid, the stress-energy tensor in general is given by

Tµν = (ρ+ P )uµuν + Pgµν + [qµuν + qµuµ + πµν ] , (1.64)

where ρ, P, uµ, qµ, πµν represents the energy density, pressure, four-velocity vec-
tor, heat flux vector and viscous shear tensor respectively. The heat flux vector
and viscous shear tensor are important for fluids with sizable internal energy.
However, for perfect fluids we have qµ = πµν = 0.

The perturbed stress-energy tensor using Eq. (1.64) for a perfect fluid is
written as

δT µv = ρ
[
δ
(
1 + c2

s

)
uνu

µ + (1 + w) (δuνuµ + uνδu
µ) + c2

sδ δ
µ
v

]
, (1.65)

where w = P/ρ is the equation of state and the speed of sound cs is defined as

c2
s ≡

δP

δρ
= dP

dρ
= Ṗ

ρ̇
, (1.66)

and also we have used the following definitions for the divergence of velocity θ
and the density contrast δρ/ρ ≡ (ρ(x)− ρ̄)/ρ̄,

δ ≡ δρ

ρ
, θ ≡ ∇iv

i . (1.67)

It is worth mentioning that in general the pressure P can depend on internal
properties of the system e.g. the entropy s. Then the speed of sound is not
simply

√
Ṗ /ρ̇ and in general is,

c2
s = δP (ρ, s)

δρ
= ∂P

∂ρ
+ ∂P

∂s

∂s

∂ρ
= c2

s(a) + c2
s(na) , (1.68)

where cs(a) ≡
√
Ṗ /ρ̇ is called the adiabatic sound speed and cs(na) is the non-

adiabatic sound speed.
The stress-energy tensor components for a perfect fluid which is assumed to

remain perfect under perturbation,

δT 0
0 = −δρ ,

δT 0
i = −δT i0 = (1 + w)ρvi ,

δT 1
1 = δT 2

2 = δT 3
3 = c2

sδρ .

(1.69)
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As a result, the perturbed Einstein equations using the δGµ
v = 8πGδT µv are

written as,

3H (HΨ + Φ′)−∇2Φ = −4πGa2δρ ,

∇2 (−Φ′ −HΨ) = 4πGa2(1 + w)ρθ ,

Ψ = Φ ,

−Φ′′ − 2HΦ′ −HΨ′ − (H2 + 2H′) Ψ = −4πGa2c2
sδρ .

(1.70)

Moreover, according to the definition of covariant derivative of a tensor,

T µν;µ = T µν,µ − ΓανβT βα + ΓαβαT βνν . (1.71)

The first order equation for the divergence of the stress-energy tensor for the 0th
component is written as,

δT µ0,µ − δΓα0βT βα − Γα0βδT βα + δΓα0αT 0
0 + ΓαβαδT

β
0 = 0 , (1.72)

which, using the expressions for the first order Christoffel symbols in Eq. (1.59),
results in the first order continuity equation,

(δρ)′ + 3H(δρ+ δP ) = −(ρ+ P ) (θ − 3Φ′) , (1.73)

in which we can write it in terms of the equation of state w, the speed of sound
cs and the density contrast as ,

δ′ + 3H
(
c2
s − w

)
δ = −(1 + w) (θ − 3Φ′) . (1.74)

The Euler equation is obtained by δT µν;µ = 0 for ν = i and reads as,

δV ′ + 3HδV = −aδP − (ρ+ P )aΨ , (1.75)

where δV ≡ a(ρ+P )v and v is the velocity potential defined by vi = ∇iθ. Taking
the divergence of the previous expression results in the familiar form of the Euler
equation,

θ′ +
[
H(1− 3w) + w′

1 + w

]
θ = −∇2

(
c2
s

1 + w
δ + Ψ

)
. (1.76)

The equations we have written up to now are linear partial differential equa-
tions. It is most convenient to solve these equations in the Fourier space. The
reason is that in the Fourier space the resulting Fourier amplitudes lead to an
ordinary differential equations which are much easier to solve than the partial
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differential equation in the real space for the same dynamics. It is important
to note that the maximally symmetric background makes the Fourier transform
useful as the background variables are only time dependent and the only ~x depen-
dence is in the perturbation variables themselves. We use the following notation
for Fourier transform,

fk = A
∫

d3xf(x)e−ik·x ,

f(x) = B
∫

d3kfke
ik·x ,

(1.77)

where we choose the convention A = 1, B = 1/(2π)3 which makes the basis func-
tion eikx orthonormal rather than just orthogonal. In practice we can substitute
each quantity and its spatial derivatives using the following expressions,

f(x, η)→ fk(η) ,

∇f(x, η)→ ikfk(η) ,

∇2f(x, η)→ −k2fk(η) .

(1.78)

Dropping the subscript “k” from the quantities in the Fourier space, we can write
the full evolution equations for each Fourier mode k as following,

− k2Φ + 3H (−Φ′ −HΨ) = 4πGa2ρδ , (1.79)

k2 (−Φ′ −HΨ) = −4πGa2(1 + w)ρθ , (1.80)

Ψ = Φ , (1.81)

− Φ′′ − 2HΦ′ −HΨ′ −
(
H2 + 2H′

)
Ψ = −4πGa2c2

sδρ , (1.82)

δ′ + 3H
(
c2
s − w

)
δ = −(1 + w) (θ − 3Φ′) , (1.83)

θ′ +
[
H(1− 3w) + w′

1 + w

]
θ = k2

(
c2
s

1 + w
δ + Ψ

)
, (1.84)

where θ = ik · v. Note that the six equations above are not independent.
By combining the first two equations we obtain the relativistic Poisson equa-

tion,
− k2Φ = 4πGa2ρ

[
δ + 3H(w + 1)θ/k2

]
= 4πGa2ρ ∆ , (1.85)

where we define the comoving density contrast (total-matter variable):

∆ ≡ δ + 3H(w + 1)θ/k2 . (1.86)

Note that in our conventions an overdensity ∆ > 0 generates negative gravita-
tional potentials, i.e., Φ < 0 and Ψ < 0.
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1.3.1 Short wave corrections

In the previous subsection we discussed the equations for the evolution of the
first order perturbations. The non-linear structures we observe in the Universe
today are the result of the growth of initial small perturbations. This suggests us
the perturbative expansion we have considered will be broken at some time and
some scale. However the cosmological observations propose that while there are
highly dense regions at small scales but there are no strong gravitational fields
objects at the scales of interest. Using the observational evidence we can pick
the weak field approximation to study the structure formation in the Universe.

The weak-field limit requires that the metric perturbations about the back-
ground FLRW metric and consequently the gravitational potentials remain small
but the matter perturbations can become large and should not be treated per-
turbatively. This scheme seems relevant for the cosmological studies since most
of the objects of interest are within the weak field regime. In Fig. 1.2 we show
the gravitational potentials and the densities of some structures in the Universe.
From the figure and the observational fact that by increasing the size of struc-
tures their densities and gravitational potentials decrease, one can see that most
of the structures important for cosmological studies are in the weak field regime.
To explain the objects in the strong field regime (neutron stars, black holes)
we cannot use the weak field approximation anymore and we need to pick the
appropriate metric according to the symmetries.

To this end, we assume that the potentials remain small, but their variation of
fluctuations (like the curvature of the potential wells) at small scales can become
large which leads to large density fluctuations, so δρ/ρ ∼ (k/H)2Φ can become
very large in principle. To do the expansion consistently, considering a small
parameter ε, we assume Φ,Ψ, Bi and hij are at most of order O(ε). Also for non-
relativistic components, time derivatives are usually of order Hubble thus do not
change the order of a term in the expansion. But each spatial derivative decreases
the order of a term by one half, for instance ∂iΦ ∼ O(ε1/2) and ∇2Φ ∼ O(ε0)
(see Adamek et al. [2016a], Adamek et al. [2016b], Fidler et al. [2017], Hassani
et al. [2019c] for detailed discussion about the weak field approximation). In
Table 1.1 we show the order of quantities in the weak field framework. To
summarize, in the equations we keep the terms up to linear order in the metric
perturbations, but from the quadratic terms we only keep the ones that have
exactly two or more spatial derivatives. For example at the first order in the
weak field framework we keep Ψ∇2Ψ or δijΦ,iΦ,j while we neglect the terms
like ΦΦ′, δijBi∆Bj. The higher order terms in the standard perturbation theory
contributing to the equations in the weak field framework are called “short wave
corrections” as they become only relevant at small scales.

In the following part, we are going to include the short wave corrections into
the Einstein field equations. To do so, we need to consider higher order terms
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1.3. The cosmological perturbation theory

Figure 1.2: A Picture that shows the densities and gravitational potentials of
some structures in the weak field and strong field regime, including the Sun,
the Milky Way, a neutron star and a black hole. We have not depicted larger
structures, however the structures with larger sizes (galaxies, clusters, filaments
and super-clusters) have less density and less gravitational potential compared
to the Sun and Milky way, so they also belong to the weak field regime. The
numbers for the neutron star and black hole are computed for a typical kind.

in the perturbative expansion and keep track of the number of fields and spatial
derivatives in order to use the weak field framework. To be consistent, since
for the perturbations of order higher than one, the scalar, vector and tensor
modes couple to each other, we need to write the metric in the full form, i.e., ,
considering the vector and tensor modes in addition to the scalar modes.

We thus start from the general metric in Eq. (1.48),

ds2 = gµνdxµdxν = a2(τ)
[
−(1 + 2Ψ)dτ 2 − 2Bidxidτ + (1− 2Φ)δijdxidxj + hijdxidxj

]
.

(1.87)
We use the Poisson gauge, which implies δijBi,j = δijhij = δjkhij,k = 0 to remove
the extra degrees of freedom. Solving the Einstein’s equations in the weak field
limit Gµ

ν = 8πGT µν results in the following time-time component (for details see
Adamek et al. [2016a, 2017b], Hassani et al. [2020b],

(1 + 4Φ)∆Φ− 3HΦ′ + 3H2(χ− Φ) + 3
2δ

ijΦ,iΦ,j = −4πGa2
(
T 0

0 − T̄ 0
0

)
, (1.88)

where χ .= Φ−Ψ. This equation in the first order limit and neglecting the rela-
tivistic corrections reduce to the Newtonian Poisson equation ∆ψN = 4πGa2δρ
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variable order

Φ,Ψ,Φ′,Ψ′,Φ′′,Ψ′′ ε

Φ,i,Ψ,i,Φ′,i,Ψ′,i ε1/2

Φ,ij,Ψ,ij 1

χ, χ′, χ′′, χ,i, χ
′
,i, χ,ij ε

Bi, B
′
i, B

′′
i , Bi,jB

′
i,jBi,jk ε

hij, h
′
ij, h

′′
ij, hij,k, h

′
ij,k, hij,kl ε

δT 0
0 /T̄

0
0 1

T 0
i /T̄

0
0 ε1/2

Πij/T̄
0
0 ε

vi, qi 1

Table 1.1: A table showing the order of perturbative quantities we consider to
obtain the equations in the weak field regime. This table is similar to the table
in Adamek et al. [2016a] which is the framework used in the gevolution N -body
code.

and at the first order is similar to the Eq. (1.85). The other 5 degrees of free-
dom i.e. χ (one scalar degree of freedom), Bi (two vector degree of freedom)
and hij (two tensor degree of freedom) are determined from the traceless part of
space-space Einstein’s equations which are fully relativistic without Newtonian
analogue. In the weak-field expansion they read;(

δikδ
j
l −

1
3δ

ijδkl

) [1
2h
′′
ij +Hh′ij −

1
2∆hij +B′(i,j) + 2HB(i,j) + χ,ij

− 2χΦ,ij + 2Φ,iΦ,j + 4ΦΦ,ij

]
= 8πGa2

(
δikT

i
l −

1
3δklT

i
i

)
.= 8πGa2Πkl .

(1.89)

The other four Einstein’s equations obtained from the time-space equations and
the spatial trace, are not independent and can be obtained from the previous
equations, however sometime it is useful some of those equations to do consis-
tency checks of the solutions.
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1.4 Measures of inhomogeneity
In the previous section we studied the cosmological perturbations around the
homogenous and isotropic FLRW background and later we discussed the idea of
weak field framework which led us to take the so called “short wave” corrections
into account. Our goal in this section is to introduce the statistical tools to
quantify the inhomogeneities in the Universe.

Due to two main reasons the Universe we observe is modeled as a stochastic
realization of an ensemble of many possibilities. First, we do not have access to
the primordial fluctuations in a deterministic way due to the quantum nature
of those fluctuations, i.e., having the definite initial conditions for the evolution
equations. Second, we cannot trace the objects in the Universe by observation
as we can only observe through our past light cone in which we observe different
objects at different times of their evolution, thus testing the evolution of structure
must be done statistically.

We consider some physical stochastic quantity f(x) like the density contrast
or gravitational potential which charactrises the inhomogeneities in the universe.
However, in the real space one can define the two-point correlation function ξ(r)
of the field f(x) as

ξ(r) = 〈f(x)f(x + r)〉ensemble , (1.90)
where the averaging, in principle, should be done at two specific points x and y
over different ensembles of the universes. But as a single observer we only have
access to one of the samples (our Universe). Under the following assumptions
one can prove the ergodic theorem, which implies that the averages over a large
domain within a single realization can be treated as averages over the probability
ensemble.

The assumptions needed to prove the ergodic theorems are (see Watts &
Coles [2003], Weinberg [2008] for in-depth discussion);
• First we assume that the distribution function of f(x) is homogeneous,

meaning that the average of any product of f(x) with different arguments
only depends on the differences of the arguments.

〈f(x1)f(x2) · · · f(xn)〉 = 〈f(x1 + r))f(x2 + r)) · · · f(xn + r)〉 . (1.91)

• Second, we assume that the fields at distant space-time positions are un-
correlated, i.e., for |r| → ∞,

〈f(x1 + r))f(x21 + r)) · · · f(y1 + r))f(y2 + r)) · · · 〉 ,

→ 〈f(x1 + r))f(x2 + r) · · · 〉 〈f(y1 + r)f(y2 + r) · · · 〉 ,

= 〈f(x1)f(x2) · · · 〉 〈f(y1)f(y2) · · · 〉 .

(1.92)
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By using the ergodic theorem we can write the Eq. (1.90) as

ξ = 〈f(x)f(x + r)〉sky , (1.93)

where the subscript “sky” means that we take the average over different points
separated with the same distance on the sky instead of over different ensembles
of universes. Writing the field f in the Fourier space, results in

ξ(r) = 〈f(x)f(x + r)〉 =
∫ d3k

(2π)3
d3k′

(2π)3fkf
∗
k′e

ik·r
〈
e(i(k−k′)·x)

〉
. (1.94)

In practice we can evaluate 〈· · · 〉 by averaging over a cubical box of size 2L. In
any one dimension, so we have,〈

ei(kl−k′l)x
〉
≡
∫ L

−L

dx

2Le
i(kl−k′l)x = sin (kl − k′l)L

(kl − k′l)L

For large L, we can use the following limit

lim
L→∞

{
sin kL
kL

}
= 2π

(2L)δD(k) ,

which results in,

ξ(r) = (2π)3

V

∫ d3k
(2π)3

dk′

(2π)3fkf
∗
k′e

ik·rδDirac (k− k′)

=
∫ d3k

(2π)3
|fk|2

V
eik·r ≡

∫ d3k
(2π)3P (k)eik·r ,

where the volume V = (2L)3 and P (k) = |fk|2 V −1 is the power spectrum of
f(x). Similarly we can also calculate the two-point correlation in Fourier space,

〈δ (k) δ (k′)〉 =
∫ d3x

(2π)3
d3r

(2π)3 ξ(r)e
−i(k+k′)·x−ik′·r

= δD (k + k′)
∫ d3r

(2π)3 ξ(r) exp(ik · r)

≡ (2π)3δD (k + k′)P (k)

(1.95)

As we saw in the previous section at linear order the Fourier modes decouple
and they evolve independently. So the easiest way to quantify the variation of a
field f(x) is to use the amplitude of the field in the Fourier space |fk|2. Moreover,
in the linear regime (at large scales) the cosmological fields e.g., the density field
are Gaussian. These features make the power spectrum a very powerful tool
for the cosmological studies as it is sufficient to entirely describe the fields (see
Amendola & Tsujikawa [2010], Dodelson [2003], Durrer [2008], Padmanabhan
[1996] for more details)
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1.5 Dark energy and modified gravity
In the late 1998’s two independent groups of astronomers were searching for
supernovae at high redshifts with the hope to measure the deceleration rate of
the Universe. Surprisingly, the independent observations were suggesting that
the expansion of the Universe was accelerating. Cosmologists and astronomers
started to build models to describe the observations: knowing that,
• The component responsible for the cosmic acceleration accounts for about

70% of the cosmic energy density.

• It acts opposite to gravity and is in fact gravitationally repulsive.

• It does not seem to cluster similar to the baryons and dark matter in the
non-linear structures like galaxies, clusters and etc.

Due to its mysterious nature cosmologists called it “dark energy”, a puzzling
component with all aforementioned properties and responsible for the late time
accelerating expansion of the Universe (see Caldwell [2004] for a historical dis-
cussion about dark energy and modified gravity). Since then thousands of papers
have been written on dark energy and accelerating expansion to solve the main
puzzle i.e., what is the nature of dark energy?

In fact the main difficulty is that the existence of a gravitationally repulsive
component has some unexpected outcomes from the fundamental physics view.
The most conservative fundamental physics-friendly suggestions are that there
is a uniform fluid of zero point energy (cosmological constant) in the Universe,
or some scientists proposed to consider a new fundamental particle with a mass
about 10−39 times smaller than the electron mass. As a completely different
point of view, some researchers have also suggested to change the Einstein’s
general theory of relativity such that the cosmological evolution changes at large
distances. But none of the proposed models have been adequately verified by
both theory (fundamentally) and observations yet. However, the cosmological
constant Λ as a phenomenological parameter which corresponds to the simplest
scenario for dark energy, although not being theoretically well motivated but has
been a successful theory by now according to the cosmological observations and
thus is favored by some cosmologists.

In the following list we summarize the most important events related to the
dark energy in a chronological way including the year 2011 when the Nobel prize
was awarded for the discovery of cosmic acceleration (for a detailed list see Li
et al. [2011], Straumann [2002], Weinberg [1989])

1917 : The idea of the cosmological constant was suggested by Einstein,
when he added a constant term in the field equations. He considered the cos-
mological constant due to two main reasons: first to obtain a static universe;
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second, to isolated mass to prevent having a structure on space at infinity in a
closed universe.

1920s: Pauli found out that for a radiation field the vacuum energy is too
large to gravitate. In fact the vacuum energy density of a radiation field is shown
to be proportional to the cutoff of the theory to the fourth power. Pauli, in an
unpublished work, showed that using the electron radius as an ultraviolet cutoff,
the universe curvature will be so large and the Universe “could not even reach
to the moon”.

1932 : Einstein regretted adding the cosmological constant his field equations
because of the discovery of the cosmic expansion. Although in 1923 he already
wrote to Weyl : “If there is no quasi-static world, then away with the cosmo-
logical term!”, apparently until 1932 he did not believe in “no quasi-static world”.

1960s: In order to explain why there is significant clustering of quasars
around redshift z ≈ 1.95 some researches proposed to use the Lemaitre model
(closed Universe with Λ > 0and curvaturek = 1 ), where at that redshift the
universe looks like the Einstein’s static universe.

1967 : The old cosmological problem was established by Zeldovich when he
reexpressed the cosmological constant problem by taking the fluctuations of the
vacuum energy into account. Zeldovich also used the phrase of "fine-tuning" for
the first time in this field.

1987 : Steven Weinberg “predicted” the existence of a small cosmological
constant in the Universe.

1998 : Riess et al. first discovered the acceleration of expanding universe
based on the analysis of 16 distant and 34 nearby supernovae. A bit later,
Perlmutter et al. using 18 nearby supernovae and 42 high-redshift supernovae
confirmed the discovery of cosmic acceleration.

1998-today: Many dark energy (in the form of a scalar field or fluid) and
modified gravity models (in the form of a modification to general relativity) was
suggested by cosmologists and particle physicists in order to explain the cosmic
acceleration.

2011 : For the discovery of late time cosmic acceleration, Adam Riess, Brian
Schmidt, and Saul Perlmutter won the Nobel prize in physics in 2011.

Now: Still we don’t know the nature of dark energy. This thesis is an attempt
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toward understanding its nature mainly by focusing on the non-linearities in the
cosmological components including the dark energy part and utilizing the future
cosmological surveys data. Using the predictions of the current thesis for some
dark energy models that go well into the non-linear regime we will hopefully be
able to constrain dark energy models tightly and we might find a clear evidence
for clustering of dark energy which would rule out the cosmological constant as
the reason behind the cosmic acceleration.

1.6 The Effective Field Theory of Dark Energy
The first step toward modification of the ΛCDM theory is adding a single degree
of freedom in the form of a scalar field. The scalar field can be interpreted as
either in the form of a modification to the GR or as a dark energy fluid, which in
either cases it has the role of dark energy to explain the accelerating expansion
of the Universe with some additional properties compared to the cosmological
constant Λ (for a review of the subject see Clifton et al. [2012a], Gleyzes [2015],
Joyce et al. [2015] )7

The Effective Field Theory of Dark Energy (EFT of DE) on the other hand
allows us to study very general dark energy and modified gravity models based
on a single scalar degree of freedom, in a relativistic setting and with a minimal
set of parameters. So it seems that the appropriate language to deal with the
additional scalar field is the EFT of DE and thus we choose this language to
write down the equations of motion.

In general the EFT, in physics, is a type of approximation for an underlying
fundamental theory. The fundamental theory could be the quantum field theory,
statistical physics, quantum gravity and etc. In the EFT approach we use the rel-
evant degrees of freedom at a certain range of energies/distances while neglecting
high energy/ short distance behavior of the system. In fact the EFT framework
could be seen as such we average over all the high energy/small scale behavior of
the system and we associate all the small scale/high energy details as an average
to the low energy description. As a result the EFT approach is safe to be used at
a range of energies/scales far from the EFT limit. As an important example of
the EFT framework we can name the fluid approach in which we express a fluid
with a huge number of particles with just couple of low energy/long distance
parameters like the speed of sound, pressure, density and etc. However we know
that when we look at a fluid at very short distances the fluid description is not

7One could of course think of adding arbitrary degrees of the freedom, but that is not
usually a first step that physicists should start from plus the fact that we do not have any
hint of many additional extra degrees of freedom from observations. Moreover, considering the
easiest scenario helps us to easily generalize the theory to include more complicated scenarios.
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anymore valid to explain the behaviour of the system (see Endlich et al. [2013],
Hartmann [2001], Pich [1998], Wikipedia contributors [2020b]).

The idea of applying the EFT framework in cosmology was first done for
theory of inflation in Cheung et al. [2008], Creminelli et al. [2006] where they
have used the EFT framework to express the most general theory for a single
scalar field in the inflationary phase to describe the fluctuations around a quasi
de Sitter background. Then a similar framework was applied for the dark energy
problem with the terminology of the “Effective Field Theory of Dark Energy
(EFT of DE)” in Gubitosi et al. [2013a] .

The EFT of DE is especially considered important and worth studying be-
cause, although it is not a fundamental theory, it offers several advantages Bellini
& Sawicki [2014], Creminelli et al. [2009], Frusciante & Papadomanolakis [2017],
Gleyzes [2015], Gleyzes et al. [2013, 2015], Gubitosi et al. [2013a]:

• First, we can express a large class of dark energy and modified grav-
ity (DE/MG) models with a minimal number of parameters in a model-
independent approach and using a unified language.

• Second, the phenomenological parameters of the effective theory can be
constrained directly by cosmological observations without being specific to
any DE/MG models nor to their original motivations.

• Third, the EFT approach allows the theorists to carefully examine the
unexplored regions of the space of parameters which could in principle
guide towards new viable theories for dark energy.

In the following we will discuss the main ideas of the EFT of DE and we
write down the full EFT of DE action,

1.6.1 Geometrical quantities
First, we assume the weak equivalence principle meaning that there is a metric gµν
which is universally coupled to all matter fields. The main idea here would be to
use the uniform scalar field hypersurfaces as the time coordinate. In other words,
we redefine the time such a way that the scalar becomes a constant without any
perturbations on these hypersurfaces while the scalar field perturbations have
gone into the time coordinate and geometric objects. Then without having the
difficulties of dealing with the scalar field perturbations we write a generic action
based on the basic geometric quantities that appear in an ADM8 decomposition

8ADM named after Richard Arnowitt, Stanley Deser and Charles W. Misner, the three
authors of “Dynamical Structure and Definition of Energy in General Relativity” Arnowitt
et al. [1959] for the Hamiltonian formulation of general relativity.
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of space-time. This action would describe cosmological perturbations around a
FLRW background which is useful to express a theory beyond ΛCDM.

We assume the scalar field to be space-like or equivalently characterized by
a time-like space-time gradient, i.e., to have a gradient such that ∇µϕ∇µϕ < 0.
In this case, the constant scalar field hypersurfaces define a foliation of time
and the uniform scalar field hypersurfaces can be used for 3+1 decomposition
of space-time, which separate the quantities into orthogonal and parallel to the
hypersurface ϕ = const based on the ADM formalism. We use the gauge freedom
in the theory to choose this specific time foliation which is called the unitary
gauge.

In the new time coordinate (unitary gauge) the perturbations in the scalar
field ϕ are hidden, so we have,

ϕ(t̃, ~x) = ϕ0(t̃) + δϕ(t̃, ~x) = ϕ0(t) (1.96)

where t is chosen such that δϕ(t, ~x) = 0. The kinetic term for ϕ in this gauge
reads,

X ≡ ∇µϕ∇µϕ = g00ϕ̇2
0 (1.97)

where g00 = −1 + δg00 and thus the kinetic term contributes to the perturbative
expansion.

This space-time foliation allow us to define various geometric objects. The
first associated geometric quantity is defined based on the fact that the hypersur-
faces are constant scalar field, so the vectors perpendicular to these hypersurfaces
are obtained by ~∇ϕ. The future-oriented time-like unit vector normal to the hy-
persurfaces read as,

nµ = − 1√
−X
∇µϕ, X ≡ gρσ∇ρϕ∇σϕ (1.98)

where gµνnµnν = −1 and nµn
λ∇λn

µ = 0 assuring all the properties of being
time-like, unit vector and orthogonal to the constant field hypersurfaces. Using
nµ and the four dimensional metric gµν we can define the projection tensor hµν
as

hµν ≡ gµν + nµnν . (1.99)
Intrinsic curvature of the hypersurfaces is described by the three-dimensional
Ricci tensor, in which it has the same degrees of freedom as Riemann tensor in
three-dimensional space-time

(3)Rµν , (1.100)
which is defined based on the metric hµν on the hypersurfaces. The extrinsic
curvature tensor is defined as,

Kµ
ν ≡ hµρ∇ρnν . (1.101)
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These are the main geometric quantities we can define on these hypersurfaces,
while other quantities can be derived by combining the above quantities together
with the covariant derivative ∇µ and the 4D metric gµν . For example the “ac-
celeration” vector field is defined as,

aµ ≡ nλ∇λn
µ , (1.102)

which is tangent to the hypersurfaces and thus orthogonal to nµ i.e., nµaµ = 0.
It is useful to write down the aforementioned expressions explicitly based on

the scalar field, because some dark energy models are given explicitly in terms
of a scalar field. As previously mentioned nµ = − 1√

−X∇µϕ and the extrinsic
curvature reads,

Kµν = − 1√
−X
∇µ∇νϕ+ nµaν + nνaµ + 1

2Xnµnνn
λ∇λX (1.103)

We can use the Gauss-Codazzi relations to define the other three-dimensional
quantities based on the four-dimensional ones and the extrinsic curvature (see
Gleyzes et al. [2013] for more details),

(3)Rµν = (Rµν)‖ + (nσnρRµσνρ)‖ −KKµν +KµσK
σ
ν , (1.104)

(3)R = R +K2 −KµνK
µν − 2∇µ (Knµ − ṅµ) , (1.105)

where the symbol ‖ means projection on the 3D-hypersurfaces using the 3D met-
ric hµν , e.g. (Vµ)‖ ≡ hνµVν and ṅµ = nν∇ν nµ. In Fig. 1.3 we have schematically
shown a hypersurface and the geometric quantities associated with it.

1.6.2 ADM coordinates
So far all the geometric quantities have been defined intrinsically without as-
suming any coordinate. However, since we have specified a special time foliation
according to the ϕ = const hypersurfaces, it is useful to adopt a coordinate sys-
tem according to this slicing. So we express the four-dimensional metric in the
ADM form in which we choose the constant time hypersurfaces coinciding with
the ϕ = const hypersurfaces,

ds2 = −N2dt2 + hij
(
dxi +N idt

) (
dxj +N jdt

)
, (1.106)

where N is the lapse and N i the shift function. The components of the metric
and of its inverse in the matrix form are written respectively as

gµν =

 −N2 + hijN
iN j hijN

j

hijN
i hij

 , gµν =

 −1/N2 N j/N2

N i/N2 hij −N iN j/N2 .


(1.107)
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Figure 1.3: A schematic image showing a constant scalar filed hypersurface and
the geometric objects associated with it.

The standard kinetic term in this coordinate reads,

X = g00ϕ̇2(t) = − ϕ̇
2(t)
N2 , (1.108)

since the scalar field is space independent, the components of the normal vector
are;

n0 = −N, ni = 0 . (1.109)
The components of the extrinsic curvature tensor on the 3D hypersurfaces read;

Kij = 1
2N

(
ḣij −DiNj −DjNi

)
, (1.110)

where a dot stands for a time derivative with respect to t, and Di indicates the
3D covariant derivative associated with the 3D spatial metric hij. The 3D spatial
indices are raised and lowered by the spatial metric hij.

There are two main advantages in using the unitary gauge (see Arkani-Hamed
et al. [2004], Cheung et al. [2008], Creminelli et al. [2006], Gleyzes et al. [2013])

• We can write a generic action for cosmological perturbations in a straight-
forward way using this gauge. The reason is that the dynamics of the scalar
field has been put into the metric, the most generic action is written similar
to that for the metric perturbations around a FLRW solution.
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• The second advantage is the 3 + 1 splitting in unitary gauge allows us
to keep the number of time derivatives under control, while we can con-
sider higher space derivatives. As a result using the unitary gauge, we can
systematically write the theories with higher spatial derivative.

1.6.3 General Lagrangian in unitary gauge
The most general gravitational actions written in terms of the geometrical quan-
tities and being invariant under spatial diffeomorphism 9 expressed in ADM
coordinates,

Sg =
∫
d4x
√
−gL (N,Kij, Rij, hij, Di; t) , (1.111)

where the determinant of the 4D metric is written as √−g = N
√
h, and where

h is the determinant of the 3D metric hij.
In the following we derive the Lagrangian written in the previous form (1.111)

for three theories, namely General Relativity, the k-essence and f(R) theories.

General Relativity:

We start from the Einstein-Hilbert action

SGR =
∫
d4x
√
−gM

2
Pl

2 R . (1.112)

using the Gauss-Codazzi expression in (1.105) we can write the 4D Ricci scalar
in terms of the geometrical objects on the 3D hypersurfaces. Therefore we can
easily obtain the Lagrangian in the ADM form (1.111) General Relativity (GR),

LGR = M2
Pl

2
[
KijK

ij −K2 + (3)R
]
. (1.113)

Note that, in the case of GR there is no scalar degree of freedom and thus the
slicing of space-time is arbitrary. This provides us with an additional symmetry in
the GR Lagrangian and leads to full four-dimensional diffeomorphism invariance,
which is not immediately clear in the ADM form while it is clear in the 4D version
as the 4D Ricci scalar is by definition 4D diffeomorphism invariant.

k-essence:

The simplest way to extend the GR action is to add a scalar field in the form of
a potential and a standard kinetic term as following,

Squinessence =
∫
d4x
√
−g

(
−1

2∂µϕ∂
µϕ− V (ϕ)

)
. (1.114)

9invariant under the change of spatial coordinates
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This action corresponds to the quintessence model which is added to the GR
action,

S = SGR + Squintessence (1.115)

The ADM Lagrangian of the Squintessence is simply Creminelli et al. [2009],

Lquintessence(t, N) = ϕ̇2(t)
2N2 − V (ϕ(t)) . (1.116)

Similarly, we can describe k-essence theories in the ADM form. The k-essence
theories can be expressed as a general form of quintessence models, in which the
action is a general function of a potential and a kinetic term Armendariz-Picon
et al. [2000, 2001],

Sk-essence =
∫
d4x
√
−gP (X,ϕ) . (1.117)

The k-essence Lagrangian is written in the ADM form as following Bellini &
Sawicki [2014], Gleyzes [2015], Gleyzes et al. [2015],

Lk-essence (t, N) = P

[
− ϕ̇

2(t)
2N2 , ϕ(t)

]
. (1.118)

f(R) theories:

In these theories the Lagrangian is a nonlinear function of the four-dimensional
Ricci scalar R. These theories are equivalent to a scalar-tensor theory. It can be
shown that the f(R) Lagrangian can be written in the following form Burgess
[2004], Gleyzes et al. [2015],

Lf(R) = f(ϕ) + fϕ(ϕ) (R− ϕ) . (1.119)

This is equivalent to the Lagrangian f (R) , because they lead to the same equa-
tions of motion (as long as the second derivative of f(R) with respect to R is non
zero i.e., fRR 6= 0) . Using the previous Lagrangian one can easily express these
theories in the ADM form Bellini & Sawicki [2014], Gleyzes et al. [2015],

LF (R) = Fϕ
(
R +KµνK

µν −K2
)

+ 2FϕϕK
√
−X + F (ϕ)− ϕFϕ . (1.120)

1.6.4 Cosmology: Background evolution
In this subsection we discuss the cosmological background equations. We con-
sider a spatially flat FLRW metric,

ds2 = −N̄2(t)dt2 + a2(t)δijdxidxj , (1.121)
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where previously in Eq. (1.9) we set N̄(t) = 1 as we considered an especial time
coordinate, but here we let it to be unspecified. In this space-time, the intrinsic
curvature tensor of the 3D hypersurfaces vanishes, i.e., Rij = 0, and the extrinsic
curvature reads,

Ki
j = H(t)δij, S ≡ KµνK

µν = 3H(t)2/N(t)2 , (1.122)

where H ≡ ȧ
N̄a

is the Hubble parameter. Substituting into the ADM form of the
Lagrangian (1.111) we thus find an homogeneous Lagrangian,

L̄(a, ȧ, N̄) ≡ L
[
Ki
j = ȧ

N̄a
δij, R

i
j = 0, N = N̄(t)

]
. (1.123)

The action thus reads as

S̄background =
∫
dtd3x N̄a3L̄

[
Ki
j = ȧ

N̄a
δij, R

i
j = 0, N = N̄(t)

]
. (1.124)

The variation of this action with respect to the lapse and scale factor leads to,

δS̄background =
∫
dtd3x

{
a3
(
L̄+ N̄

∂L

∂N
− 3HF

)
δN̄ (1.125)

+ 3a2N̄

(
L̄− 3HF − Ḟ

N̄

)
δa
}
, (1.126)

where F is defined from the derivative of the Lagrangian with respect to the
extrinsic curvature, evaluated on the background(

∂L

∂Kij

)
background

≡ Fa−2δij , (1.127)

where a−2δij corresponds to the spatial components of the inverse background
metric ḡij. To obtain the evolution we add matter minimally coupled to the
metric gµν , in which the variation of the matter action with respect to the metric
defines the energy-momentum tensor,

δSmatter = 1
2

∫
d4x
√
−gT µνδgµν . (1.128)

In a FLRW Universe,

δS̄matter =
∫
d4xN̄a3

(
−ρm

δN̄

N̄
+ 3pm

δa

a

)
. (1.129)

As a result the variation of the total homogeneous action including the matter
part and the gravity part S̄total = S̄background + S̄matter with respect to the lapse N
and the scale factor a gives the first and second Friedmann equations respectively.

L̄+ N̄LN − 3HF = ρm , (1.130)
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L̄− 3HF − Ḟ/N̄ = −pm . (1.131)

Obviously, in order to write these equations in the usual form we need to write
down the quantities for the GR case,

∂LGR

∂Ki
j

= M2
Pl

(
Kj
i −Kδ

j
i

)
, (1.132)

which, having Ki
j = Hδij, gives,

FGR = −2M2
PlH, (1.133)

moreover, L̄GR = −3M2
PlH

2 and LN = 0. Substituting these into the (1.130) and
(1.131) yields the known form of the Friedman equations (1.31) and (1.32).

1.6.5 Cosmology: The EFT quadratic action
In this subsection we limit ourselves to the linear perturbations about the FLRW
background solution, in which we expand the action written in the ADM form
up to quadratic order (see Frusciante & Perenon [2020], Gleyzes et al. [2015],
Piazza & Vernizzi [2013], Tsujikawa [2015] for detailed discussion). In general
the expansion of the Lagrangian L up to quadratic order gives

L
(
N,Ki

j, R
i
j, . . .

)
= L̄+ LNδN + ∂L

∂Ki
j

δK i
j + ∂L

∂Ri
j

δRi
j + L(2) + . . . , (1.134)

where L(2) is the quadratic part given by

L(2) =1
2LNNδN

2 + 1
2

∂2L

∂Ki
j∂K

k
l

δKi
jδK

k
l + 1

2
∂2L

∂Ri
j∂R

k
l

δRi
jδR

k
l +

+ ∂2L

∂Ki
j∂R

k
l

δK i
jδR

k
l + ∂2L

∂N∂Ki
j

δNδKi
j + ∂2L

∂N∂Ri
j

δNδRi
j + . . . .

(1.135)

The dots in the previous equations correspond to other possible terms which we
neglect here. The terms δN and δKj

i are defined as

δN ≡ N − N̄ , δKj
i ≡ Kj

i −Hδ
j
i , (1.136)

and all the derivatives are evaluated on the FLRW background. We can sim-
plify the expression (1.135) mainly using integration by parts and employing the
background symmetries. For example, according to the definitions we have,

∂L

∂Ki
j

δKi
j = FδK = F(K − 3H) , (1.137)
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and using the definition of the extrinsic curvature K = ∇µn
µ we can simplify

the integral using integration by parts,∫
d4x
√
−gFK = −

∫
d4x
√
−gnµ∇µF = −

∫
d4x
√
−g Ḟ

N
. (1.138)

Moreover we can simplify the terms ∂2L
∂Xj

i ∂Y
l
k

, where X and Y can be K or R,
using the fully symmetric FLRW background and write,

∂2L
∂Kj

i ∂K
l
k

= ÂKδijδkl +AK
(
δilδ

k
j + δikδjl

)
,

∂2L
∂Rji∂R

l
k

= ÂRδijδkl +AR
(
δilδ

k
j + δikδjl

)
,

∂2L
∂Kj

i ∂R
l
k

= Ĉδijδkl + C
(
δilδ

k
j + δikδjl

)
,

(1.139)

also with the similar reasoning we have,

∂2L

∂N∂Ki
j

= Bδji ,
∂2L

∂N∂Ri
j

= BRδji . (1.140)

The EFT action

Using the previous expressions and some redefinitions Gleyzes et al. [2013, 2015],
we can write the most general EFT Lagrangian, to quadratic order for a single-
field dark energy models leading to at most second order equations of motion
as;

S =
∫
d4x
√
−g

[
M2
∗

2 f(t)(4)R− Λ(t)− c(t)g00 + M4
2 (t)
2

(
δg00

)2
− m3

3(t)
2 δKδg00

−m2
4(t)

(
δK2 − δKµ

ν δK
ν
µ

)
+ m̃2

4(t)
2 Rδg00

]
.

(1.141)
We can also rewrite the action in another form as following Bellini & Sawicki
[2014], Frusciante & Perenon [2020], Gleyzes et al. [2015],

Sg =
∫
d4xa3M(t)2

2

[
δKµνδK

µν − δK2 + (1 + αT (t))
(
δ2R + δ

√
h

a3 R

)

+H2αK(t)δN2 + 4HαB(t)δNδK + (1 + αH(t))RδN
]

+ · · ·
(1.142)

where the coefficients αi and M are generally time-dependent. Moreover we can
also introduce αM as,

αM ≡
2Ṁ
HM

(1.143)
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M2 αM αK αB αT αH

M2
∗ f + 2m2

4
M2
∗ ḟ+2(m2

4)
M2H

2c+4M4
2

M2H2
M2
∗ ḟ−m3

3
2M2H

−2m2
4

M2
2(m̃2

4−m
2
4)

M2

Table 1.2: The dictionary to translate the expressions from one to the other
notation.

which parameterizes the time evolution of the Planck mass. The advantage of the
previous action is that the parameters are defined such a way that ΛCDM+GR
is restored by setting all αi to zero. Moreover, we can interpret these equations
physically while it is difficult in the form (1.141). However, one can interchange-
ably use either definition and simply translate the results using the dictionary in
Table. 1.2 (see Bellini & Sawicki [2014], Frusciante & Perenon [2020] for different
notations and the complete dictionary).

1.6.6 Evolution of the cosmological perturbations
In this subsection we assume the action (1.141) and we obtain the equations of
the motion. First of all, the variation of the action with respect to the lapse
function N and the scale factor a gives the background evolution, which will be
useful to simplify higher order equations,

c+ Λ = 3M2
∗

(
fH2 + ḟH

)
− ρm ,

Λ− c = M2
∗

(
2fḢ + 3fH2 + 2ḟH + f̈

)
+ pm .

(1.144)

We also only focus on the linear scalar perturbations in the Newtonian gauge
while neglecting short wave corrections. However, for the case of k-essence scalar
field we will discuss the equations considering all the short-wave corrections in
detail in Chapter 2.

The action we previously derived was written based on the ADM decompo-
sition and on the constant scalar field hyper surfaces. By definition the action
is invariant under the 3D diffeomorphism and does not respect the full diffeo-
morphism as the time symmetry was broken in the first place. We can restore
diffeomorphism invariance of the action (which is required for the theory) by the
Stueckelberg trick. By performing a time-diffeomorphism

t→ t̃ = t+ ξ0(t, ~x), ~x→ ~x = ~x , (1.145)

where ξ0(t, ~x) = π describes the fluctuations of the scalar field:

ϕ = t+ π . (1.146)
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Under this diffeomorphism, any function of time f changes up to second order
as

f → f + ḟπ + 1
2 f̈π

2 +O
(
π3
)
, (1.147)

while the metric component g00 = −1/N2 exactly transforms as

g00 → g00 + 2g0µ∂µπ + gµν∂µπ∂νπ . (1.148)

For the other first order geometric quantities, we only need their change due to
the time-diffeomorphism at linear order in π,

δKij → δKij − Ḣπhij − ∂i∂jπ +O (π2) ,

δK → δK − 3Ḣπ − 1
a2∂

2π +O (π2) ,

(3)Rij → (3)Rij +H (∂i∂jπ + δij∂
2π) +O (π2) ,

(3)R→ (3)R + 4
a2H∂

2π +O (π2) .

(1.149)

It is important to note that, although we are not in the unitary gauge anymore
the above expressions Kij and Rij sill denote the extrinsic and intrinsic curvature
on hypersurfaces of constant time.

We then expand the covariant action up to quadratic order in π and variation
of the action with respect to the scalar fluctuation π and the four scalar pertur-
bations in the metric yields five equations for the evolution of the scalars. In
the next step we are going to discuss these equations written in the Newtonian
gauge.

1.6.7 Evolution of linear perturbations in Newtonian gauge
We consider a linearly perturbed FLRW metric with only scalar fluctuations,

ds2 = −(1 + 2Ψ)dt2 + 2∂iα dtdxi + a2(t) [(1− 2Φ)δij + 2hij] dxidxj , (1.150)

where hij is traceless and given in terms of the scalar perturbation β, hij ≡(
∂i∂j − 1

3δij∂
2
)
β. Also here we work with the physical time t instead of the

conformal time τ in the metric. However, one can easily write the equations
in terms of the conformal time using dτ = dt/a(t) and also redefining π as
π(t, ~x) .= ξ0(t, ~x)/a(t) which is discussed in Chapter 2. The extrinsic curvature
and the 3-dimensional Ricci tensor of the new equal-time hypersurfaces thus
read,

Kij = e−Ψ(H − Φ̇)hij + ḣij − ∂i∂jα ,
(3)Rij = ∂i∂jΦ + δij∂

2Φ + 2∂k∂(ih
k
j) − ∂2hij .

(1.151)
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We also decompose the matter stress-energy tensor at linear order as

T 0
0 ≡ − (ρm + δρm)
T 0
i ≡ (ρm + pm) ∂iv = −a2T i0

T ij ≡ (pm + δpm) δij +
(
∂i∂j −

1
3δ

i
j∂

2
)
σ

(1.152)

where ρm and pm are respectively the background energy density and pressure
and δρm and δpm their perturbations, v is the 3-velocity potential and σ the
scalar component of the anisotropic stress.

To this end, we use the previous expressions (1.147), (1.148), (1.149) and
(1.151) to rewrite the action for the scalar fluctuations Ψ, α,Φ, β and π. We then
expand the action to second order which is enough to obtain the first order field
equations. We then fix the gauge to the Newtonian gauge by setting α = 0 = β in
the final equations. This procedure yields the following five equations in Fourier
space (see Creminelli et al. [2009], Frusciante & Papadomanolakis [2017], Gleyzes
[2015], Gleyzes et al. [2013, 2015] for detailed discussions):

(δS/δΨ = 0) :

M2
∗

[
− 2f

(
k2

a2 Φ + 3HΦ̇ + 3H2Ψ
)

+ ḟ
(
k2

a2π + 3H2π − 3H(Ψ− π̇)− 3(Φ̇ +HΨ)
)

+3Hf̈π
]
− (ċ+ Λ̇)π + (2c+ 4M4

2 + 3Hm3
3) (Ψ− π̇)

+ (m3
3 − 4Hm2

4)
[
−k2

a2π + 3(HΨ + πḢ + Φ̇)
]
− 4k2

a2 m̃
2
4(Φ +Hπ) = δρm

(1.153)

(δS/δα = 0) :
M2
∗ [(Hḟ − f̈)π + ḟ(Ψ− π̇) + 2f(HΨ + Φ̇)]− 2cπ −m3

3(Ψ− π̇)
+ 4m2

4(HΨ + Φ̇ + Ḣπ) = − (pm + ρm) v
(1.154)
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(δS/δα = 0) :

M2
∗

{
2f
[
−1

3
k2

a2 (Ψ− Φ) +
(
3H2 + 2Ḣ

)
Ψ +H(Ψ̇ + 3Φ̇) + Φ̈

]

+ ḟ

[
−2

3
k2

a2π + 2HΨ + 2H(Ψ− π̇)−
(
3H2 + 2Ḣ

)
π + 2Φ̇ + Ψ̇− π̈

]

+f̈ [−2Hπ + 2(Ψ− π̇)]− f (3)π
}

+ (Λ̇− ċ)π + 2c(Ψ− π̇)

−4
3
k2

a2

[
m̃2

4(Ψ− π̇) +
(
Hm2

4 + (m2
4)·
)
π +m2

4π̇
]

+4
(
Ḣm2

4

)·
π + 4m2

4Ḣπ̇ −
[
(m3

3)· + 3Hm3
3

]
(Ψ− π̇)−m3

3(Ψ̇− π̈)

+ 4
[
H
(
m2

4

)·
+ 3H2m2

4 + Ḣm2
4

]
Ψ

+ 4
(
m2

4

)
Φ̇ + 4m2

4H(3Ḣπ + Ψ̇ + 3Φ̇) + 4m2
4Φ̈ = δpm

(1.155)

(δS/δΦ = 0) :

M2
∗

{
2f
[
−1

3
k2

a2 (Ψ− Φ) +
(
3H2 + 2Ḣ

)
Ψ +H(Ψ̇ + 3Φ̇) + Φ̈

]
+ḟ

[
−2

3
k2

a2π + 2HΨ + 2H(Ψ− π̇)−
(
3H2 + 2Ḣ

)
π + 2Φ̇ + Ψ̇− π̈

]
+f̈ [−2Hπ + 2(Ψ− π̇)]− f (3)π

}
+ (Λ̇− ċ)π + 2c(Ψ− π̇)

−4
3
k2

a2

[
m̃2

4(Ψ− π̇) +
(
Hm2

4 + ˙(m2
4)
)
π +m2

4π̇
]

+4
(
Ḣm2

4

)·
π + 4m2

4Ḣπ̇ −
[
(m3

3)· + 3Hm3
3

]
(Ψ− π̇)−m3

3(Ψ̇− π̈)

+4
[
H (m2

4)· + 3H2m2
4 + Ḣm2

4

]
Ψ + 4 (m2

4) Φ̇

+4m2
4H(3Ḣπ + Ψ̇ + 3Φ̇) + 4m2

4Φ̈ = δpm

(1.156)

(δS/δβ = 0) :

M2
∗ [f(Ψ− Φ) + ḟπ] + 2

[
m2

4π̇ +m2
4Hπ + (m2

4)· π
]

+ 2m̃2
4(Ψ− π̇) = σ

(1.157)

1.6.8 Short-wave corrections
In order to include the higher order short-wave corrections to the EFT of DE we
need to be careful. In fact, it is as simple as assuming the second order action
(1.141) and going to the higher order in Stueckelberg trick Stueckelberg [1938]
and considering higher order in π terms. Instead, we also need to write down the
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appropriate EFT action from the scratch to consider higher order contributions.
The main difficulty usually is that for some theories the corresponding action
including all the short wave corrections is not truncated automatically at some
order and we need to truncate the expansion by considering further assumptions,
like considering a cut off energy scale in the theory.

However, as it is discussed in detail in Chapter 2 for the k-essence theory
in the EFT framework, we can prove that we do not need to construct the
higher order action as the action (1.141) is enough to obtain the field equations
consistently while considering all the relevant short-wave corrections.

1.7 Cosmological N-body simulations

According to the cosmological observations at small scales the Universe occupied
by non-linear, many-body and difficult to deal structures, like galaxies, clusters
of galaxies and others. These complex structures are formed as a result of non-
linear collapse of small initial perturbations in the early Universe. The main
difficulty to deal with these structures is that the perturbation theory breaks
down at these scales10 and we can not use our developed tools to describe these
structures anymore. In the absence of analytical approaches, numerical N -body
simulations are the only option to deal with non-linear regime and model the
Universe at these scales.

The first numerical N -body simulation starts with Holmberg in 1941 Holm-
berg [1941], where he tried to solve the evolution of a 37 particle system (shown
in Fig. 1.4), and he took the advantage of similar r−2 scaling of electromag-
netic and gravitational interactions to compute the force using lightbulbs and
galvanometers. Computer N -body simulations started in the early 1960’s simu-
lating up to 100 particles (von Hoerner [1960] and Aarseth [1963]) and then the
golden age of N -body simulations started in the 1980’s with the development
of fast and efficient algorithms such as the particle-mesh technique (see Hock-
ney & Eastwood [1988]) and the tree method Barnes & Hut [1986] as well as
the progresses in the computer hardwares (for a historical review see Hockney
& Eastwood [1988], Trenti & Hut [2008]). Today (2020) thanks to technology
and advanced algorithms, N-body simulations can be performed with beyond
N ≈ 1013 particles.

Apart from helping us to explore the non-linear regime, the are several other
applications in using the cosmological N -body simulations Bagla [2005], Bagla &
Padmanabhan [1997], Bertschinger [1998], Hockney & Eastwood [1988], Stadel
[2001]:

10the density of these structures is about 1000 times larger than the average density of the
Universe
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Figure 1.4: A figure in the original paper of Holmberg showing the interaction
of two spiral galaxies

• First, we can make predictions for non-standard cosmologies such as dif-
ferent dark matter and dark energy scenarios.

• Second, N -body simulations give us the chance to compare the results with
observations.

• Third, the simulations are helpful for testing approximate solutions and
perturbation theory at intermediate scales. Comparing the approximative
results with the true solution from the N -body simulations help us to val-
idate the approximations and to understand the range of validity of these
approximations.

• Last but not least, we can calibrate our methods for observation on mock
catalogues made using N -body simulations. For example we can test if a
method works, as in an N -body code we can extract all the details whereas
is not the case in the observation.
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1.7.1 Physical requirements
When writing anN -body code the following criteria need to be taken into account
Adamek et al. [2016a], Bagla [2005], Bagla & Padmanabhan [1997], Hockney &
Eastwood [1988], Padmanabhan [1996], Stadel [2001];

• In an N-Body simulation, the Universe should be filled with cosmologi-
cal components over large scales (much larger than the scales we want to
probe). The simulation volume should not be isolated and we need to have
access to the outside region of the volume using a method. The best so-
lution to this problem is to assume the periodic boundary conditions. In
fact, using other boundary conditions than periodic, the structure in the
simulation box will have a tendency to cluster towards the centre of the
simulation box, which results into a fake large growth rate for cosmological
perturbations.

• The best option for distributing the masses N objects is to consider equal
mass. Because having a volume dominated by one object produces a fake
dynamics as a result of the tidal force due to dominated object’s periodic
copies.

• The average density in the box should be equal to the average density of
the Universe. This means that the perturbations averaged at the scale of
the N -body box must vanish at all times. For example, in case of ΛCDM
we would require that the box to be large than 100 h−1Mpc in which is the
scale we have a maximally symmetric Universe.

• There is a required minimum number of particles in order to satisfy the
previous argument as well as the fact that in an N -body code we want
to probe scales that are sufficiently non-linear. For example if we want to
compare the galaxies in cosmological context, we need to have the resolu-
tion such that the individual masses are less than the mass of the smallest
object of interest. As a result the minimum number of particles we require
to have to study galaxy clustering should be Bagla & Padmanabhan [1997]:

N ≥ M (100h−1Mpc)
Mgalaxy

' 5× 1018M�
1011M�

' 5× 107 . (1.158)

• Due to the limited computational power, we effectively replace a collection
of a very large number of particles in the universe by one particle in an N -
body simulation . Thus theN -body particles must interact in a collisionless
way.
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In order to integrate the equations of motion in an N -body code we need to
perform of order O (Np) operations. While to compute the force exerted on all
Np particles (summing the force over all pairs) would require of order O

(
N2
p

)
operations. For large number of particles it can be shown that direct computation
of forces takes a long time and very fast reaches to our available computational
resources. In order to overcome the force computation problem, three different
schemes have been proposed Bagla & Padmanabhan [1997], Hockney & Eastwood
[1988], Stadel [2001];

• Particle Mesh (PM) scheme : The Poisson equation (Hamiltonian con-
straint) is solved in Fourier space using an appropriate numerical tech-
nique and the potential/force is computed on a fixed grid on the lattice.
To update the particles positions and velocities, the force and potentials
are interpolated to particle positions on the lattice. Then the density and
velocity fields (the source for Poisson equation) are also computed on the
same mesh(grid) by using an interpolating function from the particle posi-
tions. It is worth mentioning that the smoothing of particles over the grid
size restricts the resolution of such simulations but guarantees collisionless
evolution of N -body particles (see Bouchet & Kandrup [1985], Bouchet
et al. [1985]).

• Particle-Particle-Particle Mesh (P3M) : This scheme introduced in Efs-
tathiou et al. [1985] is similar to the PM scheme but it improves the PM
method by considering a correction to the force for pairs with separation
equal or smaller than the grid length. The number of operations needed
for this correction is proportional to Npn̄ where n̄ is the average number
of particles within cell. In this scheme for large number of particles, the
number of operations in the dense regions could become very large.

• Tree : In this scheme, the force on a particle is computed according to a
hierarchical tree, where in each level of the tree the total mass and the
position of the centre of mass is described. The force from distant particles
in the box of the simulation is approximated by the force from the centre
of mass of particles in that region. This approximation reduces the number
of operations for calculating force significantly (see Barnes & Hut [1986],
Bouchet & Hernquist [1988])

Among the previous methods the Particle-Mesh scheme has two major
advantages over the other schemes. First, It is the only method for which a
collisionless dynamics is guaranteed. Second, it has the simplest algorithm,
the fastest method and naturally appropriate for developing “relativistic”
N -body codes as one works with the fields in this scheme rather than forces.
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1.7.2 Newtonian N-body codes
In these codes the evolution of perturbations are studied in a non-relativistic
medium in an expanding background. The Newtonian N -body codes are ex-
pected to work in the Newtonian limit at scales that are much smaller than the
Hubble horizon (see Fidler et al. [2016] for the relativistic Interpretation of New-
tonian simulations). The equations for a set of particles interacting only through
the gravitational force can be written as

ẍ + 2 ȧ
a
ẋ = − 1

a(τ)2∇xϕN ,

∇2
xϕN = 4πGa2ρ̄δ = 3

2H
2
0 Ω0

δ
a
,

(1.159)

where ϕN is the Newtonian gravitational potential, which is made using the
Newtonian limit of the relativistic Poisson equation (1.88). Three well known
Newtonian N -body codes are:

RAMSES is an N -body particle mesh code that works with adaptive mesh
refinements (AMR) technique Teyssier [2002a]. In this code particles are evolved
on Newtonian orbits using a leapfrog method and also includes a solver to study
the evolution of baryons. The Cloud-In-Cell (CIC) scheme is used to perform
the particle-to-mesh projection and force interpolation.

GADGET In the GADGET code the gravitational forces are computed with
a hierarchical tree algorithm, also a particle-mesh scheme for long-range gravi-
tational forces is available. Both the force and the time stepping in GADGET
code are adaptive Springel [2005].

PKDGRAV PKDGRAV Stadel [2001] is a tree based simulation code that
constructs a k -d tree. In PKDGRAV3 the Fast Multipole Method in conjunction
with individual and adaptive particle time steps are used on supercomputers with
GPU-accelerated nodes Potter et al. [2016].

1.7.3 Relativistic N-body codes
The N -body simulations we mentioned in the previous subsection use Newton’s
law of gravitation to evolve the particles. An important question that arises
about these simulations is that whether and how much the Newtonian approx-
imation is valid considering the high precision we need in current era of cos-
mology. It turn out that the Newtonian limit works comparatively well in the
ΛCDM model if we neglect radiation in the late time Universe and assume that
there is only non-relativistic matter as the source of perturbations. However,
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a Newtonian scheme is not appropriate for considering the relativistic sources
especially at scales near the Hubble horizon and also is not compatible with the
presence of radiation which might have a small effect on the evolution of cos-
mic structure (see Adamek et al. [2016a], Adamek et al. [2016c], Adamek et al.
[2017b] for detailed discussion).

In addition, the Newtonian N -body simulations are not naturally appropriate
for considering non-standard dark energy/modified gravity scenarios, as a result
some approximations has to be made in the Newtonian schemes in order to
implement non-standard scenarios mainly because of the fact that dark energy
opposed to dark matter and baryons is not dominated completely by its rest-mass
density and thus requires a relativistic treatment.

gevolution is a relativistic N -body code was developed based on the Particle-
Mesh scheme. In this code, the continuous fields e.g., the metric perturbations
or the stress-energy tensor components are discretized on the lattice grids. The
relativistic partial differential equations are solved numerically on the lattice
grids using the finite-difference method. While the fields are defined on the lat-
tice grids the positions and momenta of N-body particles can have arbitrary
values. The values of the fields and the distribution of the particles should be
consistent as they depend on each other according to the projection and interpo-
lation procedures (see Adamek et al. [2020a] for a discussion about comparison
between different relativistic N -body codes and their numerical solution to the
fields equations).

k-evolution As a first step toward the goal of implementing the full EFT of
DE in gevolution we have developed the k-evolution code Hassani et al. [2019c]
which is represented completely in Chapter 2. In k-evolution we have added a
k-essence scalar field expressed in the EFT framework. In the Fig. 1.5 the main
loop of k-evolution is illustrated.
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1.7. Cosmological N -body simulations

Figure 1.5: The schematic picture showing the main loop of k-evolution code.
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Chapter 2. k-evolution: a relativistic N-body code for clustering dark energy

Abstract: We introduce k-evolution, a relativistic N -body code based on
gevolution, which includes clustering dark energy among its cosmological com-
ponents. To describe dark energy, we use the effective field theory approach. In
particular, we focus on k-essence with a speed of sound much smaller than unity
but we lay down the basis to extend the code to other dark energy and modified
gravity models. We develop the formalism including dark energy non-linearities
but, as a first step, we implement the equations in the code after dropping non-
linear self-coupling in the k-essence field. In this simplified setup, we compare
k-evolution simulations with those of CLASS and gevolution 1.2, showing the ef-
fect of dark matter and gravitational non-linearities on the power spectrum of
dark matter, of dark energy and of the gravitational potential. Moreover, we
compare k-evolution to Newtonian N -body simulations with back-scaled initial
conditions and study how dark energy clustering affects massive halos.

2.1 Introduction
The physical reason for the observed acceleration of the Universe Riess et al.
[1998a] is one of the most important mysteries in cosmology, and arguably gen-
erally in fundamental physics. Although cosmology has been revolutionised by
the arrival of high quality observations that have allowed to pin down many
parameters of the standard model Planck Collaboration et al. [2018], the dark
sector is still compatible with a cosmological constant and collisionless cold dark
matter. This is one motivation for the next generation of large galaxy surveys
like Amendola et al. [2016], Santos et al. [2015b] that will observe billions of
galaxies to provide galaxy number counts and weak lensing measurements.

But much of this data will probe scales that are mildly or strongly non-
linear, a regime that is not well modelled even for the Lambda-cold-dark matter
(ΛCDM) standard model Jalilvand et al. [2020]. In this paper we start a system-
atic study of the effects of dark energy on cosmological structure formation in the
non-linear regime. We will do so by implementing dark energy in the relativistic
N -body simulation code gevolution Adamek et al. [2016a], Adamek et al. [2016b].
The gevolution code works in the weak field limit of General Relativity (GR),
which makes it easy to include additional relativistic fields. To model dark en-
ergy theories, we will use the Effective Field Theory of dark energy (EFT of DE)
approach (see e.g. Gubitosi et al. [2013a] and references below; see also Cusin
et al. [2018b], Frusciante & Papadomanolakis [2017] for studies of the non-linear
action in the EFT of DE approach and Cusin et al. [2018a] for an application to
perturbation theory beyond linear order). The EFT of DE allows one to describe,
in a relativistic setting and with a minimal set of parameters, very general dark
energy and modified gravity models based on a single scalar degree of freedom.
The use of gevolution allows to combine both the EFT of DE and the weak field
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expansion systematically, paving the way for N -body simulations of a wide class
of dark energy and modified gravity models.

In this first paper we illustrate the approach specifically with the example of k-
essence Armendariz-Picon et al. [2000, 2001]. After a brief reminder of the basics
of the EFT of DE framework in Sec. 2.2, we derive the relevant equations (with
more details given in App. 2.A) and briefly discuss their practical implementation
in our new code, k-evolution. We refer the reader to App. 2.B for more details
on the numerical implementation of the dark energy equations and to App. 2.C
for a discussion on gauge issues when comparing with linear codes and setting
the initial conditions.

Then, in Sec. 2.3 we present a detailed analysis of the power spectra computed
with k-evolution and compare the spectra to those obtained with other numerical
codes. In Sec. 2.4 we examine snapshots of the dark energy simulations computed
with k-evolution with particular attention to the environment of massive clusters.
Finally, we conclude in Sec. 2.5.

Due to its complexity, the full non-linear treatment of the dark energy pertur-
bation equations requires a dedicated study that will be addressed in a separate
publication. (See however App. 2.D where we study the evolution of non-linear
perturbations in the limit of small speed of sound and in matter domination.) In
this paper we limit the simulations to the linear k-essence equations, although
these equations are coupled to the non-linear clustering of the dark matter, which
can in turn lead to non-linear clustering of the dark energy. This approach will be
called k-evolution in the following. We compare it to the fully linear treatment
implemented in version 1.2 of gevolution1 that uses a realisation of the linear fluid
transfer functions from CLASS Blas et al. [2011a] in the w-c2

s-parametrisation and
is presented here for the first time, as well as to a standard N -body simulation
where only the background evolution is changed according to the equation of
state w, without allowing for perturbations in the dark energy.

2.2 The EFT of k-essence

In this section we introduce the effective field theory description of dark energy
and we derive the relevant equations for its implementation in gevolution. We
assume that matter – the dark matter and the Standard Model particles – is
minimally coupled to the gravitational metric gµν . Moreover, as explained in the
introduction, we consider theories with a preferred time-slicing induced by the
evolution of a scalar field and we focus on operators describing general scalar-
field Lagrangians that can be constructed out of the field value φ and its first
derivatives contracted with gµν , i.e., X .= gµν∂µφ∂νφ. In the covariant language,

1https://github.com/gevolution-code/gevolution-1.2.git
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the action describing this class of theories is

SDE =
∫
d4x
√
−gP (X,φ) , (2.1)

which is also known as k-essence Armendariz-Picon et al. [2000, 2001].

2.2.1 The action and the homogeneous equations
To describe the dark energy fluctuations we adopt the EFT of DE description
Bloomfield [2013], Bloomfield et al. [2013], Creminelli et al. [2009], Gleyzes et al.
[2013], Gubitosi et al. [2013a] (see also Frusciante & Perenon [2020], Gleyzes
et al. [2015], Piazza & Vernizzi [2013], Tsujikawa [2015] for reviews; for other
effective relativistic approaches, see for instance Baker et al. [2011, 2013], Battye
& Pearson [2012], Bellini & Sawicki [2014], Lagos et al. [2016]), which is partic-
ularly convenient for studying fluctuations around cosmological FRW solutions
with a preferred slicing induced by the time-dependent background scalar field.
In the unitary gauge, where the time coincides with uniform-field hypersurfaces,
the EFT action expanded around a spatially flat background reads Cheung et al.
[2008], Creminelli et al. [2009]

S =
∫
d4x
√
−g

[
M2

Pl
2 R− Λ(t)− c(t)g00 + M4

2 (t)
2

(
δg00

)2
+ . . .

]
, (2.2)

where R is the four-dimensional Ricci scalar, Λ(t), c(t), and M4
2 (t) are time-

dependent functions and δg00 is the perturbation of g00 around its homogeneous
value. The ellipsis stands for terms that are of higher order in the fluctuations
δg00. These terms can be ignored because they are negligible in the weak-field
expansion adopted by gevolution (see e.g. Refs. Cusin et al. [2018b] for details).
We will come back to this point at the beginning of Sec. 2.2.3.

The functions Λ(t) and c(t) are not independent; they can be expressed in
terms of the background expansion and matter quantities through the homoge-
nous Friedmann equations. Varying the action with respect to the homogenous
lapse N(t) and the scale factor a(t), appearing in the homogenous metric as
ds2 = −N2(t)dt2 + a2(t)d~x2, we obtain

ȧ2

a2
.= H2 = 1

3M2
Pl

(ρm + c+ Λ) , (2.3)

ä

a
= Ḣ +H2 = − 1

6M2
Pl

(ρm + 3pm + 4c− 2Λ) , (2.4)

where ρm and pm are respectively the homogeneous matter energy density and
pressure.
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The stress-energy tensor of dark energy can be computed from the above
action as

Tµν = − 2√
−g

δSDE

δgµν
, (2.5)

where SDE is the action without the Einstein-Hilbert term. In unitary gauge one
finds

Tµν = −
[
Λ + cg00 − M4

2
2 (δg00)2

]
gµν + 2(c−M4

2 δg
00)δ0

µδ
0
ν . (2.6)

The homogeneous part of the stress-energy tensor is obtained by taking g00 = −1
and δg00 = 0 in the above expression. Rewriting its components in terms of the
homogeneous energy density ρDE(t) and pressure pDE(t) of the dark energy, using
T00 = ρDE(t) and Tij = δijpDE(t), we obtain

c(t) = 1
2 [ρDE(t) + pDE(t)] , Λ(t) = 1

2 [ρDE(t)− pDE(t)] , (2.7)

which is consistent with the Friedmann equations above. Moreover, using these
expressions, taking the derivative with respect to time of Eq. (2.3) and using
Eq. (2.4) we can also check that the Friedmann equations are consistent with the
homogeneous continuity equation for dark energy, i.e.,

ρ̇DE + 3H(ρDE + pDE) = 0 , (2.8)

as expected. From Eq. (2.7), this implies that c and Λ satisfy ċ+ Λ̇ + 6Hc = 0.

2.2.2 Stückelberg trick to conformal time
To study the cosmological perturbations in this setup, it is convenient to adopt
a gauge where the perturbations of the scalar field are explicit. We can restore
diffeomorphism invariance of the action by the Stückelberg trick Cheung et al.
[2008], Gleyzes et al. [2013], i.e., by performing a time-diffeomorphism

t→ t̃ = t+ ξ0(t, ~x) , ~x→ ~̃x = ~x , (2.9)

and promoting the parameter ξ0 to a field. In the following, however, instead of
using cosmic time t we will present the evolution equations with the conformal
time η, which is related to t by η .=

∫
dt/a(t). For this reason, instead of defining

the Goldstone boson of broken time diffeomorphisms π as the parameter of the
time diffeomorphism ξ0 Cheung et al. [2008], we will adopt a definition adapted
to the conformal time η. In particular, we will define π as ξ0 divided by the scale
factor, i.e.,

π(t, ~x) .= ξ0(t, ~x)/a(t) . (2.10)
We can now compute how the quantities in the action (2.2) change under

the time-transformation above, paying attention to expressing the cosmic time

53



Chapter 2. k-evolution: a relativistic N-body code for clustering dark energy

quantities in terms of conformal time. The Ricci scalar does not change under
the transformation (2.9), while g00 transforms as

g00(t, ~x)→ g̃00(t̃(η, ~x), ~x) = ∂t̃(η, ~x)
∂xµ

∂t̃(η, ~x)
∂xν

gµν(t(η), ~x)

= ∂ [t(η) + a(η)π(η, ~x)]
∂xµ

∂ [t(η) + a(η)π(η, ~x)]
∂xν

gµν(η, ~x) ,
(2.11)

which gives

g00(t, ~x)→ g̃00(t, ~x) = a2
[
(1+Hπ)2g00 +2(1+Hπ)g0µ∂µπ+gµν∂µπ∂νπ

]
, (2.12)

where the untilded metric on the right-hand side is the one in conformal time.
Any function of time, instead, transforms as

f(t)→ f̃
(
t̃(η, ~x)

)
= f (t(η) + a(η)π(η, ~x))

= f(η) + f ′(η)π(η, ~x) + 1
2 [f ′′(η)−H(η)f ′(η)] [π(η, ~x)]2 + . . . ,

(2.13)

where H .= a′/a is the conformal Hubble rate. Applying these transformations
to the action (2.2), we can derive the fully covariant action,

S =
∫
d4x
√
−g
{
M2

Pl
2 R− Λ [t(η) + a(η)π]− c [t(η) + a(η)π] a2(η)

[
(1 +Hπ)2g00

+ 2(1 +Hπ)g0µ∂µπ + gµν∂µπ∂νπ
]

+ M4
2 [t(η) + a(η)π]

2

× a4(η)
[
(1 +Hπ)2g00 + 2(1 +Hπ)g0µ∂µπ + gµν∂µπ∂νπ − ḡ00

]2}
,

(2.14)

where we have used that the Ricci scalar R does not transform, and in the last
term we have introduced ḡ00, the background value of g00, i.e., ḡ00 = −1/a2.

Finally, using the definition (2.5), we can write the expression of the stress-
energy tensor, which reads

Tµν = −
{

Λ (t+ aπ) + c (t+ aπ) a2
[
(1 +Hπ)2g00 + 2(1 +Hπ)g0ρ∂ρπ + gρσ∂ρπ∂σπ

]
− M4

2 (t+ aπ)
2 a4

[
(1 +Hπ)2g00 + 2(1 +Hπ)g0ρ∂ρπ + gρσ∂ρπ∂σπ − ḡ00

]2}
gµν

+ 2
[
(1 +Hπ)2δ0

µδ
0
ν + 2(1 +Hπ)δ0

(µ∂ν)π + ∂µπ∂νπ
]{
c (t+ aπ) a2

−M4
2 (t+ aπ) a4

[
(1 +Hπ)2g00 + 2(1 +Hπ)g0ρ∂ρπ + gρσ∂ρπ∂σπ − ḡ00

]}
.

(2.15)
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This expression is fully nonlinear and can be expanded at any given order in
perturbations. In deriving it, we only assumed that higher powers of δg00 in the
action (2.2) are negligible in the weak field limit, which we justify below.

2.2.3 Perturbations
To study the perturbations, we will use the Poisson gauge, where the metric
reads

ds2 = a2(η)
[
−e2Ψdη2 − 2Bidx

idt+ (e−2Φδij + hij)dxidxj
]
, (2.16)

where δij∂jBi = 0 and δijhij = 0 = δij∂ihjk.
In gevolution it is assumed that the metric perturbations remain small at the

scales of interest. This is implemented by defining a small parameter ε, such
that Φ, Ψ, Bi and hij are at most of order O(ε). For non-relativistic sources,
time derivatives are of order Hubble and do not change the order of a term
in the expansion. Instead, each spatial derivative lowers the order of a given
term by one half, so that for instance ∂iΦ ∼ O(ε1/2) and ∇2Φ ∼ O(ε0), where
∇2 .= δij∂i∂j defines the Laplacian. We refer the reader to Refs. Adamek et al.
[2016a, 2017b] for details.

The Einstein-Hilbert term in the action (2.2) contains at least two spatial
derivatives of the metric so that the order of this term is n − 1, where n is
the order of the expansion in metric perturbations. For instance, in gevolution
one expands the Einstein tensor up to second order in the metric perturbations,
which for the terms containing two spatial derivatives corresponds to going at
most at order O(ε) in the equations of motion. The Einstein tensor up to this
order can be obtained by varying the Einstein-Hilbert term expanded up to order
O(ε2). To be coherent with this scheme, we have to keep all the terms in the
action that contribute at most to O(ε2).

To evaluate the order of an operator in the EFT of DE action, we need
to look at the scalar field perturbation π. On large scales, linear cosmological
perturbation theory is recovered. In this case π is of the same order as the metric
perturbations. In particular, using the scaling above we have

π ∼ O(ε) , ∂iπ ∼ O(ε1/2) , ∇2π ∼ O(ε0) . (2.17)

For instance, this means that we need to expand the operator Λ up to second
order in π using Eq. (2.13). Moreover, by Eq. (2.12) δg00 is at least of order O(ε),
which implies that any operators of order higher that (δg00)2 can be neglected,
which justifies truncating the action (2.2) at this order.

We can now discuss the field equations. Variation of the action with respect
to π gives the evolution equation for the perturbation of the scalar field. For
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later purposes, it is convenient to introduce the variable

ζ
.= π′ +Hπ −Ψ , (2.18)

and express the first and second time-derivative of π in terms of ζ and ζ ′. Using
the conservation equation (2.8), which in terms of the conformal time reads

ρ′ = −3H(ρ+ p) , (2.19)

by varying the action we obtain the following system of coupled equations:

π′ = ζ −Hπ + Ψ , (2.20)
ζ ′ = (3c2

a + s)Hζ − 3c2
s

(
H2π −HΨ−H′π − Φ′

)
+ c2

s∇2π

− ~∇
[
2(c2

s − 1)ζ + c2
sΦ−Ψ

]
· ~∇π −

[
(c2
s − 1)ζ + c2

sΦ− c2
sΨ
]
∇2π

− H2
[
(2 + 3c2

a + c2
s + s)(~∇π)2 + 6c2

s(1 + c2
a)π∇2π

]
+ c2

s − 1
2 ∂i

(
∂iπ(~∇π)2

)
,

(2.21)

where we have introduced the speed of propagation squared of dark energy fluctu-
ations, c2

s, its rate of change, s, and the adiabatic speed of sound squared (which
generally differs from the speed of propagation) c2

a. These are respectively defined
as2

c2
s
.= c

c+ 2M4
2
, s

.= (c2
s)′

c2
sH

, c2
a
.= p′

ρ′
= Λ′ − c′
c′ + Λ′ , (2.22)

where for the last equality we have used Eq. (2.7). Notice that c2
a can be related to

the time derivative of the equation of state w .= p/ρ by w′ = −3H(1+w)(c2
a−w)

so that w and c2
s completely characterize the model.

Let us pause to comment on these equations. First, all the terms are of order
O(ε), with the exception of ∇2π. This term is O(1) in our perturbative scheme.
But this term generates the pressure support within the sound-horizon of the
scalar field, and leads to wave-like behaviour, not a growth of perturbations. For
this reason it does not change the order of π which is an O(ε) quantity. The
other terms are all small; as an example we can consider the last term. It involves
three fields π (so it is of order 3 in the standard perturbation-theory expansion),
and since it contains four spatial derivatives its order is 3−4/2 = 1. Second, the
equations are at most of order three in the perturbations, which is a consequence
of the fact that we are considering only theories with at most one derivative per
field in the action so that one pays at least an O(ε1/2) for each new order in
the perturbations. Third, the limit of c2

s → 1, obtained by sending M4
2 → 0, is

2 The covariant k-essence action, Eq. (2.1), implies that Bonvin et al. [2006] w = P
2XP,X −P

and c2
s = P,X

2XP,XX +P,X
, where we have denoted the symbol of partial derivation by a comma.
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well defined. In this case the last cubic term vanishes but this is to be expected
because it can only come from the operator M4

2 in the action (2.2). Also the
limit c2

s → 0 (obtained for M4
2 � c) is well defined; we will come back to it at

the end of the section.
Let us turn now to the stress-energy tensor of dark energy. Expanding

Eq. (2.15) using the Poisson metric (2.16) one obtains

T 0
0 = −ρ+ ρ+ p

c2
s

[
3c2
sHπ − ζ −

2c2
s − 1
2 (~∇π)2

]
,

T 0
i = −(ρ+ p)

[
1− 1

c2
s

(
3c2
s(1 + w)Hπ − ζ + c2

sΨ
)

+ c2
s − 1
2c2
s

(~∇π)2
]
∂iπ ,

T ij = pδij − (ρ+ p)
[
3c2
aHπ − ζ + 1

2(~∇π)2
]
δij + (ρ+ p)δik∂kπ∂jπ ,

(2.23)

where we have used the homogeneous continuity equation and we have expanded
T 0

0 and T ji up to order O(ε) and T i0 up to order O(ε3/2).
The latter is expanded to higher order than T 0

0 and T ji because its divergence,
which is O(ε), appears as the source in the continuity equation. As shown in
Appendix 2.A, Eqs. (5.1) and (5.2) are equivalent to the conservation equation
∇µT

µ
ν = 0 of the stress-energy tensor above. Note that in the limit c2

s → 0 the
components T 0

0 and T 0
i seem to blow up due to the 1/c2

s term. However, one
can show that the brackets on the right-hand side of these expressions vanish at
leading order in c2

s, so that the stress-energy tensor remains finite. We discuss
this in more detail in the case of matter domination in App. 2.D.

We also note that when linearized, the stress-energy tensor is purely scalar.
The higher-order terms do not preserve this property, but the resulting vector
and tensor type contributions will be small. For this reason we do not expect
scalar dark energy to lead to significantly larger vector and tensor perturba-
tions than ΛCDM. The dark energy stress-energy tensor must be inserted in
the Einstein equations (obtained from the variation of Eq. (2.2) with respect to
the metric), together with the stress-energy tensors of the other species. The
Einstein equations in the weak field approximation are

(1 + 2Φ)∇2Φ− 3HΦ′ − 3H2(Φ− χ)− 1
2δ

ij∂iΦ∂jΦ = −4πGa2δT 0
0 , (2.24)

∇4χ−
(

3δikδjl ∂2

∂xk∂xl
− δij∇2

)
Φ,iΦ,j = 4πGa2

(
3δik ∂2

∂xj∂xk
− δij∇2

)
T ji ,

(2.25)
where ∇4 .= δijδkl∂i∂j∂k∂l and the stress tensor T νµ includes the relevant species
including matter and dark energy, χ .= Φ − Ψ, and the transverse projection
tensor is defined as,

Pij
.= ∂2

∂xi∂xj
− δij∇2 . (2.26)
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Here we do not discuss the equations for vector and tensor perturbations, as we
are not going to study them in this paper.

2.2.4 Implementation
In this work, we remove the non-linear terms in the π evolution equations and
stress-energy tensor. Due to their complexity, we are going to study the non-
linear self-interaction of dark energy in detail in a separate work. It is interesting
to note that although we have removed the π non-linear self-interaction, the
energy density of the scalar field nonetheless becomes non-linear as it is sourced
by matter going non-linear. For the sake of simplicity, we also assume that both
w and c2

s are constant, which implies

s = 0 , c2
a = w . (2.27)

Theoretically, this is not well motivated but it would not be difficult to include the
time-evolution of w and c2

s. However, since there are no especially well-motivated
models in any case, we prefer to consider here only the simplest scenario.

When we neglect the non-linear terms, the π evolution equations (5.1) and
(5.2) read

π′ = ζ −Hπ + Ψ , (2.28)
ζ ′ = 3wHζ − 3c2

s

(
H2π −HΨ−H′π − Φ′

)
+ c2

s∇2π , (2.29)

and the linear stress tensor becomes

T 0
0 = −ρ+ ρ+ p

c2
s

(
3c2
sHπ − ζ

)
,

T 0
i = −(ρ+ p)∂iπ ,

T ij = pδij − (ρ+ p)
(

3c2
aHπ − ζ

)
δij .

(2.30)

A detailed description of the numerical implementation can be found in Appendix
2.B.

2.3 Numerical results for power spectra
In this section we compare the power spectra from k-evolution with the linear
perturbation solutions from CLASS Lesgourgues [2011] and with the power spectra
computed with gevolution 1.2 using the CLASS interface to include dark energy.
For both cases we consider two different speeds of sound: c2

s = 10−7 and c2
s =

10−4. We also test the effects that arise when trying to simulate a different
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h ns As Ωbh
2 ΩCDMh

2 ΩDE TCMB[K] Nν w

0.67556 0.9619 2.215× 10−9 0.02203 0.12038 0.68786 2.7255 3.046 -0.9

Table 2.1: Values of the cosmological parameters used in this paper. In particu-
lar, ns and As are respectively the spectral index and amplitude of the primordial
scalar fluctuations; Ωb, ΩCDM and ΩDE are the critical densities, respectively of
baryons, CDM and dark energy; h .= H0/(100Km s−1Mpc−1) is the reduced Hub-
ble constant; Nν is the Standard Model effective number of neutrino species while
w is the equation of state of dark energy. We also consider pivot wavenumber
kp = 0.05 Mpc−1.

expansion history in a Newtonian simulation without including a dark energy
fluid at all.

We always combine two simulations with sizes L = 9000 Mpc/h and L =
1280 Mpc/h, both with a grid of size Ngrid = 38403. All the results in this
section have been obtained using the cosmological parameters shown in Tab. 8.1.

In Fig. 2.1 we illustrate the conceptual difference between the three codes
we use in this section: In k-evolution matter and gravitational potentials are
treated non-linearly3 and act as a source for the linearized dark energy equations
so that the dark energy contains non-linear contributions as well. This is con-
sistently taken into account when dark energy density sources the gravitational
potential. In gevolution the dark energy density is approximated by its linear
solution computed with CLASS and is therefore not sourced by the non-linearities
of matter. However, the gravitational potentials are sourced by this linear dark
energy density, and matter evolves accordingly. Finally, in CLASS all the fields
are linearized and all species source each other.

3With non-linear gravitational potentials we do not mean that they become large, but that
they are different from the linear predictions especially for large wave numbers. However, they
still remain small and respect the weak-field approximation.
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Figure 2.1: Schematic description of the three different codes used in this work,
where the blue arrows show if one component sources the other. On the left,
the two blue arrows going from non-linear matter and potentials to δDE, and
vice-versa, show that in k-evolution all the components interact and source each
other. Although we have used the density of linearized dark energy, its solution
becomes non-linear since it is sourced by other species. In gevolution the matter
and potentials become non-linear and are sourced by linear dark energy density,
while δDE is computed with CLASS. In CLASS all the components are linear and
interact with each other.

2.3.1 k-evolution versus CLASS

We start by comparing k-evolution with the linear Boltzmann code CLASS. In
CLASS code, one can extend the matter power spectrum beyond the linear regime
by the use of Halofit Takahashi et al. [2012]. However, one should remember
that Halofit is calibrated to simulations without clustering dark energy. In the
following we will use CLASS both with and without the use of Halofit. The power
spectrum of a given quantity X is defined by

〈X̂(~k)X̂(~k′)〉 = (2π)3δ(~k + ~k′)PX(k) , (2.31)

where X̂(k) is the Fourier transform of X. The dimensionless power spectrum
is defined by

∆X(k) .= k3

2π2PX(k) . (2.32)

In Fig. 2.2 we show the matter power spectrum. The onset of non-linear
structure formation is clearly visible on scales k > 0.1h/Mpc, where the relative
difference between the linear and non-linear power spectra changes sign. On very
large scales, k-evolution agrees with CLASS at the percent-level for all redshifts,
but at intermediate scales and at low redshifts the difference increases to about
5%. We will see in Sec. 2.3.2, where we compare our results from k-evolution
with gevolution, that the agreement there at low redshifts is much better, which
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Figure 2.2: The top panel shows the matter power spectra from k-evolution
and CLASS at different redshifts for c2

s = 10−7. The bottom panel shows the
relative difference between the matter power spectra of CLASS-Halofit and those
of CLASS-k-evolution. The relative difference increases in the quasi-linear regime
and for z = 0 reaches ∼ −5% at its peak for CLASS-k-evolution and ∼ −2% for
CLASS-Halofit, while at high wavenumbers the non-linearity dominates. Notice
that the vertical axis of the bottom panel is logarithmic above 0.05 and linear
below.

61



Chapter 2. k-evolution: a relativistic N-body code for clustering dark energy

means that the relative difference here comes from the effect of non-linearities at
quasi-linear scales. Here we only plot the results for c2

s = 10−7 as we will show in
Sec. 2.3.2 that the effect of dark energy clustering on the matter power spectrum
is negligible so that this plot would look the same for other values of c2

s.
The power spectrum from CLASS extended beyond the linear regime using

Halofit exhibits similar features as the one from k-evolution, particularly in the
quasi-linear regime: the spectra of both k-evolution and Halofit are slightly sup-
pressed relative to the linear power spectrum due to non-linearities4. For Halofit
the differences reach ∼ −2%, not quite in agreement with the k-evolution result,
which may be due to the fact that Halofit is not calibrated for such models.

The situation is similar for the gravitational potential shown in Fig. 2.3, where
again we observe the onset of non-linearity at k > 0.1h/Mpc, as well as a scale
dependent difference at intermediate scales where the linear power spectrum is
larger than the non-linear one. Again, the Φ power spectra for the two speeds of
sound are only slightly different, so that we only show the results for c2

s = 10−7

and we will study the effect of the dark energy speed of sound on the gravitational
potential in detail by comparing the potential power spectrum from k-evolution
with gevolution in Sec. 2.3.2 .

The dark energy density power spectra at different redshifts, for c2
s = 10−4

and c2
s = 10−7, are shown in Fig. 2.4. The vertical lines indicate the sound-

horizon of dark energy, which roughly corresponds to the peak of the linear
dark energy density power spectrum, since on scales smaller than the sound-
horizon the perturbations decay while on scales larger than the sound-horizon the
perturbations grow. As a result, the density power spectrum of dark energy for
c2
s = 10−7 is much higher than the same quantity for c2

s = 10−4: the sound-horizon
for c2

s = 10−7 corresponds to much smaller scales and we have an enhancement
of perturbations on scales larger than the sound-horizon. For this reason, the
non-linear dark energy clustering is much clearer for the simulation with smaller
speed of sound. But the enhancement is also present for c2

s = 10−4. The peak of
the dark energy power spectrum is also affected by non-linearities: for example,
in the case c2

s = 10−7 the peak of the dark energy density power spectrum at
redshift z = 0 is shifted to smaller scales.

In Fig. 2.5, the π power spectra at different redshifts from k-evolution and
CLASS for the two speeds of sound are compared. ∆π has units of [Mpc2/h2],
multiplying by k2 makes it dimensionless. It is important to note that one can
obtain the θDE spectrum from the π spectrum by using π(k, z) = θ(k, z)/k2

according to Eq. (2.21). For both speeds of sound, the dark energy scalar field
fluctuations π or equivalently the dark energy velocity divergence θDE becomes

4This comes from the fact that in the one-loop contribution to the matter power spectrum
in standard perturbation theory, i.e., P SPT

22 + P SPT
13 , the term P SPT

13 is always negative and is
the dominant term at large and quasi-linear scales, up to ∼ 0.1h/Mpc, while at smaller scales
P SPT

22 becomes the dominant term Jalilvand et al. [2020].
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Figure 2.3: Comparison of the power spectra of the gravitational potential Φ
computed with k-evolution (solid lines) and CLASS (dashed lines), for c2

s = 10−7.
At the top, we show the power spectra at different redshifts and at the bottom
their relative difference. On intermediate scales, the power spectra computed
with k-evolution are suppressed compared to those of CLASS, while the situation
is reversed in the non-linear regime, for k > 0.1h/Mps.
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Figure 2.4: Comparison of the dark energy density power spectra from k-
evolution (solid lines) and from CLASS (dashed lines) at different redshifts, for
two different speeds of sound, c2

s = 10−7 (left-panel) and c2
s = 10−4 (right-panel).

The vertical dashed lines show the value of the dark energy sound-horizon at
each redshift, using the same color as the corresponding power spectrum. The
turn-around in the power spectra takes place inside the sound-horizon. Its exact
position is affected by dark matter non-linearities, as one can see comparing the
case c2

s = 10−4, where the turn-around happens on linear scales, and the case
c2
s = 10−7, where the turn-around takes place in the non-linear regime. Notice
also that, as for the matter power spectrum, in the linear and quasi-linear regime
at z = 0, the non-linear dark energy power spectrum is smaller than the linear
one.
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Figure 2.5: Comparison of π power spectra at different redshifts from k-evolution
(solid lines) and CLASS (dashed lines), for c2

s = 10−4 (right-panel) and c2
s = 10−7

(left-panel). ∆π has units of Mpc2/h2; multiplying it by k2 makes it dimension-
less. The vertical dashed lines show the value of the dark energy sound-horizon
at each redshift. The dark energy velocity divergence power spectrum, ∆θDE , is
simply given by k4∆π.
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Figure 2.6: Comparison of the ratio between dark energy and matter power
spectra from CLASS and k-evolution for two speeds of sound, c2

s = 10−4 (right
panel) and c2

s = 10−7 (left panel), at different redshifts. For c2
s = 10−4, the

sound-horizon is at about the scale of matter non-linearity and the result from
k-evolution agrees well with the one from CLASS. For c2

s = 10−7, the sound-
horizon is smaller than the matter non-linearity scale and we observe significant
differences between the k-evolution and CLASS results, due to the matter and
dark energy clustering, which are absent in the linear theory. The upturn visible
in the ratio on large scales for z = 50 is a gauge effect on horizon scales.

non-linear due to the matter non-linearities and decays inside the sound-horizon
scale.

Figure 2.6 shows the ratio between the dark energy and matter power spectra
at different redshifts, for both speeds of sound c2

s = 10−4 and c2
s = 10−7. In the

case c2
s = 10−4, k-evolution and CLASS agree well, which shows that the non-

linearity in dark energy and matter are roughly proportional. On the other
hand, in the case c2

s = 10−7 we see a large difference between CLASS and k-
evolution because the dark energy sound-horizon lies inside the scale of matter
non-linearity. Here, the ratio PDE/Pm is more suppressed in k-evolution than
in CLASS, as the matter non-linearity is more effective than dark energy non-
linearity, while inside the sound-horizon (on the very right of the left-hand panel,
for redshifts, z = 0 and z = 1) we see the k-evolution result becoming larger than
the one of CLASS, due to the effective clustering of dark energy at those scales.
A more detailed study of the power ratio can be found in a companion paper
Hassani et al. [2020c].
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2.3.2 k-evolution versus gevolution 1.2 using its CLASS in-
terface

Relativistic components that only couple gravitationally to dark matter cluster
weakly. It is then a good approximation to describe them using their linear
solution. For instance, in N -body simulations one can simply include a reali-
sation of the linear density field of such components in the computation of the
gravitational potentials. To this end, one first computes the respective linear
transfer functions using an Einstein-Boltzmann solver, and then lays down per-
turbations matching to the random amplitudes and phases that where used as
initial data for the simulation. The correct coupled evolution of dark matter
and the additional components is recovered at linear order by construction, and
whenever the non-linear growth in the dark matter is completely dominated by
its self-gravity one can obtain very accurate results even deep in the non-linear
regime. This method has been successfully employed for treating the effect of
neutrinos Adamek et al. [2017b], Brandbyge & Hannestad [2009] or radiation
Adamek et al. [2017a], Brandbyge et al. [2017] on dark matter clustering, and
has been extended to dark energy fluids in the current version 1.2 of gevolution. A
conceptually similar implementation has been recently presented in Dakin et al.
[2019].

As opposed to k-evolution, this method does not allow to track the response
of dark energy to the gravitational potentials of non-linear matter structures, as
illustrated in Fig. 2.1. This effect is expected to be relevant in particular for low
effective speed of sound of the fluid, i.e., when the clustering of the dark energy
is not strongly suppressed. In this section we study the non-linear matter power
spectrum obtained with both methods, which allows us to quantify the accuracy
of the simplified linear treatment as implemented in gevolution. We demonstrate
that the matter power spectra agree extremely well on all scales and at all times,
but find some noticeable corrections to the gravitational potential at baryon
acoustic oscillations (BAO) scales once dark energy dominates.

The matter power spectrum from k-evolution and gevolution at different red-
shifts are compared in Fig. 2.7 for c2

s = 10−7, where we find a sub-percent agree-
ment on all scales and at all redshifts between the two matter power spectra.
For the higher value c2

s = 10−4 (not plotted in this figure) the agreement is even
better. We conclude that there is no significant impact of non-linear dark en-
ergy fluctuations on the matter spectrum, once non-linear matter clustering is
correctly taken into account.

In Fig. 2.8 the gravitational potential power spectra from k-evolution and
gevolution at different redshifts for the speed of sound c2

s = 10−7 are compared.
Interestingly, the dark energy clustering affects the gravitational potential power
spectrum in the mildly non-linear regime, with up to ∼ 4% differences appearing
at z = 0. This effect could potentially change the lensing signal if the universe
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Figure 2.7: At the top, comparison of the matter power spectra from k-evolution
and gevolution at different redshifts, for c2

s = 10−7. At the bottom, relative differ-
ence between the two power spectra at each redshift is shown. The figure shows
that the effect of non-linearity of dark energy on the matter power spectrum is
negligible.
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Figure 2.8: In the top panel, the potential power spectra from k-evolution and
gevolution at three different redshifts are shown and in the bottom panel the
relative difference between the power spectra at the same redshifts are plotted.
The dark energy clustering changes the potential power spectrum by up to ∼ 4%
at mildly linear scales at z = 0.
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contains k-essence as a dark energy fluid.
The power spectra of the dimensionless quantity Φ′/H from k-evolution and

gevolution, compared to the linear prediction from CLASS are shown in the top
panel of Fig. 2.9. This is an interesting quantity as it is a direct source of dark
energy already at linear order, as can be seen in Eq. (5.2). According to Fig.
2.9, the scale of non-linearity in the Φ′ power spectrum starts at ∼ 0.005 h/Mpc,
much earlier than the scale of non-linearity in the matter and potential power
spectra, which at z = 0 is ∼ 0.1h/Mpc. This effect is not specific to k-essence
models, it has also been observed for ΛCDM in Cai et al. [2009a], where it
was studied as non-linear integrated Sachs–Wolfe (ISW) effect. Interestingly,
this effect adds a new scale into the dynamics of π, in addition to the sound-
horizon scale and the scale of matter non-linearity. Comparing k-evolution and
gevolution, there is a ∼ 3% effect due to the clustering of dark energy at large
and quasi-linear scales for both values of c2

s. Moreover, there is ∼ 5% bump
due to the dark energy clustering at quasi-linear scales for the case c2

s = 10−7,
which peaks around k = 0.4h/Mpc. These changes in Φ′, and especially the
large difference relative to the linear predictions, even at low k, could potentially
affect the ISW effect.

We define the normalized cross power spectrum between matter and dark
energy as

∆× = ∆DE×m√
∆DE∆m

, (2.33)

where ∆DE and ∆m are respectively the dark energy and the matter power
spectrum while ∆DE×m is their cross spectrum. This quantifies the correlation
between the clustering of matter and dark energy. Figure 2.10 compares this
quantity computed with k-evolution and gevolution. In particular, it shows the
cross-spectra at different redshifts, for c2

s = 10−4 (right panel) and c2
s = 10−7

(left panel).
According to the Cauchy-Schwarz inequality, this quantity must be in the

range [−1, 1]. A value of 1 indicates that the two fields are fully correlated, 0
means that they are not correlated, and -1 that they are fully anticorrelated. In
linear perturbation theory and for adiabatic initial conditions (assumed here),
all quantities are related via a deterministic transfer function to the same initial
curvature perturbation, so that all the fields are fully correlated, ∆× = 1.

We see that on large scales, where the evolution is effectively linear, the
dark energy and matter fluctuations are indeed fully correlated in all cases. In
gevolution, the matter evolves non-linearly under its own gravity, while dark
energy is computed at the linear level. For this reason the two fields start to lose
their correlation when the matter perturbations become non-linear.

In k-evolution on the other hand, where dark energy is able to follow the
dominant non-linear matter perturbations, the correlations are essentially main-
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Figure 2.9: Comparison of the power spectra of Φ′/H for k-evolution, gevolution
and CLASS at different redshifts, for c2

s = 10−4 (right panel) and c2
s = 10−7 (left

panel). The onset of non-linear effects in Φ′ is on much larger scales than in
Φ or δm. The results from k-evolution and gevolution are more similar, with
differences reaching to ∼5% between the two codes.
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Figure 2.10: Normalized cross correlation power spectra at different redshifts for
speed of sound c2

s = 10−4 on the right and c2
s = 10−7 on the left. In gevolution, for

both speeds of sound the only important scale is the scale of matter non-linearity
as in gevolution the dark energy does not follow the non-linear matter structures,
and we see that after this scale the cross correlation power decays. In k-evolution
for c2

s = 10−4 almost at all scales the dark energy and matter densities are fully
correlated, as inside the sound-horizon dark energy does not cluster strongly and
closely follows the matter density. In the case with lower speed of sound, where
dark energy clusters and has self-dynamics the cross correlation power starts to
decay on small scales.
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Figure 2.11: Cross-correlation power spectra between matter and dark energy
densities at different redshifts, for c2

s = 10−4 (right panel) and c2
s = 10−7 (left

panel), computed by k-evolution and gevolution. In gevolution, the dynamics of
dark energy and matter decouple beyond the scale of matter non-linearity, so the
dashed lines and solid lines start deviating roughly at the scale of non-linearity.
In k-evolution, for c2

s = 10−4 the dark energy density does not cluster at scales
where matter clusters, and the dark energy follows matter. This is why the
cross-correlation power between the two densities is large. For c2

s = 10−7, the
dark energy density clusters and the turn-around in the cross-correlation power
spectrum takes place at the sound-horizon scale.

tained for large speeds of sound such as c2
s = 10−4. In this case, dark energy

crosses its sound-horizon before the scale of matter non-linearity and it is not
able to develop an independent dynamics; its clustering simply follows that of
the dark matter.

The situation is different for low speeds of sound, such as c2
s = 10−7, where

dark energy becomes non-linear outside the sound-horizon. In that case the
correlations start to decay, but more slowly than in gevolution, as the matter
clustering is still dominant and “drags” the dark energy perturbations at least
partially with it. This behaviour is clearly visible also in the field snapshots that
we study in Sec. 2.4.

For completeness we also show the raw cross-spectrum between matter and
dark energy densities at different redshifts for both speeds of sound in Fig. 2.11.
The main feature is the enhanced cross-power on small scales in k-evolution
due to the non-linear clustering of dark energy, mostly following the non-linear
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Figure 2.12: Ratio of dark energy and matter densities power spectra in k-
evolution (solid lines) and gevolution (dashed lines), at different redshifts for
c2
s = 10−7 (left panel) and c2

s = 10−4 (right panel). The scale at which gevolution
and k-evolution start disagreeing is giving by a combination of sound-horizon
and scale of matter non-linearity. In the low speed of sound case, c2

s = 10−7,
this happens at smaller scales. Also this ratio increases with the redshift, as
the matter clustering is much stronger than the dark energy clustering at lower
redshifts.

dark matter clustering. In Fig. 2.12 the ratio of dark energy and matter power
spectra at different redshifts are compared. On scales above the sound-horizon
we expect during matter domination a ratio of Creminelli et al. [2009], Sapone
& Kunz [2009]

PDE

Pm
'
( 1 + w

1− 3w

)2
= 1

1369 , (2.34)

for w = −0.9, which is verified by the simulations. Dark energy perturbations
inside the sound-horizon stop growing, so that the ratio relative to the dark
matter perturbations decreases. At lower redshifts, the decrease in k-evolution
tends to be slower than in gevolution, since in the latter only the dark matter
perturbations become non-linear on small scales, while dark energy is always
linear. In k-evolution both dark matter and dark energy perturbations become
non-linear on small scales.
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2.3.3 Newtonian simulations with “back-scaled” initial con-
ditions

Dark energy is a key target for large future surveys like the ESA Euclid satellite
Laureijs et al. [2011], and to exploit such data fully it is necessary to have reliable
results also on small scales where the matter perturbations are non-linear. To
find these results, it is common to use Newtonian N -body simulations where only
the expansion rate is changed, and where no dark energy is included Jennings
et al. [2010]. However, although the dark energy perturbations are small, it is
not clear whether this is really a good approximation as we know that the CMB
temperature anisotropies on large scales are very sensitive to the perturbations
Weller & Lewis [2003]. In order to study this question, we compare this standard
approach with our method that includes the linear dark energy perturbations,
as implemented in gevolution 1.2.

At the linear level, the presence of dark energy perturbations induces a scale
dependence in the growth of matter perturbations. This means that simulations
where only the background evolution is adjusted do not even reproduce the linear
results correctly. In order to deal with this issue, the common practice is to first
choose a redshift at which the accuracy of the N -body simulation should be
maximal (e.g., redshift zero) and to compute a linear matter power spectrum
for that redshift, including the effects of dark energy perturbations. In a second
step, the matter power spectrum is then “scaled back” to the initial redshift of
the simulation with the scale-independent growth function obtained by neglecting
the dark energy perturbations, based only on the modified expansion rate. While
this procedure provides initial data that do not correspond to the true matter
configuration at the initial time, the error is deliberately introduced in order to
precisely cancel the error in the linear evolution once the simulation reaches the
final redshift.

In our comparison we consider a case with a low speed of sound, c2
s = 10−7. In

principle such a choice may pose a challenge to the standard approach, as a scale
dependence is introduced close to the non-linear scale where the procedure out-
lined above becomes less reliable. We run one simulation with gevolution using
the CLASS interface to provide our baseline, and then compare our results with
two simulations where the CLASS interface is not used and only the background
evolution tracks the dark energy equation of state. We provide “back-scaled”
initial conditions for the latter two simulations, in one case based on the correct
linear matter power at redshift z = 0, while in the other case we match to the
linear matter power when additionally c2

s = 1 is assumed for the dark energy,
as is done in most numerical studies. All simulations are run in the Newtonian
mode, which means that for the baseline simulation the fluid perturbations are
taken in the N -body gauge Fidler et al. [2016].

In Fig. 2.13 we compare the matter power spectra of a simulation that used
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the “back-scaling” approach with the baseline simulation. As expected, Fig. 2.13
shows that the linear scales agree to high accuracy at z = 0 when the initial
conditions are constructed appropriately. However, the effect of scalar field clus-
tering on the matter power spectrum reaches ∼1% at small scales at z = 0, if the
initial conditions are prepared for c2

s = 10−7. As back-scaled Newtonian simula-
tions are often performed with a quintessence-motivated spectrum where c2

s = 1,
we also performed a back-scaled simulation with this wrong speed of sound. We
found that this choice does not have a large impact on the results; the errors on
small scales are even reduced relative to correct back-scaled case. This might
be induced because the large-scale and small-scale errors have opposite sign at
earlier redshifts.

The gravitational potential comes with much larger deviations, as is shown
in Fig. 2.14. The relative difference in the respective power spectra reaches 7%
and could affect the lensing signal. The reason for this large deviation is that
back-scaled initial conditions are constructed to produce an accurate matter
density but not gravitational potential. The latter is additionally sourced by
the perturbations in the dark energy which, however, are only important at late
times. It would be possible instead to use initial conditions that improve the
agreement for the gravitational potential, but then the matter power spectrum
would be off. Using the back-scaling approach it is not possible to obtain good
results for both the matter density and the gravitational potential simultaneously.
In a related paper Hassani et al. [2020c] we present a possible approach to include
a correction for the gravitational potential that addresses this problem.

2.4 Snapshot analysis
In this section we look at the matter and dark energy density from the k-evolution
and gevolution simulations (where the latter uses the CLASS interface), to study
how the dark energy field configuration traces the matter structures. First,
we compare the results obtained from k-evolution and gevolution for a rela-
tively small simulation (1283 grid points) with a small box (50 Mpc/h), which
corresponds to a spatial resolution of 0.39 Mpc/h and a mass resolution of
5× 109 M�/h. In Fig. 2.15, we show a 2D slice of the box, which passes through
the most massive halo found by the ROCKSTAR halo finder Behroozi et al.
[2013]. Comparing the left and middle panels of Fig. 2.15 we see that at high
redshift, z = 10, they are virtually indistinguishable, which is still nearly true at
z = 6. At low redshifts, z = 1 and z = 0, the k-evolution results are clearly more
clustered than the linear dark energy realisation of gevolution. The dark energy
clustering is most pronounced in regions of strong dark matter clustering, i.e.
dark energy structures are formed around massive dark matter halos, something
that is not the case in the linear realisation. This agrees with the relatively high
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correlation between dark matter and dark energy perturbations visible in Fig.
2.10.

For a more quantitative study we use higher-resolution simulations with 10243

grid points and 100 Mpc/h box size which corresponds to 0.097 Mpc/h spatial
resolution and a mass resolution of 8 × 108 M�/h, for c2

s = 10−7 and w = −0.9.
We pick the most massive halo in the simulation and analyse the particles and
the k-essence scalar field inside five virial radii of the halo. Fig. 2.16a shows,
respectively from left to right, dark energy density in gevolution and k-evolution
and matter density in k-evolution at z = 0. In each snapshot the position of
the halo with 5 virial radii is shown as a shaded region. Figure 2.16b provides
a closer look at the halo where the dashed circle is the virial radius of the halo.
In k-evolution, dense dark energy structures are formed around the centre of the
massive dark matter halo. In Fig. 2.16c the relative difference of dark energy den-
sity, matter density and potential between k-evolution and gevolution is shown
respectively on the left, middle and right, at z = 0 and in the same region as
Fig. 2.16b. Due to the dark energy clustering that is absent in the linear realisa-
tion, we find a large change in the dark energy density distribution. Moreover, in
contrast to matter power spectrum there are relatively large changes visible also
in the matter density due to the dark energy non-linearity. The dipole visible in
the distribution of the gravitational potential comes probably from a small shift
of the halo center due to the dark energy non-linearity.

In Fig. 2.17 the change in the position of particles in k-evolution with respect
to the same particles in gevolution inside three virial radii of the halo is shown.
Each arrow represents the displacement of the corresponding particle due to the
dark energy non-linearities, i.e., ∆~r (i) = ~r

(i)
kevolution − ~r

(i)
gevolution, where ~r

(i)
kevolution

is the position of particle i in k-evolution and ~r
(i)
gevolution is the position of the

same particle in gevolution. The colors show the length of the arrow measured in
Mpc/h. Most changes in particles positions due to the dark energy non-linearities
are seen to be around the center of the halo (for a study of the effect of dark
energy clustering on the turn-around radius near galaxy clusters see Hansen et al.
[2020]).

2.5 Conclusions
We develop k-evolution, an N -body code to compute cosmological observables
including the effect of dark energy clustering. The code is based on gevolution
while dark energy is modelled using the EFT of DE. For simplicity we focus on
k-essence but we pave the way to more general cases. We develop the equations
to describe the gravitational and dark energy sector in the weak-field expansion
but fully non-linearly. As a first initial step, however, we implement in the code
only the linear parts of the evolution equation and stress-energy tensor of dark

77



Chapter 2. k-evolution: a relativistic N-body code for clustering dark energy

energy.
We compare the power spectra computed with k-evolution with those com-

puted with codes that treat the evolution of the dark energy linearly, in particular
with gevolution 1.2 (where the dark energy stress-energy tensor is computed us-
ing CLASS) and with CLASS. We find relatively small differences between the
matter power spectra computed with k-evolution and gevolution. However, the
clustering of dark energy uniquely captured by k-evolution affects non-negligibly
the power spectra of other quantities, such as the gravitational potential and its
time evolution. This is especially the case for low speeds of sound such as the
one considered here, i.e. c2

s = 10−7.
Moreover, we compare k-evolution with simulations that take into account

the dark energy component by changing the background evolution and back-
scaling the initial conditions. We show that this back-scaling approach cannot
compute, with sufficient accuracy, simultaneously the power spectrum of matter
and of the gravitational potential. We also analyse snapshots from k-evolution.
We find that in dense regions the matter density, the k-essence density and the
positions of particles are affected by dark energy clustering.

This paper is the first step of a more general program of developing simula-
tions including the effect of dark energy and modified gravity.
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Figure 2.13: The matter power spectra and the relative difference from two
Newtonian simulations, one with the back-scaled initial conditions for c2

s = 10−7

and one with the correct initial conditions from the linear Boltzmann code CLASS
and correct evolution for c2

s = 10−7 including linear dark energy perturbations.
The simulation with back-scaled initial condition works well at z = 0 especially
at linear scales by construction while it reaches 1% error at non-linear scales. At
higher redshifts the relative errors are typically larger, but remain below 2% on
all scales.
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Figure 2.14: The gravitational potential power spectra and the relative difference
from two Newtonian simulations, one with the back-scaled initial conditions for
c2
s = 10−7 and one with the correct initial conditions and correct evolution for
c2
s = 10−7 including linear dark energy perturbations. The simulation with back-
scaled initial condition does not give the correct gravitational potential power
spectrum at large scales; we find about 7% relative error.
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Figure 2.15: Respectively from the left to the right, the dark energy density
computed with gevolution (using the CLASS interface) and the dark energy and
matter density computed with k-evolution, as a function of the redshift (from
the bottom to the top), measured in units of the critical density. The dark
energy structures form around massive halos. Note that the color scheme for the
visualisation of ρ(DE) changes between lower panels and upper panels.
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(a) Snapshot for dark energy density from gevolution (left panel), k-evolution (mid-
dle panel) and matter density from k-evolution (right panel) measured in the critical
density unit at z = 0 from a high resolution simulation is shown. The shaded region
shows the most massive halo in the simulation which is going to be studied in detail
in the next figures.

(b) A close look at the most massive halo (shaded region in the previous snapshot).
The color bar range for dark energy density is different with matter density, as dark
matter clusters more efficiently than dark energy.

(c) The relative difference of dark energy density (left), matter density (middle) and
gravitational potential (right) between the results from k-evolution and gevolution at
z = 0.

Figure 2.16: A comparison of dark energy clustering in simulations.
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Figure 2.17: Change in the particles positions due to dark energy clustering. The
arrows show the difference between the position of each particle in k-evolution
and that of the same particle in gevolution. The colors show the length of the
arrows measured in Mpc/h. Red arrows around the virial radius of the halo point
toward the center.
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APPENDIX

2.A Stress-energy conservation and the π equa-
tion of motion

The stress-energy tensor for a perfect fluid reads,

T µν = (ρ+ p)uµuν + pδµν , (2.1)

where uµ is the fluid four-velocity normalized to unity, uµuµ = −1. This can be
decomposed as

uµ = dxµ

ds
= e−Ψ

a
(1, vi) , (2.2)

so that the fluid components read

T 0
0 = −ρ− δρ ,
T i0 = −(ρ+ p)vi = −e2(Φ+Ψ)T 0

i ,

T ji = (p+ δp)δji + Σj
i ,

(2.3)

where Σj
i
.= T ji − δ

j
iT

k
k /3 denote the anisotropic stress, which is traceless Σi

i = 0.
The stress-energy tensor of a k-essence dark energy has the same form as the

one of a perfect fluid. In particular, its components in (2.23) can be written as
those of (2.3) with

δρ = −ρ+ p

c2
s

[
3c2
sHπ − ζ −

2c2
s − 1
2 (~∇π)2

]
,

δp = − (ρ+ p)
[
3wHπ − ζ + 1

6(~∇π)2
]
,

vi = −e2(Φ+Ψ)
[
1− 1

c2
s

(
3c2
s(1 + w)Hπ − ζ + c2

sΨ
)

+ c2
s − 1
2c2
s

(~∇π)2
]
∂iπ ,

Σij = (ρ+ p)
[
∂iπ∂jπ −

1
3(∂kπ)2δij

]
.

(2.4)

For completeness, we use the covariant conservation of the stress-energy ten-
sor of k-essence to derive the continuity and Euler equation of the dark energy
fluid. Then we show that the continuity equation is equivalent to the equations
of motion for π, Eqs. (5.1) and (5.2). For convenience we define the following
notation,

w
.= p

ρ
, δ

.= δρ

ρ
, θ

.= e−2(Φ+Ψ)∂iv
i , σ

.= ∂−2δik∂k∂jΣj
i

ρ+ p
, (2.5)
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where w is the equation of state parameter, δ is the density contrast and θ is the
velocity divergence. Note that for k-essence vi is irrotational, so that θ is enough
to describe the full vector vi.

If matter and dark energy are minimally coupled, as in the case of k-essence,
the stress-energy tensor satifies the covariant conservation equation

∇µT
µ
ν = 0 . (2.6)

The continuity equation follows from taking this equation with ν = 0, which
gives

δ′ = −(1+w)
(
∂iv

i−3Φ′
)
−3H

(
δp

δρ
−w

)
δ+3Φ′

(
1+ δp

δρ

)
δ+ 1 + w

ρ
vi∂i

(
3Φ−Ψ

)
.

(2.7)
With the above notation and keeping terms up to order O(ε) in the weak-field
expansion, one finds

δ′ = −(1 +w)
(
θ−3Φ′

)
−3H

(
δp

δρ
−w

)
δ+ 3Φ′

(
1 + δp

δρ

)
δ+ 1 + w

ρ
vi∂i

(
3Φ−Ψ

)
.

(2.8)
The Euler equation follows from ν = i, which gives

ρ e−2(Φ+Ψ)(vi)′(1 + w) + e−2(Φ+Ψ)(1 + w)(3w − 1)Hρ vi + Σj
i ∂j(Ψ− 3Φ)

+ ∂iδp+ δp ∂iΨ− e−2(Φ+Ψ)ρvi(1 + w) (5Φ′ + Ψ′) + ρ ∂iΨ(1 + w) + ∂iΨ ρ δ + ∂jΣj
i = 0 .

(2.9)

Dividing this equation by (1 + w)ρ, taking its divergence of and replacing ∂ivi
using the definition of θ in Eq. (5.5), one finds

θ′ + (3w − 1)H θ +∇2(Ψ + σ) + ∇2δP

ρ(1 + w) − (5Φ′ + Ψ′)θ + ∇
2Ψ

1 + w

(
1 + δP

δρ

)
δ

− ∂iΣj
i

ρ(1 + w)∂j(3Φ−Ψ) = 0 .

(2.10)

One can verify that the continuity equation for the k-essence fluid is equiv-
alent to field equations for π. We do it explicitly in the limit of small speed of
sound, where

δ = 1 + w

2c2
s

[
2ζ − (~∇π)2

]
,

vi = −e
2(Φ+Ψ)

2c2
s

[
2ζ − (~∇π)2

]
∂iπ ,

δp = −ρ (1 + w)
[
3wHπ − ζ + 1

6(~∇π)2
]
.

(2.11)
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From the expression for vi and upon use of Eq. (5.1), the velocity divergence
reads

θ = 1
2c2
s

[
− 2∂iζ∂iπ − 2ζ∇2π + ∂i

(
∂iπ(~∇π)2

) ]
. (2.12)

Putting the above expressions in the continuity equation (5.3) and multiplying
by c2

s, gives,

ζ ′− 3wHζ − ~∇ (2ζ + Ψ) · ~∇π− ζ∇2π+ H(2 + 3w)
2 (~∇π)2 + 1

2∂i
(
∂iπ(~∇π)2

)
= 0 ,
(2.13)

which is Eq. (5.2) in the small c2
s limit.

2.B Numerical implementation
We use the Newton-Stormer-Verlet-leapfrog method Ernst Hairer [0035] to solve
the two first order partial differential equations for the linear k-essence scalar
field on the lattice,

ζ
n+ 1

2
i,j,k = ζ

n− 1
2

i,j,k + ζ ′ ni,j,k ∆τ (2.14)
where the superscript n and subscript i, j, k shows respectively the time step and
the position on the lattice, i.e ζn+ 1

2
i,j,k is the field ζ at discrete time step (n + 1

2)
and point (i, j, k) on the lattice. To find ζ ′ ni,j,k we discretize Eq.(5.2) as

ζ ′ ni,j,k =3wHnζn
i,j,k − 3c2

sHn
(
Hnπn

i,j,k −Ψn
i,j,k −

H′n

Hn π
n
i,j,k −

Φ′ ni,j,k

Hn

)

+ c2
s

Φn
i−1,j,k + Φn

i+j,k + Φn
i,j−1,k + Φn

i,j+1,k + Φn
i,j,k−1 + Φn

i,j,k+1 − 6Φn
i,j,k

∆x2

To update the scalar field fluctuation πn
i,j,k we use,

πn+1
i,j,k = πn

i,j,k + π
′ n+ 1

2
i,j,k ∆τ (2.15)

while π′ n+ 1
2

i,j,k is obtained by,

π
′ n+ 1

2
i,j,k = ζ

n+ 1
2

i,j,k −H
n+ 1

2
i,j,k π

n+ 1
2

i,j,k + Ψn+ 1
2

i,j,k (2.16)

It is important to note that in our scheme we have split the background from
perturbations, as a result we have access to the Hn+ 1

2 independently of the value
of the fields. Moreover we compute πn+ 1

2
i,j,k as following,

π
n+ 1

2
i,j,k =

πn+1
i,j,k + πn

i,j,k

2 (2.17)
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Putting (2.17) and (2.16) into the (2.15) results in,

πn+1
i,j,k = 1

1 +Hn+ 1
2 ∆τ/2

πn
i,j,k + ∆τ

[
ζ

n+ 1
2

i,j,k −H
n+ 1

2
i,j,k

πn
i,j,k

2 + Ψn+ 1
2

] (2.18)

where,

Ψn+ 1
2

i,j,k = Ψn
i,j,k + Ψ′ ni,j,k

∆τ
2 (2.19)

Depending on the speed of sound of k-essence field c2
s, we choose the appropriate

Courant factor. Usually the k-essence Courant factor is different from the dark
matter Courant factor and shows how many times the k-essence field is updated
for one dark matter update. The reason is that for large speed of sound we need
to decrease the time step of k-essence field updates to resolve the perturbations
well.

2.C Initial conditions and gauge transformations
In this appendix we discuss the initial conditions for the scalar fluctuations π
and ζ in k-evolution, provided by the Boltzmann codes at high redshifts, where
the linear theory is a good approximation.

In the linear Boltzmann code CLASS, dark energy is implemented as a fluid in
both Newtonian and Synchronous gauge. In hi_class, k-essence is implemented
in the field language in Synchronous gauge only. To extract π and ζ from these
codes, we need to gauge transform the perturbations to the Poisson gauge used
in this article.

Let us first connect the field quantities to the fluid ones, in Newtonian gauge.
To do that, we use the density contrast and velocity divergence of dark energy,
respectively δ and θ, at linear order given in Eq. (5.6). Using these expression
we find

πNewt(k, z) = θNewt(k, z)
k2 , (2.20)

π′Newt(k, z) = c2
s

1 + w
δNewt(k, z) + c2

sH
θNewt(k, z)

k2 + ΨNewt(k, z) , (2.21)

where the subscript “Newt” denotes conformal Newtonian gauge.
Thus, using Eq. (2.18) we then obtain, for ζ,

ζNewt = c2
s

1 + w
δNewt(k, z) +HθNewt(k, z)

k2 (1 + c2
s) . (2.22)
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Following the discussion in Sec. 3 of Ma & Bertschinger [1995b] on the gauge
transformations and employing the same notation, we consider the following
coordinate transformation:

x̂0 = x0 + α,

~̂x = ~x+ ~∇β(τ, x) + ~ε(τ, x), ~∇.~ε = 0 (2.23)

where α and β are respectively the temporal and spatial part of the infinitesimal
coordinate transformation. The metric components transform as,

ĝµν(x) = gµν(x)− gµβ(x)∂νεβ − gαν(x)∂µεα − εα∂αgµν(x) . (2.24)

As a result the transformed metric perturbations after coordinate transformation
read,

Ψ̂(τ, ~x) = Ψ(τ, ~x)− α′(τ, ~x)−Hα(τ, ~x) ,

Φ̂(τ, ~x) = Φ(τ, ~x) + 1
3∇

2β(τ, ~x) +Hα(τ, ~x) , (2.25)

where we have assumed that the coordinate transformation is of the same order
as the metric perturbations. We can use these transformations to write down
the scalar metric perturbations in Newtonian gauge (Φ,Ψ) in terms of (h, η) in
Synchronous gauge. The result is that in Fourier space we can set

α(τ, k) = (h′ + 6η′)/2k2, β(τ, k) = (h+ 6η)/2k2 , (2.26)

where (h, η) are the scalar modes of hij and are defined as,

h
‖
ij(~x, τ) =

∫
d3kei

~k·~x
(
k̂ik̂j −

1
3δij

)
{h(~k, τ) + 6η(~k, τ)}, ~k = kk̂ . (2.27)

To find the gauge transformation for the fluid quantities we use

T µν (Synch) = ∂x̂µ

∂xσ
∂xρ

∂x̂ν
T ρσ (Newt) (2.28)

where x̂µ and xµ denote the Synchronous and Newtonian coordinates respectively.
It follows, to linear order, that

T 0
0 (Synch) = T 0

0 (Newt) , (2.29)
T j0 (Synch) = T j0 (Newt) + ikjα(ρ̄+ P̄ ) ,
T ji (Synch) = T ji (Newt) .
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From the definitions of the density contrast δ = δρ/ρ̄ = −δT 0
0 /ρ̄, θ, δP and

σ in Eq. (5.6) we have,

δ(Synch) = δ(Newt)− α
˙̄ρ
ρ
, (2.30)

θ(Synch) = θ(Newt)− αk2 ,

δP (Synch) = δP (Newt)− α ˙̄P ,
σ(Synch) = σ(Newt) .

To obtain the gauge transformation for π we use the fact that ϕ(xµ) = x0 +
π(xµ) is a scalar, i.e., ϕ̂(x̂µ) = ϕ(xµ). Thus, we find

∆ϕ(x) .= ϕ̂(x)− ϕ(x) = −∂µϕ εµ = ε0 = −α , (2.31)
which can be written as

πSynch = πNewt − α . (2.32)
For practical applications we provide a list of transformations in Fig. 2.18

and Fig. 2.19 for the output of CLASS and hi_class to obtain the result in a
certain language with a certain gauge. In CLASS, we assume that the user sets
the correct gauge, for example to have the quantities in Synchronous gauge one
uses CLASS with the gauge is set to “Synchronous”. Then δ and θ in that gauge
are the output of the code and one has to use the transformations in Fig. 2.18
to find π, π′ in the corresponding gauge.

Figure 2.18: The transformations in CLASS to obtain π and π′ in a certain gauge
from the fluid properties. In the top part, it is assumed that the user runs
CLASS in Synchronous gauge which θSynch and δSynch in Synchronous gauge are
the direct output of the code. To obtain πSynch and π′Synch one needs to use the
given transformations. In the bottom part, it is assumed that the user runs
CLASS in Newtonian gauge. Follow the recipe one obtains πNewt and π′Newt

.

89



Chapter 2. k-evolution: a relativistic N-body code for clustering dark energy

In hi_class the quantities are written in Synchronous gauge only, in the
field language. In this case πSynch and π′Synch are the outputs of the code, while
δSynch, θSynch, πNewt and π′Newt are computed according to the formulas given in
Fig. 2.19.

Figure 2.19: The transformations in hi_class to obtain a certain quantity in a
specific gauge. In the top, the recipe in synchronous gauge is given. In hi_class,
πSynch and π′Synch are the direct output of the code. To obtain δSynch and θSynch
one needs to follow the given transformations. In the bottom part, the recipe for
obtaining quantities in Newtonian gauge in both languages are given.

2.D Limit of small speed of sound c2
s

In this appendix we are going to study the evolution of perturbations in the
limit of small speed of sound, in order to show that this limit is well defined. In
particular, we are going to show that δ and vi remain finite in this limit, despite
the appearance of a c2

s in the denominator of their expressions, see Eq. (2.11).
To be able to solve this case analytically, we will assume matter dominance,
i.e., a ∝ τ 2 (i.e., H = 2/τ) and Ψ = const. Moreover, we expand ζ and π in
perturbations,

ζ = ζ(1) + ζ(2) + . . . , π = π(1) + π(2) + . . . , (2.33)

and we start by discussing linear perturbations.
At first order the evolution equations for π read

ζ − π′ −Hπ + Ψ = 0 ,
ζ ′ − 3wHζ + 3c2

s

(
H2π −HΨ−H′π − Φ′

)
− c2

s∇2π = 0 ,
(2.34)
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where we initially omit the upper index (1) to avoid cluttering. We can solve
these equations for ζ and π perturbatively in c2

s, i.e., using the expansions

ζ = ζ0 + ζ1c
2
s + . . . , π = π0 + π1c

2
s + . . . . (2.35)

At lowest order in c2
s, the second equation becomes

ζ ′0 − 3wHζ0 = 0 . (2.36)

Assuming w constant, its solution reads ζ0 = C a−3w, where C is an arbitrary
constant. However, in order to prevent the stress-energy tensor of dark energy
from blowing up for c2

s → 0 (see Eq. (2.11)), we fix it to zero, C = 0, so that ζ
starts at linear order in c2

s,
ζ

(1)
0 = 0 . (2.37)

Notice that this coincides with assuming adiabatic initial conditions, i.e., Φ =
ξ̇0 = π′ + Hπ Gleyzes et al. [2015]. Plugging ζ0 = 0 in the first equation of
Eq. (2.34) we can solve for π,

π
(1)
0 = Ψ

3 τ . (2.38)

Since ζ vanishes at leading order in c2
s, let us go to the next order. At first

order in c2
s, the second equation in Eq. (2.34) reads

ζ ′1 − 3wHζ1 + 3
(
H2π0 −HΨ−H′π0 − Φ′

)
−∇2π0 = 0 . (2.39)

Using the solution for π and taking Φ′ = 0, we can solve for ζ1, which gives

ζ
(1)
1 = τ 2

6(1− 3w)∇
2Ψ . (2.40)

Since at leading order in c2
s we have δ = (1 + w)ζ/c2

s, see Eq. (2.11), and
in matter domination the gravitational potential is given by the matter density
contrast δm by the usual Poisson equation, ∇2Ψ = (3/2)H2δm, the above solution
for ζ(1) = ζ

(1)
1 c2

s gives
δ(1) = 1 + w

1− 3w δ(1)
m , (2.41)

as expected Creminelli et al. [2009].
At second order in perturbations we have

ζ
(2)
0
′ − 3wHζ(2)

0 − ~∇Ψ · ~∇π(1)
0 + H2 (2 + 3w)

(
~∇π(1)

0

)2
= 0 , (2.42)

where in the second equation we have assumed c2
s = 0 and have taken only the

leading order in the expansions ζ = ζ0 +ζ1c
2
s + . . . and π = π0 +π1c

2
s + . . .. Using

the linear solution for π, this equation can be solved,

ζ
(2)
0 = τ 2

18(~∇Ψ)2 , (2.43)
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which is exactly what needed to cancel the right-hand side of the first two equa-
tions in Eq. (2.11). To solve for π(2)

0 we use that Ψ(2) = 0 in Eq. (5.1), which
gives

π
(2)
0 = τ 3

90(~∇Ψ)2 . (2.44)

In this case we do not need to go one order higher in c2
s to find ζ, because

the leading order does not vanish. Using Eq. (2.11), the above solutions show
that δ(2) and v(2)

i vanish at this order in c2
s. To find these quantities at leading

order in c2
s we need to solve for ζ(2)

1 and π(2) (which requires π(2)
1 ) and replace

these quantities in Eq. (5.6). Since the solution obtained by this straightforward
procedure is not very illuminating, we refrain from giving it here.

Going one order higher in perturbations, at third order the evolution equation
of ζ0 reads

ζ
(3)
0
′ − 3wHζ(3)

0 − 2~∇ζ(2)
0 · ~∇π

(1)
0 − ~∇Ψ · ~∇π(2)

0 − ζ
(2)
0 ∇2π

(1)
0 +H(2 + 3w)~∇π(2)

0 · ~∇π
(1)
0

+ 1
2∇i

[
∇iπ

(1)
0

(
~∇π(1)

0 · ~∇π
(1)
0

)]
= 0 .

(2.45)

Using the first and second-order solutions for π written above, this equation can
be solved giving

ζ
(3)
0 = τ 4

270
~∇Ψ · ~∇(~∇Ψ)2 . (2.46)

Replacing this solution in Eq. (2.11) with the lowest order solutions for π shows
again that δ remains finite in the c2

s → 0 limit. This procedure can be straight-
forwardly extended to higher orders.

The solution for π(3)
0 can be found by solving ζ(3)

0 − π
(3)
0
′ −Hπ(3)

0 = 0, giving

π
(3)
0 = τ 5

1890
~∇Ψ · ~∇(~∇Ψ)2 . (2.47)

In summary, at leading order in c2
s and up to third order in perturbations we

have

ζ = τ 2c2
s

6(1− 3w)∇
2Ψ + τ 2

18(~∇Ψ)2 + τ 4

270
~∇Ψ · ~∇(~∇Ψ)2 ,

π = τΨ
3 + τ 3

90(~∇Ψ)2 + τ 5

1890
~∇Ψ · ~∇(~∇Ψ)2 .

(2.48)

2.E Supplementary materials
This appendix is not part of the submitted paper and we plan to elaborate the
details in the original paper.
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It is always important to make sure that the computations are performed
correctly, thus it would be helpful if we could find an intelligent way to cross
check our results using a computer programming. It turns out that the symbolic
computation in Mathematica is useful for our purposes. Using this feature of
Mathematica we can obtain the Einstein fields equations from the FLRW metric
as follows,

In[1]:= n=4;
coord = {t,r,θθθ,φφφ};
metric=Array[g,{4,4}];
1,1]=-1;
g[2,2]=a[t]2;
g[3,3]=a[t]2r2;
g[4,4]=a[t]2r2Sin[θθθ]2;
r[l=2,l<5,l++,
For[i=2,i<5,i++,
If[i6=6=6=l, g[i,l]=0;]
]
]
For[i=2,i<5,i++,
g[1,i]=0 ;
g[i,1]=0 ;
]

According the definitions introduced previously in Chapter. 1, we can define the
Christoffel symbols, the Ricci tensor and scalar, the Einstein tensor as,

In[2]:= affine=Table[
1
2

*Sum[(inversemetric[[i,s]])*
(D[metric[[s,j]],coord[[k]] ]+
D[metric[[s,k]],coord[[j]] ]-D[metric[[j,k]],coord[[s]] ]),{s,1,n}],
{i,1,n},{j,1,n},{k,1,n}];

riemann:=riemann=Table[
D[affine[[i,j,l]],coord[[k]] ]-D[affine[[i,j,k]],coord[[l]] ]+
Sum[affine[[s,j,l]] affine[[i,k,s]]-affine[[s,j,k]] affine[[i,l,s]],
{s,1,n}],
{i,1,n},{j,1,n},{k,1,n},{l,1,n}] ;

ricci=Table[Sum[riemann[[i,j,i,l]],{i,1,n}],{j,1,n},{l,1,n}]

scalaricci=Sum[inversemetric[[i,j]]ricci[[i,j]],{i,1,n},{j,1,n}]
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einstein:=einstein=ricci-
1
2

scalaricci*metric;

SEHMetric=
√

-Det[metric]scalaricci ;

Now we can compare some elements with our calculated results. In the below
we print Γ1

10, the Einstein tensor Gµν in the matrix form and the Ricci scalar R,

In[3]:= affine[[2,2,1]]//MatrixForm

Out[3]//MatrixForm=
a′[t]
a[t]

In[4]:= einstein//Simplify//MatrixForm

Out[4]//MatrixForm=
3 a′[t]2

a[t]2 0 0 0

0 -a′[t]2-2 a[t] a′ ′[t] 0 0
0 0 -r2 (a′[t]2+2 a[t] a′′[t]) 0
0 0 0 -r2 Sin[θ]2 (a′[t]2+2 a[t] a′′[t] )

In[5]:= scalaricci//Simplify

Out[5]=
6 (a′[t]2+a[t] a ′′[t])

a[t]2
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Chapter 3. Clustering dark energy imprints on cosmological observables of the
gravitational field

Abstract: We study cosmological observables on the past light cone of a
fixed observer in the context of clustering dark energy. We focus on observables
that probe the gravitational field directly, namely the integrated Sachs-Wolfe
and non-linear Rees-Sciama effect (ISW-RS), weak gravitational lensing, gravi-
tational redshift and Shapiro time delay. With our purpose-built N -body code
“k-evolution” that tracks the coupled evolution of dark matter particles and the
dark energy field, we are able to study the regime of low speed of sound cs where
dark energy perturbations can become quite large. Using ray tracing we produce
two-dimensional sky maps for each effect and we compute their angular power
spectra. It turns out that the ISW-RS signal is the most promising probe to con-
strain clustering dark energy properties coded in w−c2

s, as the linear clustering of
dark energy would change the angular power spectrum by ∼ 30% at low ` when
comparing two different speeds of sound for dark energy. Weak gravitational
lensing, Shapiro time-delay and gravitational redshift are less sensitive probes of
clustering dark energy, showing variations of a few percent only. The effect of
dark energy non-linearities in all the power spectra is negligible at low `, but
reaches about 2% and 3%, respectively, in the convergence and ISW-RS angular
power spectra at multipoles of a few hundred when observed at redshift ∼ 0.85.
Future cosmological surveys achieving percent precision measurements will allow
to probe the clustering of dark energy to a high degree of confidence. Clear
evidence for clustering dark energy at any scale would rule out a cosmological
constant as the leading contender for dark energy, and may help to distinguish
between different dark energy models.

3.1 Introduction
The accelerated expansion of the Universe which has been attributed to the so
called “dark energy” component was first discovered using supernova Ia observa-
tions over two decades ago independently by Perlmutter et al. [1999] and Riess
et al. [1998b]. Since then the late-time accelerating expansion has been con-
firmed by several independent measurements, including the cosmic microwave
background (CMB) [Ade et al., 2015a, Planck Collaboration et al., 2016, Spergel
et al., 2003], large scale structure [Tegmark et al., 2004, 2006] and baryon acoustic
oscillations [Aubourg et al., 2015, Percival et al., 2007].

In the ΛCDM standard model of cosmology the cosmological constant Λ is
responsible for the late-time acceleration. Although ΛCDM is a successful model
that fits the current data well, Λ is a phenomenological parameter which is not
theoretically well motivated and suffers from severe fundamental issues including
fine-tuning of the initial energy density and the coincidence problem [see Martin
[2012b] for a review of the cosmological constant problem]. The theoretical issues
of the cosmological constant and tensions between some parameters in various
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cosmological data sets [Handley & Lemos, 2019, Verde et al., 2019] that have
emerged over the past years have motivated cosmologists to propose a plethora
of dark energy (in the form of an additional scalar field or “dark” fluid) and
modified gravity models (in the form of a modification of general relativity)
to explain the late-time cosmic acceleration [Clifton et al., 2012b, Joyce et al.,
2016b, Koyama, 2018]. Since the number of viable dark energy and modified
gravity models is substantial, the effective field theory (EFT) approach has been
developed and has become popular. It describes the theory economically in the
low energy limit using symmetries and can connect the specific theory to the
observation in a straightforward way.

In the near future with high precision cosmological surveys such as Eu-
clid [Laureijs et al., 2011], the Dark Energy Spectroscopic Instrument (DESI)
[Aghamousa et al., 2016a], the Legacy Survey of Space and Time (LSST) [Abate
et al., 2012] and the Square Kilometre Array (SKA) [Santos et al., 2015a] we
will be able to probe the cosmological models with percent precision into the
highly nonlinear regime. One of the main goals of these surveys is to understand
the reason behind the cosmic acceleration and to probe the nature of gravity.
In the case where the data prefers an alternative dark energy scenario, accurate
modeling of the cosmological observables for non-standard models up to highly
nonlinear scales is required. A very accurate method to model the cosmolog-
ical predictions of these theories on such scales is obtained using cosmological
N -body simulations.

Until now severalN -body codes have been developed for a range of alternative
gravity models [Baldi, 2012, Barreira et al., 2013, Brax et al., 2012b, Li et al.,
2012a, Li et al., 2013, Llinares et al., 2014, Mead et al., 2015, Oyaizu et al., 2008,
Puchwein et al., 2013, Schmidt et al., 2009a, Valogiannis & Bean, 2017, Wyman
et al., 2013, Zhao et al., 2011]. These codes are based on Newtonian gravity which
is not naturally suited for considering the non-standard dark energy models,
therefore requiring a number of approximations. While these may be justified
for a crude analysis, the fact that dark energy (as opposed to dark matter) is
not dominated by rest-mass density appeals more to a relativistic treatment.

With such applications in mind, some of us have developed gevolution [Adamek
et al., 2016a], an N -body code entirely based on General Relativity (GR). One
of the main advantages of the gevolution scheme is that it could be extended
naturally to include dark energy or modified gravity models without requiring
any approximations in the dark energy sector such as the quasi-static approxi-
mation as is done in the Newtonian approaches. A full implementation of the
EFT of dark energy encompassing many dark energy and modified gravity mod-
els is still a formidable task. As a first step toward this goal we have recently
developed the k-evolution code in Hassani et al. [2019a] in which we have added
a k-essence scalar field using the EFT language. Based on gevolution some of
us have recently also developed N -body simulations for parametrised modified
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gravity in ?, and Reverberi & Daverio [2019] have implemented f(R) models in
gevolution.

In this article, we study the effect of k-essence dark energy on the cosmo-
logical observables of the gravitational field using our N -body codes gevolution
and k-evolution. In particular, weak gravitational lensing and the ISW-RS ef-
fect probe the gravitational potential and its time derivative directly, and they
can be constrained with multiple probes independently. We additionally discuss
gravitational redshift and the Shapiro time delay, even though their cosmological
detection will be more challenging. We study and quantify the signatures that
the k-essence model would imprint on each observable.

In Section 3.2 we discuss the theoretical background, focusing on k-essence
in the EFT framework of dark energy, and we present the relevant equations that
are solved in k-evolution to evolve the k-essence field. Section 3.3 is devoted to
the general discussion about the cosmological observables and how non-standard
dark energy or modified gravity models would affect each observable. The cos-
mological parameters of our simulations and the way we construct the past light
cone for a fixed observer in our N -body codes to make the synthetic sky maps
of our observables are explained in Section 7.2.4. In Section 3.5 we show the
numerical results from k-evolution and gevolution and we compare the results
with the linear theory prediction obtained from the Boltzmann code CLASS. Our
conclusions and main take-home points are summarised in Section 3.6.

3.2 Theory
In this section we briefly review the essentials of the k-essence model especially
with the focus on its effective field theory description and the k-evolution code,
an N -body code recently developed to study the evolution of large scale structure
in the presence of a non-linear k-essence scalar field, see Hassani et al. [2019a]
for a description.

To study the evolution of the perturbations around a homogenous flat Fried-
mann Universe, we consider the Friedmann-Lemaître-Robertson-Walker (FLRW)
metric written in the conformal Poisson gauge,

ds2 = a2(τ)
[
− e2Ψdτ 2 − 2Bidx

idτ +
(
e−2Φδij + hij

)
dxidxj

]
, (3.1)

where Ψ and Φ are the Bardeen potentials carrying the scalar perturbations of
the metric, Bi is the gravitomagnetic vector perturbation with two degrees of
freedom as we have δij∂jBi = 0, and hij is the tensor perturbation with the
gauge condition δijhij = 0 = δij∂ihjk which results in two remaining degrees of
freedom.

The k-essence model was originally introduced to naturally explain the recent
accelerated expansion of the Universe through the idea of a dynamical attractor
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solution in which this model acts as a cosmological constant at the beginning of
the matter dominated era without any fine tuning of the parameters [Armendariz-
Picon et al., 2000, 2001]. This model is particularly interesting as it does not
rely on coincidence or anthropic reasoning, unlike the cosmological constant and
quintessence models1 in which the energy density today is set by tuning the
model parameters.

The k-essence action, an action containing at most one single derivative acting
on the field, reads

SDE =
∫ √
−gP (X,ϕ)d4x , (3.2)

where ϕ is the scalar field and X = −1
2g

µν∂µϕ∂νϕ is the kinetic term of the
k-essence field. In general we need to choose a specific form for the function
P (X,ϕ) to solve the equations of motion for the k-essence scalar field. Since
there are many possible choices, one can instead employ the EFT approach to
model the dynamics of dark energy. EFT, although not a fundamental theory,
offers several advantages: First, we can express a large class of dark energy
and modified gravity (DE/MG) models with a minimal number of parameters
in a model-independent approach and using a unified language. Second, the
phenomenological parameters of the effective theory can be constrained directly
by cosmological observations without being specific to any DE/MG models nor
to their original motivations. Third, the effective approach allows the theorists to
carefully examine the unexplored regions of the space of parameters which could
in principle guide towards new viable models [Creminelli et al., 2009, Gubitosi
et al., 2013a].

In k-evolution [Hassani et al., 2019a], which is an extension of gevolution
[Adamek et al., 2016a, Adamek et al., 2016b] in which we have implemented the
k-essence model as a dark energy sector, we use the EFT approach to write
down the equations of motion parametrised with the equation of state w and the
squared speed of sound c2

s. The scalar field evolution, keeping only linear terms
of the scalar field and its time derivative, is given by

π′ = ζ −Hπ + Ψ , (3.3)
ζ ′ = 3wHζ − 3c2

s

(
H2π −HΨ−H′π − Φ′

)
+ c2

s∇2π , (3.4)

where π is the scalar field perturbation around its background value, ζ is written
in terms of π and π′, ∇2 = δij∂i∂j, a prime ′ denotes the time derivative with
respect to the conformal time, and H is the conformal Hubble function. The

1The quintessence model is a canonical scalar field model, corresponding to the special case
of the k-essence model where the kinetic term is canonical.
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linear stress energy tensor reads

T 0
0 = −ρ+ ρ+ p

c2
s

(
3c2
sHπ − ζ

)
,

T 0
i = −(ρ+ p)∂iπ ,

T ij = pδij − (ρ+ p)
(

3wHπ − ζ
)
δij .

(3.5)

It is worth noting that in connection with the EFT language, with the notation
used in Gleyzes et al. [2013], apart from the background parameters Λ(t) and
c(t) the only remaining parameter in EFT for k-essence theory is M4

2 (t). In the
alternative EFT notation using αi(t) explained in Bellini & Sawicki [2014], αK
is the only non-zero parameter.

As discussed in Hassani et al. [2019a], although we keep only linear terms
in the scalar field dynamics and we drop higher order self-interactions of π, the
scalar field does cluster and form non-linear scalar field structures in k-evolution
because it is sourced by non-linearities in matter through gravitational coupling.
This is the crucial improvement over the treatment of dark energy in gevolution,
which uses the transfer functions from linear theory to keep track of perturbations
in the dark energy fluid similar to how it is done in Dakin et al. [2019] [see also
? for a more comprehensive extension of this framework to EFT].

Einstein’s equations for the evolution of the scalar perturbations in the weak
field regime [Adamek et al., 2017b] read

(1 + 2Φ)∇2Φ− 3HΦ′ − 3H2Ψ− 1
2δ

ij∂iΦ∂jΦ

= −4πGa2δT 0
0 , (3.6)

∇4(Φ−Ψ)−
(

3δikδjl ∂2

∂xk∂xl
− δij∇2

)
∂iΦ∂jΦ

= 4πGa2
(

3δik ∂2

∂xj∂xk
− δij∇2

)
T ji , (3.7)

where the stress tensor T νµ includes all the relevant species, i.e. matter, dark
energy and radiation.

In Hassani et al. [2019a], we introduce k-evolution and the full non-linear
equations for the k-essence model written using the EFT action. We study
the dark energy clustering and its impact on the large scale structure of the
Universe. Moreover, we discuss that the scalar dark energy does not lead to
significantly larger vector and tensor perturbations than ΛCDM. Thus one can
safely neglect the vector and tensor perturbation in this theory. In Hassani et al.
[2019b] we quantify the non-linear effects from k-essence dark energy through
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Figure 3.1: Left: The conformal Hubble parameter as a function of redshift for
ΛCDM and wCDM with w0 = −0.9. In the bottom panel we show the relative
difference. As expected, the effect of dark energy goes away at high redshifts.
Centre: The comoving distance as a function of redshift for the two cosmologies
is plotted. In the bottom panel again the relative difference is shown. The rela-
tive difference asymptotes to a constant at high redshifts because the comoving
distance is an integrated quantity. Right: In the top panel, the logarithmic
growth rate f as a function of redshift for a fixed wavenumber is plotted. In
the bottom the relative difference between different scenarios is shown with re-
spect to ΛCDM. While in the latter case the growth rate is scale independent
(neglecting corrections due to neutrinos), in a clustering dark energy model the
behaviour of a mode depends on whether it is inside or outside of the sound
horizon. We compare three cases with ΛCDM, namely the mode k = 0.5 Mpc−1

with c2
s = 10−7, k = 10 Mpc−1 with c2

s = 10−7 and k = 0.5 Mpc−1 with c2
s = 1.

Only the first case corresponds to a mode outside the sound horizon, while the
other two are well inside. Thus we see the same behaviour for k = 10 Mpc−1

with c2
s = 10−7 and k = 0.5 Mpc−1 with c2

s = 1.

the effective parameter µ(k, z) that encodes the contribution of a dark energy
sector to the Poisson equation (see below). We also show that for the k-essence
model the difference between the two potentials Φ−Ψ and short-wave corrections
appearing as higher order terms in the Poisson equation can be safely neglected.
Moreover, in Hansen et al. [2020], we study the effect of k-essence dark energy
as well as some other modified gravity theories on the turn-around radius —
the radius at which the inward velocity due to the gravitational attraction and
outward velocity due to the expansion of the Universe cancel each other — in
galaxy clusters.

It is sometimes useful to parametrise the effect that clustering dark energy
has on the gravitational potential phenomenologically through a modified Poisson
equation,

− k2Φ = 4πGNa
2µ(k, z)

∑
X

ρ̄X∆X , (3.8)
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where ∆ is the comoving density contrast and the species X do not include
the dark energy field. Denoting in addition the ratio between the two Bardeen
potentials as

η(k, z) = Ψ(k, z)
Φ(k, z) , (3.9)

one obtains a phenomenological classification of DE/MG models through two
generic functions of time and scale, with ΛCDM predicting η = µ = 1 everywhere
[e.g. Ade et al., 2015a, Blanchard et al., 2019]. As discussed in Hassani et al.
[2019b], for the case where k-essence plays the role of dark energy, η(k, z) ≈ 1
and µ(k, z) is fitted well with a tanh function where the amplitude and shape of
the function depends on the speed of sound and equation of state.

For the sake of completeness, we show the effect of k-essence, expressed in
the form of w− c2

s in the parameter space, on the background evolution and the
growth of matter density perturbation. The effect of k-essence appears on the
background evolution via the equation of state but independent of the speed of
sound of dark energy. We show the conformal Hubble parameter H as well as
the redshift-distance relation in Fig. 3.1 in the left and middle panel for wCDM
with w = −0.9 and ΛCDM, which are the cases we consider in this article. We
also compare the logarithmic growth rate f = d ln ∆m/d ln a in the right panel
of Fig. 3.1 for different scenarios to see the impact of different choices of w and
c2
s on the growth of structures. The logarithmic growth rate provides a useful
way to distinguish between DE/MG gravity and ΛCDM [Amendola et al., 2016,
Blanchard et al., 2019, Dossett & Ishak, 2013, Kunz & Sapone, 2007].

Since the logarithmic growth rate is in general scale dependent, we compute it
for different scales by studying the evolution of the comoving matter density con-
trast ∆m, which we define for this purpose through Ωm∆m = Ωb∆b + Ωcdm∆cdm.
We compute ∆m with the linear Boltzmann code CLASS and look at the evolution
for wavenumbers k = 0.5 Mpc−1 and k = 10 Mpc−1 for the model with c2

s = 10−7

which corresponds respectively to a mode well outside and a mode well inside
the sound horizon. We compare the logarithmic growth rate from the two modes
for c2

s = 10−7, and in addition k = 0.5 Mpc−1 for c2
s = 1, with ΛCDM in the

bottom right panel of Fig. 3.1. As expected, for the mode k = 0.5 Mpc−1 in the
case where c2

s = 1, as it is well inside the sound horizon, the result matches with
the mode evolution of k = 10 Mpc−1 in the case where c2

s = 10−7. The mode
k = 0.5 Mpc−1 has a different evolution in the case where c2

s = 10−7 because it
is outside the sound horizon and the perturbations in the dark energy field are
therefore not suppressed.
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3.3 Observables
Solving the null geodesic equation (kµ∇µkν = 0) for a light ray with wavevector
kµ in a perturbed FLRW universe results in a change in position and energy of
the light beam emitted from the source. The apparent comoving 3D position of
the source reads [Adamek et al., 2020b, Bonvin & Durrer, 2011, Breton et al.,
2019, Challinor & Lewis, 2011, Yoo et al., 2009]

s = χsn + 1
Hs(z̄)δzn︸ ︷︷ ︸

redshift perturbation

−
∫ χs

0
(χs − χ)∇⊥(Φ + Ψ)dχ︸ ︷︷ ︸
weak gravitational lensing

− n
∫ χs

0
(Φ + Ψ)dχ︸ ︷︷ ︸

Shapiro time delay

, (3.10)

where s is the observed position in redshift space, and n and χs are respec-
tively the unperturbed direction vector and unperturbed comoving distance to
the source. Furthermore, ∇⊥≡ (1− n⊗ n)∇ is the projected gradient perpen-
dicular to the line of sight, χ is the comoving distance and Hs(z̄) is the Hubble
rate at the unperturbed redshift z̄ of the source. The first term in Eq. (3.10)
corresponds to the unperturbed position, the second term corresponds to the
redshift perturbation which is computed in Eq. (3.11), the third term (weak
gravitational lensing) yields an angular deflection of the source position on the
2D sphere, and the last term changes the radial position due to the Shapiro time
delay.

Using the time component of geodesic equation one obtains the redshift per-
turbation δz =z − z̄ as

δz = (1 + z̄)
[
n · (vs − vo)︸ ︷︷ ︸

Doppler

+Ψo −Ψs︸ ︷︷ ︸
gravitational

redshift

−
∫ χs

0

∂(Ψ + Φ)
∂τ

dχ︸ ︷︷ ︸
ISW-RS effect

]
. (3.11)

As a result of Eq. (3.10) and Eq. (3.11), the light ray along its path is deflected,
redshifted and delayed due to the different physical phenomena, namely weak
gravitational lensing, integrated Sachs-Wolfe and Rees-Sciama (ISW-RS) effect
and Shapiro time delay. In addition, there are two local (non-integrated) con-
tributions to the redshift: the relativistic Doppler effect (due to the peculiar
velocities vs and vo of the source and observer, respectively) and the gravita-
tional redshift (ordinary Sachs-Wolfe effect). Among these, the weak gravitation
lensing, ISW-RS, Shapiro time delay and gravitational redshift all depend di-
rectly on the configuration of the gravitational field. If they can be observed
independently they can be used as a probe of DE/MG. In the current work we
are going to look at each individual aforementioned effect to study the impact of
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k-essence clustering dark energy. It is important to point out that the Doppler
term is also expected to be a powerful probe of dark energy and is worth to be
studied in detail. However, in this paper we only focus on the physical effects
coming from the metric perturbations Ψ and Φ. These have the advantage that
they can be observed (as integrated effects) even in places where there are no
visible sources, like e.g. in voids which are naturally expected to be dominated
by dark energy.

In the following subsections we shall introduce and derive the relevant expres-
sions for each effect separately and we will discuss why each of these observables
could be potentially used to put constraint on DE/MG models, especially clus-
tering dark energy.

3.3.1 Weak gravitational lensing
The light from distant objects is deflected due to inhomogeneities as it travels
through the intervening large scale structure in the Universe. The deflection an-
gles are usually small at cosmological scales and this phenomenon is called weak
gravitational lensing. As mentioned already, weak gravitational lensing directly
probes the distribution of matter and energy, including dark matter and dark en-
ergy, which makes it a unique tool to constrain the cosmological parameters [Ade
et al., 2014a, Bartelmann & Schneider, 2001, Hassani et al., 2016, Hikage et al.,
2019, Lewis & Challinor, 2006, Refregier, 2003]. Weak gravitational lensing can
be observed through the statistics of cosmic shear and cosmic convergence, as
we will summarise briefly in the following.

Cosmic shear refers to the change of the ellipticities of galaxies observed on the
far side of the gravitational lens. The cosmic convergence, on the other hand,
magnifies/demagnifies the sizes and magnitudes of the same galaxies [Alsing
et al., 2015, Mandelbaum, 2018]. The first detection of cosmic shear have been
done about 20 years ago [Bacon et al., 2000, Van Waerbeke et al., 2000], while
cosmic convergence was measured for the first time in 2011 [Schmidt et al., 2011].
Since then the precision in cosmic shear and cosmic convergence measurements
has been improved and these two have become some of the most promising probes
of dark energy and modified gravity [Amendola et al., 2008, Hannestad et al.,
2006, Jain & Taylor, 2003, Spurio Mancini et al., 2018].

In Adamek et al. [2019], some of us have implemented a ray-tracing method to
analyse relativistic N -body simulations performed with the code gevolution. In
this method one solves the optical equations in the scalar sector of gravity without
any approximation and additionally keeps track of the frame dragging to first
order. Weak-lensing convergence and shear obtained with this numerical method
were studied in more detail in Lepori et al. [2020]. While other approaches often
try to reconstruct the signal from the mass distribution, our method works with
the metric perturbations directly and is therefore more robust once we consider
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DE/MG like in the present work. To this end we have recently implemented the
same light-cone analysis and ray-tracing method in k-evolution. Here, however,
we compute each effect only to first order in Φ and Ψ, and we neglect the frame
dragging. For the purpose of discussing angular power spectra this is sufficient,
as nonperturbative effects (in the ray tracing2) would only enter at a detectable
level for very high multipoles that are not resolved in our maps.

In the first order weak gravitational lensing formalism one introduces the
lensing potential ψ(n, z) defined as

ψ(n, z) ≡ −
∫ χs

0
dχ
χs − χ
χsχ

(Φ + Ψ) , (3.12)

where the redshift z and the source distance χs are related through the back-
ground distance-redshift relation, and the integration is carried out in direction
n using the Born approximation.

Using the gradient ∇̂a on the 2D sphere we can calculate the deflection angle
as αa = θao − θas = ∇̂aψ, which results in the lensing term in Eq. (3.10). The
Jacobi map, which is a map between the unperturbed source angular positions
θs and the observed angular positions θo, i.e. Aab = ∂θao/∂θ

b
s, contains the full

information for weak gravitational lensing and reads

A =

 1− κ− γ1 ω − γ2

−ω − γ2 1− κ+ γ1

 , (3.13)

which at leading order is rewritten in terms of the gradients of the lensing po-
tential,

A = 1 +
(
∇̂a∇̂bψ

)
. (3.14)

Note that this also implies ω = 0 at leading order. We can extract the conver-
gence κ and the complex shear from the lensing potential as

κ = −1
2∇̂

2ψ , (3.15)

γ ≡ γ1 + iγ2 = −1
2
(
∇̂2

1 − ∇̂2
2

)
ψ − i∇̂1∇̂2ψ (3.16)

The relation between a non-perturbative geometrical description and these first-
order quantities is discussed in detail in Lepori et al. [2020].

The lensing potential, convergence and complex shear as scalar functions on
the 2D sphere may be expanded in the basis of spherical harmonics Y`m(n),

X(n) =
∑
`m

X`mY`m(n) . (3.17)

2We remind the reader that Φ and Ψ themselves represent nonperturbative solutions ob-
tained with full simulations.
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Assuming that these functions obey statistical isotropy, the two-point function
of the expansion coefficients X`m is diagonal in ` and m and we can define the
angular power spectrum C` as,

〈X`mX`′m′〉 ≡ δ``′δmm′C
X
` . (3.18)

Our code uses directly Eq. (3.12) to construct the lensing map and then computes
the angular power spectrum from the map. We can however also compute an
expression for the weak-lensing Cκ

` by considering the two-point function of the
integrand of Eq. (3.12) and using Eq. (3.15) in harmonic space,

Cκ
` = 4π2`2 (`+ 1)2

∫ ∞
0
k2dk

∫ χs

0
dχ
χs − χ
χsχ

∫ χs

0
dχ′

χs − χ′

χsχ′

× [1 + η(k, χ)] [1 + η(k, χ′)] j`(kχ)j`(kχ′)PΦ(k, χ, χ′) , (3.19)
where PΦ(k, χ, χ′) is the unequal-time correlator of the gravitational potential in
Fourier space defined by

〈Φ(k, χ)Φ∗ (k′, χ′)〉 = (2π)3δD (k − k′)PΦ (k, χ, χ′) . (3.20)
Moreover, according to Eq. (3.8) the gravitational potential unequal-time corre-
lator may be written based on the one of matter as follows,

PΦ (k, χ, χ′) = k−4
(
4πGN ρ̄

0
m

)2
µ(k, χ)µ(k, χ′)
× [1 + z̄(χ)] [1 + z̄(χ′)]P∆m(k, χ, χ′) . (3.21)

In the last few equations, we use the shorthand µ(k, χ) for µ (k, z(χ)) and similar
for η, PΦ and so on.

The lensing signal, as a result, responds to the DE/MG models in multiple
ways: at the background level through a change in the distance-redshift relation,
and at the level of perturbations through a modified growth and through the mod-
ifications encoded in the µ(k, z) and η(k, z) parameters [Spurio Mancini et al.,
2018, Takahashi et al., 2017], specifically through the combination Σ = µ(1+η)/2
that describes the modification of the lensing potential [Amendola et al., 2008].
In Sec. 3.5 we will compute the lensing signal for two fixed source redshifts,
namely z = 0.85 and z = 3.3, in N -body simulations to study the effects of dark
energy clustering and of the expansion history on the lensing.

It is also worth mentioning that at leading order in the absence of systematics
and shape noise [Kohlinger et al., 2017] the convergence angular power spectrum
contains the full lensing information. Decomposing the shear into rotationally-
invariant E and B components one can show from Eq. (3.14) that [Becker, 2013]

CγE
` = 1

`2(`+ 1)2
(`+ 2)!
(`− 2)!C

κ
` ,

CγB
` = 1

`2(`+ 1)2
(`+ 2)!
(`− 2)!C

ω
` = 0 .

(3.22)
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In the following sections we therefore only discuss the convergence power spectra.

3.3.2 Integrated Sachs-Wolfe and non-linear Rees-Sciama
effect

If the light rays from source galaxies traverse a time-dependent gravitational
potential then in general their energy will change [Sachs & Wolfe, 1967]. Specif-
ically, the light is redshifted for rays passing through a growing potential well,
and blueshifted if the potential well is decaying. This effect is known as late
integrated Sachs-Wolfe effect (late ISW) and is a powerful probe of dark energy
at low multipoles.

During matter domination and in linear perturbation theory the gravita-
tional potential wells remain constant in time and as a result the photons do not
gain or lose energy along their trajectories after accounting for the expansion of
the background. But when dark energy becomes important and the expansion
rate of the Universe deviates from the matter-dominated behaviour, the gravita-
tional potential decays at linear scales. As a result, photons gain energy and are
blueshifted as they travel through over-dense regions while they lose energy and
are redshifted as they travel through voids [Ade et al., 2015a, Carbone et al.,
2016]. In this way, the late ISW effect induces additional anisotropies in the
power spectrum of the cosmic microwave background (CMB) radiation, primar-
ily at large scales. These anisotropies are correlated with the large-scale structure
as they are due to evolving gravitational potential wells.

In addition to this effect in linear perturbation theory, the perturbations on
small scales and at late times evolve non-linearly. The non-linear large scale
structure of the Universe induces additional energy changes in the light rays as
they pass through these structures. This so-called Rees-Sciama effect [Rees &
Sciama, 1968] enhances the ISW effect in under-dense regions and decreases it
in the over-dense regions as the non-linear growth of structure acts opposed to
dark energy [Cai et al., 2010].

The linear late ISW and non-linear Rees-Sciama effects (abbreviated as ISW-
RS when combined) are sensitive to the background evolution and growth of
structures at late times, when the dark energy dominates over other components
[Adamek et al., 2020b, Beck et al., 2018, Cabass et al., 2015, Khosravi et al.,
2016].

Direct measurements of the ISW-RS signal from CMB data is demanding,
and as a result it is detected indirectly, either by cross-correlating large scale
structure data and CMB maps [Ade et al., 2016, Francis & Peacock, 2010, Peiris
& Spergel, 2000, Scranton et al., 2003, Seljak, 1996] or by stacking clusters and
voids to enhance the signal [Ade et al., 2016, Cai et al., 2014, 2017, Granett
et al., 2008]. The effect is also detected through the ISW-lensing bispectrum
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using Planck data [Ade et al., 2014b].
According to Eq. (3.11), the term responsible for the ISW-RS effect yields a

change in CMB temperature,

Θ(n, z) ≡ ∆T
T̄

= − δz

1 + z̄
=
∫ χs

0

∂(Ψ + Φ)
∂τ

dχ , (3.23)

where χs is the distance to the last-scattering surface for the CMB. In the pres-
ence of DE/MG the gravitational potentials Φ and Ψ are modified as a result
of Eq. (3.8) and Eq. (3.9) for the gravitational slip and clustering parameters
η(k, z), µ(k, z). It is also interesting to note that these modifications are pro-
jected in a different way for the ISW-RS signal and the lensing signal, and thus
these two could probe DE/MG in independent ways. Following the discussion in
the previous subsection, Θ(n, z) may be expanded in terms of spherical harmon-
ics and one can compute the ISW-RS angular power spectrum. Taking the time
derivative of the Hamiltonian constraint (the modified Poisson equation) (3.8),
and replacing Ψ through (3.9), results in a constraint equation for ∂ (Φ + Ψ) /∂τ
which in general is a function of µ(k, z), η(k, z) and their time derivatives:

∂(Φ + Ψ)
∂τ

= 4πGNa
2ρ̄m∆m

H(z)
k2

[
µ(k, z)∂η(k, z)

∂z

− (1 + η(k, z))
(
µ(k, z)f(k, z)− 1

1 + z
− ∂µ(k, z)

∂z

)]
(3.24)

Writing this as ∂ (Φ + Ψ) /∂τ = g(k, z)∆m we find

CΘ
` = 16π2

∫ ∞
0
k2dk

∫ χs

0
dχ
∫ χs

0
dχ′j`(kχ)j`(kχ′)

× g(k, χ)g(k, χ′)P∆m(k, χ, χ′) . (3.25)

In this article we use ray tracing to compute the ISW-RS signal according
to Eq. (3.23) by integrating along the past light cone to the source redshifts
z = 0.85 and z = 3.3 as in the previous section. This can be seen either as
a direct contribution to the observed redshift of the sources, or as a fractional
contribution to the CMB temperature anisotropy that captures the part of the
signal that is generated by the structure out to that distance and that could
therefore be constrained through a cross-correlation of the CMB with large-scale
structure. We use the ISW-RS angular power spectra in Sec. 3.5 to measure the
response of this signal to different k-essence scalar field scenarios.

3.3.3 Gravitational redshift
The light rays emitted from source galaxies in the potential well of galaxy clus-
ters and dark matter halos are expected to be redshifted/blueshifted due to the

108



3.3. Observables

difference in gravitational potential between the source galaxy and the observer.
This effect is known as gravitational redshift [Cappi, 1995], or as ordinary Sachs-
Wolfe effect in the context of CMB physics [Durrer, 2001], and is the second term
in the full expression written in Eq. (3.11),

δzgrav = (1 + z̄) (Ψo −Ψs) . (3.26)

For typical cluster masses (of order ∼ 1014M�) the gravitational redshift is esti-
mated to be two orders of magnitude smaller than the Doppler shift [the first term
in Eq. (3.11)] coming from the random motion of source galaxies [Cappi, 1995].
The technique to extract the gravitational redshift signal from other dominant
signals depends on the fact that the Doppler shift results in a symmetric disper-
sion in the redshift-space distribution, while the gravitational redshift changes
the mean of the distribution [Broadhurst & Scannapieco, 2000, Kim & Croft,
2004]. In Wojtak et al. [2011] the first measurement of gravitational redshift of
light coming from galaxies in clusters was carried out by stacking 7800 clusters
from the SDSS survey in redshift space. The signal detection was used to rule
out models avoiding the presence of dark matter and also to show the consis-
tency of the results with the predictions of general relativity. The gravitational
redshift signal was detected [e.g. in Jimeno et al. [2015], Sadeh et al. [2015]] on
scales of a few Mpc around galaxy clusters and recently in elliptical galaxies [Zhu
et al., 2019] using spectra from the Mapping Nearby Galaxies at Apache Point
Observatory (MaNGA) experiment.

The gravitational redshift as an observable is a prominent and direct probe
of gravity at cosmological scales [Alam et al., 2017b, Wojtak et al., 2011]. We
expect to see the effect of dark energy perturbations directly in the gravitational
redshift signal since Ψ ∝ µ(k, z)η(k, z)∆m, see Eqs. (3.8) and (3.9). Hence,

C
δzgrav
` = 36π2H4

0 Ω2
m [1 + z̄(χs)]4

×
∫ ∞

0

dk

k2 j
2
` (kχs)µ2(k, χs)η2(k, χs)P∆m(k, χs) . (3.27)

In Sec. 3.5 we study the effect of k-essence dark energy on the gravitational
redshift signal.

3.3.4 Shapiro time delay
In addition to all the effects discussed in the previous sections, the gravitational
potential of large-scale structure perturbs the interval of cosmic time while a
photon traverses a given coordinate distance. This effect is known as Shapiro
time delay and is first discussed and introduced in Shapiro [1964] as a fourth test
of general relativity.
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While the gravitational lensing is due to the gradient of the projected po-
tentials along the photon trajectories and is weighted by the lensing kernel, the
Shapiro time delay is proportional to the projected potential itself. As a result
we expect much more signal at high multipoles from the lensing convergence
compared to the Shapiro time delay, due to the additional factor of ∼ `2.

Due to Shapiro time delay the last scattering surface is a deformed sphere
as different light rays travel through different gravitational potentials to reach
us. All the photons we receive from the last scattering surface were released
almost at the same time, so the time delay means that the photons reaching
us from different directions have started at different distances from us. The
modulation of the spherical surface due to Shapiro time delay is ∼ 1 Mpc [Hu &
Cooray, 2001]. The effect of Shapiro time delay on the CMB temperature and
polarisation anisotropies is studied in Hu & Cooray [2001]. They show that, while
it is difficult to extract the Shapiro time delay signal from the data, neglecting
it would introduce a systematic error. They argue that the Shapiro time delay
should be considered in order to reduce the systematics in the analysis, especially
for future high precision experiments.

In Li et al. [2019] an estimator quadratic in the temperature and polarization
fields is introduced to provide a map of the Shapiro time delays as a function
of position on the sky. They show that the signal to noise ratio of this map
could exceed unity for the dipole, so the signal could be used to provide an
understanding of the Universe on the largest observable scales.

As discussed in Nusser [2016], for tests of the equivalence principle at high
redshift that rely on the Shapiro time delay effect, potential fluctuations from
the large scale structure of the Universe are at least two orders of magnitude
larger than the gravitational potential of the Milky Way. This suggests that the
effect of dark energy on these potentials needs to be considered in order to model
the Shapiro time delay accurately. From the last term in Eq. (3.10) we get

∆τ = (1 + z̄) ∆t =−
∫ χs

0
(Φ + Ψ)dχ , (3.28)

and hence

C∆τ
` = 16π2

∫ ∞
0
k2dk

∫ χs

0
dχ
∫ χs

0
dχ′j`(kχ)j`(kχ′)

× [1 + η(k, χ)] [1 + η(k, χ′)]PΦ(k, χ, χ′) . (3.29)

The dependence on µ(k, z) is evident from Eq. (3.21). This expression can be
compared to Eq. (3.19) where dark energy enters identically in the integrand,
but the effect is weighted differently along the line of sight due to the lensing
kernels. In our numerical analysis we obtain sky maps of the Shapiro time delay
by directly solving Eq. (3.28).
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3.4 Simulations

The results presented in this paper are based on simulations performed with
the relativistic N -body codes k-evolution [Hassani et al., 2019a], which includes
non-linearly clustering dark energy in the form of a k-essence scalar field, and
gevolution [Adamek et al., 2016a] for ΛCDM and cases where linear dark energy
perturbations are sufficient [see Fig. 1 in Hassani et al. [2019a]]. We also com-
pare our results from these two N -body codes with the linear Boltzmann code
CLASS [Blas et al., 2011c].

In gevolution and k-evolution, for a fixed observer, a “thick” approximate
past light cone is constructed that encompasses a region sufficiently large to
permit the reconstruction of the true light cone following the deformed photon
trajectories in post-processing [Adamek et al., 2019]. The metric information for
this thick light cone is saved in spherical coordinates pixelised using HEALPix
[Gorski et al., 2005]. This lets us compute light-cone observables including weak
gravitational lensing, ISW-RS, Shapiro time delay and gravitational redshift in
post-processing. In the present work we use a fast pixel-based method to solve
the integrals of Eqs. (3.12), (3.23) and (3.28) in the Born approximation, given
that post-Born corrections typically affect the angular power spectra only at very
high multipoles. A comparison of this approach with “exact” ray tracing of the
deformed geodesics is presented in Lepori et al. [2020] for the case of the weak
lensing convergence [see also Pratten & Lewis [2016]] and justifies the use of the
Born approximation for the multipoles discussed here. Note, however, that post-
Born corrections can play an important role in higher-order correlation functions
like the angular bispectrum.

For illustration, in Fig. 3.2 the maps of each physical effect from a ΛCDM
simulation are shown in the left panels. In the right panels the difference between
the maps from k-essence with w0 = −0.9 and c2

s = 10−7 and k-essence with
w0 = −0.9 and c2

s = 1 are shown. Since the seed number of the simulations
are identical, this shows the effect of k-essence clustering on each map, because
k-essence does not cluster significantly for the case with high speed of sound
squared, c2

s = 1.
In our simulations we place the observer in the corner of the box at position

(0,0,0) in Cartesian coordinates. We store data on the past light cone of the
observer on the full sky out to a comoving distance of χs = 2015Mpc/h, which
corresponds approximately to z = 0.8, and out to a comoving distance of χs =
4690Mpc/h or a corresponding approximate redshift of z = 3.3 for a pencil
beam covering a sky area of 1932 sq. deg. in the direction of the diagonal of the
simulation box.

The simulation boxes have a comoving size of L = 4032Mpc/h. The fields
evolve on a grid with Ngrid = 46083 grid points, and the matter phase space is
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ISW-RS map, CDM

40.47 23.81 7.16 9.50z (×106)

ISW-RS maps difference

1.330 1.252 3.833 6.414z (×106)

Gravitational redshift map, CDM

-2 -0.9 0.1 1×10 4

gravitational redshift maps difference

-0.04 -0.03 -0.02 -0.01×10 4

convergence ( ) map, CDM

-0.02 -0.005 0.01 0.03

convergence maps difference

-0.0004 -0.0001 0.0001 0.0004

Shapiro time delay map, CDM

-0.1 -0.01 0.1 0.2[Mpc/h]

Shapiro time delay maps difference

-0.0009 0.001 0.003 0.006[Mpc/h]

Figure 3.2: Left: Full-sky maps of the ISW-RS temperature anisotropy, gravita-
tional redshift, convergence and Shapiro time delay from a ΛCDM simulation using
gevolution, integrated to z ∼ 0.8 are shown. Right: Difference between the maps for
k-essence with c2

s = 10−7 and k-essence with c2
s = 1, both simulated with k-evolution.

All simulations used the same seed to generate the random initial conditions and hence
the difference maps indicate the importance of k-essence clustering.
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sampled by Npcl = 46083 (i.e. about 100 billion) particles. We use the following
cosmological parameters for all runs: the amplitude of scalar perturbations is set
to As = 2.1× 10−9 at the pivot scale kp = 0.05 Mpc−1, the scalar spectral index
is ns = 0.96, the Hubble parameter h = 0.67, cold dark matter and baryon densi-
ties are, respectively, ωcdm = Ωcdmh

2 = 0.121203 and ωb = Ωbh
2 = 0.021996, and

the CMB temperature TCMB = 2.7255 K. We also include two massive neutrino
species with masses m1 = 0.00868907 eV and m2 = 0.05 eV with temperature pa-
rameter TCνB = 1.95176 K, as well as Nur = 1.0196 massless neutrinos [Adamek
et al., 2017b]. The effect of neutrino and radiation perturbations is approxi-
mated using the linear transfer functions from CLASS as described in Brandbyge
& Hannestad [2009] and Adamek et al. [2017a], respectively. We only consider
spatially flat universes, Ωk = 0, so that the dark energy density parameter is
given by ΩDE = 1−∑X ΩX where the sum goes over all species except dark en-
ergy. For the simulations where the dark energy is not a cosmological constant,
we use a constant equation of state relation given by w0 = −0.9 and wa = 0.

The initial conditions for the simulations are set using the linear transfer
functions from CLASS at z = 100 and all the simulations are run with the same
seed number which helps us to compare the results.

For our k-essence cosmology we consider three different choices for the speed
of sound: c2

s = 1, c2
s = 10−4 and c2

s = 10−7. Strong non-linear clustering of
the dark energy field is only expected in the last case, and to study this specific
aspect, we run two separate simulations for this case. In one simulation we use
the code gevolution which approximates the dark energy perturbations by their
solution from linear theory, see Hassani et al. [2019a] for more details. In the
other simulation we use the code k-evolution in order to keep track of the dark
energy field’s response to the non-linear clustering of matter. For the higher
values of the speed of sound we only run k-evolution. We also do a reference run
for the ΛCDM model with gevolution – here there is no difference between the
two codes because dark energy perturbations are absent.

3.5 Numerical results
In this section we show the results of our numerical simulations. Once we have
generated the maps with our pixel-based numerical integrator we use anafast
from the python package of HEALPix to compute the angular power spectra
and cross power spectra. However, for the pencil beam maps that cover only
about 5% of the sky we instead use the pseudo-C` estimator of Szapudi et al.
[2000], Wandelt et al. [2001] to obtain the power spectra in an unbiased way. To
do so we use the PolSpice package to compute the angular power spectra and
cross power spectra of the masked maps.
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Figure 3.3: Top panel: The angular power spectra of the lensing convergence
κ at a source distance of χs = 2000 Mpc/h for some of our N -body simulations,
as well as predictions from CLASS with and without the Halofit prescription.
Based on the convergence test of App. 3.A we can trust the convergence spec-
trum here to ` ≈ 200, which is roughly where the dots start to deviate from
the CLASS-Halofit curve. Relative spectra remain accurate to much higher `.
Bottom panel: Data points show the relative difference between the conver-
gence power spectra from our N -body simulations for different models, whereas
dashed lines represent the corresponding predictions from CLASS with Halofit,
shown in matching colours. The blue points show the impact of k-essence non-
linearities by comparing non-linear k-essence from k-evolution with its linear
implementation in gevolution.
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Figure 3.4: Same as Fig. 3.3, but for a source distance of χs = 4500 Mpc/h,
corresponding roughly to z ≈ 3.3, and using N -body simulation data that covers
∼ 5% of the sky. Again based on App. 3.A we can trust the dots in the top panel
to ` ≈ 500, while the relative spectra shown in the bottom panel are again valid
to higher `.
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Figure 3.5: Top panel: The late-ISW-RS angular power spectra for different
cosmologies integrating to χs = 2000 Mpc/h are shown. Note that CLASS only
predicts the linear ISW signal without any non-linear correction applied. The
convergence study of App. 3.A indicates that these spectra are reliable to ` ≈
500, the relative spectra are again valid to higher `. Bottom panel: The relative
difference between different models in the ISW-RS power spectra are shown. At
large scales the result from N -body codes agree with CLASS, however, already at
` < 100 the linear and non-linear curves diverge due to the non-linear RS effect.
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Figure 3.6: Same as Fig. 3.5, but for a source distance of χs = 4500 Mpc/h,
corresponding roughly to z ≈ 3.3, and using N -body simulation data that covers
∼ 5% of the sky. From the convergence study in the appendix we conclude that
these spectra are reliable over the full range of scales shown.
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3.5.1 Weak gravitational lensing

In the top panel of Fig. 3.3 the angular power spectra for the lensing convergence
from k-evolution, gevolution and CLASS integrating up to χs = 2000 Mpc/h are
shown, which corresponds to a source redshift of approximately z = 0.85. On
the top the data points show the results for `(` + 1)Cκ

` of two simulations with
c2
s = 10−7 and c2

s = 1, as well as for ΛCDM. In addition, results for CLASS are
shown for the case c2

s = 10−7 as dash-dotted and dotted lines, respectively using
linear theory alone or Halofit [Takahashi et al., 2012] to model the non-linear
matter power spectrum.

The effect of matter non-linearities appears in the convergence power spec-
trum at ` ∼ 100 where both Halofit and N -body simulation data start to diverge
from the linear prediction. In the bottom panel of Fig. 3.3 the relative differ-
ence between the convergence power spectra of different models are shown (we
always keep χs fixed which means that the source redshift can vary by a small
amount depending on the background cosmology). This quantifies the effect
of dark energy at different levels and can be compared to the prediction from
CLASS. The data points show again the numerical results from our N -body sim-
ulations, whereas the CLASS/Halofit results for the same model comparisons are
plotted as dashed lines using the same colours. Note that the comparison be-
tween k-evolution and gevolution for the case c2

s = 10−7 has no corresponding
prediction from CLASS, and quantifies the importance of the nonlinear modelling
of k-essence within the N -body simulations. To be specific, our convention is
∆C`/C` = (C(dataset 1)

` − C(dataset 2)
` )/C(dataset 2)

` , where “dataset 1” and “dataset
2” are indicated in the legend of each figure.

At large scales, as expected, the results from CLASS and N -body simulations
agree very well, while at smaller scales some deviations are seen. The deviation
of the N -body results from the CLASS/Halofit prediction occurs mainly when
there is dark energy clustering which is more pronounced for the cases with low
speed of sound. Indeed, comparing the case c2

s = 1 with ΛCDM we find that
the CLASS/Halofit prediction is accurate at least up to ` ∼ 1000, whereas for the
lowest speed of sound, c2

s = 10−7, significant disagreement between CLASS/Halofit
and N -body simulations appears already for multipoles ` & 100. This is in
complete agreement with our results in Hassani et al. [2019b] where we show
that CLASS/Halofit gives the right clustering function µ(k, z) for high speed of
sound.

Our comparison between the two simulation methods (k-evolution and gevo-
lution) for the case c2

s = 10−7 shows that the non-linear response of k-essence to
matter clustering produces an effect of ∼ 2% in the convergence power spectrum
at multipoles in the range of a few hundred.

According to Fig. 3.3 the effect of dark energy clustering can cancel the effect
of the background evolution with w0 = −0.9 on the weak-lensing signal at large
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angular scales: the ∼ 5% suppression when going from ΛCDM to wCDM with
c2
s = 1 is compensated by an amplification of similar size when going from c2

s = 1
to low speed of sound. The scale up to which this cancellation works is set by
the sound horizon, and at very non-linear scales there is always some residual
suppression. In our scenario the cancellation happens only for the case w0 > −1
when the linear growth rate is suppressed (see Fig 3.1), while for the case with
w0 < −1, where the growth rate is enhanced compared to ΛCDM, the background
evolution and the dark energy clustering effects would act in a similar way.

Fig. 3.4 is similar to Fig. 3.3 but shows results from the pencil beam map
integrating to a higher source distance of χs = 4500 Mpc/h, corresponding ap-
proximately to redshift z = 3.3. As we have access to only ∼ 5% of the sky
in this case, we have no information about the angular power spectra at low `.
The CLASS/Halofit and N -body simulation data agree better compared to the
lower redshift results, as the scale where the finite resolution of the simulation
affects the result is shifted to higher multipoles, see Appendix 3.A [cf. also Ap-
pendix C of Lepori et al. [2020]]. Moreover, the relative difference between the
angular power spectra is less substantial compared to lower redshift result which
comes from the fact that dark energy starts to dominate at lower redshift and
integrating to higher redshifts therefore effectively dilutes the signal.

The overall signal amplitude for lensing is larger at higher redshift owing
to the fact that it is an integrated effect. Thus, although the relative effect of
dark energy clustering is lower at higher redshifts, the detectability of the signal
is larger, and combining high and low redshift lensing data still significantly
increases the signal to noise ratio.

3.5.2 ISW-RS effect
In Figs. 3.5 and 3.6, the ISW-RS angular power spectra from our N -body simu-
lations and CLASS are shown and the different dark energy models are compared
in the bottom panel of each figure. The ISW-RS signal is very sensitive to the
clustering of dark energy and also its background evolution. Comparing dark
energy with low and high speeds of sound with ΛCDM, one finds a huge impact
∼ 35% at z = 3.3 and ∼ 30% at z = 0.85 from dark energy clustering which
makes the ISW-RS signal an excellent probe of this model.

It is also interesting to see that the non-linear RS effect starts to have impact
at larger scales than the scale of non-linearity in the lensing signal in Fig. 3.4
which is also observed and discussed in [Adamek et al., 2020b, Cai et al., 2009b].
To verify that the non-linear RS indeed appears in lower moments we design a
numerical experiment to decrease the non-linear RS signal by decreasing As, the
amplitude of scalar perturbations. This shifts the non-linear scale and allows us
to separate the linear ISW effect from higher-order corrections. Our numerical
results, shown in Appendix 3.B, verify that the non-linear RS effect is responsible
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Figure 3.7: Top panel: The cross power spectra of lensing convergence κ and
ISW-RS integrated to comoving distance χs = 2000 Mpc/h from k-evolution
with two speeds of sound c2

s = 10−7 and c2
s = 1 are shown, together with our

ΛCDM reference run. Bottom panel: The relative difference between the cross
power spectra for several models is shown.

120



3.5. Numerical results

10 10

10 9

10 8

((
+

1)
)C

×
IS

W

s=4500 [Mpc/h], z = 3.3

k-evolution, c2
s = 10 7

k-evolution, c2
s = 1

gevolution, CDM

101 102 1030.25
0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

C
/C

c2
s = 10 7, k-evolution - c2

s = 10 7 gevolution
c2

s = 10 7  k-evolution - c2
s = 1  k-evolution

c2
s = 10 7  k-evolution - c2

s = 10 4  k-evolution
c2

s = 10 7  k-evolution - CDM
c2

s = 10 4  k-evolution - CDM
c2

s = 1  k-evolution - CDM

Figure 3.8: Same as Fig. 3.7, but for a source distance of χs = 4500 Mpc/h,
corresponding roughly to z ≈ 3.3, and using N -body simulation data that covers
∼ 5% of the sky.

121



Chapter 3. Clustering dark energy imprints on cosmological observables of the
gravitational field

for the deviation at lower ` compared to lensing. This is maybe not too surprising
given that the lensing kernel suppresses contributions from the vicinity of the
observer which would be projected dominantly to low multipoles.

The non-linear RS effect is not implemented in CLASS and as a result we a
see power drop at ` ∼ 100 in the linear power spectra (top panels). Moreover, it
is interesting to see that unlike the lensing power spectra, the effect of clustering
dark energy and background evolution do not cancel each other in the ISW-RS
power spectra and we obtain ∼ −20% relative difference between c2

s = 10−7 and
ΛCDM.

As seen in Fig. 3.6 the signal itself is stronger at higher redshift as it is an
integrated signal. However, depending on the parameters the relative difference
can change positively or negatively compared to the lower redshift comparison.
This is because more linear ISW and less non-linear effect is accumulated at high
redshift.

As explained in Sec. 3.3.2 the direct detection of ISW-RS signal is difficult
and it is therefore usually detected indirectly, e.g. via cross correlation with other
quantities. As an example, we report the convergence-ISW-RS cross power spec-
tra in Fig. 3.7 and Fig. 3.8. Fig. 3.9 shows the cross-correlation coefficient, i.e. the
cross power normalised to the r.m.s. of each individual signal. The effects of dark
energy clustering and expansion history in the cross power spectra follows sim-
ilar trends as seen for the individual probes. Interestingly, the cross-correlation
coefficient saturates to ∼ 0.8 at low ` almost independently of the dark energy
model. This is because virtually all the effect is taken up by the normalisation.
However, the non-linear evolution is different in different models, which leads to
an absolute change, ∆C`, in the cross-correlation coefficient of a few percentage
points at high multipoles.

3.5.3 Gravitational redshift

In Fig. 3.10 the gravitational redshift angular power spectra for different scenarios
are compared. The top panel shows `(`+1)Cδzgrav

` for three cases, and the bottom
panel the relative difference between different angular power spectra. Like for
the lensing signal, the effect of clustering and background almost cancel at large
scales by coincidence: Comparing power spectra from dark energy with two
different speeds of sound (c2

s = 1 and c2
s = 10−7) we find a difference of ∼ 2%

due to the clustering of dark energy. The relative difference between ΛCDM
with wCDM with c2

s = 1 reaches ∼ −3% due to different background evolution.
But the difference between ΛCDM and k-essence with a low sound speed is only
about 1%. Fig. 3.10 also shows that the effect of non-linear dark energy clustering
becomes visible once again for ` & 100, and is generally rather small, of the order
of 1%.
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Figure 3.9: Top panel: The cross-correlation coefficient of lensing convergence
κ and ISW-RS integrated to comoving distance χs = 2000 Mpc/h for the results
shown in Fig. 3.7. Bottom panel: Absolute difference in the cross-correlation
coefficient for different models.
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It should be noted that the angular correlation of the gravitational redshift
will be very difficult to measure from large-scale structure observations. However,
the line-of-sight correlations produce interesting signatures in redshift space, in
particular a dipole in the correlation function of different matter tracers [Breton
et al., 2019, Wojtak et al., 2011].

3.5.4 Shapiro time delay
In the Fig. 3.11 the angular power spectra for the Shapiro delay signal is plotted.
Our result for the relative spectra show a similar pattern as for the gravitational
redshift. The effect of dark energy clustering and dark energy background evolu-
tion have a ∼ 3% effect on the Shapiro delay power spectrum that again cancel
to a significant degree when combined. The non-linear dark energy clustering
contributes again about a 1% effect for ` & 100. We only report the Shapiro
delay integrating to χs = 2000 Mpc/h. The cosmological Shapiro time delay
will be extremely challenging to measure. It contributes only to subdominant
relativistic corrections in the redshift-space clustering, and we are not aware of
a probe that easily isolates this effect.

3.6 Conclusion
We are, observationally speaking, in the golden era of cosmology and in the near
future we will be able to put stringent constraints on dark energy and modified
gravity models. However, to be able to unlock the full power of future observa-
tions we need to have a precise understanding of the non-standard scenarios well
into the nonlinear regime. The precise modeling of structure formation and cos-
mological observables covering linear to nonlinear scales can be directly achieved
using full N -body simulations.

In this work we have presented the numerical results for the effect of cluster-
ing dark energy (specifically the k-essence model) on the observables extracted
from the gravitational potential, namely the weak gravitational lensing, ISW-RS,
Shapiro time delay and gravitational redshift. The observables discussed in this
paper are calculated via a ray-tracing method integrating to the source redshifts
z ≈ 0.85 and z ≈ 3.3 covering respectively a full sky map and a pencil beam
in our simulations. Comparing results from the two N -body codes gevolution
and k-evolution with the linear Boltzmann code CLASS we are able to assess the
different effects coming from the dark energy, specifically the effect from a differ-
ent background evolution, from linear dark energy perturbations and from the
non-linear evolution of dark energy itself.

In summary, our numerical analysis of the angular power spectra of each
observable shows that:
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Figure 3.10: Top panel: The gravitational redshift angular power spectra of
different cosmologies for a source plane at comoving distance χs = 2000 Mpc/h.
Bottom panel: The relative difference between the angular power spectra of
the gravitational redshift in different cosmologies.
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Figure 3.11: Top panel: The angular power spectra of Shapiro time delay
integrated to comoving distance χs = 2000 Mpc/h for different cosmologies.
Bottom panel: The relative difference between Shapiro delay angular power
spectra for different models.
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• The ISW-RS signal is the most powerful probe of different background
evolution and the clustering of dark energy. Comparing dark energy with
various speeds of sound (c2

s = 10−7, c2
s = 10−4 and c2

s = 1) with ΛCDM
one finds a significant impact of clustering dark energy on the ISW-RS
angular power spectra reaching ∼ 35% at z = 3.3 and ∼ 30% at z = 0.85.
Moreover, by comparing the linear ISW signal from CLASS with the non-
linear signal from our N -body codes we are able to determine the scale and
amplitude of the nonlinear Rees-Sciama effect in the k-essence scenario.

• The effect of dark energy on the weak gravitational lensing signal could
reach ∼ 5%. Interestingly, our numerical study shows that the effect of
clustering of dark energy and background evolution can partially cancel
each other.

• The gravitational redshift and Shapiro time delay signals are less sensitive
to the dark energy clustering and background evolution, as dark energy
would change these signals at most by ∼ 3% and ∼ 4%, respectively, due
to the different background evolution. An additional change by ∼ 2% and
∼ 3% can occur due to the clustering of dark energy.

Our numerical study shows how direct probes of the gravitational field, in par-
ticular weak lensing and the ISW-RS effect, can be used to constrain the nature
of dark energy. It also highlights the relevance of including non-linear effects
and provides a framework to model these effects in full N -body simulations.
With this we deliver some valuable guidance for the implementation of analysis
pipelines that will be used to process the vast amount of upcoming observational
data, with the aim to derive robust constraints on dark energy parameters.
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Carbon footprint: Our simulations consumed about 9800 kWh of electrical
energy, which is equivalent to 1960 kg CO2 with a conversion factor of 0.2 kg CO2 kWh−1

from Vuarnoz & Jusselme [2018], table 2, assuming Swiss mix.

Data availability
The N -body codes used for the simulations and data of this paper will be pro-
vided upon request to the corresponding author. The version of gevolution used
in this work, together with the map-making tools, is available on this public
repository: https://github.com/gevolution-code/gevolution-1.2
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3.A. Convergence test

APPENDIX

3.A Convergence test
In this appendix we compare the results from our high-resolution simulations
(Ngrid = Npcl = 46083) with some lower-resolution ones (Ngrid = Npcl = 23043)
for ISW-RS and convergence maps at both redshifts z = 0.85 and z = 3.3.
This shows us at which scales the low-resolution simulations have converged to
a certain numerical precision, and we can make a reasonable guess on how well
we should be able to trust our final results from the high-resolution simulations.

According to Fig. 3.12 the convergence angular power spectrum is converged
to within 5% up to ` ∼ 100 and ` ∼ 250, respectively for a source redshift of
z = 0.85 and z = 3.3. Assuming that a factor of 2 in spatial resolution translates
to a similar improvement in the angular resolution, we may want to trust our final
results up to ` ∼ 200 and ` ∼ 500, respectively, maintaining a ∼ 5% absolute
convergence threshold. However, the leading-order error due to finite resolution
is usually almost independent of cosmology, which means that it cancels out
to high accuracy when taking ratios. Whenever we show relative changes, we
therefore expect much better numerical convergence. In the bottom panel of the
Fig. 3.12 we show the relative change between ΛCDM and wCDM convergence
power spectra for two different spatial resolutions. In these relative spectra the
curves with different resolutions agree at all ` shown, explicitly demonstrating
the cancellation of the finite resolution error in the relative power spectra.

Considering Fig. 3.13 we can draw similar conclusions for the numerical con-
vergence of the ISW-RS signal. The 5% error is reached at somewhat higher
`, which means we may be able to trust our final results up to ` ∼ 400 and
` ∼ 800 for the two redshift values if we apply the same requirement on absolute
numerical convergence. Also according to the bottom panel of the figure the
relative spectra from the two different resolutions are consistent so that we can
trust the ISW-RS relative difference power spectra at all scales of interest. We
emphasise again that the results shown in this paper were obtained using the
higher-resolution simulations.

3.B Non-linear Rees-Sciama effect
In this appendix we quantify in more detail the contribution of the non-linear
Rees-Sciama effect to the ISW-RS signal at low multipoles ` . 100. To this
end, we run additional simulations for the wCDM cosmology with c2

s = 1 and
for ΛCDM, but with the power of primordial perturbations, As, reduced by
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Figure 3.12: Top panel: We compare the convergence power spectra from two
simulations with different resolutions, Ngrid = Npcl = 46083 and Ngrid = Npcl =
23043, at two source redshifts z = 0.85 and z = 3.3. Middle panel: The
relative difference between the convergence power spectra of the same cosmology
but different resolutions of the simulations are shown. This gives us an estimation
of the finite resolution error on the convergence angular power spectra. The grey
areas show 1% and 2% numerical agreement. Bottom panel: Comparing the
relative change in the convergence power spectra between ΛCDM and k-essence
cosmology with the speed of sound c2

s = 10−7 from two simulations with different
resolutions, Ngrid = Npcl = 46083 and Ngrid = Npcl = 23043, at source redshifts
z = 0.85 and z = 3.3. The dashed lines show the linear theory prediction
obtained from CLASS. The agreement across different resolutions shows that one
can trust the relative change of power spectra at much higher multipoles than is
the case for the individual power spectra themselves.
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Figure 3.13: Top panel: We compare the ISW-RS angular power spectra
from two simulations with different resolution, Ngrid = Npcl = 46083 and
Ngrid = Npcl = 23043, at two source redshifts z = 0.85 and z = 3.3. Mid-
dle panel: The relative difference between the ISW-RS angular power spectra
of the same cosmology but different resolutions of the simulations are shown.
Bottom panel: The relative difference of ISW-RS angular power spectra be-
tween the k-essence cosmology with c2

s = 10−7 and ΛCDM for two different
spatial resolutions Ngrid = Npcl = 46083 and Ngrid = Npcl = 23043 at two source
redshifts z = 0.85 and z = 3.3. The dashed lines show the linear theory pre-
diction obtained from CLASS. Like Fig. 3.12, this figure shows that the finite
resolution effect is cancelled significantly in the relative changes of the angular
power spectra. 131
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Figure 3.14: Left: The ISW-RS angular power spectra for two different cos-
mologies, (w0 = −0.9, c2

s = 1) and ΛCDM with standard and low value of As,
the amplitude of scalar perturbations. Right: The ratio of the ISW-RS sig-
nal from high value of As to low value of As are compared. The linear result
is constant at all scales, and is simply the ratio of the two values of As. The
fractional contribution of the Rees-Sciama effect depends on w0 mainly because
of suppressed growth and the corresponding shift of the non-linear scale with
respect to ΛCDM.

two orders of magnitude. As a result, the evolution is almost linear up to much
smaller scales, bringing the numerical result for the ISW-RS signal into very good
agreement with the calculation of the linear ISW alone as performed by CLASS.
This can be clearly seen in the left panel of Fig. 3.14 where the simulations with
low As remain consistent with the prediction from CLASS well beyond ` ∼ 100.
Taking the ratio of spectra from the simulations with the standard value of As
to the ones with low As, we can therefore get a good estimate of the fractional
contribution of the Rees-Sciama effect. The result of this analysis is shown in the
right panel of Fig. 3.14, which suggests that the Rees-Sciama effect changes the
signal by a few per cent at very low ` . 20, and then gradually ramps up to reach
a ∼ 100% correction at around ` ∼ 100. Interestingly, the non-linear corrections
are systematically larger in ΛCDM, which can be explained by the fact that the
linear growth rate is slightly suppressed in our wCDM cosmology, see Fig. 3.1.
This, in turn, is expected to lead to a corresponding relative suppression of
second-order corrections like the Rees-Sciama effect.
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Chapter 4. Parametrising non-linear dark energy perturbations

Abstract: In this paper, we quantify the non-linear effects from k-essence
dark energy through an effective parameter µ that encodes the additional contri-
bution of a dark energy fluid or a modification of gravity to the Poisson equation.
This is a first step toward quantifying non-linear effects of dark energy/modified
gravity models in a more general approach. We compare our N -body simulation
results from k-evolution with predictions from the linear Boltzmann code CLASS,
and we show that for the k-essence model one can safely neglect the difference
between the two potentials, Φ − Ψ, and short wave corrections appearing as
higher order terms in the Poisson equation, which allows us to use single pa-
rameter µ for characterizing this model. We also show that for a large k-essence
speed of sound the CLASS results are sufficiently accurate, while for a low speed
of sound non-linearities in matter and in the k-essence field are non-negligible.
We propose a tanh-based parameterisation for µ, motivated by the results for
two cases with low (c2

s = 10−7) and high (c2
s = 10−4) speed of sound, to include

the non-linear effects based on the simulation results. This parametric form of
µ can be used to improve Fisher forecasts or Newtonian N -body simulations for
k-essence models.

4.1 Introduction
The accelerating expansion of the Universe is now well established based on
observational results, for example from observations of the cosmic microwave
background (CMB) anisotropies Planck Collaboration et al. [2016], type Ia su-
pernovae Scolnic et al. [2018], and baryon acoustic oscillations Alam et al. [2017a].
Current data are in agreement with a cosmological constant as the driving force
behind the acceleration. However, the cosmological constant suffers from se-
vere fine-tuning issues that motivated the development of a plethora of modified
gravity (MG) and dark energy (DE) models.

One of the simplest and most popular of these models is k-essence1, featur-
ing a single scalar field minimally coupled to gravity. The k-essence model was
originally introduced to naturally explain why the universe has entered an ac-
celerating phase without fine-tuning of the initial conditions and the parameters
and also avoiding anthropic reasoning Armendariz-Picon et al. [2001].

Understanding the mysterious nature of DE/MG has become one of the most
important unsolved problems in cosmology. Upcoming surveys Aghamousa et al.
[2016b], Amendola et al. [2018], Santos et al. [2015a], Walcher et al. [2019] are
planned with the aim of understanding this component by probing the expansion
history of the Universe as well as structure formation with unprecedented pre-

1It is worth mentioning that we use the term “k-essence” to refer to a general class of models
featuring either a canonical (quintessence Peebles & Vilenkin [1999]) or a non-canonical kinetic
term in the action.
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cision. These surveys will put tight constraints on the cosmological parameters,
including those that describe the physical properties of dark energy. While there
have been many studies (for a review see e.g. Amendola et al. [2018]) on probing
the DE/MG equation of state by observing the expansion history of the Universe,
a consistent study of these theories including the non-linearities of DE/MG is not
generally available. But to reach the full potential of constraining these theories,
a modelling of the observables up to non-linear scales will be necessary. To this
end, some of us have recently developed the N -body code “k-evolution” in which
we consider dark energy, in this case a k-essence scalar field, as an independent
component in the Universe. This code is described in more detail in the compan-
ion paper Hassani et al. [2019c], where we also study the effect of dark matter
and gravitational non-linearities on the power spectrum of dark matter, of dark
energy and of the gravitational potential, and compare k-evolution to Newtonian
N-body simulations.

Studying the non-linearities of such models in a consistent way enables us to
predict the effects of DE/MG perturbations on the cosmological parameters. A
full study of the k-essence model is particularly interesting as the dark energy
perturbations become important at different scales with different amplitudes,
depending on the equation of state w and speed of sound cs. For example,
in Hassani et al. [2019c] we show that k-essence structures for low speed of
sound, e.g. c2

s = 10−7, can become highly non-linear at small scales and that
non-linearities have a large impact on quantities like the gravitational potential
power spectrum.

Providing a sufficiently precise modelling of power spectra specifically for k-
essence dark energy is the main goal of this article. We also discuss the different
sources to the Hamiltonian constraint in the presence of k-essence dark energy
to show that the impact of k-essence on power spectra can be captured by the
modified gravity parameter µ on all scales of interest.

In Section 4.2 we review the theory of k-essence and describe the theoretical
framework. In Section 4.3 we describe the numerical results, based on the k-
evolution code Hassani et al. [2019c], a relativistic N -body code for clustering
dark energy, and in Section 4.4 we provide basic recipes for how to use our results
to improve Boltzmann and Newtonian N -body codes.

4.2 The k-essence model
k-essence theories are the most general local theories for a scalar field which is
minimally coupled to Einstein gravity and involves at most two time derivatives
in the equations of motion Armendariz-Picon et al. [2000], Gleyzes et al. [2015].
These theories are a good candidate for the late-time accelerated expansion as
well as for the inflationary phase. As a viable and interesting candidate for
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dark energy to be probed by future cosmological surveys, these theories are
implemented in several cosmological Boltzmann and N -body codes, including
CAMB Lewis et al. [2000], CLASS Lesgourgues [2011], concept Dakin et al.
[2019], gevolution Adamek et al. [2016c] and recently in k-evolution Hassani et al.
[2019c]. In k-evolution, contrary to other codes that only consider linear dark
energy perturbations, dark energy can cluster like the matter components which
enables us to study the effect of dark energy non-linearities in a consistent way.

In k-essence theories the Lagrangian is written as a general function of the
kinetic term and the scalar field, P (X,ϕ). We consider the Friedman-Lemaître-
Robertson-Walker (FLRW) metric in the conformal Poisson gauge to study the
perturbations around the homogeneous universe.

ds2 = a2(τ)
[
− e2Ψdτ 2 − 2Bidx

idτ +
(
e−2Φδij + hij

)
dxidxj

]
, (4.1)

where τ is conformal time, xi are comoving Cartesian coordinates, Ψ and Φ are
respectively the temporal and spatial scalar perturbations, and Bi and hij are the
vector and tensor perturbations. Using the scalar-vector-tensor (SVT) decom-
position we can recover the 4 scalar, 4 vector, and 2 tensor degrees of freedom
in the metric (from which after fixing the gauge two scalar and two vector de-
grees of freedom are removed), which we are going to use to obtain the equations
of motion for the perturbations. Our notation and the SVT decomposition are
briefly discussed in Appendix 4.C.

The full action in the presence of a k-essence scalar field as a dark energy
candidate reads

S = 1
16πGN

∫ √
−gRd4x+

∫ √
−gLDEd

4x+
∫ √
−gLmd4x , (4.2)

where GN is Newton’s gravitational constant, g is the determinant of the metric,
R is the Ricci scalar, LDE = P (X,ϕ) is the general k-essence Lagrangian in
which ϕ is the scalar field perturbation, X = −1

2g
µν∂µϕ∂νϕ is the kinetic term,

and Lm is matter Lagrangian.
Variation of the action with respect to scale factor a(τ) results in an equation

for the evolution of the scale factor (Friedmann equation),

3
2H

2 = −4πGNa
2T̄ 0

0 , (4.3)

where H = a′/a and the prime here denotes the derivative with respect to con-
formal time. T̄ 0

0 is the background stress-energy tensor. The full stress-energy
tensor including matter (cold dark matter, baryons and radiation) and k-essence
is defined as

T µν ≡ 2√
−g

δLDE

δgµν
+ 2√
−g

δLm

δgµν
. (4.4)
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We can parametrise the stress-energy tensor of a fluid with three parameters,
namely the equation of state w = p̄/ρ̄, the squared speed of sound c2

s, given
in the fluid rest-frame through δp = c2

sδρ, and the anisotropic stress σ. For k-
essence both w and c2

s can vary as a function of time, while σ = 0 Hassani et al.
[2019c]. However, in this work, we take w and c2

s to be constant. On the other
hand the divergence of the k-essence stress-energy tensor gives the equation for
k-essence density perturbations through the continuity2 equation,

δ′DE = −(1+w)
(
∂iv

i
DE−3Φ′

)
−3H

(
δpDE

δρDE
−w

)
δDE+3Φ′

(
1+δpDE

δρDE

)
δDE+1 + w

ρ
viDE∂i

(
3Φ−Ψ

)
,

(4.5)
where δDE is the k-essence density contrast and viDE is the velocity perturbation
of k-essence. In this form of the continuity equation we have included short wave
corrections that are discussed in more detail later in this section.

We note that in Newtonian gauge we have the relation δp = c2
sδρ+ 3H(c2

s −
c2
a)ρ̄(1 + w)θ/k2, where we have introduced the adiabatic speed of sound c2

a =
ρ̄′/p̄′.

The variation of the action with respect to the lapse perturbation Ψ, in the
weak field approximation, results in the Hamiltonian constraint Adamek et al.
[2017b],

∇2Φ = 3HΦ′ + 3H2Ψ + 1
2δ

ijΦ,iΦ,j + 4πGNa
2(1− 2Φ)

∑
X

ρ̄XδX , (4.6)

where δX = δρX/ρ̄X is the Poisson-gauge density contrast for each species. We
usually split the total density perturbation ρ̄δ into the contribution from the
different species that cluster, in our case cold dark matter, baryon, radiation and
the k-essence scalar field:

ρ̄δ = ρcdmδcdm + ρDEδDE + ρbδb + ρrδr , (4.7)

where cdm, b, and DE respectively stand for cold dark matter (CDM), baryons,
and k-essence. The last contribution is due to relativistic species (radiation and
neutrinos) that we will neglect from now on as we are interested in late times.
This does however have to be taken into account when going to high redshift,
e.g. when considering the CMB. Moreover we define the short-wave corrections
S and relativistic terms R in the Hamiltonian constraint equation as follows,

R(x̃, τ) ≡ 3HΦ′ + 3H2Ψ , (4.8)

S(x̃, τ) ≡ 1
2δ

ijΦ,iΦ,j − 8πGNa
2Φ
∑
X

ρ̄XδX . (4.9)

2In the companion paper Hassani et al. [2019c] we show that the Euler and continuity
equations are equivalent to the scalar field equation in the weak field regime.
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The relativistic terms R(x̃, τ) become important on large scales where k ∼ H.
The short wave corrections S(x̃, τ), on the other hand, are due to the weak field
scheme where we allow matter and k-essence densities to become fully non-linear
i.e.

δm ∼ δDE ∼ O(1) , (4.10)

while the metric perturbations remain small. As a result in this scheme we
can have highly dense k-essence and matter structures while the metric is still
FLRW with small perturbations. More detailed discussions on the weak field
approximation are found in Adamek et al. [2016c], Hassani et al. [2019c]

4.3 Numerical results

4.3.1 The k-evolution code
k-evolution Hassani et al. [2019c] is a relativistic N -body code based on gevolu-
tion Adamek et al. [2016b,c]. The full sets of non-linear relativistic equations,
six Einstein’s equations Gµν = 8πGTµν as well as the scalar field equation (lin-
earised in the k-essence field variables) are solved on a Cartesian grid with fixed
resolution Adamek et al. [2017b], Hassani et al. [2019c] to update the particle
positions and velocities. While in k-evolution the dark energy component is con-
sidered as an independent element whose equation of motion is fully coupled to
the non-linear matter dynamics solved in the code, in gevolution it is not treated
as an independent component and only the respective linear solution from the
Boltzmann code CLASS is used to model dark energy perturbations. The effects
of non-linear clustering of the k-essence scalar field on matter and gravitational
potential power spectra are studied in Hassani et al. [2019c]. Also the effect of
k-essence on the turn-around radius is studied using k-evolution in Hansen et al.
[2020].

In order to probe the non-linearities of both matter and k-essence scalar
field, we combined the data from two simulations with Ngrid = 38403 with two
different resolutions: one with L = 9000h−1Mpc and one with a physically
smaller box with L = 1280h−1Mpc, corresponding to respectively 2.3h−1Mpc
and 0.33h−1Mpc length resolution. Furthermore, to study the relativistic terms
which become important at large scales we also use a much lower spatial res-
olution simulation with Ngrid = 38403, L = 90000h−1Mpc corresponding to
23.43h−1Mpc length resolution. In all of the figures, we remove the data with
wavenumbers larger than 1/7 of the Nyquist frequency of the simulation to min-
imize any finite resolution effect. Moreover, by having different simulations with
overlapping windows of wavenumbers we are able to test the convergence of the
simulations and thus have control over the errors coming from finite resolution
and finite box size (cosmic variance).
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In our studies we consider w = −0.9 which gives accelerated expansion and
is compatible with the current observational data Amendola et al. [2018] and
two cases for the speed of sound, namely c2

s = 10−4 and c2
s = 10−7. These

two cases are interesting as their respective sound horizons correspond to linear
and non-linear scales. In fact, for the case with c2

s = 10−4 the dark energy
perturbations decay significantly at the quasi-linear and non-linear scales as the
sound horizon wavenumber is about ks ≈ 0.03hMpc−1 and we do not expect
to see large difference between the k-evolution scheme and when dark energy is
treated linearly. In the case with c2

s = 10−7 the sound horizon for dark energy
is at a much higher wavenumber, ks ≈ 1hMpc−1, and we are able to see the
dark energy perturbations impact on the other quantities. More details about
the results of the two speeds of sound can be found in Hassani et al. [2019c].

4.3.2 Sources to the Hamiltonian constraint

In this subsection we discuss the different sources to the Hamiltonian constraint
and according to the numerical results we argue that in the k-essence theories one
can safely neglect short-wave corrections and also that the gravitational potential
difference Φ−Ψ is negligible.

In Fig. 4.1 we compare all the terms to the Hamiltonian constraint (4.6); TX
in the figures refers to

√
〈XX∗〉 in Fourier space. We also divide these terms

by H2 to make them dimensionless. In the top-left plot the contribution from
relativistic terms, from the k-evolution code which is introduced in Section 4.3.1
is shown in solid lines and from the linear Boltzmann code CLASS Blas et al.
[2011b] in dash-dotted lines. These terms are the main contributions to the
Hamiltonian constraint at large scales and high redshifts, as the other three
terms decay at large scales. We note that the k-evolution and CLASS predictions
for the relativistic terms start to differ already at relatively large scales, which
comes from the difference between Φ′ power spectra in these codes which is
discussed in details in the companion paper Hassani et al. [2019c].

In the top-right figure the contribution from matter (baryons and cold dark
matter) is shown. This term is the main contribution at small scales compared to
the other terms, as matter perturbations dominate at those scales. The bottom-
left figure shows the contribution from the short wave corrections to the Hamilto-
nian constraint, which is negligible. In the bottom-right figure the contribution
from k-essence for c2

s = 10−7 is shown. The contribution from this term peaks
around the sound-horizon scale ks ≈ 1h/Mpc. These plots allow to compare the
relative contribution of each term in the Hamiltonian constraint as a function
of scale and redshift; we should however not forget that the power spectra also
contain contributions from cross terms that we are not going to discuss in this
paper.
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Figure 4.1: Sources to the Hamiltonian constraint, normalized to H2, in terms
of wavenumber at different redshifts, from k-evolution in solid lines and from
CLASS in dashed lines, for a k-essence speed of sound of c2

s = 10−7. For the
figures on the right, the y-axis is shown on the right. The x-axis is common
between each column of figures. The figure on the left bottom, showing the
short-wave corrections, is obtained using a simulation with Ngrid = 38403 and box
size L = 9000h−1Mpc, while in the other three figures the results are obtained
combining three simulations withNgrid = 38403 and box sizes L = 90000h−1Mpc,
L = 9000h−1Mpc and L = 1280h−1Mpc.

Variation of the action with respect to Φh (the scalar part of δgij) defined in
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Eq. (4.18) leads to a constraint equation for Φ−Ψ,

∇4(Φ−Ψ)−
(

3δikδjl ∂2

∂xk∂xl
− δij∇2

)
Φ,iΦ,j = 4πGNa

2
(

3δik ∂2

∂xj∂xk
− δij∇2

)
T ji ,

(4.11)
where∇4 .= δijδlm∂i∂j∂l∂m. In this expression Φ−Ψ is sourced by the anisotropic
part of the stress-energy tensor and a short-wave correction term. In first order
perturbation theory, and neglecting radiation perturbations, we have Φ = Ψ.
Short-wave corrections and also anisotropic pressure generation in dark matter
Ballesteros et al. [2012] and k-essence Hassani et al. [2019c] lead to a non-zero
Φ − Ψ. Contrary to the case of the Hamiltonian constraint, the contribution of
short-wave corrections is of relative importance here, in particular at large scales.
In absolute terms these higher-order effects are however expected to be small.
To quantify the difference between the two potentials we measure

√
PΦ−Ψ/

√
PΦ

from our simulations (where PΦ−Ψ is the dimensionless power spectrum of Φ−Ψ),
shown as solid lines in Fig. 4.2. For comparison, the dashed lines show the same
quantity generated from CLASS where it is solely due to radiation perturbations.
On super-horizon scales, the contribution from radiation perturbations is larger
than contribution from non-linearities, while in the quasi-linear regime the dom-
inant contribution comes from the non-linearities. Both are however indeed very
small and can be safely neglected at intermediate and small scales.

Variation of the action with respect to the shift perturbation results in the
momentum constraint,

− 1
4∇

2Bi − Φ′,i −HΨ,i = 4πGNa
2T 0

i (4.12)

where in Poisson gauge (4.20), Bi is divergence-less or transverse i.e. δijBi,j = 0.
So the divergence of Eq. (4.12) reads,

−∇2
(
Φ′ +HΨ

)
= 4πGNa

2∂iT 0
i . (4.13)

If the stress-energy can be split into contributions from independent constituents,
we can define the velocity divergence θX for each constituent such that

∂iT 0
i =

∑
X

ρ̄X
(
1 + wX

)
θX= θtot

∑
X

ρ̄X
(
1 + wX

)
. (4.14)

This definition of θX coincides with the linear velocity divergence in the case
where the constituent can be described by a fluid, but it generalises to situations
where this is no longer the case. We can now see that the relativistic terms in the
Hamiltonian constraint Eq. (4.6) can be related to a different choice of density
perturbation,

∇2Φ = 1
2δ

ijΦ,iΦ,j + 4πGNa
2(1− 2Φ)

∑
X

ρ̄X∆X , (4.15)
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Figure 4.2: The quantity
√
PΦ−Ψ
PΦ

from k-evolution (solid lines) and from CLASS
(dashed lines) at different redshifts as a function of wavenumber k. In k-evolution
this quantity is non-zero due to the non-linearities in matter, k-essence and short-
wave corrections, while in CLASS it is generated due to the radiation perturbations
which oscillate and decay in k. The results are obtained combining three simu-
lations with Ngrid = 38403 and box sizes L = 90000h−1Mpc, L = 9000h−1Mpc
and L = 1280h−1Mpc.

where ∆X = δX−3H(1+wX)∇−2θtot is the comoving density contrast. Eq. (4.15)
is the Poisson equation dressed with short-wave corrections, which are the lead-
ing higher-order weak-field terms. Neglecting the (small) short-wave terms, the
equation is linear even if the perturbations in the matter fields are large3, and
one can pass to Fourier space. Modifications of gravity where the gravitational
coupling depends on time and scale can then be parametrised by introducing a
function µ(k, z) such that

− k2Φ = 4πGNa
2µ(k, z)

∑
X

ρ̄X∆X , (4.16)

where the choice µ(k, z) = 1 restores standard gravity. Furthermore, if one
chooses to interpret the dark energy perturbations as a modification of gravity,

3This also shows that in General Relativity the Poisson equation holds effectively on all
scales, right down to milli-parsec scales where we may start to encounter effects from the
strong-field regime of supermassive black holes.
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4.3. Numerical results

the sum on the right-hand side would exclude X = DE. Such an interpretation
makes sense if the dark energy field is not coupled directly to other matter, so
that it cannot be distinguished observationally from a modification of gravity
(e.g. Kunz & Sapone [2007]).

Adopting this interpretation we can define an effective modification µ(k, z)
as

µ(k, z)2 = k4 〈ΦΦ∗〉
(4πGNa2ρ̄m)2 〈∆m∆∗m〉

, (4.17)

where ρ̄m = ρ̄cdm + ρ̄b and ρ̄m∆m = ρ̄cdm∆cdm + ρ̄b∆b. Since our simulations
are carried out in Poisson gauge they internally use δm and do not compute ∆m

directly. However, the difference between the two quantities is only appreciable
at very large scales where θtot is given by its linear solution. For the purpose of
computing µ(k, z) from simulations we therefore write,

∆m ' δm

(
1 + 3HT θtot(k, z)

k2T δm(k, z)

)
, (4.18)

where T θtot(k, z) and T δm(k, z) are the linear transfer functions of θtot and δm,
respectively. These can be computed with a linear Einstein-Boltzmann solver
like CLASS.

4.3.3 Linear versus non-linear µ(k, z)
In this subsection we show the µ(k, z) function obtained from k-evolution, which
includes non-linearities in matter and k-essence as well as relativistic and short-
wave corrections. We compare µ(k, z) from k-evolution with the results from the
linear Boltzmann code CLASS Blas et al. [2011b], and with results from gevolution
Hassani et al. [2019c] and CLASS with Halofit Takahashi et al. [2012].

In the two top panels of Fig. 4.3, the results from k-evolution and CLASS for
two different speeds of sound are compared at different redshifts. In the two
bottom panels µ(k, z) from k-evolution, gevolution and CLASS (linear and with
Halofit) at z = 0 are shown.

In ΛCDM, where there are no dark energy perturbations, or modifications of
gravity, we would have µ = 1 on all scales and at all times. In Fig. 4.3 we see that
due to the k-essence perturbations we have µ > 1 at large scales, while we recover
the ΛCDM limit on small scales or at early times. The maximum deviation from
µ = 1 is less than 5% for our choice of model, therefore the effect is small but
not negligible. The reason why we expect to recover GR at high redshifts is
that the DE/MG starts to dominate at low redshifts which is well supported by
observations. In our model this is included by choosing a constant w = −0.9
close to −1, in which case the ratio of dark energy to dark matter density scales
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Figure 4.3: µ(k, z) from four different simulations and for two speeds of sound
are compared. The left plots depict the case c2

s = 10−4: all the curves agree well
which shows that for high speeds of sound we can trust even linear codes. On
the right we see the situation for k-essence with speed of sound c2

s = 10−7, where
differences are clearly visible. In the top panels k-evolution is compared with
CLASS at different redshifts, while in the bottom figures we compare µ(k, z) from
gevolution, k-evolution and CLASS with and without Halofit, at z = 0. The results
are obtained using two simulations with two different box sizes L = 9000h−1Mpc
and L = 1280h−1Mpc and Ngrid = 38403.

like a−3w, ensuring that the dark energy quickly becomes sub-dominant in the
past.

At high wavenumbers, the k-essence perturbations are suppressed due to the
existence of a sound-horizon, roughly at the comoving wavenumber k = csH.
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4.3. Numerical results

This is highly desirable as gravity is very well tested on small scales, so that
models that lead to significant changes on solar system scales are ruled out by
observations. The scaling of the sound horizon with c2

s also explains why the
transition from µ > 1 to µ = 1 occurs on smaller scales for lower speeds of
sound.

In addition, for the c2
s = 10−4 case, the results from CLASS and k-evolution

are indistinguishable at least until z = 0.5, and start to differ only slightly at
z = 0 at large scales. For the c2

s = 10−7 case, while the results from CLASS and
k-evolution are consistent at both high- and low-k, there is a different transition
from µ > 1 to µ = 1 in k-evolution compared to CLASS. This is because for the
lower sound speed the sound-horizon lies within the scale of matter non-linearity.
As dark matter clustering becomes non-linear, δm becomes much larger than in
linear theory, which reduces Φ/δm and hence µ. This can be mimicked by turning
on Halofit, and indeed using CLASS with Halofit to extract µ allows to match the
result of k-evolution better at scales around k ≈ 0.1h/Mpc, as we can see in
panel (d) of Fig. 4.3.

On even smaller scales, k & 1h/Mpc, the combination of CLASS with Halofit
undershoots the k-evolution result. This is due to non-linear clustering of the
k-essence field on small scales. This can only be correctly modeled by simulating
the k-essence field itself. Also gevolution 1.2 with the CLASS interface, where k-
essence is a realisation of the linear spectrum, is not able to simulate this region
correctly.

4.3.4 A fitting function for µ in k-essence
To characterize the contribution of k-essence to the gravitational potential, and
to simplify the inclusion of non-linear k-essence clustering in linear Boltzmann
codes and in back-scaled Newtonian N -body simulations (see next section), we
approximate the numerical µ(k, z) with a simple fitting formula. The fact that
we recover GR/ΛCDM at small scales and that we have a constant modification
to GR at large scales motivates us to choose a function that smoothly connects
two different regimes, and we propose the following fitting function for µ(k, a):

f(k|α, β, γ) = 1 + α
(
1− tanh

(
β(log10 k − γ)

))
. (4.19)

Here α controls the amplitude of µ on large scales, γ = log10 κ the location of
the transition, and β the steepness of the transition. The variables α, β, and γ
depend on time as well as on the cosmology. We can use the (α, β, γ) parameter
space to distinguish between models / constrain cosmology. Additionally, the
function (4.19) is C∞ and its derivatives are easily computed, while numerical
derivatives of simulation results are often noisy. In Appendix 4.B we discuss
how these parameters control the shape of µ, and how well the fitting function
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Figure 4.4: The fitted parameter values for the µ parametrization (4.19), for the
two k-essence models with c2

s = 10−4 (left) and c2
s = 10−7 (right), as a function

of redshift. Points and dashed lines are respectively the results of k-evolution
and CLASS.

describes the simulation results. We find that for k-evolution and CLASS, the
parametrisation (4.19) is able to describe µ(k, z) at the sub-percent level relative
to µ.

The fit enables us to model µ(k, a) in a simple way and to describe its evo-
lution by studying the time and scale evolution of the parameters. We perform
the fit in the non-linear (k-evolution) and linear (CLASS) cases. Fig. 4.4 shows
the evolution of three fitting parameters as a function of redshift for both the
linear (solid lines) and non-linear (dots) cases. As expected from Fig. 4.3, for
c2
s = 10−4, there is little difference between the linear and non-linear cases. Also
for the c2

s = 10−7 case, the fitted amplitudes (α) are consistent between the linear
and non-linear cases. Most of the difference arises in the steepness (β) and the
location (γ) of the transition. In Appendix 4.B we provide an additional figure,
Fig. 4.8 that shows in more details the evolution of the parameters. In that figure
we can see that there are also detectable differences in β between the linear and
k-evolution results for c2

s = 10−4, but that they are relatively small. In Table. 4.1
we show the parameters (α, β, γ) fitted to the k-evolution data at redshifts z = 0
and z = 1 for both speeds of sound. The full redshift information for the fitting
parameters are delivered as a text file in the arXiv submission.
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Parameters

α β γ

c2
s = 10−4

z = 0 0.021 2.79 −1.20

z = 1 0.00422 2.83 −1.10

c2
s = 10−7

z = 0 0.020 1.46 −0.154

z = 1 0.00429 1.53 0.0069

Table 4.1: Parameter values fitted to k-evolution results for both speeds of sound
at two redshifts, z = 0 and z = 1.

4.4 Applications of µ(k, z)
In this section we discuss how one can use the µ(k, z) parametrisation in com-
bination with other codes, especially linear Boltzmann and Newtonian N -body
codes. To answer this question, we first illustrate the differences between these
codes in Fig. 4.5 when there is k-essence as a dark energy candidate. In k-
evolution all the components including short-wave corrections, relativistic terms,
matter and k-essence non-linearities are included. In Newtonian N -body codes,
the equations are solved in N-body gauge, see Appendix 4.A for more details.
In these codes one can capture the background evolution correctly, while short
wave-corrections are absent and k-essence perturbations are at most taken into
account through the initial conditions. In the linear Boltzmann codes, on the
other hand, non-linearities in matter and k-essence as well as short wave correc-
tions are absent.

4.4.1 Improving linear Boltzmann codes and Fisher fore-
casts with a parametrised µ

Recipes to predict the non-linear matter power spectrum are routinely imple-
mented in Boltzmann codes in order to source weak lensing calculations, which
are themselves linear but very sensitive to small-scale power. The µ(k, z) function
presented in the previous section can then be used to correct for the non-linear
effect of k-essence on the lensing. For example, µ(k, z) would appear as a simple
factor in the line-of-sight integral for the lensing potential if the non-linear mat-
ter power spectrum is already calibrated for the correct background model. The
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Figure 4.5: This picture compares the way that different codes solve the Poisson
equation. On the left we have the relativistic N -body code k-evolution which
uses the full Poisson equation including non-linear k-essence and matter densities,
relativistic terms and short wave corrections (all in green). Standard Newtonian
N -body codes (middle) solve the Poisson equation for the correct background
expansion rate (term in light yellow), and include non-linear matter densities
as well as relativistic terms in N-body gauge (terms in green), but do not take
into account k-essence perturbations or shortwave (nonlinear GR) terms (in red).
Linear Boltzmann codes like CLASS (on the right) are fully relativistic and include
linear density perturbations for both matter and k-essence (in yellow), but no
non-linear GR and matter contributions (in red).

same correction can also be applied in the context of Fisher forecasts.

4.4.2 Improving Newtonian simulations
In the companion paper Hassani et al. [2019c] we have shown that the so-called
backscaling method to set initial conditions in Newtonian N -body codes is able
to recover the correct non-linear matter power spectrum in k-essence models.
As explained in detail in Hassani et al. [2019c], this is achieved by scaling back
the linear power spectrum at the final redshift using the linear growth function
in the given background model. While this works well for the matter power
spectrum, it is impossible to simultaneously obtain an accurate power spectrum
of the gravitational potential, as the latter is sourced additionally by k-essence
perturbations. Our µ precisely parametrises the correction necessary to obtain
the potential from the matter power spectrum, and additionally allows to recon-
struct the power spectrum of k-essence perturbations. An immediate practical
application would be to include this correction when calibrating emulators like
Knabenhans et al. [2019].
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4.5 Conclusions
In this paper we have studied metric perturbations in the weak-field regime of
General Relativity, in the presence of a k-essence scalar field as dark energy.
We showed that the short-wave corrections to the Hamiltonian constraint are
negligible at all redshifts and all scales, while the relativistic terms are only
relevant at large scales, leaving the terms with Poisson-gauge matter and k-
essence density perturbations as the main source at quasi-linear and small scales.
The relativistic terms and the density perturbations can be combined, in the
usual way, to form a linear Poisson equation that then holds on all scales of
interest in cosmology.

We study the contribution of the k-essence scalar field to the metric pertur-
bations through the µ parametrisation that encodes the additional contribution
of a dark energy fluid or a modification of gravity to the Poisson equation. As the
Poisson equation is valid on all scales, this description works even at non-linear
scales if µ is understood as an average effect. We show that for k-essence fields
with a high speed of sound, the linear theory agrees with simulation results,
while for models with a small speed of sound we see large deviations from linear
theory. Our results are thus important for tests of low speed of sound k-essence
models with future surveys.

We encode our k-essence simulation results for µ(k, z) in an easy-to-use tanh-
based fitting function, together with recipes on how to include the function in
linear Boltzmann codes or Newtonian N -body simulations with different expan-
sion rate but without additional k-essence field. While in this paper we only
consider two k-essence models with different speeds of sound, we plan to provide
fits to µ(k, z) for a wider range of models in a follow-up publication.
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APPENDIX

4.A Discussion about N-body gauge
The correspondence between Newtonian N -body simulations and GR can be
established through a particular gauge, called the N-body gauge Fidler et al.
[2016], in which, generally speaking, one requires

∇2ΦN = 4πGN ρ̄mδ
count
m , (4.1)

and
dvi

dτ
+Hvi = −∇Ψ , (4.2)

where in the first equation ΦN is the contribution of non relativistic matter to
Φ, and δcount

m is a counting density (rest mass per coordinate volume). With
two scalar gauge generators L and T at one’s disposal, where τ → τ + T and
xi → xi +∇iL are the coordinate transformations, it turns out that under quite
generic conditions there is a family of gauge transformations that satisfy the
above two conditions at the linear level.

To illustrate this, let us start from the Poisson gauge and find T , L such
that above equations hold. The first thing to note is that Ψ corresponds to a
gauge-invariant variable (we are working at linear order), so the second equation
already holds in Poisson gauge. Since velocities transform as vi → vi + ∇iL′

maintaining the form of the second equation readily requires L′ ' 0.
Before turning to the first equation, let us define the scalar metric perturba-

tions of the N-body gauge as follows:

ds2 =a2
[
−
(
1 + 2ANb

)
dτ 2 − 2∇iB

Nbdxidτ +
(
1 + 2HNb

L

)
δijdx

idxj

− 2
(
∇i∇j −

δij
3 ∇

2
)
HNb
T dxidxj

]
(4.3)

Noting how the various scalar perturbations transform, for a T and L connecting
the N-body gauge to Poisson gauge we have

Φ = −HNb
L −HT −

1
3∇

2L , (4.4)

Ψ = ANb +HT + T ′ , (4.5)

0 = BNb + T − L′ ⇒ BNb ' −T , (4.6)

0 = HNb
T − L⇒ HNb

T = L , (4.7)
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and
δX = δNb

X − 3 (1 + wX)HT . (4.8)
We can insert these expressions into the Hamiltonian constraint (keeping the
term ∇2Φ in place) to obtain

∇2Φ+3H
(
HNb
L

′ +HT ′ +H′T
)
−3H2

(
ANb +HT + T ′

)
= 4πGNa

2∑
X

ρ̄X
[
δNb
X − 3 (1 + wX)HT

]
,

(4.9)
where we already used the condition L′ ' 0. Noting that

H2 −H′ = 4πGNa
2∑
X

ρ̄X (1 + wX) (4.10)

we immediately get

∇2Φ+3HHNb
L

′−3H2ANb = 4πGNa
2∑
X

ρ̄Xδ
Nb
X = 4πGNa

2ρ̄m
(
δcount
m − 3HNb

L

)
+4πGNa

2 ∑
X 6=m

ρ̄Xδ
Nb
X

(4.11)
The requirement that this equation is compatible with eq. (4.1) does not yet fix
the gauge completely. One may try to require that HNb

L ' 0 which means that
δNb
m = δcount

m . This means that not only are the Newtonian equations satisfied,
but also the counting density is the physical density in that gauge.

One can easily see from the last equation thatHNb
L ' 0 also suggests ANb ' 0,

and one can verify that, as long as pressure perturbations are small, this condition
can be met Fidler et al. [2016]. We can then infer T and L as follows.

Ψ = HT + T ′ , Φ = −HT − 1
3∇

2L , (4.12)

hence
HΨ + Φ′ =

(
H2 −H′

)
T , (4.13)

where L′ ' 0 was assumed. We can now see that the momentum constraint
implies T = −∇−2θtot and hence δNb

m = ∆m. Inserting T back into its relation
with Φ above, we also get

∇2L = 3H∇−2θtot − 3Φ . (4.14)

The right-hand side is the comoving curvature perturbation which is indeed con-
served at late times in standard cosmology. Hence our assumption L′ ' 0 was
consistent.

4.B Details of the fitting function for µ(k, z)
In this Appendix we discuss the properties of tanh fitting function, we also
compare the fitted values to the underlying simulation results and show that
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the tanh fitting function works quite well. As explained in more detail in the
main text, we need a function to smoothly connect two different regimes, namely,
between µ ' constant on large scales to µ = 1 on small scales. To do this, we
propose the following form, at a fixed redshift:

f(k|α, β, γ) = 1 + α
(
1− tanh

(
β(log10 k − γ)

))
. (4.15)

The parameter γ = log10 κ determines the location of the transition, β the steep-
ness of the transition, while 1 + 2α is the value of µ for k → 0. All of these
parameters are functions of redshift (or scale factor). The fit enables us to de-
scribe the scale dependence of µ(k, a) in a simple way, while the time dependence
can be studied through the evolution of fit parameters with redshift.

In Fig. 4.6 we show the validity of the fitting tanh function for µ(k, a) as
measured from k-evolution. For both speeds of sound at some redshifts and all
scales, the accuracy of the fit is of the sub-percent level. In Fig. 4.7 the relative
difference between fit and data from CLASS is shown. For both speeds of sound
at all redshifts and all scales, tanh is a good fit. In Fig. 4.8 the evolution of fit
parameters for k-evolution and CLASS data is shown.

4.C Scalar-vector-tensor decomposition and no-
tation

In this appendix we briefly discuss the scalar-vector-tensor decomposition and
we introduce our notation for the metric perturbations after the decomposition.
Using the SVT decomposition Lifshitz [1946] we can decompose Bi into the curl-
free (longitudinal) and divergence-free (transverse) components,

Bi = B⊥i +B
‖
i where ~∇ ·B⊥ = ~∇×B‖ = 0 (4.16)

Also we can decompose the tensor perturbations analogously,
hij = h

‖
ij + h⊥ij + h

(S)
ij , (4.17)

Here
h
‖
ij =

(
∇i∇j −

1
2δij∇

2
)
Φh . (4.18)

where Φh Bertschinger [2001] is a scalar and we have assumed that hij is traceless,
and

h⊥ij = ∇ih
⊥
j +∇jh

⊥
i . (4.19)

where h⊥i is a divergenceless vector. The two degrees of freedom left in the tensor
modes h(S)

ij correspond to the two polarisations of gravitational waves.
Fixing the gauge to Poisson gauge will remove two vector and two scalar degrees
of freedom as we have the following constraints,

δijBi,j = δijhij = δjkhij,k = 0 . (4.20)
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Figure 4.6: The relative error for the fits compared to the actual µ obtained from
k-evolution, for two different speeds of sound, c2

s = 10−7 (right) and c2
s = 10−4

(left). The accuracy of the fit is of the sub-percent level for both speeds of sound
at all redshifts and all scales.
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Figure 4.7: The relative error of the fits compared to CLASS results for two
speeds of sound, c2

s = 10−7 (right) and c2
s = 10−4 (left). The results show that

the accuracy of the fit is of the sub-percent level for both speeds of sound at all
redshifts and all scales.
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Figure 4.8: Evolution of the fit parameters log10(1 +α), β, and γ for k-evolution
and CLASS data for two speeds of sound c2

s = 10−4 (top) and 10−7 (bottom) is
shown. The arrows show the direction of decreasing redshift (increasing time).
For the case of low speed of sound (bottom panel) the parameter values obtained
from k-evolution and from the linear code CLASS differ, while for large speed
of sound (top panel) the parameters almost match, suggesting that one could
simply use linear Boltzmann codes for treating high speed of sound k-essence
models.
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Chapter 5
A NEW INSTABILITY IN CLUSTERING
DARK ENERGY

Based on:
Farbod Hassani, Pan Shi, Julian Adamek, Martin Kunz and Peter Wittwer A
new instability in clustering dark energy, in preparation
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Chapter 5. A new instability in clustering dark energy

Abstract: In this paper we discuss non-linear terms in the Effective Field
Theory of Dark Energy (EFT of DE) for the k-essence model. Such terms open a
new window to cosmological models for dark energy. We studied such models in
3+1 dimensions using cosmological N-body simulation k-evolution [Hassani et al.,
2019a]. We discovered that in the case of low speed of sound (high Mach number
in the fluid description) where some linear terms vanish from the dynamics of
dark energy, the non-linear partial differential equation for dark energy suffers
from the non-linear instability and blows up in finite time. This might seem
an artifact of the simulation procedure. However, we show analytically, for the
1+1 dimensional case, that the divergence is real: This is proven and studied
mathematically in Shi, Pan et. al. [c,a,b]. We also argue how this phenomenon
transfers to 3+1 dimensions.

The important conclusion is that dark energy as a fluid with high Mach
number (low speed of sound) cannot be used as a viable candidate for explaining
the accelerated expansion of the universe, because the evolution will diverge
before one reaches the current epoch. We illustrate the dependence on the speed
of sound in several simulations.

5.1 Introduction
In the near future we will benefit from numerous high precision observations
Aghamousa et al. [2016b], Amendola et al. [2016], Walcher et al. [2019], ?, prob-
ing the Universe at different epochs, from the very early times when cosmic
microwave background radiation (CMB) photons started to propagate and the
Universe was around 400,000 years old to today, where the Universe is 13.82
billion years old. One of the central focuses of the future surveys will be aimed
at understanding the nature of dark energy, which is the reason behind the late
time accelerated expansion of the universe. The accelerated expansion has al-
ready been approved by several independent observations Ade et al. [2015b],
Alam et al. [2017a], Scolnic et al. [2018].

Over the past years, a wide range of theories has been developed by cosmol-
ogists and particle physicists with the aim to address question of the accelerated
expansion of the universe, either by modifying the theory of gravity or by con-
sidering dark energy as a fluid component with a negative pressure Clifton et al.
[2012c], Ishak [2019]. Among these theories, effective field theory (EFT) of dark
energy Gleyzes et al. [2015], Gubitosi et al. [2013b], like any other effective the-
ory, has become very popular since it allows to describe dark energy occurring at
a chosen energy scale with an appropriate number of free parameters in a model
independent way. The free parameters in the effective theory could correspond
to a fundamental theory at high energy and respect the low-energy symmetries
Cheung et al. [2008].
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The main advantage of using effective theories is that one can study the physi-
cal phenomena without being specific about the fundamental theory. Instead one
writes a general low-energy effective theory using the symmetries and theoretical
constraints in order to compare a generic theory against observations.

In this paper we focus on the EFT of dark energy, keeping only two free
parameter, αK at the perturbation level and w0 at the background level which is
equivalent to the well known theory of k-essence, which has been first proposed
in 2000 Armendariz-Picon et al. [2000, 2001] to naturally, and without any fine
tuning explain the accelerated expansion of the universe. At linear level k-
essence theory has been explored well and is considered a viable theory for the
late time accelerated expansion of the universe. This theory has been successful
in explaining all cosmological observations to date. However, by increasing the
precision of the observations in the near future, we hopefully will be able to probe
the non-linear scales to a great degree, which it will give us the chance to falsify
the k-essence model or constrain its parameters.

Here, we use the equations derived in Hassani et al. [2019a] for the non-linear
evolution of k-essence as an effective field theory, parametrised with the equation
of state w and the speed of sound cs. The free parameters appearing in the field
picture e.g., αK can be interpreted when writing the theory in the fluid picture.
In the Appendix A of Hassani et al. [2019a] we showed that the fluid description
and the field picture are equivalent and by the well-defined transformation given
in the reference, one can simply change the picture.

In this paper, we show that the effective field theory of dark energy for k-
essence, in the limit of low speed of sound suffers from a new instability. We
study the instability in 3+1 dimensions numerically in the cosmological context,
and comment on the equation in 1+1 dimensions.

In Sec. 5.2 we present the numerical results for 3+1 D in the cosmological
context where we solve the full 3+1 D partial differential equation for the k-
essence scalar field numerically, using the effective field theory framework. In
Sec. 5.3 we show that for low speed of sound the solution to this partial differential
equation (PDE) blows up at some time before the current age of the universe.
In Sec. 5.4 we study the relevant partial differential equation in 1+1 D in matter
domination analytically and we show that the term that we have recognized as
the reason behind the instability shares similar properties with the 3+1 D version
that has been identified in cosmological simulations. We also comment on the
way that system blows up, as well as on the time when the solution ceases to
exist. At the end we show how increasing the speed of sound could stabilize the
system.
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5.2 Field equations
In this section we write down the equations for k-essence dark energy scalar field
parametrised with the equation of state w and the speed of sound c2

s expanded
around the background solution to second order of the weak field expansion.
The equation as well as the stress energy tensor for clustering dark energy are
obtained and discussed in detail in Hassani et al. [2019a]. In Hassani et al. [2019a]
we showed the results for clustering dark energy where we only keep linear terms
in the dark energy scalar field equations.

The full partial differential equation (PDE) in 3+1 dimensions including the
non-linear correction in the weak field regime reads [Hassani et al., 2019a],

∂τπ = ζ −Hπ + Ψ , (5.1)
∂τζ = 3wHζ − 3c2

s

(
H2π −HΨ− ∂τHπ − ∂τΦ

)
+ c2

s
~∇2π

−
(
~∇
[
2(c2

s − 1)ζ + c2
sΦ−Ψ

] )
· ~∇π −

[
(c2
s − 1)ζ + c2

sΦ− c2
sΨ
]
~∇2π

− H2
[
(2 + 3w + c2

s)(~∇π)2 + 6c2
s(1 + w)π~∇2π

]
+ c2

s − 1
2 ∂i

(
∂iπ(~∇π)2

)
,

(5.2)

In the former equation π is the dark energy scalar field and ζ is an auxiliary
field written in terms of the scalar field π, its time derivative ∂τπ with respect to
conformal time and the gravitational potential Ψ. Moreover, (~∇π)2 ≡ ~∇π · ~∇π,
in ∂i

(
∂iπ(~∇π)2

)
we sum over the index i and ∂i ≡ ~∇i = ∂

∂xi
. The Eq. 5.2 is

equivalent to the continuity and the Euler equations as discussed in the Appendix
A in [Hassani et al., 2019a],

∂τδ = −(1+w)
(
θ−3∂τΦ

)
−3H

(
δp

δρ
−w

)
δ+3∂τΦ

(
1+δp

δρ

)
δ+1 + w

ρ
vi∂i

(
3Φ−Ψ

)
.

(5.3)

∂τθ + (3w − 1)H θ +∇2(Ψ + σ) + ∇2δP

ρ(1 + w) − (5∂τΦ + ∂τΨ)θ + ∇
2Ψ

1 + w

(
1 + δP

δρ

)
δ

− ∂iΣj
i

ρ(1 + w)∂j(3Φ−Ψ) = 0 .

(5.4)
Where we have used the following notation,

δ
.= δρ

ρ
, θ

.= e−2(Φ+Ψ)∂iv
i , σ

.=
~∇−2δik∂k∂jΣj

i

ρ+ p
. (5.5)

Where ~∇−2 is the inverse Laplacian operator. The fluid picture properties read
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as follows in terms of the field properties,

δρ = −ρ+ p

c2
s

[
3c2
sHπ − ζ −

2c2
s − 1
2 (~∇π)2

]
,

δp = − (ρ+ p)
[
3wHπ − ζ + 1

6(~∇π)2
]
,

vi = −e2(Φ+Ψ)
[
1− 1

c2
s

(
3c2
s(1 + w)Hπ − ζ + c2

sΨ
)

+ c2
s − 1
2c2
s

(~∇π)2
]
∂iπ ,

Σij = (ρ+ p)
[
∂iπ∂jπ −

1
3(∂kπ)2δij

]
.

(5.6)

However in the k-evolution approach, we solve the equations written in the field
language and we solve a second order PDE to update the scalar field π and its
time derivative ∂τπ. Numerical results from the k-evolution for the full non-
linear PDE show that there exists a speed of sound cs0 , such that, for speed of
sound cs smaller than cs0 , the PDE blows up in finite time. In the following
section we show the numerical results for the small and large speeds of sound,
where the PDE is, respectively, unstable and stable, and afterwards we justify
the numerical results by solving the equations in lower dimension.

5.3 Simulations
In this section we show the results from k-evolution for the conservative initial
conditions where we set the values of the fields π and ζ to zero everywhere on
the lattice at the initial redshift z = 100. The reason for choosing zero initial
conditions for π and ζ is mainly that the initial conditions based on the linear
theory lead to a singularity in the density of the scalar field. As there is a c2

s term
in the denominator in the Eq. 5.6, the initial conditions have to be such that(

3c2
sHπ − ζ −

2c2s−1
2 (~∇π)2

)
∼ c2

s, and taking πini = 0 and ζini = 0 will respect
this condition. In addition, having no scalar field at large enough redshift and
let it being produced by the dynamics due to the gravitational potential is more
physical than assuming other initial conditions for this system.

Starting the simulation at some initial time and solving the full equations
of motion in the weak field approximation using the N -body code k-evolution
for low speed of sound, one sees numerically that the scalar field π diverges and
as a result the simulation breaks down in finite time. In Fig. 5.1 we show the
results for the simulation for the scalar field on a 2D snapshot at surfaces which
go through the point with the maximum second derivative. In these snapshots
which are made for a short period of time in the simulation, one can see how
suddenly an instability is formed in the scalar field dynamics and that the system
blows up at a certain time. Since other cosmological quantities are coupled to
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Chapter 5. A new instability in clustering dark energy

the scalar field, the other components will also diverge, the dark matter particles
speed up and the simulation breaks down.

If one looks at other points than the point we chose, one sees that the insta-
bility does not appear in all snapshots at the same times. The reason why the
instability is first formed around the point with highest curvature will become
clear when we study the system in 1+1 D analytically.

In Fig. 5.2 we show the evolution of the scalar field mapped in a direction
(1D) in order to have a closer look at what happens when the instability is
generated and the system blows up. According to the 1D cross-sections, the
blowup first happens at a minimum point with the highest curvature. In the
simulation the curvature of this point increases to finally become infinity as the
minimum becomes sharper and sharper in time.

According to our numerical results using k-evolution code for the full imple-
mentation of clustering dark energy (5.1) and (5.2), one sees that the equations
are unstable and diverge in finite time for low speed of sound only. Indeed, for
a fixed cosmological parameters and w0 = −0.9 the system only blows up when
c2
s ≤ 10−4.7. In Fig. 5.3 and Fig. 5.4 the blow up time and also the average of
the ζ field for different speeds of sound are shown. As the two figures suggest
when decreasing c2

s, there is a value for c2
s where the system becomes unstable.

Moreover, it is interesting to point out that we know that the limit of low speed
of sound is the limit where the most important linear terms in the dynamics of
scalar field vanish and we end up with a highly non-linear evolution of the field.
The number c2

s = 10−4.7 for the speed of sound squared can be understood by
comparing the two important terms in the dynamics of the scalar field. As we
are going to show the stability of this system is ensured when the term c2

s∇2π

dominates over the non-linear term −H2
(
5c2
s + 3w − 2

)
(∇π)2. As these are the

two important contributions to the dynamics, using the approximative scaling
relation, for these two terms i.e. assuming that∇2π ∼ L−2π and (∇π)2 ∼ L−2π2.
Here, we are assuming that each spatial derivative contributes as a factor of 1/L.
Also assuming the matter domination i.e., H = 2/τ , and the first order pertur-
bative solution for π ≈ Ψ

3 τ calculated in Eq. D.6 in Hassani et al. [2019a] we
roughly have,

c2
s ≈
−H

2
(
5c2
s + 3w − 2

)
π =

(2
3 − w

)
Ψ . (5.7)

with the values of w = −0.9 and Ψ = 10−5 this gives c2
s = 10−4.8 which is close

to c2
s = 10−4.7 as obtained from the numerical results in Fig. 5.4.
The study of the full coupled non-linear system of equations including Ein-

stein’s equations and the non-linear second order equation for the dark energy
sector seems challenging. However, our numerical results show that we do not
need to worry about whether dark energy sources the gravity part or other com-
ponents. Even if we solve the equation for the scalar field independently whether
it sources other components or not we get an instability at almost the same time,
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5.3. Simulations

Figure 5.1: From top to bottom: The evolution in time of the scalar field π
evolution in a 2D cross section in x − y, x − z and y − z surfaces in a short
interval of time around blowup time at the point with the maximum curvature.
The instability is formed locally in a point with the maximum curvature which
physically corresponds to the center of the dark matter halos.
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Chapter 5. A new instability in clustering dark energy

Figure 5.2: 1D cross section of the scalar field evolution on a line passing through
the point with the maximum curvature. These figures show how the instability
is formed in the local minima with highest curvature.
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Figure 5.3: The average of ζ as a function of blow-up redshift for different speeds
of sound are plotted. As it is clear from the figure, the blow up happens very
fast and the average value of the fields go from a very small value to a very
large value. This is a simulation for the case when k-essence does not source
other components and also the initial condition is set to 0 at z = 100. When ζ
blows up, the scalar field π and other components, if they are coupled, blow up
immediately. Here we only showed the results for the speeds of sound for which
the scalar field blows up, so in fact according to our numerical result c2

s ≤ 10−4.7.
The PDE blows up in the age of the Universe (z = 0).

especially when the time precision of the simulation is high enough. In Fig. 5.5
we show the blow up time (redshift) for different precisions of time in the code for
the situation when dark energy sources other components (in circle) and when
dark energy does not source other components (in star). According to the figure
the blow up time does not depend on whether the dark energy sources other
components or not.

Another interesting and important result is that by increasing the resolution
of the simulation, the system blows up earlier in time. In Fig. 5.6 the blow up
time for different spatial resolutions is shown. We will justify this result when
we study the system in 1+1 D, but roughly this behavior is due to the fact that
by increasing the resolution of the simulation, we sample the initial condition
from higher wavenumbers in the gravitational potential power spectrum so that
the curvature of the potential wells increases compared to the lower resolution
simulation. As we will show in the 1+1 D and spherically symmetric 3+1 D
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Figure 5.4: The speed of sound squared as a function of blow up redshift is shown.
There are two limits, namely high speed of sound for which the system does not
blow up anymore and very low speed of sound for which the system blows up at
the redshift near to the blow up redshift for c2

s → 0. This figure is calculated for
the case when the scalar field does not source matter and potentials and also,
when the initial condition is chosen equal to zero.

results, the instability is forming around the minima of the gravitational potential
wells and the blowup time depends on the curvature of these potential wells. In
the 3+1 D case, by increasing the spatial resolution of the simulation in the
cosmological context, we also increase the curvature of the potential wells.

In Fig. 5.7 we also verify that changing the initial redshift would not change
the blow up time significantly as the blowup redshift converges to a number. In
the figure the initial conditions for the position and speed of the particles are
made using the solution of the linear theory at that redshift, while the scalar
field is set to zero at the initial time.

Motivated by the numerical results in 3+1 D in the cosmological context, we
study the simplified version of the full equation in the mathematical context in
1+1 D in the next section.

5.4 1+1 dimensions
In this section we discuss the main terms in the PDE governing the scalar field
dynamics. In particular we discuss the non-linear dynamics in 1+1 dimensions.
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Figure 5.5: Time resolution of the simulation as a function of the blow up time for
the case dark energy component, respectively, sources and does not source other
components (circles and stars respectively). As we increase the time resolution,
i.e. decrease dτ in the simulation the blow-up time converges.

We show that the non-linear PDE is suffering from the non-linear instability
with similar behavior of what we found in the 3+1 D case. We would like to
emphasize that the full study of the dynamics in 3+1 D and also in 1+1 D is a
difficult task and needs a detailed study which is beyond the scope of this paper.
However, the specific term ( that is (∇π)2), which we have recognized as of the
main reason behind the instability of the system, is studied it thoroughly in Shi,
Pan et. al. [c,a,b] in a mathematical context. Here, we study this term with a
more physical approach.

5.4.1 Full non-linear PDE in 1+1 D

We rewrite the Eq. 5.2 as a second order PDE form in 1+1 D which is more
appropriate for analytical studies,

∂2
τπ +H(1− 3w)∂τπ +

(
∂τH− 3wH2 + 3c2

s(H2 − ∂τH)
)
π

− ∂τΨ(x) + 3H(w − c2
s)Ψ(x)− 3c2

s∂τΦ(x)− c2
s∂

2
xπ = N (π, ∂τπ, ∂xπ, ∂x∂τπ, ∂2

xπ)
(5.8)
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Figure 5.6: Number of grids, equal to number of particles, as a function of the
blowup redshift for the clustering dark energy with c2

s = 10−7 and w = −0.9,
for the two cases where dark energy sources, respectively, does not source other
components. The case when dark energy PDE is solved without sourcing dark
matter and potentials is shown by stars in the figure and the case when the full
equations are solved is shown with circles. As we increase the spatial resolution,
the system blows up at higher redshifts or earlier time.

where N (π, ∂τπ, ∂xπ, ∂2
xπ) includes all the non-linear terms which reads as fol-

lows,

N (π, ∂τπ, ∂xπ, ∂x∂τπ, ∂2
xπ) = −H2

(
5c2
s + 3w − 2

)
(∂xπ)2 + 2(1− c2

s)∂xπ∂x∂τπ

−
[
(c2
s − 1)

(
∂τπ +Hπ −Ψ

)
+ c2

s(Φ−Ψ) + 3Hc2
s(1 + w)π

]
∂2
xπ + (2c2

s − 1)∂xΨ∂xπ

− c2
s∂xΦ∂xπ + 3(c2

s − 1)
2 (∂xπ)2∂2

xπ (5.9)

The previous equation is called "non-linear damped wave equation" Gallay &
Raugel [1998] in the literature. It has been studied by mathematicians for
some cases of non-linearities mainly in the form N (π, ∂τπ) [???] but not in
the general form appearing in the effective field theory of dark energy which is
N (π, ∂τπ, ∂xπ, ∂2

xπ). In fact the important remark is that for large speeds of
sound and using the fact that π, ∂τπ and ∂xπ are small, the dominant term in
the dynamics would be the linear part of the PDE, whereas in the limit c2

s → 0
the term c2

s∂
2
xπ is removed and we end up with a non-linear PDE.
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Figure 5.7: The initial redshift of the simulation versus the blow up redshift
is plotted. If we start the simulation at higher redshifts the blowup redshift
converges.

5.4.2 Simplified PDE
The numerical results in Fig. 5.4 show that the system in 3+1 D blows up for
the cases with low speed of sound. To study the system analytically, in order to
show that the instability is not a result of numerical imprecisions, we make some
assumptions: first, we limit ourself to 1+1 D; second, we study the small sound
speed limit and we set c2

s = 0, which is the case for which we see the instability
in higher dimensions. The full equation for the scalar field then reads,

∂2
τπ +H(1− 3w)∂τπ + (∂τH− 3wH2)π − ∂τΨ + 3wHΨ

− 2∂x∂τπ∂xπ − (H− 3wH
2 )∂xπ∂xπ + ∂xΨ∂xπ − (∂τπ +Hπ −Ψ)∂2

xπ (5.10)

+ 3
2∂xπ∂xπ∂

2
xπ = 0

where the fields are in general functions of the time and position i.e. π ≡ π(τ, x).
We assume π(τ, x) = 0 and ζ(τ, x) = 0 at the initial time τi similar to the 3+1 D
case. According to the Eq. 5.1 this implies that dπ(τi, x)/dτ = Ψ(x) where Ψ(x)
is the gravitational potential at initial time τi. We further simplify the equation
by considering it for the case matter domination, where the scale factor scales as
a ∼ τ

−1
3 , the Hubble function is H = 2/τ and ∂τΨ = 0.

The Eq. 5.8 is still mathematically difficult to solve as there are different

169



Chapter 5. A new instability in clustering dark energy

non-linear contributions to the equation. However, our numerical results for the
3+1 D case in the cosmological context show that the most important non-linear
term in this PDE is (∇π)2 or ∂xπ∂xπ in 1+1 D. Thus, in our analytic approach
we focus on only one non-linear term in the PDE, which gives the equation,

∂2
τπ +H(1− 3w)∂τπ + (∂τH− 3wH2)π + 3wHΨ− (H− 3wH

2 )∂xπ∂xπ = 0
(5.11)

The linear part of the previous equation is in fact a second order ODE which
is easily solvable. In the next subsection, employing the solution of the second
order ODE, we are going to use some coordinate and field transformations to
further simplify the equation.

5.4.3 Simplification
Here we simplify the Eq. 5.11, mainly we aim to remove ∂τπ, π and constants
from the equation. From now on, for the sake of simplicity, we denote the time
derivatives with a dot and the spatial derivatives with a prime i.e.,

ḟ ≡ ∂τf = df

dτ
, f ′ ≡ ∂xf = df

dx
. (5.12)

First we write down the Eq. 5.11 in the following form,

π̈ + α(τ)τ̇π + β(τ)π + λ(τ) = γ(τ)(π′)2 (5.13)

where we have used the following definitions,

α(τ) ≡ H(1− 3w), β ≡ (Ḣ − 3wH2), λ(τ) ≡ 3wHΨ, γ(τ) ≡ −(H− 3wH
2 ) .
(5.14)

Let f(τ) 6= 0 solve the following 2nd order ODE:

f̈ + α(τ)ḟ + β(τ)f = 0 (5.15)

then define
π(x, τ) =: f(τ)u(x, τ) , (5.16)

and substitute back into the Eq. 5.13 we obtain

f̈u+ 2ḟ∂τu+ f∂2
τu + α(τ)(ḟu+ f∂τu) + β(τ)fu+ λ(τ) = γ(τ)f 2 (u′)2

(5.17)
Reordering the terms gives

fü+ (2ḟ + α(τ)f)u̇+ (f̈ + α(τ)ḟ + β(τ)f)u+ λ(τ) = γ(τ)f 2 (u′)2 (5.18)
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the third term on the left is 0 according to Eq. 5.15, so we have,

ü+ 2ḟ + α(τ)f
f

u̇+ λ(τ) = γ(τ)f (u′)2 (5.19)

For simplicity, we define

2ḟ + α(τ)f
f

=: p(τ), γ(τ)f := q(τ) (5.20)

and the equation reads,

ü+ p(τ)u̇+ λ(τ) = q(τ) (u′)2 (5.21)

Changing the time variable and redefining the field as u(τ, x) =: v(x, s(τ)), and
substituting in the previous equation gives,

v̈ṡ2 + v̇s̈+ p(τ)v̇ṡ+ λ(τ) = q(τ) (v′)2 (5.22)

where s(τ) is determined by solving the following equation,

s̈(τ) + p(τ)ṡ(τ) = 0 (5.23)

and we obtain
ṡ(τ) = exp

(
−
∫ τ

τini
p(σ)dσ

)
(5.24)

Substituting back the solution to the Eq. 5.22 we obtain

v̈(x, s) + λ(s(τ)) = q(τ) exp
(

2
∫ τ

τini
p(σ)dσ

)
(v′)2 (x, s) (5.25)

Solving τ from the equation ṡ(τ) = exp
(
−
∫ τ
τini

p(σ)dτ
)
, we get τ := τ̃(s) and

therefore the right hand side of the above equation can be expressed in terms of
s,

v̈(x, s) + λ(s(τ)) = γ̃(s) (v′)2 (x, s)

where γ̃(s) := q(t̃(s)) exp
(
2
∫ τ̃(s)
τini

p(σ)dσ
) (5.26)

For simplicity we use t instead of s as a time variable and we have the following
simplified equation,

v̈(τ, x) + λ(t) = γ̃(t) (v′)2 (τ, x) (5.27)

To get rid of λ(t) term we will perform one more transformation as follows

ṽ(τ, x) := v(τ, x) + r(t) (5.28)
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Substituting in to the equation gives,

¨̃v(τ, x) + r̈ + λ(t) = γ̃(t) (ṽ′)2 (τ, x) (5.29)

Solving r̈ + λ(t) = 0 we obtain,

r(t) = c1 + c2t−
∫ t

tini

∫ σ

tini
λ(s) ds dσ (5.30)

with r(t) of this form and substituting in Eq. 5.27 results in,

¨̃v(τ, x) = γ̃(t) (ṽ′)2 (τ, x) (5.31)

To this end we redefine x →
√
γ̃ x to remove the γ̃ term, too. In the new time

coordinate we will have the simplified equation,

¨̃v(τ, x) = (ṽ′)2 (τ, x) (5.32)

From now on, instead of considering the full PDE Eq. 5.11, we focus on the
following PDE with the initial conditions mentioned above. We remind the
reader that the time and the scalar field in this equation are different from what
we had in Eq. 5.11. However, the result presented in the following sections can
be translated to solutions for the equations for π(x, τ).

We will solve the following PDE analytically in the next chapter,

∂2
τπ(τ, x) =

(
∂xπ(τ, x)

)2
(5.33)

π(0, x) = 0
∂τπ(0, x) = Φ(x)

5.4.4 Solution to the simplified PDE
From now on we omit the arguments and we simply write π in the equation
Eq. (5.33).

First of all, the most interesting property of Eq. 5.33 is that the minima and
maxima of π do not move in space and stay at the same point in time which will
be validated in the numerical results in 1+1 D in Sec. 5.4.7. To prove this we use
the fact that an extremum at time t∗, means by definition that dπ

dx
(τ∗, xs) = 0,

where xs is the position of the extremum and τ∗ is the time at which we have an
extremum at xs. Now we show that using the partial differential equation and
the initial conditions, the extremum stays at the same position at all times τ ,
i.e. dπ

dx
(τ, xs) = 0.
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We define D(τ, x) ≡ dπ
dx

(τ, x) where according to the initial condition we know
π(0, x) = 0 so D(0, x) = 0. Taking the spatial derivative of the PDE (Eq. 5.33),
we obtain,

∂2
τπ(τ, x) = D(τ, x)2

d

dτ 2
dπ

dx
(τ, x) = 2D(τ, x)dD

dx
(τ, x),

d2D

dτ 2 (τ, x) = 2D(τ, x)dD
dx

(τ, x), (5.34)

since D(0, x) = 0 it also implies that dD(τ,x)
dτ2 (0, x) = 0. On the other hand we

have
dD(τ, x)
dτ

(0, x) = d

dx

dπ

dτ
(0, x) = dΦ

dx
(x) (5.35)

Let’s take xs such that dΦ
dx

(xs) = 0 meaning that xs is a stationary point of the
initial function D. We write the Eq. 5.34 for the point xs as follows,

d2D

dτ 2 (τ, xs) = 2D(τ, xs)
dD

dx
(τ, xs) (5.36)

The previous equation is an ODE for the evolution of the spatial derivative of π
in time. Defining a(t) = D(τ, xs) and b(t) = dD

dx
(τ, xs), we can rewrite the ODE

as following
ä(t) = 2 a(t)b(t). (5.37)

The initial conditions are,

a(0) = D(0, xs) = 0 (5.38)

ȧ(0) = dD

dτ
(0, xs) = 0

ä(0) = 0.

The initial conditions imply that a(t) = D(t, xs) = 0 , i.e., at all times the spatial
derivative of the point remains 0. So the extrema remain at the same position
in time.

Paying attention to the extrema in the Φ function one can approximately
expand the scalar field π around the minima and maxima as a quadratic function,

π(τ, x) = κ(τ)(x− xs)2 (5.39)

where κ can have either signs. It is interesting to see that first of all the quadratic
function is a solution of the PDE and the quadratic shape is preserved during the
evolution. We can use this property to obtain an ODE out of the PDE for the
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evolution of the curvature of the minima and maxima. Using the ansatz (5.39)
in the equation (5.33) we obtain,

κ′′(τ) = 4κ(τ)2 (5.40)

where 2κ is the second derivative at minima and maxima and the previous equa-
tion gives us the evolution for the curvature. The initial condition for the equa-
tion is obtained using the initial condition for the PDE.

π(0, x) = 0 −→ a(0) = 0 (5.41)
d

dτ

d2π

dx2 (0, xs) = d2Φ
dx2 (xs) −→ ȧ(0) = 1

2
d2Φ
dx2 (xs)

To solve Eq. 5.40 we first multiply both sides by κ′(τ),

1
2
d(κ′(τ)2)

dτ
= 4

3
d(κ(τ)3)
dτ

(5.42)

Integrating results in,

κ′(τ)2 = κ′(0)2 + 8
3κ(τ)3 − 8

3κ(0)3 (5.43)

On the other hand, for the minima, i.e., κini > 0 the integral reads,
∫ −∞
κ(0)=κini

dκ√
κ′(0)2 + 8

3κ(τ)3
=
∫ τb

0
dτ (5.44)

To compute the integral we define s = 8
3κ′(0)2κ so we have,

τb = 1√
κ′(0)2

.
(3

8κ
′(0)2

) 1
3
∫ ∞
κ(0)=κini

ds√
1 + s3

(5.45)

For the case where κini = ε where ε is very small, the curvature of the minimum
point increases and blows up with the time given by,

τb = 1
|κ′(0)2|

.
(3

8κ
′(0)2

) 1
3
2.8043. (5.46)

where we have used
∫∞
κ(0)=0

ds√
1+s3 ≈ 2.8043 and κ′(0) = 1

2
d2Φ
dx2 . So the minima

according to the PDE blow up at a finite time given by the Eq. 5.45 which
depends on the initial curvature of the point.
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5.4.5 An example
We consider the Cauchy problem for x ∈ R and t ≥ 0 given by

π̈(τ, x) = (π′(τ, x))2

π (τ0, x) = 0

π̇ (τ0, x) = 1− cos(πx) = 1
2π

2x2 − 1
24π

4x4 + . . .

(5.47)

where we have taken a cos function as the initial condition. The first term in
the Taylor expansion of the cos function is a quadratic term which we discussed
it in the previous subsection, now we want to comment about the higher order
contributions. We first discuss the behavior of the solution near x = 0. Taking
derivatives of the Eq. 5.47 results in the following equations,

π̈′(τ, x) = 2π′(τ, x)π′′(τ, x),
π̈′′(τ, x) = 2π′(τ, x)π′′′(τ, x) + 2π′′(τ, x)π′′(τ, x),
π̈′′′(τ, x) = 2π′(τ, x)π(4)(τ, x) + 6π′′(τ, x)π′′′(τ, x),
π̈(4)(τ, x) = 2π′(τ, x)π(5)(τ, x) + 8π′′(τ, x)π(4)(τ, x) + 6π′′′(τ, x)2.

(5.48)

Now let a(τ) = π′(0, τ), b(τ) = π′′(0, τ), c(τ) = π′′′(0, τ), d(τ) = π(4)(0, τ). Then
we have

ä = 2ab

b̈ = 2ac+ 2b2

c̈ = 2ad+ 6bc

d̈ = 2aπ(5)(0, τ) + 8bd+ 6c2

(5.49)

since a(0) = ȧ(0) = 0 for our initial data the solution of Eq. 5.49 is a(τ) = 0 as
long as b is well defined. This means in particular that x = 0 remains a critical
point at all times. The equations therefore reduce to;

b̈ = 2b2,

c̈ = 6bc,

d̈ = 8bd+ 6c2,

(5.50)

since c(0) = ċ(0) = 0 therefore we have c(τ) = 0, so that the equations reduce to

b̈ = 2b2, (5.51)
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d̈ = 8bd (5.52)
and the expansion of π at x = 0 reduces to

π(τ, x) = b(τ)x
2

2 + d(τ)x
4

4! + . . . (5.53)

in particular since b(0) = 0, ḃ(0) = π2 we see from Eq. 5.50 that b(τ) is always
positive so that x = 0 remains a minimum.

To analyze the behavior of b(t) in more details we note that the equation for b
is the Newton equation for a mass-point of mass one in the potential V (b) = −2

3b
3.

The total energy defined as below is invariant under the time evolution.

E = 1
2 ḃ

2 − 2
3b

3. (5.54)

Based on our initial condition we have E = 1
2 ḃ(0)2− 2

3b(0)3 = 1
2φ
′′(0)2− 2

3ψ
′′(0)3 =

1
2π

4. From Eq. 5.54 we obtain

τ =
∫ b(τ)

b(0)

dβ√
4
3β

3 + 2E
≤
∫ ∞

0

dβ√
4
3β

3 + 2E
(5.55)

= 1
2 5

6 3 2
3
B
(1

6 ,
1
3

) 1
E

1
6

= 1.187831729448194321 · · · =: τb

This means that the mass-point disappears in finite time at infinity, i.e., b(τ)
blows up as t approaches τb. More precisely, as τ approaches τb

τb−τ =
∫ ∞
b(τ)

dβ√
4
3β

3 + 2E
=
∫ ∞
b(τ)

1√
4
3β

3

(
1 + 2E

4
3β

3

)− 1
2

dβ =
√

3√
b(τ)

+EO
(

1
b(τ) 7

2

)
(5.56)

from which one gets, as τ approaches τb

3
(τb − τ)2 = b(τ) + E O

(
1

b(τ)2

)
(5.57)

and therefore as τ approaches τb

b(τ) = 3
(τb − τ)2 + E O

(
(τb − τ)4

)
(5.58)

We now discuss the solution of the Eq. 5.52, since b(τ) blows up at τ = τb,
d(τ) blows up as well, and substituting Eq. 5.58 to the Eq. 5.52 and solving the
new ODE, one gets asymptotically as τ approaches τb

d(τ) = const.
(τb − τ)2β+2 + . . . E O

(
(τb − τ)9

)
(5.59)
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for some constants depending on the initial condition. The constant is negative
if d(0) ≤ 0 and ḋ(0) < 0 which are the cases we considered and is positive if
d(0) ≥ 0 and d(0) ≥ 0. The index β is given by,

β = −5 +
√

97
4 = 1.212214450449 . . . (5.60)

Similar blowup rates can be computed for higher order space derivatives which
leads to the conjecture that as τ approaches τb

π(τ, x) = (τb − τ)2β−2 f

(
x

(τb − τ)β

)
+ u0(τ, x)) (5.61)

5.4.6 Spherically symmetric case
It’s also interesting to note that the equation in 3+1 dimension with spherical
symmetry is the same as the equation in 1+1D as

~∇π.~∇π →
(
∂π

∂r

)2
(5.62)

and the PDE reads,

∂2
τπ(τ, r) =

(
∂π

∂r

)2
(5.63)

So similar to the 1+1 D case the minima blow up at finite time given by Eq. 5.46
and κ′(0) = 1

4
∂2Φ
∂r2 (rmin).

If we consider non-zero c2
s the wave term also appears in the equation and

according to the ∇2 in the Spherical coordinate we obtain the following equation,

π̈(τ, r) =
(
∂π(τ, r)
∂r

)2
+ c2

s

1
r

∂2

∂r2 (rπ(τ, r)) (5.64)

π̈(τ, r) =
(
∂π(τ, r)
∂r

)2
+ c2

s

(
∂2π(τ, r)
∂r2

)
+ 2c2

s

r

(
∂π(τ, r)
∂r

)
(5.65)

5.4.7 Numerical studies in 1+1 D
In this subsection we aim to solve the PDEs numerically on the lattice in 1+1
D and to compare with the analytical results we have obtained in the previous
sections and the results in 3+1 D in the cosmological contexts. Here we also
comment on the terms that could prevent the system from blowing up for large
speeds of sound.
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The first equation that we solve numerically is the following equation, which
we have shown to blow up at the local minima and local maxima,

∂2
τπ(τ, x) =

(
∂xπ(τ, x)

)2
(5.66)

π(0, x) = 0
dπ

dτ
(0, x) = Φ(x)

We take Φ(x) = cos(4πx
L

) where Ngrid = 2048 is the number of points and dx = 1
is distance between the points on the 1D lattice. First of all the curvature at the
minimum point is given by 16π2

L2 = 0.000037, by solving the following integral we
obtain the blowup time according to our analytical expression in Eq. 5.45,

τb = 1√
κ′(0)2

.
(3

8κ
′(0)2

) 1
3
∫ ∞

0.000037

ds√
1 + s3

= 1√
κ′(0)2

.
(3

8κ
′(0)2

) 1
3
.2.80433

(5.67)
Substituting κ′(0) = 1

2
∂2Φ
∂x2 = 1.88× 10−5, the blowup time reads,

τb = 76.0202 (5.68)

In Fig. 5.8 we show the numerical results for the scalar field π and it’s first and
second time derivative in the top panel and it’s spatial derivative in the bottom
panel. This figure verifies our claims of the previous subsections; i.e. the extrema
do not move in time and are fixed at a position, the curvature of the maxima
and minima increases and the maxima become flatter while the minima become
sharper and blow up at some point. Moreover paying attention to the ∂xπ in
the middle part of the bottom panel of the figure one realizes that this function
shares similar behavior with caustic singularities Arkani-Hamed et al. [2007],
Babichev [2016] which comes from the fact that to leading order according to
the Eq. 5.6 the velocity vx is ∂xπ in 1+1 D and the maxima and minima travel
toward each other to form a caustic in a finite time. To verify our analytical
results, we compare the blowup time obtained from the solution of the ODE
with the numerical solution from the PDE at the minimum point in Fig. 5.9.
According to the figure our theoretical solution and the numerical results agree
very well.

For the sake of completeness, we also simulate the full PDE written in 5.10
for the case when c2

s = 1, to show that the linear term c2
s∇2π can change the

behavior of the system from a divergent to the stable one. In fig. 5.10 we show
the numerical results for the scalar field and its time and spatial derivative in,
respectively, the top and bottom panels. According to these figures the system
for large speeds of sound in 1+1 D is similar to the 3+1 D case which is stable. In
Fig. 5.11 we show the evolution of the curvature at the minimum. According to
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this figure the curvature eventually, after a period of increase, decays and there
are no signs of the instability.
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Figure 5.8: Top: The scalar field and its time derivatives on the 1+1 D lattice at
different times for a cos function as an initial condition are shown. Analytically
the curvature of the scalar field at the minimum blows up at time τb ≈ 76.
Bottom: The scalar field and its spatial derivative on the lattice for different
times are shown. Due to the numerical noises appearing in the second order
spatial derivative we only show the results up to τ = 62.7. It is also interesting
to see that ∂xπ behaves similar to a gradient catastrophe that one would see in
some situations in the fluid dynamics.
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Figure 5.9: The evolution of the curvature of the minimum in time according to
the Eq. 5.33. According to the figure the solution of the ODE, the analytical
solution in (5.46) and the curvature evolution obtained from the solution of the
PDE are consistent.
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Figure 5.10: Similar to the Fig. 5.9 but for when the full PDE in 1+1 D for
c2
s = 1 is solved. According to this figure for the large value of c2

s the system is
stabilized.
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Figure 5.11: The evolution of the curvature at the minimum point according to
the numerical solution to the full PDE. The curvature at the minima reach a
maximum and then decreases.
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APPENDIX

5.A Linear equation
Neglecting the non-linear terms, the differential equation for the low speed of
sound is stable. In the following, we find the linear analytic solution in 1+1 D in
matter domination. For this we assume w = −1, and the solution for a general
w can also be obtained in a simple way. Taking w = −1, we can write the linear
part as,

∂2
τπ(τ, x) + 8

τ
∂τπ(τ, x) + 10

τ 2π(τ, x) = 6
τ

Ψ(x). (5.69)

According to the existence and uniqueness theorem for second order differential
equations, we have a unique solution for the ODE for τ > 0 .
The two fundamental solutions of the equation are π1 = A

τ
and π2 = B

τ2 and the
Wronskian reads W (π1, π2) = π1∂τπ2 − π2∂τπ1 = −AB

τ4 . The particular solution
of the equation is obtained,

πp(τ) = −π1(τ)
∫ π2(τ)f(τ)
W (π1, π2)dτ + π2(τ)

∫ π1(τ)f(τ)
W (π1, π2)dτ (5.70)

where f(τ) = 3
τ
Ψ(x). Computing the integral results in the following particular

solution πp(τ),
πp(τ) = Ψτ

2 (5.71)

As a result, the full solution to the equation reads,

π(x, τ) = A

τ
+ B

τ 2 + Ψ(x)τ
2 . (5.72)

Here A and B are defined from the initial condition at τini. However, the linear
part of the equation does not change the shape of the scalar field and rescales
the initial function as it is only time dependent.
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Chapter 6. The detection of relativistic corrections in cosmological N-body
simulations

Abstract: Cosmological N-body simulations are done on massively parallel
computers. This necessitates the use of simple time integrators, and, addition-
ally, of mesh-grid approximations of the potentials. Recently, Adamek et al.
[2016b], Barrera-Hinojosa & Li [2020] have developed general relativistic N-body
simulations to capture relativistic effects mainly for cosmological purposes. We
therefore ask whether, with the available technology, relativistic effects like peri-
helion advance can be detected numerically to a relevant precision. We first study
the spurious perihelion shift in the Kepler problem, as a function of the integra-
tion method used, and then as a function of an additional interpolation of forces
on a 2-dimensional lattice. This is done for several choices of eccentricities and
semi-major axes. Using these results, we can predict which precisions and lattice
constants allow for a detection of the relativistic perihelion advancein N-body
simulation. We find that there are only small windows of parameters—such as
eccentricity, distance from the central object and the Schwarzschild radius—for
which the corrections can be detected in the numerics.

6.1 Introduction

We consider here so-called (cosmological) N-body simulations such as [Adamek
et al., 2016a, Springel, 2005, Teyssier, 2002a]. In these numerical studies, poten-
tials between the (many) particles are computed on a lattice (mesh-grid) because
of the way such calculations are implemented on supercomputers. Additionally,
some of these projects (such as Adamek et al. [2016b], Barrera-Hinojosa & Li
[2020]) add relativistic corrections to the forces and therefore to the trajecto-
ries of particles. The aim of our study is to give bounds on the detectability of
these effects, given the computational restrictions of these large-scale projects.
We will see that in many current simulations, the necessary precision to detect
relativistic effects on the orbits of particles can simply not be achieved.

It is of course not difficult to devise codes which will compute the perihelion
advance under relativistic corrections to arbitrary high precision. It is not the
aim of our paper to study such algorithms, but rather, to see how well the
integration algorithms work in the N-body simulations. In these simulations,
because one considers essentially a gas of many particles, the user is restricted to
rather standard integration methods, which just use the differential equations,
but necessarily can not make use of the many invariants known for the (non-
relativistic) Kepler problem, see e.g., [Preto & Saha, 2009]. Therefore, we need
to first study the performance of standard integration schemes, such as Euler,
Runge-Kutta, and Leap-Frog, because these are the methods which are widely
used. We will see that only with very high precision one is able to detect the
(usually quite small) relativistic corrections. Once this has been done, we can
turn our attention to the effects of the discretizations (of space), which give then
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bounds on the necessary grid constants for which relativistic effects could be
detected. We will determine parameter regions where the relativistic effects can
be detected, and show that, most often, these regions are quite small.

By starting with the simple Kepler problem, in 2, we can concentrate on the
different numerical effects in a systematic and clean way. Even so, the reader
should realize that there are several quantities to be considered. The first is
the numerical precision of the time integrator. We study it here in the context
of the subroutines in ODEX [Hairer et al., 1993], and we also compare it to
other methods, such as Euler, leapfrog (Verlet-Störmer) [Hairer et al., 2003] or
Runge-Kutta with fixed time step.

To do this, we quantify the numerical errors on trajectories of particles re-
volving around a central object. This will allow us to give conditions which
ascertain which orbits in a specific N-body simulation are precise enough to be
able to measure the general relativistic perihelion1 shift.

After this, we consider the particle-mesh N-body scheme, as is widely used, see
e.g., [Adamek et al., 2016a, Springel, 2005]. In it, forces (coming from fields and
potentials) are discretized and represented on a lattice. Such elements [Arnold,
2002] are then used to compute the values of the fields at the particles’ positions.

The force interpolation approximations are usually piecewise differentiable,
and, depending on the implementations mentioned above, use different elements.
It is clear that if the mesh size of the approximation (of the force) goes to 0, so will
the error. But the relevant question here is to quantify what kind of phenomena
can be captured, given the numerous hardware and modeling constraints.

Particle-mesh N-body simulations are used to study the evolution of particles
under gravity. These codes can be used to study systems at different scales, from
cosmological scales to the size of the solar system, as the methods and forces
are appropriate for all scales. In the particle-mesh N-body scheme [Adamek
et al., 2016a, Springel, 2005], space-discretizations are performed to take care
of the large number of particles. We analyze two common force interpolations
which are used for N-body simulations purposes, namely the so-called linear
and bilinear methods, which respectively correspond to first and second order
interpolation. We will see that, under conditions to be specified, the effect of
spatial discretization can be quite large and sometimes depends on the angle θ
between the direction of the perihelion and the axes of the discrete lattice. This
happens when the discretization produces discontinuous forces, i.e., for the first
order force interpolation. In this case the maximal errors are proportional to the
lattice constant dx. On the other hand, in the second order force interpolation,
when one varies θ, there is a small perihelion shift, fluctuating around 0. These
fluctuations are seen to be of order dx1.3. Due to the highly nonlinear step size
of ODEX, we are not able to derive analytically this size of the fluctuations.

1We use “perihelion” even if the central mass is not the sun.
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Our numerical tests show that, unless the discretization is extremely fine, the
system will show an uncertainty of the perihelion, for the Kepler problem, for
both force interpolation methods. Our calculations give limits on the detectabil-
ity of relativistic effects, as a function of method, lattice spacing, as well as
eccentricity and the relativistic parameter Υ ≡ rsch/rper, the ratio of perihelion
distance of the orbit rper and the Schwarzschild radius of the central mass rsch.

6.2 Using standard time integrators
Our main interest is the detectability of general relativistic effects in N-body
simulations, and in particular the study of discretization effects. But we first
need to be sure that the time integration which is used in these projects does
not already destroy the precision of the result more than the effect of the space
discretization. This is the subject of this section.

A Hamiltonian problem can be integrated either as a motion in Euclidean
space, or one can exploit the underlying symplectic structure of the problem. Of
course, there are very good symplectic integrators, [Hairer et al., 2010], but we
decided not to use them, for two reasons.

The first is that in the particle-mesh N-body codes, the Euclidean approach
is used to solve the system including particles and the fields on the lattice coor-
dinates and expressing the system in symplectic coordinates is difficult. Second,
as noted in [Hairer et al., 2003] even the symplectic methods do not preserve the
Runge-Lenz-Pauli vector (the orientation of the semi-major axis). This means
that because of our focus on the relativistic perihelion advance, the symplectic
integrators present no particular advantage. So we will stick with the classical
high-order Runge-Kutta integrators ODEX [Hairer et al., 1993]. Because it al-
lows for “continuous output” we can use it to determine easily the advance of
the perihelion with high precision.

We summarize those properties of ODEX which are relevant for our study.
As we will be working with elements to interpolate forces, we need to explain
how the algorithm deals with discontinuities. This is illustrated in [Hairer et al.,
1993, Chapter II.9 and in particular, Fig. 9.6]. In the interior of a plaquette,
the algorithm chooses a high enough order to reach the required tolerance with
a large time step h. On approaching the singularity, the algorithm lowers the
order (to 4) but decreases h. In fact, the jump is approximated by a polynomial
of degree 4, and this defines something like a new initial condition across the
discontinuity. In the case of Runge-Kutta with fixed time step, the paper [Back,
2005] shows that there is a mean systematic error across the jump, which can
be viewed as a weighted combination of evaluations of the vector field across the
singularity.
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6.3 Perihelion variation for time integrators with
fixed time step

Here, we study the precision of perihelion calculations when working with exact
forces. In later sections, we will then see how the grid discretization further affects
this precision. Certainly, if we want to discriminate between non-relativistic and
relativistic effects, already the integration with exact forces needs to be precise
enough. This will force us to choose a small enough time step h.

We analyze the perihelion shift for several standard time integrators with
fixed time step, namely Euler, Newton-Störmer-Verlet-leapfrog, 2nd order and
4th order Runge-Kutta.

We call the time step h and we solve the Kepler problem in the form2

ẍ(t) = F (t, x)/m , (6.1)

with x, v, and F in 2 and m the mass of the object. For the convenience of the
reader, we spell out these well-known methods.

Euler method In this case, we solve (6.1) in the form

vn+1 = vn + anh ,

xn+1 = xn + vn+1h ,

where vn is the velocity vector at time step (n) which is defined as vn ≡ (xn − xn−1)/h
and an is the acceleration and is defined as the ratio of the force and mass
an ≡ a(tn, xn) = F (tn, xn)/m. It is well-known that this implicit/backward Eu-
ler method is more stable than the explicit/forward Euler method. But it is
somewhat more difficult to implement for non-linear differential equations.

Newton-Störmer-Verlet-leapfrog method For this widely used method
(sometimes called “kick-drift-kick” form of leap-frog) [Hairer et al., 2003][Eq. 1.5],
the updates are

vn+1/2 = vn + an
h

2 ,

xn+1 = xn + vn+ 1
2
h ,

vn+1 = vn+ 1
2

+ an+1
h

2 .

This method is used more often as it is a symplectic method and stable and is
shown to work very well for various stiff ODEs [Hairer et al., 2003].

2All positions, velocities, and the like are in 2.
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Second order Runge-Kutta method Finally, we will comment on the per-
ihelion advance for the 2nd and 4th order Runge-Kutta methods (with fixed
time step h). The Kepler problem using 2nd order Runge-Kutta algorithm—also
known as midpoint method—reads,

k(1)
x = vn ,

k(1)
v = an ,

k(2)
x = vn+ 1

2
,

k(2)
v = an+ 1

2
,

xn+1 = xn + k(2)
x h ,

vn+1 = vn + k(2)
v h ,

where k(1)
x is the estimate of velocity (derivative of x) in time step n, k(1)

v is the
estimate of acceleration (derivative of v) in time step n and the same for k(2)

x and
k(2)
v . The acceleration at time n+ 1

2 is obtained by

an+ 1
2
≡
F (tn+ 1

2
, xn+ 1

2
)

m
=
F
(
tn+ 1

2
, xn + k(1)

x h/2
)

m
.

Also, to obtain the velocity at time n+ 1
2 we need to use k(1)

v . The corresponding
tableau for the second order Runge-Kutta method for each first order differential
equation is

0

1/2 1/2

0 1

.

Fourth order Runge-Kutta method The Kepler problem using forth order
Runge-Kutta method is basically the same as second order Runge-Kutta, but
with three points instead of one point in between to solve the position and
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velocity. The tableau we use for this method is [Butcher, 1963]

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

.

6.3.1 Results for various integration schemes
We solve the Kepler problem with the methods described above and find the
perihelion variation for different time steps h. To determine the perihelion point
of the orbit we choose several points near the minimum distance to the central
object after each revolution. Then we fit a parabola (for Runge-Kutta, we take
a 4th order polynomial to find the point closest to the central mass) and the
minimum of the parabola is taken as the perihelion point. Fig. 6.1 illustrates
how this is done, for the particular example of Mercury. The red point is the
perihelion. The spurious shift of the perihelion of Mercury using 2nd order
Runge-Kutta method with h = 0.00625, which is the case considered in Fig. 6.1,
is∼ 7.8×10−5 radians. We measure the positions in units Giga meters (Gm ≡ 109

m) , time in Mega seconds (Ms = 106 sec) and masses inMearth = 5.972×1024 Kg.
In these units, the initial position (at the perihelion), is 46.001272(cos(θ), sin(θ))
where θ is the angle between x-axis and semi-major axis. The initial velocity
is perpendicular to the line connecting Mercury and the Sun, with magnitude
58.98. The potential is −GM/r with GM = 132733 measured in the code’s
units 3. When we will study the problem on the lattice, the angle θ will be
important. In Fig. 6.2 the magnitude of perihelion variation for the different time
integrators and the step size h is shown. The horizontal line shows the value of
relativistic perihelion advance, the green/red regions respectively show where the
time integrator precision is/is not good enough to observe relativistic perihelion
advance. Because time integrators over- or underestimate the perihelion, we plot
its absolute deviation (which for Newton’s law should be zero). This absolute
value sets a limit of how small one has to take a time step h to be able to detect
general relativistic corrections to the orbits.

The relativistic parameter Υ = rsch/rper for the Mercury-Sun case with rper =
46×106 km and rsch = 2.95 km is Υ ≈ 6.4×10−8. The eccentricity of Mercury is

3In units Gm3 ·M−1
earth ·Ms−2.
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Figure 6.1: Detecting the spurious perihelion change for the Kepler problem
for the Mercury-Sun system. For each time step of integration we determine
the angle and the distance from the central body (the blue points), using the
2nd order Runge-Kutta method. We then fit a parabola through these points,
and the minimum of the distance to the Sun is the red point (perihelion point).
Note that the red point is very slightly to the left of 0 and shows the spurious
perihelion shift due to the time integration imprecisions. We use this method to
find the perihelion shift and to decrease the errors we take average over three
revolutions.
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Figure 6.2: Achievable precision for different integrators, as a function of step
size h. Shown is the absolute value of the perihelion shift for the Mercury-Sun
problem. To make relativistic corrections distinguishable, only points in the
green region are good enough. The data points correspond to 1/3 of the advance
after 3 rotations.
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≈ 0.205630. Both parameters are considered small as the distance of Mercury to
the Sun is much larger than the Schwarzschild radius of the Sun. We therefore
consider also a more extreme case, where the relativistic effects are larger, such
as the stars in the Galactic center known as the S-stars [Parsa et al., 2017] which
are revolving around the central super massive black hole. For one of them, S2,
the relativistic parameter at perihelion point is estimated from measurements to
be Υ ≈ 8.8×10−5, and the eccentricity is 0.884. The details about the relativistic
parameter and eccentricity can be found in Appendix 6.B.

In our numerical study, we cover therefore a large range of these parameters.
Our results are summarized for the four integration methods in Fig. 6.2 as a
function of the time step h. In Fig. 6.3 the comparison is done as a function of
Υ/Υ0, where Υ0 is the relativistic parameter at perihelion point for the Mercury-
Sun system. We also show the dependence on eccentricity.

6.4 Force interpolation

Having considered the numerics of the classical methods, we now study the effect
of discretizing space. We again restrict attention to two dimensions and set,
throughout, the lattice spacing equal to dx.4 In particular, we study the two force
interpolations (linear and bilinear) which are mainly used in N-body simulations,
see e.g., [Springel, 2005] and [Adamek et al., 2016a], and for which we will present
numerical results. A very useful systematic derivation of finite elements for
derivatives and differential complexes can be found in [Arnold, 2002]. The setup
is as follows: We are given a potential Φ, in our case the Newtonian potential
Φ(x1, x2) = −GM/

√
x2

1 + x2
2 = −GM/r, from which we want to derive the forces

on the particles. In the bilinear (quadratic) method the mesh is given by integer
coordinates (in Z2), and we assume that Φ is known in all points (i, j), with
i, j ∈ Z.5 The force at lattice point i, j is then approximated by a vector with
components

f
(x)
i,j = Φi+1,j − Φi−1,j

2 ,

f
(y)
i,j = Φi,j+1 − Φi,j−1

2 .

4Due to the discretization, the angular momentum vector might not be conserved and we
might have 3D motion, here we assume that the force perpendicular to the plane of motion
vanishes.

5Finite elements are of course obtained more easily on triangular lattices, but, because of
requirements of large parallel computations, we study the lattice Z2.
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Figure 6.3: Left: The absolute value of the perihelion shift as a function of
the normalized relativistic parameter β = Υ/Υ0, where Υ0 is the relativistic
parameter for Mercury-Sun. The red region shows where the method will fail to
discriminate the relativistic perihelion advance from the integration errors (for
the chosen step size of h = 0.0002). In the green region one can safely use the
method, for that specific orbit. When increasing β, the numerical perihelion shift
increases, as according to (6.6) the velocity of the object in the perihelion point
scales like

√
Υ, while the perihelion distance scales like 1

Υ . In all the methods
the slope of the curve is higher than the slope of the relativistic advance curve
∆ϕ ∼ Υ, which shows that for the orbits with large relativistic parameters, one
has to choose the method and the time step very carefully. Right: The same
representation as a function of eccentricity e. In all the methods, by increasing
the eccentricity the numerical perihelion variation increases, as according to the
(6.7) the velocity of the object and perihelion distance rescales respectively by√

1+e
1+e0 and 1−e

1−e0 . In order to be able to measure the relativistic perihelion advance
at each eccentricity we need to use the method with the appropriate step size, for
example Euler and second order Runge-Kutta do not work for any eccentricity,
while leapfrog is good for e . 0.5 and fourth order Runge-Kutta works perfectly
for all eccentricities. All data points correspond to 1/3 of the advance after 3
rotations
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Figure 6.4: Notation for a plaquette on the unit mesh in 2.

Note that the difference is taken over 2 mesh points around the point of interest.
Assume that the point x = (u, v) ∈2 lies in the square with corners

a = (i, j) , b = (i+ 1, j) , c = (i, j + 1) , d = (i+ 1, j + 1) ,

cf. Fig. 6.4. We let f (x)
a = f

(x)
i,j , and similarly for the other corners and the

direction (y).
Let i be the integer part of u and let j be the integer part of v, and set

ξ = u− i, η = v − j. The interpolated forces are then given by

F (x)(u, v) =
(
f (x)
a (1− ξ) + f

(x)
b ξ

)
· (1− η) +

(
f (x)
c (1− ξ) + f

(x)
d ξ

)
· η ,

F (y)(u, v) =
(
f (y)
a (1− η) + f (y)

c η
)
· (1− ξ) +

(
f

(y)
b (1− η) + f

(y)
d η

)
· ξ . (6.2)

Note that “c” and “b” change position between the x and y components.This
interpolation method is called bilinear method as it is combination of two
linear interpolations along the square, so it is a quadratic interpolation [Arnold,
2002]. This interpolation is continuous across the boundaries in both directions
and for both components of the vector field. To verify this, one can for example
restrict to the line connecting a and b. Then η = 0, and therefore one gets

F (x)(u, v) =f (x)
a (1− ξ) + f

(x)
b ξ ,

F (y)(u, v) =f (y)
a (1− ξ) + f

(y)
b ξ .

The important thing is that the values only depend on a and b, but not on c and
d and so continuity is guaranteed. The 3 other edges are similar.

In this scheme, as is well known, one needs 8 evaluations of Φ per plaquette.
When the mesh size is dx instead of 1, all the calculations scale accordingly.
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The other method, linear method which is also widely used in cosmological
N-body simulations e.g., [Adamek et al., 2016a] is given, with similar notation—
using g and G instead of f and F—by

g
(x)
i,j = Φi+1,j − Φi,j ,

g
(y)
i,j = Φi,j+1 − Φi,j ,

G(x)(u, v) = g(x)
a (1− η) + g(x)

c η ,

G(y)(u, v) = g
(y)
b (1− ξ) + g

(y)
d ξ ,

with a, . . . , d as before. This method is of lower order than the previous one, and
needs fewer evaluations. The advantage is that they need less memory, but of
course, it is only 1st order.

Note that if (u, v) crosses the line connecting a and b, then G(x) is continuous,
but G(y) has a jump discontinuity (of order about O(Φi,j −Φi+1,j) when i and j
are not too close to 0). Similar considerations hold on the other boundaries of
the unit plaquette.

This scheme only needs 4 evaluations of Φ per 2-dimensional plaquette, but
the interpolation is not continuous. The Kepler problem can still be integrated
numerically, but there will appear a spurious phase shift which is caused by the
discontinuity. But the numerical errors again scale with the mesh size, albeit on
a larger scale than in the first method.

We will now present the numerical results for these cases, and then discuss
the limitations they imply on trajectories in N-body simulations. Of course,
often calculations are done in 3, resp. Z3, but for the study of numerical issues,
2 dimensions are enough. Restriction to 1 dimension is too easy, since the two
methods coincide in that case.

6.5 Discretization vs relativistic perihelion ad-
vance

We have seen that high precision is needed to discriminate relativistic effects in
the planar two-body problem. As several N-body codes use—in addition to the
standard numerical integration schemes, a discretization of space—we now study
the effects of these discretizations. To concentrate on them, we use a numerical
integration of very high precision (ODEX, tolerance 8 · 10−11) so that the effects
described earlier are minimal, and the effect of discretization becomes visible.

As we want to measure the perihelion advance due to the discretization we
stick to the general equations in which we do not use the symmetries of the
Kepler problem. We just assume that the motion is on a plane and we solve the
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equations for the relative distance between two masses assuming that m�M ,

(ẋ, ẏ) = (vx, vy) ,
(v̇x, v̇y) = (H(x)(u, v), H(y)(u, v)) ,

where H(x)(u, v) is F (x)(u, v) or G(x)(u, v) as defined in Section 6.4 .
We have, so far, analyzed in detail how much numerical precision is needed to

detect general relativistic effects, as a function of eccentricity and the relativistic
parameter Υ.

We start by presenting results for the bilinear interpolation (6.2). The sim-
ulations are done as follows: We take the parameters for Mercury, with initial
position at 46.001 · (cos(θ), sin(θ)) and a velocity perpendicular to the Mercury-
Sun line, of magnitude 58.98, in the counterclockwise direction. We require a
tolerance of 8×10−11, which is attainable with quadruple precision, using ODEX.
For each value of θ, we determine the time for 1, 2, and 3 returns to the perihe-
lion. The perihelion is found by looking for that angle where the distance from
the sun is minimal. This angle is found by linear and quadratic bisection, up to
machine precision, using the “continuous output” from ODEX.6 We repeat this
for 180 initial angles covering 360 degrees in steps of 2 degrees, and this gives us
3×180 data points.7 In Fig. 6.5 and Fig. 6.6 we show the results for several values
of dx, for linear and bilinear approximation. Further inspection shows that these
distributions are close to Gaussian, but the variance is somewhat smaller than
dx, actually dx1.3 is a reasonable approximation. As we mentioned before, an
analytic estimate of this variance is difficult, because ODEX works with variable
step size and order, with quite dramatic changes near the edges of the plaquettes.

In the case of the linear interpolation, the discontinuity leads to an effective
advance of the perihelion, which furthermore depends strongly on the initial angle
θ. Qualitatively, this can be understood by the angles at which the orbit crosses
the discontinuities. Using otherwise the same parameters as above, the results
are summarized in Fig. 6.7. The advance A of the perihelion follows closely a
cosine (with a phase-shift) A/dx ∼ 0.145 cos(θ + 2.34) ∼ 0.145 cos(θ + 3π/4).
We also checked that the advance of the perihelion changes sign if the initial
velocity changes sign. Also note that the average of the advance of the peri-
helion is close to zero. To generalize the results to include different orbits in
N-body simulations especially the ones with high eccentricity and high relativis-
tic parameter, we studied how the perihelion shift depends on eccentricity and
relativistic parameter. These are shown in Fig. 6.7. Given the number of parti-
cles considered in current N-body simulations (e.g., 70003 in [Yu et al., 2017] )

6We use the standard algorithm “zeroin” of Dekker.
7For example, after 3 turns, we divide the total angle by 3, we do not take the differ-

ence between the angle for 3 and 2 turns. Of course, errors on these points will average out
somewhat.
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and the restrictions of current hardware, (same number of lattice points), we see
that relativistic corrections of the orbits can not be detected.

An interesting effect of the discretization for fixed dx is the dependence on
eccentricity e. We observed that the deviations scale about as 1

e(1−e2) for the
linear interpolation. This means that the effect is largest at extreme values of
e. The deviation is also proportional to Υ, while the relativistic correction is
proportional to Υ

1−e2 .
The code for such tests and for other parameters can be obtained from the

authors.
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Figure 6.5: Left: Linear interpolation: The advance of the perihelion due to
the discretization effect depends on the initial angle of the perihelion. For each
value of dx, we show the deviation in radians, divided by dx. The curves clearly
coincide. This shows that the deviations scale linearly with dx.
Right: Bilinear interpolation: We consider the perihelion shifts, divided by
dx1.3, for 180 equally spaced initial angles of the orbit. The bar graphs show the
distribution of these quantities, for various choices of dx. We see that they obey
a Gaussian fit (the solid lines). This shows that the shifts are random.

6.6 Conclusions

We see that the numerical study of relativistic effects can have two problems.
First, the integration method must choose a small enough time step to reach a
precision which is better than the size of the relativistic correction. Second, if,
additionally, the forces are discretized, the grid size must be quite fine, so that
the relativistic corrections are not washed out by the approximation.

In particular, our results allow one to estimate for which choices of Υ, e, and
θ, the relativistic effects are larger than the numerical and discretization effects
generated by h and dx.
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fitted blue and magenta lines show the 50% deviation from the central fit value.
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a function of the theoretical relativistic parameter β. The green line shows the
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for the parameters e, dx, and Ngrid used in the figure, no method is able to detect
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Right: The same study, now as a function of eccentricity e. According to the
green/magenta regions the relativistic effects can not be detected for the choice
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APPENDIX

6.A Newtonian and relativistic orbits
Here first we review the equations of motion and properties of the orbits in
the mechanics of Newtonian particles, then we derive the equations for general
relativistic motion. In 2-dimension polar coordinates (r, φ) the Newton equations
take the form

r̈ − rφ̇2 = −GM
r2

Writing the angular momentum per mass l in polar coordinates results in

l = r2φ̇ .

Changing the variable to u(φ) = 1/r(φ) gives

d2

dφ2u+ u = GM

l2
. (6.3)

To obtain the relativistic perihelion advance we repeat, for the convenience of
the reader, some parts of [Stephani, 2004, p. 193]. The Schwarzschild metric as
a spherically symmetric vacuum solution reads,

ds2 = −
(

1− rsch

r

)
c2dt2 +

(
1− rsch

r

)−1
dr2 + r2

(
dθ2 + sin2 θ dφ2

)
,

where rsch is the Schwarzschild radius, defined by rsch = 2GM
c2

, t and r, θ, φ are re-
spectively time and spatial spherical coordinates.8 To obtain geodesic equations
one starts from the classical action of massive test particle,

A = −mo

∫ √
−gµν

x.µ
dτ

x. ν
dτ
dτ ,

where mo is the mass of the object. Applying Euler-Lagrange equation to the
Lagrangian of the test particle gives four equations, in which one sees that the
angular momentum is conserved. Therefore, the motion is in a plane. By simple
algebra on the equations one finds the equation of motion as

d2

dφ2u+ u = GM

l2
+ 3

2rschu
2 , (6.4)

8In this section, θ is not the angle of the major axis, but just one of the 3 Euler coordinates.
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which is like Newton’s equation (6.3) plus a term which is coming from relativistic
correction. We solve (6.4) to obtain the relativistic perihelion advance per period,
which is well approximated by

∆φp ≈
3πrsch

a
(
1− e2

) , (6.5)

where a is semi-major axis and e is the eccentricity of the orbit.
For Mercury, this leads to the well-known advance of 42.98 arc sec perihelion

advance per century, or ∼ 0.103 arc sec per period.

6.B The parameterization of orbits
To see the effect of discretization on different orbits in N-body simulations, we
parameterize a general orbit with three parameters (Υ, θ, e), where e is the ec-
centricity, Υ is the relativistic parameter at perihelion and θ is the angle of semi-
major axis with the lattice squares. It is important to note that, these parameters
are enough to explain any closed orbits in N-body simulations. Moreover having
the three parameters one could uniquely construct the mass of central object as
well as the initial position and velocity of the particle.

Relativistic parameter The relativistic parameter Υ = rsch
rper

, for a fixed mass
of central object it shows the scale of the orbits and for a fixed size of the orbit
it is an indicator of the mass of central object. If we assume that the mass of
central object is fixed, by changing the relativistic parameter, different quantities
of the orbit would scale as following,

M →M , rper →
rper

Υ , (6.6)

T → Υ3/2T , vper →
√

Υvper .

rper is the perihelion radius, T is the period of the orbit and vper is the velocity of
the object in the perihelion point. To rescale the orbit for the fixed central body
mass and fixed eccentricity one has to change the initial conditions as following
to obtain the new orbit,

x0 =rper

Υ , y0 = 0 ,

vx = 0 , vy =
√

Υvper .

We could of course change the central object mass instead of changing the size
of the orbit while having the same relativistic parameter.
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Eccentricity Another parameter which is important in characterizing an orbit
is the eccentricity, to change the eccentricity we keep the semi-major axis length
fixed and we change the positions and velocities in the perihelion point to recover
the desired eccentricity for the orbits

rper → rper
1− e
1− e0

, vper→ vper

√
1 + e

1 + e0
, (6.7)

where e is the new eccentricity and e0 is the reference eccentricity (in our case
mercury). Note that changing eccentricity also results in changing the perihelion
distance and relativistic parameter.

Rotation It appears that the angle between the semi-major axis and the lattice
squares, is an important parameter specially in the linear force interpolation. To
rotate the orbit by angle θ we can follow the coordinate transformations and
start from the following initial condition to obtain the correct orbit,

x0 = rper cos(θ) , y0 =rper sin(θ) ,
vx =−vper sin(θ) , vy =vper cos(θ) .

In Fig. 6.8 we have illustrated the orbits with different ellipticity, relativistic
parameter and angle obtained from numerical results.
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equations.
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Chapter 7. N -body simulations for parametrised modified gravity

Abstract: We present MG-evolution, an N -body code simulating the cos-
mological structure formation for parametrised modifications of gravity. It is
built from the combination of parametrised linear theory with a parametri-
sation of the deeply nonlinear cosmological regime extrapolated from modi-
fied spherical collapse computations that cover the range of known screening
mechanisms. We test MG-evolution, which runs at the speed of conventional
ΛCDM simulations, against a suit of existing exact model-specific codes, en-
compassing linearised and chameleon f(R) gravity as well as the normal branch
of the Dvali-Gabadadz-Porrati braneworld model, hence covering both large-
field value and large-derivative screening effects. We compare the nonlinear
power spectra produced by the parametrised and model-specific approaches over
the full range of scales set by the box size and resolution of our simulations,
k = (0.05 − 2.5) h/Mpc, and for two redshift slices, z = 0 and z = 1. We find
sub-percent to one-percent level recovery of all the power spectra generated with
the model-specific codes for the full range of scales. MG-evolution can be used
for generalised and accurate tests of gravity and dark energy with the increasing
wealth of high-precision cosmological survey data becoming available over the
next decade.

7.1 Introduction
A wealth of high-precision measurements in the Solar System, of astrophysical
objects, of gravitational wave emissions, and in the laboratory have put Ein-
stein’s Theory of General Relativity (GR) under intense scrutiny [Abbott et al.,
2016, Baker et al., 2019, Hulse & Taylor, 1975, Kapner et al., 2007, Will, 2014].
In these regimes GR has successfully passed all tests so far. Its application to
cosmology, however, involves vastly different length scales, which in orders of
magnitude compare to the extent of the Solar System as the scale of everyday
human experience to the scale of an atomic nucleus. It is therefore important to
conduct independent tests of GR in the cosmological regime. The necessity of
a dominating dark sector to explain the cosmic large-scale observations [Abbott
et al., 2018, Hildebrandt et al., 2016, Perlmutter et al., 1999, Planck Collab-
oration et al., 2018, Riess et al., 1998b] provides additional motivation for this
endeavour. Traditionally the late-time accelerated expansion of our Universe has
been a particularly important driver for the development of modifications of GR.
As direct cause of the acceleration this motivation is, however, challenged by the
confirmation of a luminal speed of gravity [Abbott et al., 2017, Lombriser &
Lima, 2017]. But cosmic acceleration could nonetheless be attributed to a dark
energy component that may couple nonminimally to matter, modifying gravity
and leaving an observable impact on cosmological scales.

The past two decades have seen a steep growth in cosmological tests of
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gravity and dark energy [Ishak, 2019, Joyce et al., 2016a, Koyama, 2016], and
in the upcoming years, we will benefit from numerous high-precision experi-
ments [Aghamousa et al., 2016b, LSST Dark Energy Science Collaboration, 2012,
Laureijs et al., 2011, Walcher et al., 2019, Weltman et al., 2020] that will enable
us to put tight cosmological constraints on the properties of dark energy and
modified gravity theories. Specifically, we will see an increase in the wealth of
high-quality data in the nonlinear regime of cosmic structure formation. This
is a regime of particular interest for tests of gravity since viable modifications
of GR must employ screening mechanisms [Babichev et al., 2009, Hinterbichler
& Khoury, 2010, Khoury & Weltman, 2004, Vainshtein, 1972] to recover GR in
high-density regions to comply with the stringent bounds from Solar-System,
astrophysical, gravitational wave, and laboratory experiments. These are in-
herently nonlinear effects and naturally in the nonlinear cosmological small-scale
structure is where modified gravity transitions to GR and thus also where unique
signatures of screening are to be expected. The forthcoming nonlinear cosmo-
logical survey data therefore make cosmological tests of gravity a very timely
enterprise.

To predict the complex nonlinear structure formation due to gravity, we typ-
ically rely on N -body simulations. N -body codes have been developed for a
range of alternative gravity models [Baldi, 2012, Barreira et al., 2013, Brax et al.,
2012b, Li et al., 2012a, Li et al., 2013, Llinares et al., 2014, Mead et al., 2015,
Oyaizu et al., 2008, Puchwein et al., 2013, Schmidt et al., 2009a, Valogiannis
& Bean, 2017, Wyman et al., 2013, Zhao et al., 2011] (for an introductory text
see Li [2018]). Importantly, these simulations model the cosmic structure of
specific modified gravity theories. However, a plethora of modified gravity mod-
els are conceivable based on the prospects of novel interactions of matter with
new fields. A systematic approach is therefore required to more comprehensively
explore the manifold cosmological implications from the possible modifications
of gravity. But this is not feasible with a model-by-model implementation in
N -body codes. Hence, much effort has gone into developing parametrisation
frameworks (see Lombriser [2018] for a review). While parametrisations of the
linear and quasilinear modifications are well understood, it is less clear how to
develop parametrisations of modified gravity in the deeply nonlinear cosmologi-
cal regime. In general, spherical collapse computations have proven very useful
in capturing the modified gravity effects at deeply nonlinear scales. Motivated by
the variety of screening mechanisms that can operate in scalar-tensor theories,
a parametrisation of the modified gravitational forces acting on the spherical
top-hat overdensities has been developed in Lombriser [2016]. Together with lin-
ear and quasilinear parametrisations the spherical collapse parametrisation can
be used in an adapted halo model framework to model the nonlinear matter
power spectra of arbitrary modified gravity theories [Cataneo et al., 2019]. An
N -body implementation of such a parametrisation framework, covering the lin-
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ear to deeply nonlinear regime, has so far not been developed. N -body codes
for parametrised modified gravity exist in the context of large-field value screen-
ing [Brax et al., 2012a], which however does not encompass models with large-
derivative screening, or for purely phenomenological parametrisations [Thomas
& Contaldi, 2011], which however do not accurately represent the effect of screen-
ing mechanisms in the cosmic structure formation. A physically motivated but
general parametrisation of modified gravity effects for the implementation in N -
body codes would both allow to simulate specific models with one code as well
as to broadly parametrise and explore the modified gravity effects in simulations
for the multitude of conceivable models and test these against the future survey
data.

In this paper, we develop and present the firstN -body code, dubbed MG-evolution,
for parametrised modifications of gravity that encompass all known screening ef-
fects. We derive the parametrisation from generalised linear theory and the
parametrised spherical collapse model of Lombriser [2016]. We describe our
parametrised simulations and test the performance for three types of modifi-
cations for which exact N -body simulation data are available. These are the
linearised and chameleon f(R) gravity models [Hu & Sawicki, 2007] and the
normal branch Dvali-Gabadadze-Porrati (nDGP) model [Dvali et al., 2000]. For
a comparison of the simulation outputs we present the nonlinear matter power
spectra produced by these models within the parametrised and exact approaches.

The paper is organised as follows. In Sec. 7.2, we review the linear and
nonlinear parametrisations of modified gravity in Fourier and real space, re-
spectively. We then introduce a Fourier-space parametrisation that covers all
scales and discuss its implementation in N -body codes. We develop and test
our MG-evolution N -body implementation in Sec. 7.3. We test the performance
of the parametrised code in reproducing the exact N -body results of existing
codes for linearised and chameleon f(R) gravity as well as the nDGP model.
We conclude with a discussion of our results in Sec. 7.4. Finally, we discuss
details of moving beyond the quasistatic approximation and differences between
simulations of parametrised modified gravity in Fourier and real space in the
appendix.

7.2 Parametrising modified gravity for N-body
simulations

The cosmic structure formation in a given gravitational theory is most accu-
rately modelled with N -body simulations, where the particles in the simulation
are incrementally displaced from their initial positions according to the Poisson
equation. This computation is conveniently performed in Fourier space, where
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the effective Poisson equation is given by(
k

a

)2

Φ(a, k) = 4πGeff(a, k, . . .)δρm(a, k) . (7.1)

Geff(a, k, . . .) denotes the effective gravitational coupling, in general a function
of time and wavenumber k, which parametrises the effects of alternative gravity
theories on structure formation. The gravitational potential Ψ is cast in the
Poisson gauge with the line element

ds2 = a2(τ)
[
− e2Ψdτ 2 + e−2Φδijdx

idxj
]

(7.2)

and δρm denotes the matter density perturbation.
In addition to the modification of the Poisson equation, modified gravity mod-

els typically also introduce a gravitational slip between the spatial and temporal
gravitational potentials, quantifying an effective anisotropic stress. In general,
modifications of gravity can also change the cosmological background expansion,
but our focus here is on the parametrisation of linear (Sec. 7.2.1) and nonlinear
(Sec. 7.2.2) effects on structure formation. For simplicity, for the practical ex-
amples in Sec. 7.3 we shall therefore specify to models with a ΛCDM expansion
history, but we stress that the formalism introduced here is not dependent on
this choice. For a review of general parametrisations of modified gravity, we refer
the reader to Lombriser [2018].

7.2.1 Linear parametrisation
At the level of linear perturbations and in the quasistatic regime, where we
neglect time derivatives with respect to spatial derivatives, the effective modifi-
cation of the Poisson equation of local four-dimensional metric theories of gravity
that lead to at most second spatial derivatives in the equations of motion takes
the form [Silvestri et al., 2013]

Geff,L(a, k) = 1 + p1(a)k2

p2(a) + p3(a)k2 , (7.3)

where pi(a) are generally three independently free functions of time. Note that
more accurately one may adopt a semi-dynamical approximation [Lombriser &
Taylor, 2015b], as discussed in App. 7.A, which includes the evaluation of the
time derivatives at a pivot scale that can be absorbed into Eq. (7.3). This correc-
tion typically only contributes at near-horizon scales, but it becomes particularly
important for scalar-tensor theories with higher-order derivatives, where it con-
tributes to leading order at all linear scales.
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7.2.2 Nonlinear parametrisation
A parametrisation of modified gravity effects on the nonlinear cosmic structure
formation that captures all known screening mechanisms has been proposed in
Lombriser [2016] through the parametrisation of the spherical collapse equations
in real space. The effective gravitational coupling in this approach can be written
as

Geff(a, r)
G

= A+
N0∑
i

Bi

Ni∏
j

Fij , (7.4)

where A corresponds to the effective coupling in the fully screened limit, typi-
cally unity, Bi is the coupling in the fully unscreened limit, e.g., Eq. (7.3) that
can be computed using the linear theory, N0 and Ni characterise the respective
number of transitions, and i, j are positive integers. The Fij are some transition
functions parametrising screening or other suppression effects. To parametrise
these transitions Lombriser [2016] adopted a generalised form of the Vainshtein
screening effect in nDGP (Sec. 7.3.3) with

F ∼ b
(
r

r0

)af {[
1 +

(
r0

r

)af ]1/b
− 1

}
, (7.5)

where r0 denotes the screening scale, which in general can be time, mass, and en-
vironment dependent. The parameter af (should not be confused with the scale
factor a) determines the radial dependence of the coupling in the screening limit
along with b that characterises an interpolation rate between the screened and
unscreened limits. Screening effects such as the chameleon [Khoury & Weltman,
2004, Li & Efstathiou, 2012, Lombriser et al., 2014] symmmetron [Hinterbichler
& Khoury, 2010, Taddei et al., 2014], k-mouflage [Babichev et al., 2009, Brax &
Valageas, 2014], and Vainshtein [Dvali et al., 2000, Schmidt et al., 2010, Vain-
shtein, 1972] effects as well as other suppression effects such as the linear shielding
mechanism [Lombriser & Taylor, 2015a] or Yukawa suppression approximatively
but analytically and sufficiently accurately map onto this transition function by
specifying the expressions that the corresponding couplings assume in the limits
of large and small r and r → r0. Furthermore, it was argued that in principle
the parameter values can directly be determined from the action of a given grav-
itational theory after adopting the scaling method of McManus et al. [2016] and
counting the powers of second and first spatial derivatives and the scalar field
potential.

Note that one may also adopt other transition functions to interpolate be-
tween the two different regimes than Eq. (7.5) such as a tanh or sigmoid [Hassani
et al., 2019b] function and perform the analogous matching of the limits.

Finally, for our practical examples in Sec. 7.3, we will only consider models
that recover GR in the fully screened limit, thus, A = 1 in Eq. (7.4), and for
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which there is only one screening effect operating (N0 = Ni = 1). Hence, Bi = B
is given by the linear effective coupling in Eq. (7.3), and Fij = F shall be specified
by Eq. (7.5).

7.2.3 Full parametrisation in Fourier space
To model the effective modification of the gravitational coupling on all scales,
the linear and nonlinear limits, Eqs. (7.3) and (7.4), may be combined into one
expression, for instance, by adopting Eq. (7.3) for Bi in Eq. (7.4). But this
simple combination can only be performed for models where Eq. (7.3) is scale
independent such as in nDGP gravity (Sec. 7.3.3). More generally, one must
perform a Fourier transform of either Eq. (7.3) or Eq. (7.4) to unify the effective
modifications in either real or Fourier space. We discuss the advantages and
disadvantages of the two different approaches in App. 7.B. Due to the simplicity
in solving Eq. (7.1), we adopt the Fourier space approach as our main method,
and in the following we discuss the procedure we adopt to convert Eq. (7.4) into
a nonlinear effective gravitational coupling in Fourier space.

For this purpose, instead of the real space description in Eq. (7.4), we wish
to write the parametrised gravitational coupling as

G̃eff(a, k)
G

= A+
N0∑
i

Bi

Ni∏
j

F̃ij , (7.6)

where F̃ij are now transition functions in Fourier space that parametrise screen-
ing or other suppression effects,

F̃ ∼ b

(
k0

k

)af 
[
1 +

(
k

k0

)af]1/b

− 1

 (7.7)

with k0 characterising an effective screening Fourier wavenumber. Note that
Eq. (7.6) is not simply a recasting of Eq. (7.4) into Fourier space, which instead
involves complicated convolutions (see App. 7.B).

An immediate advantage of working in Fourier space is that we can now
directly adopt Eq. (7.3) for the linear limit Bi. We stress, however, that the
phenomenological parametrisation (7.7) can also be configured to match the scale
dependence of the linear (or linearised) effective coupling given by Eq. (7.3). This
is due to the applicability of the transition function to the Yukawa suppression
[Lombriser, 2016]. We test the performance of this description in Sec. 7.3.1.

The crucial aspect of converting Eq. (7.4) into Eq. (7.6) is how the screening
scale r0 in Eq. (7.5) must be reinterpreted for Eq. (7.7) in terms of k0. We
adopt the following procedure for this conversion. As in Lombriser [2016] for
the computation of the modified spherical collapse, we first replace r → a rthyh,
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where rth is the comoving radius of a top-hat density ρm characterising a halo in
our simulation and yh = (ρm/ρ̄m)−1/3 denotes the dimensionless top-hat radius
with the cosmological background density ρ̄m. We then perform the replacement
yh/y0 → k0/k motivated from the scaling relation y ∼ r ∼ 1/k in which take a
single wavenumber in Fourier space, k corresponding to a radius, r in real space.
This approximation relies on the fact that we assume an oscillatory behavior
with a wavenumber r for the densities and potentials of the structures in real
space. The dimensionless screening scale typically evolves in time and can also
be dependent on mass and environment yenv. We thus perform the additional
replacement yh/yenv → kenv/k. Note that hereby the screening scale k0 can hence
become effectively k dependent due to dependencies on mass and environment.

For our simulations of parametrised modified gravity, we will focus on models
with one screening transition with and without the addition of a linear Yukawa
suppression. In this case, the effective parametrised gravitational coupling of the
nonlinear Poisson equation simplifies to

G̃eff(a, k)
G

= 1 + ∆Geff,L

G
b

(
k0

k

)af 
[
1 +

(
k

k0

)af]1/b

− 1

 , (7.8)

where ∆Geff ≡ Geff −G.
As with the linear modification there are two options of using a parametrisa-

tion ofGeff . One can either compute the functions pi(a) along with k0, b and af for
a specified modified gravity model, or one can phenomenologically parametrise
these components and perform a simulation for a given set of parameter values.
Cosmological observations may then be used to generally constrain the available
parameter space. Here, we will follow the first approach and test the performance
of the parametrised simulation framework with specific models against the simu-
lation output of correspondent model-specific N -body codes. We will, however,
allow for a calibration of the model parameters in the expressions derived for k0 or
of the interpolation parameter b against the model-specific simulations when not
predicted analytically. While the parameter values could be computed numeri-
cally by other means [Lombriser, 2016], the motivation behind this approach is
that in a parametrised approach it is primarily important that a set of parameter
values can be chosen to reproduce a model. If observations favour a nonstandard
set of parameter values, the exact model these parameters correspond to may
still be determined in retrospect. It is however generally feasible to replace the
calibration with analytic predictions or simple numerical computations, and we
expect future work to improve upon this point. But this is beyond the scope of
this first exploratory work.
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7.2.4 Implementation in N-body code
For our simulations of parametrised modified gravity, we use a Newtonian version
of the gevolution N -body code [Adamek et al., 2016b], where we implement
the parametrised gravitational coupling in Fourier space, Eq. (7.8). We shall
refer to this implementation as the MG-evolution code. Note that gevolution is
a particle-mesh N -body code, in which in the Newtonian version the Poisson
equation is solved in Fourier space to update particle positions and momenta.
In contrast, in MG-evolution the modified Poisson equation is used to move
the particles in the N -body code. It is worth mentioning that gevolution, as
a relativistic N -body code, is mainly developed to study the relativistic effects
in the cosmic large-scale structure. Although we currently use the Newtonian
version of gevolution, it paves the way for an implementation of a modified gravity
parametrisation that includes relativistic effects.

Due to the simplicity in our implementation, the run-time for a parametrised
modified gravity simulation is almost the same as for ΛCDM runs. This is
a great advantage of the parametrised N -body code over exact model-specific
simulations, which can slow down simulations tenfold [Li et al., 2012b].

To test the accuracy of our parametrised approach, in Sec. 7.3 we compare
our simulation output against that of other simulations for a range of well studied
specific modified gravity models.

7.3 Testing the N-body code

In order to test our framework for the parametrised modified gravity N -body
simulations introduced in Sec. 7.2 and its MG-evolution implementation in
gevolution (Sec. 7.2.4), we shall consider three toy scenarios: linearised f(R)
(Sec. 7.3.1), chameleon f(R) (Sec. 7.3.2), and nDGP gravity (Sec. 7.3.3). These
are representative for the different types of suppression effects one can encounter
in modified gravity models: linear effects (Yukawa) as well as screening by
large potential wells (chameleon) and large derivatives (Vainshtein) [Joyce et al.,
2016a].

For the MG-evolution simulations we use Npcl = 2563 for the number of
particles, a boxsize of L = 200 Mpc/h, and Ngrid = 2563 for the number of grids.
These are relatively small simulations but suffice for our purpose. The f(R) and
nDGP simulations used in this work for the comparison are taken from Cataneo
et al. [2019], which were run using ECOSMOG [Li et al., 2012b], an extension of
the RAMSES code [Teyssier, 2002b] that has been developed to simulate different
classes of non-standard gravity models. The cosmological parameters adopted
in all of the simulations are Ωbh

2 = 0.02225, Ωch
2 = 0.1198, H0 = 100h =

68 km s−1Mpc−1, As = 2.085 × 10−9 and ns = 0.9645. Our test quantity for
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the comparison of the output of the parametrised against the exact modified
gravity model N -body simulations will be the matter power spectrum, for which
we shall consider the range of scales where the upper bound in k, 2.5 h/Mpc,
is set according to the Nyquist frequency1 of our MG-evolution simulations and
the lower bound, 0.05 h/Mpc, is set by their boxsize. It is worth mentioning that
as the data from the low-resolution simulations are very noisy, so for the sake of
better illustration, the data in all the figures in this paper are smoothed with a
Gaussian filter to remove the noises. The standard deviation for Gaussian kernel
is taken σ = 2.5 in all simulations. We use gaussian_filter function in SciPy 1.0
[Virtanen et al., 2020] to do the smoothing.

Like in gevolution in MG-evolution the initial conditions are configured using
a linear Boltzmann code, here CLASS [Lesgourgues, 2011], at high redshifts, where
perturbation theory is still valid. We refer to App. A of Adamek et al. [2016a]
for more details on producing the high-redshift initial conditions with linear
Boltzmann codes. For the numerical results presented in this paper we use
z = 100 as the initial redshift. Since the modifications of gravity of interest
here reduce to GR at early times, we choose the same initial conditions for our
modified gravity runs as for the ΛCDM simulation. Note that we do not use the
same seeds as used in Cataneo et al. [2019], but since we compare the relative
difference between the modified gravity and ΛCDM matter power spectra, i.e.
PMG−PΛCDM

PΛCDM
, the error introduced due to the cosmic variance is almost cancelled

out.

7.3.1 Linearised f(R) gravity
At linear scales of f(R) gravity in the quasistatic limit, the modified Poisson
equation (7.1) in Fourier space takes the form

k2Φk = −4πG
(4

3 −
1
3

µ2a2

k2 + µ2a2

)
a δρk , (7.9)

where Φk denotes the Fourier transform of the gravitational potential. The
Compton wavelength λ of the scalaron field and its mass µ are specified by

µ−2 = λ2 = −6f̄R0

3H2
0 (Ωm + 4ΩΛ)

 1 + ΩΛ
Ωm

a−3 + 4ΩΛ
Ωm

 , (7.10)

where we have assumed a Hu & Sawicki [2007] model with exponent ñ = 1.
The model parameter f̄R0 ≡ df(R̄)/dR̄(z = 0) parametrises the strength of the
gravitational modification and together with the usual cosmological parameters
fully specifies the f(R) modification. Eq. (7.9) can be cast into Eq. (7.3) and

1We remove part of the data because of the error introduced by finite resolution effects.
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can also be adopted at nonlinear scales, which corresponds to a linearisation of
the effective gravitational coupling Geff [Oyaizu et al., 2008].

Hence, while the mapping of linearised f(R) gravity into our parametrised
framework described by Eq. (7.8) can be done exactly, we shall test here the
performance of the parametrisation (7.7) for the Yukawa suppression described
by Eq. (7.9). Thus, we want to express Eq. (7.9) as

∆Geff

G
|Yukawa = b

3p
(1 + 1

p

) 1
b

− 1
 (7.11)

where p =
(
kbn

aµ

)−af , af = −2b
b−1 , and n = b

af (b−1) can be inferred from the limits of
Eq. (7.9) following the procedure laid out in Lombriser [2016].

We compare the matter power spectra produced in the parametrised frame-
work against those from the simulations of the exact modification, both imple-
mented in MG-evolution, in Fig. 7.1. We consider two strengths of the modifica-
tion, f̄R0 = −10−5 and f̄R0 = −10−6, and two redshift slices at z = 0 and z = 1.
The parametrisation (7.11) produces an accurate match to the exact simulations
with Eq. (7.9) for all of these outputs and for the full range of scales up to k = 2.5
h/Mpc. The interpolation parameter seems to assume the universal value b = 3
independent of redshift and strength of the modification.

While the parametrised transition function accurately reproduces the Yukawa
suppression, as discussed in Sec. 7.2.1, the adoption of Fourier space for the de-
scription of the effective gravitational coupling Geff(a, k) in the Poisson equation
allows us to directly make use of the simple linear expression (7.3) instead. We
shall thus adopt Eq. (7.3) for the Yukawa regime in the following.

7.3.2 Chameleon f(R) gravity
Next we shall consider parametrised simulations for the full f(R) model, without
the linearisation performed in Sec. 7.3.1. We parametrise the effective gravita-
tional coupling of the model with Eq. (7.8). For the Yukawa regime, we can
simply adopt Eq. (7.3) and hence we are left with a parametrisation of the
chameleon screening mechanism by Eq. (7.7). More specifically, we write the
parametrisation as

∆Geff

G
|tot = ∆Geff

G
|Yukawa ×

∆Geff

G
|Chameleon , (7.12)

where ∆G
G
|Yukawa is given by Eq. (7.9). The chameleon screening regime ∆G

G
|Chameleon

in contrast is parametrised as

∆G
G
|Chameleon = b

(
k0

k

)af {[
1 +

(
k

k0

)af ] 1
b

− 1
}
. (7.13)
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Figure 7.1: Relative difference between the matter power spectra produced by
the parametrised (Eq. (7.11)), and exact (Eq. (7.9)) MG-evolution implemen-
tations of the Yukawa suppression in linearised f(R) gravity for redshifts z = 0
(left panels) and z = 1 (right panels) and three different values of the interpo-
lation parameter b. The simulations are run for f̄R0 = −10−5 (top panels) and
f̄R0 = −10−6 (bottom panels). The value b = 3 provides a good match of the
parametrised simulations to the exact implementation.
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Figure 7.2: Same as Fig. 7.1 but for chameleon f(R) gravity with comparison of
the parametrised MG-evolution simulations against the exact model simulations
[Cataneo et al., 2019]. The parametrised simulations were run for four different
values each of the interpolation parameter b and the environmental suppression
scale kenv, where the corresponding comoving top-hat radius was fixed to rth =
7 Mpc/h. Top panel: For the values (b = 1.1, kenv = 0.16 h/Mpc) at z = 0
and (b = 1.7, kenv = 0.2 h/Mpc) at z = 1 we find a ∼ 1% match over all scales
to k = 2.5 h/Mpc. Bottom panel: A match of ∼ 1% is found for (b = 5.0,
kenv = 0.1 h/Mpc) at z = 0 and (b = 6.0, kenv = 0.005 h/Mpc) at z = 1.
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To find k
k0

we will first inspect the real space parametrisation in Eq. (7.5), de-
scribed by Lombriser [2016]. Here, the screening scale r0 is determined by the
relation between thin-shell thickness x of the chameleon mechanism and the
physical top-hat radius rth. More specifically,

∆Geff

G
= 1

3
{

1 + min
[
(x− 1)3, 0

]}
(7.14)

with thin-shell thickness

x = −C1r
7
(
C−2

2 − C−2
3

)
, (7.15)

where the coefficients are given by

C1 = −f̄R0

ΩmH2
0r

3
th

(Ωm + 4ΩΛ

4ΩΛ

)2
, (7.16)

C2 = Ωm

4ΩΛ
r3

th , (7.17)

C2
3 = C2

2

(
yh

yenv

)6
(7.18)

and yh = r
arth

is the dimensionless top-hat radius with yenv correspondingly char-
acterising a dimensionless environmental radius. We also have y0 = r0

arth
for the

dimensionless screening scale. Note that r is a physical radius whereas rth is the
comoving top-hat radius.

In the screened limit, we have ∆Geff/G ≈ x (x � 1) and ∆Geff/G ≈
b(r/r0)7/3 (r � r0) in Eq. (7.5). Performing the approximation y ∝ r ∝ k−1, we
obtain

r0

r
→ k

k0
=

3C1

bC2
2

max
[( k

kenv

)6
− 1, 0

]
−1/7

k
a , (7.19)

where a is the scalar factor and we have used the maximum function to prevent
negative screening scales when k < kenv with kenv denoting the effective envi-
ronmental wavenumber. There are three parameters in this expression, namely
the interpolation rate b, the comoving top-hat radius rth and the environmental
Fourier wavenumber kenv. The top-hat radius and environmental wavenumber
need to be understood here as effective, or average, quantities. While rth and
b are degenerate in k/k0, b also appears in ∆G

G
|Chameleon. In principle, these pa-

rameters could be determined from theory [Lombriser, 2016], but for the reasons
discussed in Sec. 7.2.3 we shall treat them as free parameters. For simplicity,
however, we set the comoving top-hat radius to rth = 7 Mpc/h, motivated by a
typical galaxy cluster mass.

In Fig. 7.2 we compare the matter power spectra produced with our parametrised
N -body simulations for the gravitational modifications in Eqs. (7.11), (7.12) and
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(7.13) against the simulations of the exact f(R) modification from Cataneo et al.
[2019] for f̄R0 = −10−5 and f̄R0 = −10−6 at redshifts z = 0 and z = 1. We also
vary b and kenv. For f̄R0 = −10−5, we find that our parametrisation with values
(b = 1.1, kenv = 0.16 h/Mpc) at z = 0 and (b = 1.7, kenv = 0.2 h/Mpc) at z = 1
provides a ∼ 1% level match to the simulated power spectra of the exact model
over all scales to k = 2.5 h/Mpc. For f̄R0 = −10−6, we find a sub-percent level
match for the parameters (b = 5.0, kenv = 0.1 h/Mpc) at z = 0 and (b = 6.0,
kenv = 0.005 h/Mpc) at z = 1 over all scales to k = 2.5 h/Mpc. It is worth noting
that the match to the exact simulations could be improved by allowing for the
additional variation of rth or by a finer grid in the parameter space. At this level
of accuracy, however, one would also need to run higher-resolution simulations.

7.3.3 Normal branch DGP gravity
Finally, we consider another widely studied modified gravity theory: the Dvali-
Gabadadze-Porrati (DGP) braneworld model [Deffayet, 2001, Dvali et al., 2000].
For theoretical and observational consistency [Koyama, 2005, Lombriser et al.,
2009], we specify to the normal branch of the model (nDGP). The new free
parameter introduced here is the crossover scale rc that controls the leakage of
gravity from the 4D brane to the 5D bulk spacetime.

In the linear limit of the nDGP model, or the weak-brane phase, the effective
gravitational coupling Geff in the quasistatic modified Poisson equation (7.1) is
scale independent and reads

Geff

G
= 1 + 1

3β(a) , (7.20)

where the function β(a) is defined as

β(a) = 1 + 4
3a
H
H0
H0rc

(
1 + H′

2H2

)
(7.21)

with primes denoting derivatives with respect to the conformal time and H in-
dicating the Hubble expansion in conformal time. More generally, due to the
Vainshtein mechanism, caused by derivative self-interactions, this linear modifi-
cation is suppressed in high-denity regions, where the model recovers GR. More
specifically [Koyama & Silva, 2007, Schmidt, 2009], for a spherically symmetric
matter density perturbation δρ we have

Geff

G
= 1 + 2

3β(a)

√
1 + x−3 − 1

x−3 (7.22)

where x ≡ r
r∗

and r∗ is the Vainshtein radius,

r∗ =
(16GδMr2

c

9β2

)
(7.23)
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Figure 7.3: Same as Fig. 7.2 but for nDGP gravity. Top panels: Comparison
for the model parameter H0rc = 0.5 for four different values of the effective
Vainshtein wavenumber k∗ at z = 0 (left panel) and z = 1 (right panel). The
value k∗ = 1.6 h/Mpc at z = 0 and k∗ = 2.7 h/Mpc at z = 1 recovers the exact
simulations at percent level across all scales to k = 2.5 h/Mpc. Bottom panels:
Comparison for H0rc = 2.0 for four different values of k∗ at z = 0 (left panel) and
z = 1 (right panel). The values k∗ = 1.1 h/Mpc at z = 0 and k∗ = 2.0 h/Mpc at
z = 1 provide sub-percent level matches.
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with mass fluctuation
δM = 4πδρr3/3 . (7.24)

This can be rewritten as

∆Geff

G
= 2

3β

√
1 + ε− 1

ε
(7.25)

with
ε ≡ x−3 =

(
r∗
r

)3
= 8H2

0r
2
c

9β2 Ωm(a)δ = 8H2
0r

2
c

9β2 Ωm,0a
−3δ . (7.26)

Given that the form of the real-space transition in Eq. (7.5) is motivated by
nDGP it is trivial to cast Eq. (7.25) into Eq. (7.5):

B → 1
3β , af → 3, b→ 2, r0 → r∗ . (7.27)

We now wish to translate this into a parametrisation of the gravitational modi-
fication in Fourier space, Eq. (7.7). Note, however, that we have also performed
parametrised N -body simulations with this real-space expression and compared
against the outputs of Cataneo et al. [2019], finding good agreement with those
when applying a smoothing radius for δ (see App. 7.B).

To obtain the parametrised modification in Fourier space, we perform the
approximation

ε =
(
r∗
r

)3
→
(
k

k0

)3
, (7.28)

where k0 = k∗ is the wavenumber corresponding approximately to the Vainshtein
radius r∗, and we find

∆G
G
| nDGP = 1

3β

(
k∗
k

)3 {[
1 +

(
k

k∗

)3] 1
2
− 1

}
. (7.29)

While the effective screening wavenumber k∗ can in principle be modelled [Lom-
briser, 2016], we shall treat it here as a free parameter following the discussion
in Sec. 7.2.3.

As in the exact model simulations of Cataneo et al. [2019], we adopt a cos-
mological background that matches that of ΛCDM, or equivalently we consider
an artificial dark energy fluid that cancels out the effect of modified gravity in
the background and as a result we obtain the same expansion history [Schmidt,
2009]. We choose two different strengths of the modification, H0rc = 0.5 and
H0rc = 2.0, for comparing with the exact simulations. Fig. 7.3 shows the mat-
ter power spectra produced in the N -body simulations of the parametrised and
exact models for the two choices of H0rc at two redshifts, z = 0 and z = 1.
The parametrised simulations cover different values of the effective screening
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wavenumber k∗. For H0rc = 0.5, percent matches are achieved for k∗ = 1.9
h/Mpc at z = 0 and k∗ = 2.7 h/Mpc at z = 1 up to k = 2.5 h/Mpc. For
H0rc = 2.0 sub-percent level matches are found for k∗ = 0.9 h/Mpc at z = 0 and
k∗ = 1.3 h/Mpc at z = 1.

7.4 Conclusions
Einstein’s Theory of General Relativity has been validated by an ever increas-
ing amount of high-precision measurements ranging from the Solar System to
micron scales. However, its validation over cosmological distances at a compa-
rable precision level remains an important endeavour. Additional motivation
for cosmological tests of gravity is drawn from the requirement of a currently
dominating dark energy contribution to explain the accelerated expansion of the
Universe. Over the next decade we will benefit from new cosmological surveys
of unprecedented precision with which we will be able to put tight constraints
on the cosmological properties of dark energy and modified gravity theories. Of
special interest will be the nonlinear regime of cosmic structure formation, where
unique signatures are expected from the screening mechanisms that viable mod-
ified gravity theories must employ to recover GR in the well-tested Solar-System
region. For robust predictions of the complex nonlinear structure, matching the
observational precision with corresponding computational accuracy, we need to
perform N -body simulations of the modified large-scale structure. To date, an
excessive amount of viable modified gravity theories can be formulated based on
the prospects of novel interactions of matter with new fields. A systematic test-
ing of the manifold cosmological implications from the possible modifications of
gravity based on a model-by-model implementation inN -body codes is infeasible.

To overcome this limitation, in this paper we have proposed a parametrisation
of the modified gravity effects on the linear and nonlinear cosmological structure
formation adequate for N -body codes. It is constructed from a parametrisa-
tion framework for linear theory and a parametrisation formalism for the deeply
nonlinear scales, which is based on modified spherical collapse computations
that incorporate the effects from the variety of available screening mechanisms.
Employing this framework, we have developed MG-evolution, a Fourier-space
implementation of this approach that is built on the Newtonian version of the
gevolution N -body code. We have tested our parametrised code with a number
of widely studied modified gravity models, including f(R) and nDGP gravity,
which encompass both large-field value and derivative screening effects with the
employment of the chameleon and Vainshtein mechanisms, and for which exact
N -body implementations are available. We have shown that the parametrised
approach is capable of recovering the nolinear matter power spectra produced
by the exact code implementations of these models to sub-percent accuracy up
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to the highly nonlinear scales of k = 2.5 h/Mpc covered by our simulations.
In future work we plan to explore our nonlinear parametrised gravity frame-

work employing higher resolution simulations that extend the results to larger
wavenumbers. We moreover wish to apply and test our parametrised code with
further modified gravity models. Finally, we envisage the employment of the
code for observational applications, offering an accurate generalised modelling
tool for the exploitation of nonlinear data from forthcoming cosmological sur-
veys in large-scale tests of gravity.
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APPENDIX

7.A Semi-dynamical perturbations

In Sec. 7.2.1 we have adopted the quasistatic limit, neglecting time derivatives
over spatial deriviatives, for our description of the effective gravitational coupling
Geff in the modified Poisson equation. While this approximation is accurate in
linear theory of Horndeski scalar-tensor modifications of gravity at scales well
below the sound horizon [Lombriser & Taylor, 2015b], it can break down at near
horizon scales and beyond. More accurately, one may therefore describe the
modification of the Poisson equation within a semi-dynamical approximation,
where time derivatives are evaluated and included at a pivot scale.

Following Lombriser & Taylor [2015b] we obtain for Geff = µ(a, k) the k-
dependent expression

Geff(a, k) = 1
8πM2

µ+2k
2
H + µ+4k

4
H + µ+6k

6
H

µ−0 + µ−2k2
H + µ−4k4

H + µ−6k6
H

, (7.30)

where µ±i and M2 are functions of time only, specified in Lombriser & Taylor
[2015b], and kH ≡ k/(aH). Note that in the small-scale limit, formally where
k →∞, this simplifies to

Geff,∞(a) = µ+6

µ−6
= 1

8πM2

µ+
∞ + αH

(
fΨµ

+
Ψ,∞ + fζµ

+
ζ,∞

)
µ−∞ + αH

(
fΨµ

−
Ψ,∞ + fζµ

−
ζ,∞

) , (7.31)

where fΨ ≡ d ln Ψ/d ln a and fζ ≡ d ln ζ/d ln a encapsulate time derivatives of
the perturbations with ζ denoting the comoving curvature. The functions µ±∞
and µ±Ψ∧ζ,∞ are time dependent but independent of fΨ and fζ such that velocity
fields and time derivatives of the spatial metric potential only contribute for
beyond-Horndeski models (αH 6= 0) at leading order in the small-scale limit
[Lombriser & Taylor, 2015b]. Hence, for Horndeski theories, at leading order
one can set fζ = fΨ = 0, in which case Geff(a, k) can directly be expressed by
the time-dependent EFT functions {αi}, {Ω,Γ,Λ, . . .}, or the inherently stable
basis [Kennedy et al., 2018, Lombriser et al., 2019].

Finally, alternatively to adopting the expression (7.30), one may simply com-
pute the linear perturbations and evaluate Geff from the modified Poisson equa-
tion (7.1).
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7.B Fourier versus real space simulations

As discussed in Sec. 7.2.2, while the linear modification B in Eq. (7.4) is specified
in Fourier space, the nonlinear expression for F is generally given in real space.
It is in general computationally not feasible to find the nonlinear modification to
gravity in Fourier space from the modification in real space (e.g., nDGP) as one
has to deal with convolutions. The Fourier transformation FT of the real-space
Poisson equation,

FT
{
∇2ΦN

}
= FT

{
(1 + ∆Geff

G
)δρ

}
, (7.32)

using the convolution theorem, gives

− k2ΦN = FT
{

1 + ∆Geff

G

}
∗ FT

{
δρ
}
, (7.33)

where ∗ refers to the convolution. Calculating this expression analytically is not
practical since we do not have access to the full δρ analytically and moreover,
computing it numerically is also not feasible because we need to integrate over
all the lattice points in Fourier space which is contradictory to the nature of
N -body simulations as the equations are solved in parallel and each part of the
lattice only has access to its neighbourhood. Due to these complications we have
therefore resorted to the effective parametrised Poisson equation (7.8).

It is however worth mentioning that we nevertheless performed real-space
simulations for the parametrisations of the f(R) and nDGP cases. In these
simulations, while we found satisfactory results for the small scale behaviours,
i.e., the chameleon and Vainshtein screening limits, for the large-scale behaviours
we initially did not. To overcome the issues at large scales we used a smoothed
density field instead of the local one in the real-space parametrised modified
Poisson equation. We performed the smoothing with a Gaussian window function
WG(~x;R) defined as

WG(~x;R) = 3
4πR3 e

−|x|2/2R2
, (7.34)

where R is the smoothing radius and we can construct the smoothed density field
δ(~x;R) from the local value δ(~x) through

δ(~x;R) =
∫
δ(~x′)WG(~x;R)d~x′ . (7.35)

We employed the convolution theorem to simplify this expression to

δ̂(~k;R) = δ(~k)WG(~k;R) (7.36)
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such that finally, the density smoothed over the radius R with a Gaussian window
function reads

δ(~x,R) = FT −1
[
δ̂(~k,R)e−(kR)2/2

]
. (7.37)

This procedure produces relatively consistent results for the parametrised real-
space nDGP simulations on all scales. The results for the large-scale behaviour in
the parametrised real-space f(R) simulations, however, does not improve. This
can be attributed to the scale dependence in the Yukawa suppressed regime of
f(R) gravity, which is not present for the nDGP modification. Having found
good agreement of the parametrised Fourier-space simulations with the exact
simulations in Sec. 7.3, we leave an improvement of the parametrisation of the
Yukawa regime in real space to future work.
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Chapter 8
DISTINGUISHING COSMOLOGIES
USING THE TURN-AROUND RADIUS
NEAR GALAXY CLUSTERS

Based on:
Hansen et al. [2020] Steen H. Hansen, Farbod Hassani, Lucas Lombriser, Martin
Kunz Distinguishing cosmologies using the turn-around radius near galaxy clus-
ters , JCAP 01 (2020) 048, [arXiv: 1906.04748]

In Section 8, we introduce .
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Chapter 8. Distinguishing cosmologies using the turn-around radius near
galaxy clusters

Abstract: Outside galaxy clusters the competition between the inwards
gravitational attraction and the outwards expansion of the Universe leads to
a special radius of velocity cancellation, which is called the turn-around radius.
Measurements of the turn-around radius hold promises of constraining cosmolog-
ical parameters, and possibly even properties of gravity. Such a measurement is,
however, complicated by the fact that the surroundings of galaxy clusters are not
spherical, but instead are a complicated collection of filaments, sheets and voids.
In this paper we use the results of numerically simulated universes to quantify
realistic error-bars of the measurement of the turn-around radius. We find that
for a ΛCDM cosmology these error-bars are typically of the order of 20%. We
numerically simulate three different implementations of dark energy models and
of a scalar dark sector interaction to address whether the turn-around radius
can be used to constrain non-trivial cosmologies, and we find that only rather
extreme models can be distinguished from a ΛCDM universe due to the large
error-bars arising from the non-trivial cluster environments.

8.1 Introduction
The turn-around radius is the unique distance where the gravitational pull of
large cosmological structures exactly cancels the expansion of the Universe. It
therefore provides a special place to constrain the properties of the expanding
universe, for instance the amount of dark energy [Pavlidou & Tomaras, 2014,
Pavlidou et al., 2014], or the force of gravity from the gravitational structures
[Cataneo & Rapetti, 2018, Faraoni, 2016]. The main observational difficulty with
a measurement of the turn-around radius is that the 3-dimensional position of
galaxies is very difficult to obtain, since only the 2-dimensional position on the
sky is readily observable. For very nearby objects it may be possible to measure
the turn-around radius directly [Hoffman et al., 2018]. This complication at
cosmological distances may be overcome if one could measure a coherent motion
of some of the galaxies. One such possibility was suggested in [Falco et al.,
2014], where it was demonstrated that galaxies in large 2-dimensional sheets
in their early phase of gravitational collapse indeed have properties allowing
one to determine the full 3-dimensional spatial distribution. From numerical
simulations it is known that these large structures are Zeldovich pancakes (also
called sheets), which are over-densities that have only collapsed along the one
dimension [Brinckmann et al., 2016, Wadekar & Hansen, 2015]. In reference [Lee
et al., 2015b] it was proposed that it is possible to use a detection of such a sheet
to actually measure the turn-around radius. This method has subsequently been
investigated in a series of papers, in order to measure properties either of the
clusters or of the expanding universe Lee [2016, 2017, 2018], Lee & Li [2017], Lee
& Yepes [2016], Lee et al. [2015a], Rong et al. [2016]. It was recently suggested
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that ΛCDM model and an f(R) model of modified gravity could fairly easily
be distinguished in the future, by measuring the turn-around radius and the
virial mass [Lopes et al., 2019] (see also [Capozziello et al., 2018, Lopes et al.,
2018]). Most of the analyses mentioned above assume that the gravitational
potential of the large cosmological structures are approximately spherical, and
that the measured turn-around radius in a given direction therefore provides a
fair representation of the turn-around radius of the galaxy cluster. The departure
from sphericity around a galaxy cluster does, however, induce a large scatter in
the measured turn-around radius. This is because the coherently moving galaxies
(Zeldovich pancakes) which are used to measure the turn-around radius, are quite
localized in space, and hence highly directional. In this paper we will first of
all check to which degree this is an accurate approach, and at the same time
we will quantify the magnitude of the error-bar of the measured turn-around
radius. It turns out that the corresponding error-bars are significant, and must
be included in future analyses. We then use this result to evaluate to which degree
one can actually use measurements of turn-around radii to constrain alternative
cosmologies. As concrete examples we consider the numerical implementations
of three dark energy models and of a scalar dark sector interaction, which can be
compared with the standard ΛCDM cosmology. We demonstrate that a correct
inclusion of the systematic error-bars is very important, and makes it rather
difficult to distinguish between different cosmologies.

8.2 Turn-around radius
Figure 8.1 exemplifies the non-triviality of uniquely defining the turn-around
radius for realistic cosmological structures. The green dots show particles within
10 virial radii of the cluster. The larger, red triangles show particles which have
the property that they have zero radial velocity with respect to the central cluster
(plus/minus 100 km/sec), and should thus represent particles at the turn-around
radius. The red particles shown in the left panel are selected from a thin slice of
width half a virial radius, and we only select particles outside of two virial radii,
since the particles inside the virial radius on average are all at rest with respect
to the centre. The filled, central circle represents 1 virial radius. The red circle
is a guide-the-eye line at 5 times the virial radii.

The problem is clearly seen on the left panel of figure 8.1, namely that it is
very difficult to define a unique turn-around radius. First of all, in directions
in space with significant substructure, the turn-around radius may appear sig-
nificantly closer to the cluster, because the gravitational potential of the large
substructures affects the flow.

The second issue is, that it is not easy to observationally select a spatial
slice, because it is virtually impossible to measure the line-of-sight distance to a
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Figure 8.1: This figure exemplifies that the turn-around radius is hard to identify
uniquely. The green dots represent all particles out to 10 virial radii around a
large galaxy cluster. The central blue region is one virial radius, and the red
circle is a guide-the-eye line. The red, triangular symbols represent galaxies which
happen to have zero radial velocity with respect to the central galaxy cluster. The
corresponding radius is the turn-around radius. Along directions with massive
substructures the potential is highly non-trivial (and non-spherical) and hence
the turn-around radius depends on the direction in which it is measured. Left
panel: The zero radial velocity galaxies (colour-coded red) are selected from
a thin slice perpendicular to the line-of-sight. Right panel: All the (almost
spherically distributed) galaxies with zero radial velocity are colour-coded red.

given galaxy. Therefore a more realistic representation would be the right panel
in figure 8.1. This figure demonstrates the necessity of first identifying some
coherence between some of the galaxies, for instance by first finding a sheet, as
proposed in [Falco et al., 2014].

The large substructures on the r.h.s. of Figure 1 appear to have zero radial
velocity. That is mainly an effect of the use of "large" symbols, and the fact
that we here colour-code all particles with zero velocity plus/minus 100 km/sec.
This velocity range was chosen to make the infall galaxies visible on the l.h.s. of
Figure. 1. The substructures each have a significant internal velocity dispersion,
and only a fraction of their particles happen to have zero radial velocity with
respect to the direction towards the nearby galaxy cluster at this specific moment
in time.

Some of the zero-radial-velocity particles may happen to be splashback par-
ticles (returning towards the cluster after a recent merger). Such particles are
not likely to end up as coherently moving galaxies (like in a Zeldovich pancake)
so we have not studied this further.
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8.3 Finding the turn-around radius
Measuring the turn-around radius requires a few steps Lee et al. [2015b]. The
first is to find a collection of galaxies whose motion is somehow correlated. The
simplest choice is probably to select galaxies which form part of a Zeldovich
pancake [Falco et al., 2014]. These are identified as lines in observational phase-
space, which is the directly observationally space spanned by projected radial
distance and line-of-sight velocity. Some of the disadvantages of using the Zel-
dovich pancakes are that they are almost invisible on the sky (their projected
spatial over-density is quite low), and secondly that they must be viewed at
an angle between 20 and 70 degrees with respect to the line-of-sight [Brinck-
mann et al., 2016]. The advantage is, that once found, the infall velocities of
the galaxies belonging to the pancake is coherent. This allows one to determine
the viewing angle of the pancakes, and thereby the actual radial distance to the
nearby galaxy cluster can be determined Falco et al. [2014].

The next step is to use that the radial velocities of galaxies near a galaxy
cluster are the sum of two terms, namely the expansion rate of the Universe,
vH = r H, and the peculiar velocity, vp, which is negative due to the attractive
force of gravity directed towards the large nearby galaxy cluster. One thus has

vr = vH + vp . (8.1)

It happens that the peculiar velocity typically follows the simple form

vp = −a
(
rv
r

)b
, (8.2)

where the coefficient b is of the order 0.42 for massive galaxy clusters Falco
et al. [2014]. This shape of the peculiar velocity profile is often valid in the range
between 3 and 10 virial radii. The virial radius, rv, is here defined as r200, namely
the radius within which the average density is 200 times the average density of
the universe. The constant a is a normalization to be determined. The detailed
coefficients of equation (8.2) are, however, both dependent on the cluster mass
and redshift Falco et al. [2014], Lee [2016]. In the analysis of this paper we
will only use the fact that the shape is given by equation (8.2), and we will even
allow the coefficients to be different for different directions around a given galaxy
cluster.

The last step is now to solve eq. (8.1) for vr = 0, which directly gives us
the turn-around radius Lee et al. [2015b]. In a future actual measurement one
would also have to propagate the error-bars on the Hubble parameter and on the
measured galaxy positions. For the present analysis we do not need to consider
these.

In this paper we wish to measure the general scatter in the turn-around radius
near galaxy clusters, and we therefore use all 49 directions in space. This means
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that in this paper we do not need to identify Zeldovich pancakes. Instead, we
take the full region near galaxy clusters directly from a numerical simulation,
and solve eqs. (3.1) and (3.2) to find vr = 0 in 49 directions in space.

8.4 Spatial cones
For each numerically simulated galaxy cluster we wish to investigate the effect of
non-sphericity on the determined turn-around radius. In order to quantify the
variations along different directions in space, we separate the sphere into 49 cones
of equal size. This fraction is chosen to resemble the fraction on the sky covered
by a Zeldovich pancake [Brinckmann et al., 2016, Falco et al., 2014]. The peculiar
velocity of the particles in each cone are now averaged in spherical bins, and the
result is shown in figure 8.2. The solid, red curve is the spherical average of the
full sphere. This figure shows a particularly well-behaved and relaxed cluster,
and therefore the infall profiles are similar in all directions. In the innermost
region (inside 1 or 2 virial radii) we see that the peculiar velocity equals minus
the Hubble expansion, in such a way that the average radial velocity is zero in
eq. (8.1). At large radii (from about 4 to 10 virial radii) the peculiar velocity
is seen to slowly go to zero. The spherical average is seen to represent a fair
average of the 49 cones.

A much more typical infall velocity picture is shown in figure 8.3. First of all
we see a larger spread amongst the velocity profiles of the 49 directions, and a few
of the directions are even seen to have positive peculiar velocities (crossing zero
around 8 virial radii for this specific cluster). A few of these directions are here
color-coded red. The cause of these positive peculiar velocities are large nearby
structures, whose potentials significantly perturb the velocities of the particles in
those directions. This is clearly seen in figure 8.4, where those regions are again
color-coded red (triangles, at 4 o’clock). Another problematic peculiar velocity
curve is seen in figure 8.3 to depart from the average trend around 6 virial radii,
and becoming larger (more negative) at increasing radii. A few of these directions
are color-coded blue. This is another feature of large, nearby substructures, as
clearly seen on figure 8.4 (squares, at 1 o’clock).

When we identify Zeldovich pancakes on the sky, it is straightforward to avoid
directions in space which have large overdensities of galaxies. We therefore as-
sume that these directions have been identified, and we will remove them from
the following analysis. Concretely, for this paper we use a simplified approach,
and perform the following two tests. First, if the velocity profile along a specific
direction happens to have positive peculiar velocity, then we remove that direc-
tion from the analysis (corresponding to the red lines in figure 8.3). Secondly,
for any given direction in space, we will fit a power-law to the peculiar velocity
both between 3-5 and 5-7 virial radii, and if any of the power-law coefficients
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Figure 8.2: Peculiar velocity as a function of radial distance. The 49 green lines
each represent particles in a cone on the sky. The solid red curve is the spherical
average. This cluster is particularly well behaved and equilibrated. Within
approximately 1 virial radius the average radial velocity is zero, and therefore
eq. (3.1) tells us that the peculiar velocity on average exactly cancels the Hubble
expansion. Between approximately 1 and 3 virial radii there is infall towards the
galaxy cluster (the total radial velocity is negative), and toward larger radii the
peculiar velocity transitions slowly to zero.

are negative, then we remove that direction (corresponding to the blue lines in
figure 8.3).

All the remaining directions will have slightly different infall profiles, and in
order to measure a realistic error-bar for the determined turn-around radius, we
will compare the variation amongst all these directions.

For each direction we now fit a power-law to the peculiar velocity in the radial
range 3− 7 virial radii

vp(r) = −a
(
rv
r

)b
. (8.3)

Including slightly smaller/larger radii has very small effect on our conclusions.
Since we know the full radial velocity is given by

vr(r) = r H − a
(
rv
r

)b
, (8.4)

we can find the turn-around radius by solving vr(r) = 0 for the radius Lee
et al. [2015b]. For each cluster we now have up to 49 values for the turn-around
radius. As a measure of central value and error-bars we use the 50, 16.8 and
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Figure 8.3: Peculiar velocity as a function of radial distance. The 49 lines each
represent particles in a cone on the sky. Many of the directions are seen to behave
similarly at large distances, however, a few directions stand out: A few directions
(red) even have positive peculiar velocities, and a few have a clear transition
(blue, here transitioning between 6 and 8 virial radii). These non-trivial peculiar
velocity profiles arise because of massive sub-structures perturbing the overall
potential.
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Figure 8.4: The spatial distribution of the particles belonging to the peculiar
velocity profiles of figure 8.3. Some of the particles at 4 o’clock even have positive
peculiar velocities.

83.2 percentiles. Since the distribution of the turn-around radii is unknown, we
also compare with error-bars estimated by fitting a Gauss (as well as an inverse-
gamma distribution) to the distributions of turn-around radii, and we find no
statistically significant change in any conclusions.

We select 100 massive clusters in the mass-range 1014.2− 1015.4M� in a given
numerical cosmological simulation. Considering first a standard ΛCDM cosmo-
logical simulation, we plot the central turn-around radius with error-bars as a
function of virial mass in figure 8.5. From this figure we see two things, first
of all that the error-bars are rather significant for any given cluster, typically
of the order 20%. For equilibrated and fairly isolated clusters this may be as
low as 10%, and for less equilibrated clusters as high as 40%. And second, that
there are large variations from cluster to cluster, even for similar mass clusters.
The relative error-bars are shown in figure 8.6 for 100 clusters from a ΛCDM
simulation.

The trend of the mass-dependence of the turn-around radius can be approx-
imated with a line of the shape

rta = r15 + αr × log
(

M

1015M�

)
. (8.5)

Today less than 10 Zeldovich pancakes have been identified, and yet we are
considering using 100 as a future goal. In principle one could generalize the
statistical analysis in the present paper by varying the number of clusters. We
leave that for a future analysis.
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Figure 8.5: The measured turn-around radius as a function of virial mass for 100
massive galaxy clusters from a ΛCDM simulation. The data can be approximated
with a line of the shape in equation (8.5) using r15 = 5.2± 0.1 and αr = −0.74±
0.4.

Figure 8.6: The relative error-bars on the turn-around radius as a function
of mass for a ΛCDM simulation. The figure shows the symmetrized error-bars
divided by the central value of rta.
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8.5 Various cosmologies
In order to quantify the capability of the turn-around radius to constrain non-
standard cosmologies, we shall consider three different classes of scalar field the-
ories embedded in the action

S =
∫
d4x
√
−g

[
R

2κ2 +K(φ,X)
]

+ Sc[ψc;A2
c(φ)gµν ] + Sb[ψc;A2

b(φ)gµν ] , (8.6)

where K(φ,X) is a free function of the scalar field φ and X ≡ −1
2∂

µφ∂µφ. A2
c(φ)

and A2
b(φ) describe couplings of the cold dark matter and baryonic matter fields,

ψc and ψb, to the metric field gµν defining the Ricci scalar R. Furthermore,
κ2 ≡ 8πG with bare gravitational coupling G.

In the following, we shall briefly introduce the three specific models of interest:
quintessence (Sec. 8.5.1) and k-essence (Sec. 8.5.2) dark energy and a scalar field
interaction between cold dark matter particles (Sec. 8.5.3). In Sec. 8.6, we will
then describe the numerical implementations and simulations.

8.5.1 Quintessence
Quintessence Ratra & Peebles [1988], Wetterich [1988] theories are the archetypal
dark energy models and are described by Eq. (8.6) with the choice of K(φ,X) =
X − V (φ) with a canonical kinetic contribution, linear in X, and the scalar field
potential V (φ). The models are minimally coupled to the matter sector with
Ab = Ac = 1. The freedom in choosing V (φ) can be represented by the freedom
in choosing the time dependent dark energy equation of state −1 < w(t) ≤ 1,
where

w = φ̇2 − 2V
φ̇2 + 2V

(8.7)

and dots indicate derivatives with respect to cosmological time t.

8.5.2 k-essence
The k-essence Armendariz-Picon et al. [1999] models describe a class of more
exotic dark energy models with noncanonical kinetic contributions in K(φ,X),
nonlinear in X, that are minimally coupled to the matter fields (Ab = Ac = 1).
The freedom in the choice of function K(φ,X) introduces an additional freedom
over the quintessence models with the squared nonluminal sound speed of scalar
field fluctuations

c2
s = KX

2XKXX +KX

(8.8)

in addition to
w = K

2XKX −K
, (8.9)
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where subscripts of X denote derivatives with respect to X.

8.5.3 Scalar dark sector interactions
As a third example, we study the interaction of cold dark matter with the scalar
field φ, specified by the choices K(φ,X) = X − V (φ), a minimal coupling to
baryons Ab = 1, and nonminimally coupled dark matter particles Ac = A(φ).
We choose an interaction

A2(φ) = 1 +
√

2
3κφ (8.10)

and a potential of the form

V (φ) = V0 + V1

√
κφ (8.11)

with

V0 = Λ
κ2 , V1 = −R̄0

κ2

√2
3χ0

1/2

, (8.12)

where R̄0 is the Ricci scalar evaluated at the current cosmological background
and χ0 is the model parameter with χ ≡

√
2/3κφ. For χ0 � 1 the background

matches that of ΛCDM, and for our analysis we shall adopt the parameter value
χ0 = 10−4.

Note that we have chosen the model such that the dark sector interaction
reduces to the Hu-Sawicki (n = 1) f(R) gravity model Hu & Sawicki [2007]
in the absence of baryons (Sb = 0). In this case, χ0 = − (df/dR)|R=R̄(z=0) ≡
− fR|R=R̄(z=0) ≡ −fR0. The correspondence follows from applying the conformal
transformation of the metric g̃µν = A2(φ)gµν in the limit of χ� 1 (φ� 1). The
resulting coupling to the Ricci scalar can be cast as fRR such that the Lagrangian
density of the gravitational sector becomes Lg = R + f(R) with f(R) = −2Λ−
fR0R̄

2
0/R. For simplicity, we will assume here that all matter is in the form of cold

dark matter such that the models become equivalent. Stringent Solar-System
constraints on f(R) gravity, relying on a baryonic coupling, however, no longer
apply. Cosmological constraints Lombriser [2014] such as from the abundance
of clusters that are largely independent of the baryonic coupling require χ0 .
(10−5 − 10−4) Cataneo et al. [2016], Lombriser et al. [2012a], Schmidt et al.
[2009b].

The choice of interaction (8.10) and potential (8.11) induces a chameleon
screening mechanism for deep gravitational potentials |ΨN| � 3 |δχ| /2 ≡ 3 |χ− χ0| /2.
The potential wells for the structures considered in this work are, however, sig-
nificantly weaker (χ0 = 10−4). Screening effects can therefore be neglected, and
we can adopt a linearisation of the interaction. More specifically, we linearise
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the quasistatic scalar field equation around the cosmological background such
that Lombriser et al. [2012b], Schmidt et al. [2009a]

∇2δχ−m2δχ = κ2

3 δρm , (8.13)

where the scalar field mass of the Yukawa interaction is given by

m2 = 1
6χ0

R̄3

R̄2
0
. (8.14)

For the Poisson equation

∇2ΨN = κ2

2 δρm + 1
2∇

2δχ , (8.15)

this implies an enhanced effective gravitational coupling for the cold dark matter
particles constituting δρm, which in Fourier space is given by

k2

a2 ΨN = −
(

1 + 1
3

k2

k2 +m2a2

)
κ2

2 δρm . (8.16)

8.6 Numerical simulations
To investigate the power of using the turn-around radius in distinguishing dif-
ferent cosmologies, we run simulations for k-essence dark energy (Sec. 8.5.2)
models and a scalar field interaction in the dark sector that reduces to linearised
f(R) gravity in the absence of baryons. These can then be compared with a
standard ΛCDM simulation. The initial conditions for the simulations are set
using the linear transfer functions from the linear Boltzmann code CLASS Blas
et al. [2011a] at high redshift (z=100). All simulations use the same seeds as
initial conditions. Our ΛCDM simulations are performed using the gevolution
code, which is a relativistic particle-mesh N-body code with a fixed resolution
Adamek et al. [2016a]. For the k-essence and quintessence simulations we have
used the k-evolution code, which is a relativistic N-body code based on gevolu-
tion, in which the k-essence scalar field and Einstein’s equations are solved to
update the particles’ positions and momenta. Detailed tests of this code will be
presented in [Hassani et al., 2019c, 2020b].

The simulation of the scalar dark sector interaction is performed through an
implementation of the modified Poisson equation (8.16) in a Newtonian N -body
code based on gevolution Hassani & Lombriser [2020], which has been validated
against the results of Ref. Schmidt et al. [2009a].

We have thus four different simulations (in addition to ΛCDM) to quantify
the effects of a different background, clustering of a k-essence scalar field and
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the effect on the clustering coming from the scalar dark sector interactions on
the turn-around radius. All simulations have a comoving boxsize of L = 300
Mpc/h, and discretize the fields on a grid of linear size Ngrids=512, giving a
length resolution of 0.58 Mpc/h. The dark matter phase space is sampled by
Npcl = 5123 particles, corresponding to a mass resolution of 1.74 × 1010 M�/h.
The detailed parameters of each simulation are shown in table 8.1.

ΛCDM SDSI quintessence quintessence k-essence

kpivot [ 1
Mpc ] 0.05 0.05 0.05 0.05 0.05

As 2.215× 10−9 2.215× 10−9 2.215× 10−9 2.215× 10−9 2.215× 10−9

Ωbh
2 0.022032 0.022032 0.022032 0.022032 0.022032

Ωcdmh
2 0.12038 0.12038 0.12038 0.12038 0.12038

Tcmb[K] 2.7255 2.7255 2.7255 2.7255 2.7255

Nur 3.046 3.046 3.046 3.046 3.046

c2
s – – 1 1 −10−7

ΩΛ 0.687862 0.687862 – – –

Ωde – – 0.687862 0.687862 0.687862

wde – – -0.9 -0.8 -0.9

χ0 – 10−4 – – –

Initial redshift 100 100 100 100 100

Table 8.1: The table shows the full information of the simulations, the red color
shows where the parameters are changed in different simulations. In the absence
of baryons the scalar dark sector interaction (SDSI) model matches a linearised
Hu-Sawicki (n = 1) f(R) gravity model with χ0 = |fR0|. Note that the imagi-
nary sound speed for k-essence is simply chosen to maximise phenomenological
modifications in the simulations.

8.6.1 Results
We compare two of the non-trivial cosmologies with a ΛCDM simulation in figures
8.7 and 8.8. The first impression is that it will be very difficult to distinguish
between different cosmologies, because of the large error-bars for each cluster,
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Figure 8.7: ΛCDM v.s. k-essence with w = −0.9 and c2
s = 1 (corresponding

to a quintessence model). The turn-around radius for the quintessence model
with w = −0.9 (red symbols, red solid line) is seen to have essentially the same
dependence on mass as ΛCDM (blue symbols, blue dashed line). These two
models cannot be distinguished when measuring the turn-around radius for 100
galaxy clusters.

and the large cluster to cluster variation. To that end a careful statistical analysis
is needed.

One might wonder if it would be advantageous to consider galaxy groups
(or galaxies [Pavlidou & Tomaras, 2014]) to perform this analysis. That is,
however, still not possible, because the turn-around radius is still only measurable
using the Zeldovich pancake method, which only works near galaxy clusters.
The reason is, that the Zeldovich pancake method relies on the gravitational
perturbation exerted by the cluster on the nearby galaxy flow.

In order to address the problem of cosmic variance, we ran 3 extra numerical
simulations of standard ΛCDM universes, with different random seeds for the
initial conditions. By comparing the analysis of each of these universes against
the prediction from our first simulation we can estimate the magnitude of vari-
ance between different representations of the same cosmology. To that end we fit
the first ΛCDM simulation result by a fit of the shape given in eq. (8.5), rfit

ta . This
is then used in a chi-squared comparison where we use a sum over the clusters

χ2 =
∑

i

(
rita − rfit

ta

)2

σ2
i

. (8.17)

Here we use symmetrized error-bars for σi (average of upper and lower error-
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Figure 8.8: ΛCDM v.s. scalar dark sector interaction (SDSI). The turn-around
radius for the SDSI model (red symbols, red solid line) is seen to have moved to
slightly higher turn-around radius for the same mass, when compared to ΛCDM
(blue symbols, blue dashed line). The SDSI mass-dependence of the virial mass
may be approximated with a straight line of the form in equation (8.5), using
r15 = 5.4 ± 0.08 and αr = −0.7 ± 0.3. Measuring the turnaround radius for
approximately 100 clusters will allow one to distinguish the two cosmologies.

bars). Our first simulation has χ2 per degree of freedom of 0.8, indicating that
the error-bars are reasonable.

Comparing with each of the other ΛCDM simulations leads to ∆χ2 between
1 and 6. This implies that when any given cosmology is contrasted with the
ΛCDM, then any ∆χ2 less than approximately 6 will not allow us to distinguish
the two.

When we perform the same statistical estimator for the simulations of quintessence
or k-essence (see the cosmological parameters in table 8.1) we get ∆χ2 less than
6 for all the cosmologies. This implies that none of the cosmologies will be
distinguishable from ΛCDM.

The same statistical estimator for the simulations of SDSI cosmology gives
∆χ2 = 9.2, and thus indicates that it will (as the only one amongst the ones
considered here) be distinguishable from ΛCDM. Formally one might think that
∆χ2 = 9.2 implies that for the two free parameters used in the fit, the two
cosmologies are distinguishable at 99% CL, however, that estimate does not
include the cosmic variance, and the real CL is therefore smaller. A careful
analysis of the statistics would require a larger number of simulations and is
beyond the scope of this paper.
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8.7. Conclusions

The entire analysis presented above has been based on observations at redshift
zero. It is clear that different cosmologies have different evolution and structure
formation, and it is therefore likely that an analysis including the redshift depen-
dence will lead to somewhat stronger constraints than what we have obtained
here.

8.7 Conclusions
The environments of galaxy clusters are complex distributions of sub-structures,
filaments, sheets and voids. This implies that the turn-around radius, where
the radial velocity of galaxies is zero, varies when different directions in space
are considered. This implies that one must include a systematic error-bar when
measuring the turn-around radius in the future. We use ΛCDM numerical simu-
lations to quantify the magnitude of this error-bar, and we find that it is about
20% of the measured turn-around radius for typical clusters, going down to about
10% for the most equilibrated and spherical structures. Furthermore, we show
that one must carefully avoid measuring the turn-around radius along directions
with large sub-structures.

We use a range of non-trivial cosmological simulations to gauge to which
extent the inclusion of this realistic error-bar allows one to measure a departure
from a ΛCDM universe, and we find that it becomes possible only for the most
extreme cosmologies we considered, such as scalar dark sector interaction with
fairly large interactions.
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Chapter 9
SUMMARY AND CONCLUSION

9.1 Summary
To understand the reason behind the observed accelerating expansion of the Uni-
verse is one of the most notable enigmas in modern cosmology, and conceivably
in fundamental physics. In the upcoming years, near future surveys will probe
structure formation with unprecedented precision and will put firm constraints
on the cosmological parameters, including those that describe properties of the
dark energy. In light of this, this thesis focuses on precision cosmology by char-
acterizing the non-linear evolution of cosmological components using N -body
simulations. We consistently study the dark matter and dark energy/modified
gravity theories up to non-linear scales and pinpoint viable models by comparing
our results to observational data.

In Chapter 2 we obtained the general effective field theory parameterisation for
k-essence model employing the weak field approximation. Making use of the ob-
tained k-essence equations in the effective form, we have developed k-evolution,
a relativistic N -body code based on gevolution, to study clustering dark energy
precisely. In this setup, we compared the results from k-evolution with those of
the linear Boltzmann code CLASS and gevolution to quantify the effect of non-
linearities on the dark matter, dark energy and gravitational potential power
spectra. In addition, we commented on the Newtonian N -body simulations with
back-scaled initial conditions using k-evolution code.

In Chapter 3, with our purpose-built N -body code, k-evolution, that solves the
coupled evolution of dark energy field and the dark matter particles, we studied
the cosmological observables extracted from the gravitational potential, specif-
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ically the integrated Sachs-Wolfe and non-linear Rees-Sciama effect (ISW-RS)
weak gravitational lensing, Shapiro time delay and gravitational redshift com-
puted on the past light cone of an observer at z = 0. The observables discussed
in this paper are calculated via a raytracing method integrating to the source
redshifts z ≈ 0.85 and z ≈ 3.3, covering respectively a full sky map and a pencil
beam in our simulations. Comparing results from the two N -body codes, gevo-
lution, and k-evolution with the linear Boltzmann code CLASS we were able to
evaluate the different effects coming from dark energy, specifically the effect from
a different background evolution, from linear dark energy perturbations and from
the non-linear evolution of dark energy itself. In this chapter we showed that
among all observable the ISW-RS signal is the strongest probe of the clustering
of dark energy.

In Chapter 4 we studied metric perturbations in the weak-field regime of General
Relativity, in the presence of a k-essence scalar field as dark energy. We showed
that the short-wave corrections to the Hamiltonian constraint are negligible at
all redshifts and all scales, while the relativistic terms are only relevant at large
scales, leaving the terms with the matter and k-essence density perturbations as
the main source at quasi-linear and small scales. The relativistic terms and the
density perturbations can be combined, in the usual way, to form a linear Poisson
equation that then holds on all scales of interest in cosmology. We studied the
contribution of the k-essence scalar field to the metric perturbations through the
µ parametrisation that encodes the additional contribution of a dark energy fluid
or a modification of gravity to the Poisson equation. We encoded our k-essence
simulation results for µ(k, z) in an easy-to-use tanh-based fitting function, to-
gether with recipes on how to include the function in linear Boltzmann codes
or Newtonian N -body simulations with different expansion rate but without the
additional k-essence field.

In Chapter 5 we discussed non-linear terms in the EFT of DE for k-essence
model. Such terms open a new window in cosmological models for dark energy.
We studied such models in 3+1 dimensions using k-evolution code. We discov-
ered that in the case of low speed of sound (high Mach number in the fluid
description) where some linear terms vanish from the dynamics of dark energy,
the non-linear partial differential equation for dark energy suffers from a non-
linear instability and the Universe, as a result, ceases to exist in a finite time.
We showed analytically, for the 1+1 dimensional case, that the divergence is real
and is not an artifact in the numerical simulations. The important conclusion
in this chapter is that k-essence dark energy as a fluid with high Mach number
(low speed of sound) cannot be used as a viable candidate for explaining the
accelerated expansion of the universe, because the evolution will diverge before
one reaches the current epoch.
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In Chapter 6 we showed that a numerical study of relativistic effects can have
two problems. First, the integration method must have a small enough time step
to reach a precision which is better than the size of the relativistic correction.
Second, if, additionally, the forces are discretized, the grid size must be quite
fine, so that the relativistic corrections are not washed out by the approxima-
tion. In particular, our results allow one to estimate for which choices of Υ, e,
and θ, the relativistic effects are larger than the numerical and discretization
effects generated by h and dx.

In Chapter 7 we have proposed a parametrisation of the modified gravity ef-
fects on the linear and nonlinear cosmological structure formation adequate for
N -body codes. We have tested our parametrised code, MG-evolution, with a
number of widely studied modified gravity models, including f(R) and nDGP
gravity, which encompass both large-field value and derivative screening effects
with the employment of the chameleon and Vainshtein mechanisms, and for which
exact N -body implementations are available. We showed that the parameterised
approach is capable of recovering the nolinear matter power spectra produced
by the exact code implementations of these models to sub-percent accuracy up
to the highly nonlinear scales of k = 2.5 h/Mpc covered by our simulations.

In Chapter 8 we used ΛCDM numerical simulations to quantify the magnitude
of a systematic error-bar when measuring the turn-around radius, and we found
that it is about 20% of the measured turn-around radius for typical clusters, go-
ing down to about 10% for the most equilibrated and spherical structures. Fur-
thermore, we showed that one must carefully avoid measuring the turn-around
radius along directions with large sub-structures. We used a range of non-trivial
cosmological simulations to gauge to which extent the inclusion of this realistic
error-bar allows one to measure a departure from a ΛCDM universe, and we
found that it becomes possible only for the most extreme cosmologies we consid-
ered, such as scalar dark sector interaction with fairly large interactions.

9.2 Outlook

The works that we discussed in this thesis can be expanded in different directions.
Possible directions regarding Chapter 2 are:

• Going beyond k-evolution code and developing N -body simulations of a
wide class of dark energy and modified gravity (DE/MG) models. This re-
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quires us to obtain the relevant equations of motion for EFT of dark energy
and modified gravity theories written in the weak field approximation.

• Quantifying the degeneracy between the effect of massive neutrinos and
clustering dark energy.

• Developing N -body simulations to explore the effect of non-standard dark
matter scenarios on the structure formation

• Systematic study of primordial gravitational waves using relativistic N -
body simulations.

Concerning Chapter 4 the interesting ideas are:

• Providing fits to µ(k, z) for a wider range of parameters. We are going to
encode our DE/MG simulation results for µ(k, z) in an easy-to-use tanh-
based fitting function, together with recipes on how to include the function
in linear Boltzmann codes or Newtonian N -body simulations with different
expansion rate but without additional DE/MG field.

• Providing tanh/sigmoid function fits to µ(k, z) for some MG theories to
improve the EuclidEmulator.

Possible projects concerning Chapter 5:

• In an ongoing project with Pan Shi and Peter Wittwer in Shi, Pan et. al.
[c,a,b], we are studying the instability in 1+1 D mathematically. We have
already found the universal solution and blowup time for some class of
initial conditions. We also have proved the existence and uniqueness of the
solution.

• Using the results of the math paper in 1+1 D, we plan to put new con-
straints on the properties of clustering dark energy and possibly some
DE/MG scenarios.

Future plans regarding Chapter 7:

• In future work we plan to explore our nonlinear parametrised gravity frame-
work employing higher resolution simulations that extend the results to
larger wavenumbers.

• We plan to apply and test our parametrised code with further modified
gravity models.

Possible projects regarding Chapter 8:
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• Looking at the time evolution of the turn around radius to see its sensitivity
to cosmology and possibly put new constraints on the background evolution
and the properties of dark energy component.

• Constraining dark matter properties by considering the dynamics in and
near galaxy clusters using state of the art simulations.
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