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Cerebral microbleeds (CMBs), also referred to as mi-
crohemorrhages, appear on magnetic resonance (MR) 
images as hypointense foci notably at T2*-weighted or 
susceptibility-weighted (SW) imaging. CMBs are detected 
with increasing frequency because of the more widespread 
use of high magnetic field strength and of newer dedicated 
MR imaging techniques such as three-dimensional gradi-
ent-echo T2*-weighted and SW imaging. The imaging ap-
pearance of CMBs is mainly because of changes in local 
magnetic susceptibility and reflects the pathologic iron 
accumulation, most often in perivascular macrophages, 
because of vasculopathy. CMBs are depicted with a true-
positive rate of 48%–89% at 1.5 T or 3.0 T and T2*-
weighted or SW imaging across a wide range of diseases. 
False-positive “mimics” of CMBs occur at a rate of 11%–
24% and include microdissections, microaneurysms, and 
microcalcifications; the latter can be differentiated by us-
ing phase images. Compared with postmortem histopath-
ologic analysis, at least half of CMBs are missed with pre-
mortem clinical MR imaging. In general, CMB detection 
rate increases with field strength, with the use of three-
dimensional sequences, and with postprocessing methods 
that use local perturbations of the MR phase to enhance 
T2* contrast. Because of the more widespread availabil-
ity of high-field-strength MR imaging systems and growing 
use of SW imaging, CMBs are increasingly recognized in 
normal aging, and are even more common in various dis-
orders such as Alzheimer dementia, cerebral amyloid an-
giopathy, stroke, and trauma. Rare causes include endo-
carditis, cerebral autosomal dominant arteriopathy with 
subcortical infarcts, leukoencephalopathy, and radiation 
therapy. The presence of CMBs in patients with stroke 
is increasingly recognized as a marker of worse outcome. 
Finally, guidelines for adjustment of anticoagulant therapy 
in patients with CMBs are under development.

q RSNA, 2018
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main magnetic field, in turn caused by 
high concentrations of iron. Multiple 
pulse-sequence parameters including 
two-dimensional and three-dimensional 
acquisition, echo time, voxel size, and 
notably field strength influence the im-
age contrast and consequently the de-
tection rate of CMBs on T2*-weighed 
images.

We refer to SW imaging (13) as a 
combination of acquisition and post-
processing targeted at enhancing the 
susceptibility contrast. SW imaging typ-
ically employs three-dimensional high-
spatial-resolution fully flow-compensat-
ed GRE imaging with prolonged echo 
times. Postprocessing of SW imaging 
involves multiplication of magnitude 
images with high-pass filtered phase 
images (14) to enhance depiction of he-
mosiderin deposits. In general, phase 
information facilitates distinction of 
CMBs from mimics such as calcification 
(discussed in more detail in the next 
section). SW imaging permits better 
depiction of CMBs compared with two-
dimensional GRE sequences (2,7,15). 
For example, in mild cognitive impair-
ment, the detection rate increases from 
around 20% on routine two-dimension-
al T2*-weighted GRE images to around 
40% on SW images at 3.0 T (2,3,16).

Compared with conventional two-
dimensional GRE imaging, the in-
creased detection rate of SW imaging 
(Fig 1) comes at the cost of longer scan 
duration associated with high-spatial-
resolution three-dimensional imaging. 
Fast imaging techniques such as par-
allel imaging, and in the near future 
possibly compressed sensing, can keep 
scan times under 5 minutes. An inter-
esting methodologic compromise is to 

lacking and their clinical significance 
remains controversial.

The sensitivity of MR imaging to 
depict microbleeds depends on techni-
cal aspects, for example, field strength 
and pulse-sequence parameters. To 
allow correct depiction of CMBs, we 
first discuss the optimal MR imaging 
technique. Once a potential CMB is ob-
served, correct classification requires 
knowledge about pathologic correla-
tions and potential CMB “mimics,” 
which we address in the next section. 
Then, we review the interpretation of 
CMBs in various clinical situations and 
diseases, such as aging, dementia, ra-
diation therapy, and traumatic brain 
injury. Finally, we discuss the clinical 
significance of CMBs in stroke and the 
clinical management of CMBs.

MR Imaging of CMBs: Technical 
Considerations

Effect of Magnetic Field Strength
Susceptibility effects scale linearly with 
field strength; hence, the detection 
rate of CMB at MR imaging increases 
markedly even between 1.5 T and 3.0 
T (7,8). At ultra high field strength (7.0 
T and above), sensitivity increases even 
further (9–11). One study reported 
CMBs in up to 44% of healthy control 
participants and in 78% of patients 
with Alzheimer dementia (AD) at 7.0 
T (12). This finding indicates that CMB 
detection rates at clinical field strengths 
(1.5 T and 3.0 T) only represent the so-
called tip of the iceberg.

Gradient-echo T2*-weighted Imaging, SW 
Imaging, and Related Techniques
Conventional T2*-weighed contrast can 
be generated by using a gradient-echo 
(GRE) pulse sequence, where the echo 
time determines the amount of con-
trast. Typically, echo times of 20–60 
msec at 1.5 T and 15–40 msec at 3.0 
T would be regarded as suitable for 
T2*-weighted imaging. In conventional 
T2*-weighted pulse sequences, a CMB 
appears as a small area of signal loss 
on the magnitude image. The signal 
loss results from intravoxel dephasing 
because of local perturbation of the 
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Essentials

 n Currently, even optimized MR 
imaging sequences at 1.5 T and 
3.0 T depict only about 50% of 
cerebral microbleeds (CMBs).

 n CMB “mimics” (false-positive 
findings) include microdissec-
tions, microaneurysms, and 
microcalcifications.

 n The spatial distribution of CMBs 
contains diagnostic information, 
for example, lobar distribution 
typical in cerebral amyloid angi-
opathy and more diffuse (in-
cluding deep or central) 
distribution typical for hyperten-
sive CMBs; a larger number of 
CMBs is associated with higher 
risk of cognitive decline, 
dementia, and stroke.

 n Microbleeds in mild traumatic 
brain injury, also known as hem-
orrhagic diffuse axonal injury in 
this context, typically have a 
linear and radial distribution (in 
contrast to typical spherical 
CMBs) and provide a sensitive 
and persistent imaging marker.

Cerebral microbleeds (CMBs), also 
referred to as cerebral micro-
hemorrhages, are small hypoin-

tense foci with a maximum size up to 
5 mm or even 10 mm detected by using 
susceptibility-weighted (SW) magnetic 
resonance (MR) imaging (1–5). Histo-
pathologically, CMBs represent focal 
accumulations of hemosiderin-contain-
ing macrophages (6) with paramagnetic 
properties causing signal loss because 
of susceptibility effects. Because of the 
increasing use of high-field-strength MR 
imaging systems and dedicated imaging 
sequences—notably, three-dimensional 
T2*-weighted imaging, SW imaging, 
and related techniques—CMBs are in-
creasingly depicted during MR imaging 
of the brain. CMBs may be observed 
as an incidental finding or in the con-
text of a specific pathologic finding such 
as cerebral amyloid angiopathy (CAA). 
Despite the increased detection rate, 
clear guidance for radiologists for the 
interpretation of CMBs are currently 
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used validated scales are Microbleed 
Anatomic Rating Scale (MARS) (22) 
and Brain Observer MicroBleed Scale 
(BOMBS) (23), which both distinguish 
anatomic locations into lobar, deep, and 
infratentorial (including brainstem).

In addition to visual inspection, a 
number of automated tools have been 
proposed to detect CMBs, including 
in trauma (24), radiation encephalop-
athy (25), and multiple sclerosis (26). 
Especially when used at higher field 
strength, these methods might facilitate 
or improve visual rating (27), although 
many false-positives segmentations oc-
cur. Currently, these automated tools 
are in the stage of development and 
await clinical validation.

Quantitative Susceptibility Mapping
Quantitative susceptibility mapping 
(QSM) is a related MR imaging tech-
nique that aims to quantify relative tis-
sue susceptibility, allowing to measure, 
for example, nonfocal iron deposition 
in neurodegenerative diseases (28,29). 
One interesting technical aspect of QSM 
is that susceptibility of a CMB is a physi-
cal property that is independent of echo 
time (30). Consequently, QSM might 
reduce the sequence dependence of 
CMB detection and thus facilitate stan-
dardization across studies and centers. 
Furthermore, QSM attempts to recon-
struct the source of a local susceptibil-
ity perturbation, whereas SW imaging 
actually depicts the perturbing (dipole) 
field resulting from it. This dipole field 
causes the “blooming” effect on SW im-
ages, overestimating the CMB volume. 
Consequently, QSM should allow more 
accurate quantification of CMB volumes 
or burden. However, accurate quantifi-
cation of CMB susceptibility is techni-
cally challenging (31) and the clinical 
relevance of QSM for detection of CMBs 
remains to be investigated.

Radiologic–Pathologic Correlation of 
CMBs

There are only a few published radio-
logic–histopathologic correlation studies 
of CMBs. One of the earliest studies 
assessed GRE T2*-weighted imaging 
in 11 brains of patients who died of 

phase images may be helpful to quantify 
iron accumulation, yet this is beyond 
the scope of our review.

Stability over Time
It is commonly believed that CMBs per-
sist in the brain over many years (al-
most like the iron particles in a tattoo). 
A large population-based study in over 
800 people, with more than 200 par-
ticipants presenting with microbleeds, 
found that in only six people CMBs dis-
appeared after 3.4 years of follow-up, 
whereas new CMBs developed in 85 
other participants (20). A recent inves-
tigation, however, challenged this view 
and demonstrated decrease in both 
number and quantitative susceptibil-
ity (21). It remains to be determined 
whether this observation is true only 
for the investigated military service 
members with chronic traumatic brain 
injury, or whether these findings also 
apply to other CMBs (eg, in neurode-
generative disorders).

Visual Rating and Automatic Detection of 
CMBs
Visual rating scales have been shown 
to improve interrater reliability for 
both presence and anatomic location 
of CMBs. The two most commonly 

perform SW imaging postprocessing 
of two-dimensional GRE T2*-weighted 
data to improve susceptibility contrast 
without increasing scan time (17).

Microbleeds versus Microcalcifications: 
Magnitude and Phase Images
Not every black dot on susceptibility 
images constitutes a CMB, and small 
foci of calcification may mimic CMBs 
on SW imaging sequences (Fig 2). This 
differentiation is usually simple at com-
puted tomography (CT) because calci-
fications are hyperdense, yet CT scans 
are not always available and small calci-
fications may not be depicted at CT. For 
MR imaging, phase images may also 
discriminate microbleeds from calcifi-
cations because calcium is diamagnetic 
and iron paramagnetic with opposing 
phase shifts (18). Consequently, CMBs 
may appear either hyperintense or hy-
pointense on phase maps in different 
MR systems, depending on whether the 
imager uses a right- or left-handed co-
ordinate system (19). Phase images are 
an inherent part of all MR sequences 
and need no additional imaging time, 
yet these images are typically not saved 
by default. Saving phase images pro-
vides additional information at no extra 
time or cost. As an additional benefit, 

Figure 1

Figure 1: Images in a 53-year-old woman with familial cavernomatosis and multiple cavernomas of 
variable size. Larger-size cavernomas are well visualized on both, A, two-dimensional T2*-weighted and, B, 
three-dimensional multiecho T2*-weighted images. In particular, smaller-sized lesions are better visualized or 
only visible on three-dimensional multiecho T2*-weighted image (arrows).
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false-positive (false-positive rate, 11%) 
(32). A more recent study assessed SW 
imaging in 10 patients with CAA (33). 
Among 38 suspected CMBs at MR im-
aging, the true-positive rate at histo-
pathologic analysis was 48% (16 of 38), 
whereas the false-positive rate was 24% 
(33). In a meta-analysis of 85 CMBs in 

corresponding MR imaging signal chang-
es, relating to a false-negative rate of 
18%. Another study assessed one brain 
of a woman with hypertension with nine 
CMB-like lesions depicted at premortem 
imaging. Eight lesions were confirmed 
on pathologic correlation (true-positive 
rate, 89%); one CMB observation was 

intracranial hemorrhage and found 34 
areas of signal loss because of suscep-
tibility (6). Histopathologic examination 
showed focal hemosiderin deposition in 
21 of 34 areas of MR signal loss, cor-
responding to a true-positive rate of 
62%. However, hemosiderin deposits 
were noted in two of 11 brains without 

Figure 2

Figure 2: Images in a 49-year-old man undergoing imaging for assessment of headaches. A, D, Susceptibility three-dimensional multiecho T2*-weighted imaging 
at 3.0 T demonstrates two punctiform lesions compatible with cerebral microbleeds (CMBs) (arrows). B, E, Corresponding phase images show that lesion in right 
frontal white matter is predominantly hypointense and this lesion presumably corresponds to a CMB; second lesion in right external capsule and putamen is pre-
dominantly hyperintense. C, F, Corresponding CT images demonstrate no calcification and presence of microcalcification, respectively. As discussed in the Technical 
Considerations section, CMBs may appear hyperintense or hypointense in different MR systems depending on whether the imager uses a right- or left-handed 
coordinate system.
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standard deviation below the age-relat-
ed average (48). Deep (basal ganglia, 
thalamus, and infratentorial) CMBs 
were associated with low performance 
in one study (49), whereas in the Rot-
terdam study, strictly lobar CMBs had 
the strongest impact on cognition (46). 
Another longitudinal study suggests 
that multiple CMBs or the presence of 
mixed microbleeds (both in deep and 
lobar locations) were associated with 
an increased risk for dementia (50), 
whereas others reported that lobar 
CMBs were associated with accelerated 
cognitive decline (51). In contrast, neg-
ative results have also been reported 
with no correlation being found be-
tween location of CMBs and cognitive 
symptoms in a study of 328 cognitively 
intact, community-dwelling control par-
ticipants and 72 participants with mild 
cognitive impairment (52).

In addition, there is no clear corre-
lation between the presence of CMBs 
on MR images and cognitive symptoms 
in healthy control participants (52). 
Over time, the number of CMBs in-
creases in longitudinal studies of nor-
mal aging (20,53) and dementia (54).

Overall, the correlation between the 
location as well as number of CMBs and 
cognitive symptoms is somewhat incon-
sistent and not very strong. This might be 

various diseases (39), likely because of 
the higher sensitivity of 7.0 T for small 
hemosiderin deposits. Although 7.0 T 
is unavailable for routine clinical use, it 
does show that with appropriate instru-
mentation, MR imaging has very good 
sensitivity for CMB detection.

Effect of the Presence of CMBs on 
Cognition

The cognitive repercussions of CMBs 
are a matter of debate (40–42). The 
two prevailing hypotheses are that 
CMBs either affect brain functioning 
through strategic disruptions of connec-
tions between brain regions (43–45), or 
that the underlying brain pathology—of 
which CMBs are reflective—causes 
(sub)clinical deficits (46,47).

Several studies reported associa-
tions of CMB location with performance 
on cognitive tasks both in cross-sec-
tional and longitudinal studies, although 
with conflicting results. For example, 
in a prospective study of 518 consec-
utive adults without neurologic disor-
der, presence (odds ratio, 3.93; 95% 
confidence interval: 1.44, 10.74) and 
number (odds ratio, 1.26; 95% confi-
dence interval: 1.01, 1.59) of CMBs 
were related to reduced Mini-Mental 
State Examination scores more than 1.5 

18 patients (34), 13 of the suspected 
CMBs were not associated with specific 
pathology at microscopy for an overall 
false-positive rate (areas of MR sus-
ceptibility because of other causes) of 
19%. A more recent investigation that 
assessed 25 patients with 31 potential 
CMBs depicted by using premortem 
T2*-weighted imaging at 1.5 T and 3.0 T 
(35) found a true-positive rate of 52%, 
and a false-positive rate of 13%. The 
additionally performed postmortem MR 
imaging found additional CMBs only in a 
minority of patients and could therefore 
exclude the possibility that many CMBs 
occurred in the interval between pre-
mortem clinical MR imaging and death. 
Moreover, almost every second patient 
had additional CMBs at histopathologic 
analysis compared with premortem 
clinical MR imaging (with 0.7 3 0.7 3 
0.7 mm3 voxels at 3.0 T), resulting in 
a false-negative rate of premortem MR 
imaging of 48%. This is still likely an 
underestimation of the true number of 
CMBs, because histopathologic analysis 
can only examine a select number of 
sections and not the entire brain.

The location of superficial or lobar 
versus deep, as well as supratentorial 
versus infratentorial, is important for 
the interpretation of CMBs, as well as 
for the clinical implications (discussed 
in the following sections). Both hyper-
tensive small vessel disease and CAA 
contribute to the formation of lobar 
CMBs, whereas CMBs located in the 
basal ganglia or in infratentorial brain 
regions are mainly associated with hy-
pertensive vasculopathy (Fig 3) (36,37).

In summary, for the currently used 
clinical protocols ranging from 1.5 T to 
3.0 T, and from two-dimensional GRE 
T2*-weighted to SW imaging and a 
wide range of underlying pathologies 
(6,32,33,35,38), the true-positive rates 
for CMBs depicted at imaging are 48%–
89%, the false-positive rates are 11%–
24%, and the false-negative rates are 
18%–48%. False-positive CMB findings 
include mimics such as microdissections, 
microaneurysms, microcalcifications, and 
arteriolar pseudocalcifications (6,32,33).

The correspondence between MR 
imaging and histopathologic analysis 
in CMBs is much better at 7.0 T for 

Figure 3

Figure 3: Susceptibility-weighted images show mixed pattern of, A, deep (thalamic) and, B, lobar (near the 
cortex) cerebral microbleeds, reflecting cerebrovascular risk factors and amyloid angiopathy, respectively.
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setting. As discussed previously, the de-
tection rate of CMBs depends on mag-
netic field strength and MR sequence. 
Combining several studies, we can 
summarize the correlation between the 
number of CMBs and cognitive decline 
(16,40–42,49,72). Simply put, two or 
more CMBs at T2*-weighted imaging 
and three or more CMBs at SW im-
aging are more likely in patients with 
mild cognitive impairment or early 
dementia. Increasing CMB load might 
predict further cognitive decline. Al-
though the average ratio of CMBs at 
baseline did not differ between control 
participants and mild cognitive impair-
ment (11% and 14%, respectively) 
more than three CMBs were present 
only within the group with progressive 
mild cognitive impairment (40). Simi-
larly, another study reported a higher 
occurrence of CMBs in patients with 
progressive mild cognitive impairment 
(eight of 26) compared with patients 
with stable mild cognitive impairment 
(one of 23) (41). Taking into account 
the variation in CMB detection based 
on the MR methodology, this might in-
dicate that two or more CMBs at T2*-
weighted imaging and three or more 
CMBs at SW imaging might suggest in-
creased risk of cognitive decline, which 
remains to be confirmed in large-scale 
prospective and controlled studies.

Moreover, antiamyloid treatments 
for AD are more likely to induce both 
amyloid-related imaging abnormalities 
suggestive of vasogenic edema, sulcal 
effusions, microhemorrhages, and he-
mosiderin deposits as complication of 
treatment in the presence of CMBs. 
Therefore, in addition to diagnostic in-
formation, the presence of CMBs might 
indicate increased risk of complication 
during the antiamyloid treatments for 
AD, yet future research is needed to 
clarify this issue.

By contrast, in patients with defi-
nite (histopathologically proven) CAA, 
the prevalence of CMBs is 100%, which 
is not true for superficial siderosis. In 
fact, a diagnosis of probable CAA can 
be made based on imaging findings, 
including CMBs (73). The distribution 
of CMBs in CAA is typically lobar, re-
flecting the histopathologic finding of 

(especially for deep CMBs), and a 
slightly higher prevalence in men 
(56,63). Given the fact that carrying the 
APOE4 gene increases the risk of lo-
bar CMBs and that parietal regions are 
most frequently affected (64–66), it is 
likely that these CMBs in asymptomatic 
individuals represent a form of CAA, 
possibly in the setting of incipient AD. 
This is especially true for lobar CMBs; 
deep CMBs are more related to clas-
sic cerebrovascular risk factors, par-
ticularly hypertension. CMBs are more 
frequent in patients with hypertensive 
encephalopathy (1) and are strongly 
correlated with burden of white matter 
hyperintensities (67,68).

CMBs in Dementia and CAA

CMBs in AD and CAA have overlapping 
risk factors and pathologic correlates, 
and both diseases show a clearly higher 
prevalence and incidence of CMBs com-
pared with normal aging (3,69). CAA is 
a disease (either sporadic or familial) 
caused by abnormal amyloid deposition 
in the vessel wall leading to CMBs and 
intracerebral macroscopic hemorrhage. 
Amyloid angiopathy can also occur in 
the setting of AD (with deposition of 
amyloid in the parenchyma and vessel 
wall) leading to CMBs and superficial 
siderosis, but without macroscopic 
bleeding. Reflective of their shared 
pathophysiologic mechanisms, both AD 
and CAA can be accompanied by su-
perficial siderosis, occurring almost in-
variably in the presence of lobar CMBs 
(70,71).

Even with sensitive imaging tech-
niques, prevalence of CMBs in AD is 
well below 100%, hampering its use as 
a diagnostic marker, because their ab-
sence has low negative predictive value 
to exclude AD. Although patients with 
mild cognitive impairment who pro-
gress to AD tend to have slightly more 
CMBs, most patients with mild cog-
nitive impairment will not display any 
CMBs at current clinical field strengths 
(40,41). On the other hand, many other 
causes of CMBs exist, also limiting the 
positive predictive value if CMBs are 
detected, although a lobar pattern is 
certainly supportive in the appropriate 

not surprising when taking into account 
that the detection of CMBs depends on 
MR sequence characteristics, and that a 
substantial number of CMBs are missed 
in current clinical (premortem) MR im-
aging, as discussed in the previous sec-
tions. Consequently, current clinical MR 
imaging probably picks up only the tip 
of the iceberg, and those lesions that 
are depicted consequently correspond 
poorly with cognitive symptoms.

Aging and Other Risk Factors for CMBs

CMBs are relatively common in aging 
patients without known neurologic 
disease, although with lower preva-
lence than in patients with CAA and 
AD. As noted previously, the actual 
detection rate of CMBs will depend 
strongly on technical factors, and also 
on the populations studied. Large-scale 
epidemiologic studies report that CMB 
prevalence in aging participants (age 
.45 years) ranges from 5% to 35% 
(52,55–58), partly reflecting variation 
in the mean age of the population and 
in MR imaging technique used, which 
is also summarized in a recent over-
view article (59). To mention a few of 
the larger population-based studies ex-
amining CMB prevalence: In the Age, 
Gene/Environment Susceptibility–Reyk-
javik Study of 1962 participants (mean 
age, 76 years), the incidence was 11.1% 
with a two-dimensional echo-planar im-
aging–based GRE sequence (57). The 
Framingham Heart Study with two-
dimensional T2*-weighted GRE images 
(5-mm sections, 2-mm gap) estimated 
a prevalence of 8.8% in their popula-
tion (mean age, 66.5 years) (55). In the 
Rotterdam study of 4759 participants 
(mean age, 63.8 years) with a three-
dimensional T2*-weighted sequence, 
prevalence was 18.7% (58), increas-
ing to over 35% in those aged over 80 
years (56). Still, the above studies seem 
to underestimate the true CMB preva-
lence, because histopathologic studies 
found a prevalence of 60%–70% in in-
dividuals who are very old (60–62).

Risk Factors for CMBs
Population-based studies find strong 
associations with age, hypertension 
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(eg, integration of CT into emergency 
department), availability, and condition 
of the patient (eg, easier to image an 
intubated patient by using CT), but CT 
is often the primary method. MR imag-
ing is added later to depict diffuse axo-
nal injury in patients with worse clinical 
conditions than can explained by the 
CT findings.

Imaging of mild traumatic brain 
injury is, in general, more challenging 
because trauma-related changes are 
subtler and consequently more difficult 
to detect. Typical imaging findings in 
mild traumatic head injury include non-
hemorrhagic and hemorrhagic diffuse 
axonal injury (75). In hemorrhagic dif-
fuse axonal injury, CMBs are typically 
located in the corpus callosum and at 
the gray-white matter junction, and in 
general have a more radial configura-
tion following the perivascular spaces 
(Fig 6) compared with the more spher-
ical CMBs occurring, for example, dur-
ing neurodegeneration or hypertension 
(76). The prognostic implications of 
CMBs in mild traumatic head injury are 
being addressed only recently (77,78), 
and future work is needed.

CT versus MR Imaging
The sensitivity to depict nonhemor-
rhagic diffuse axonal injury is 0% at CT 
versus 11% at MR imaging, whereas the 
detection rate of hemorrhagic diffuse 
axonal injury is 22% at CT versus 47% 
at MR imaging (79). Moreover, MR im-
aging is more sensitive to depict sub-
tle parenchymal traumatic lesions, and 
consequently is the modality of choice 
for mild traumatic brain injury.

Timing of Imaging
The CT density of the hemorrhage in 
CMBs rapidly decreases over days and 
they become isodense to brain after 
around 7–10 days. Consequently, the 
sensitivity of CT to depict CMBs is best 
during the first few days after mild trau-
matic brain injury.

On MR images, CMBs tend to re-
main visible long after mild traumatic 
brain injury. A recent article challenges 
this view and demonstrated regression 
of the number of CMBs over time in 
military service members with chronic 

in AD. Interestingly, amyloid-related 
imaging abnormalities may also occur 
spontaneously in patients with CAA—a 
phenomenon that can be treated with 
steroids (Fig 5).

CMBs occur more frequently in pa-
tients with vascular dementia (65% at 
T2*-weighted imaging, 86% at SW im-
aging) compared with patients with a 
prodromal status of AD—that is, mild 
cognitive impairment (20% at T2*-
weighted imaging, 41% at SW imaging) 
or AD (18% at T2*-weighted imaging, 
48% at SW imaging) (3,16). In patients 
with vascular cognitive impairment or 
frank vascular dementia, CMBs tend 
to be found in a central distribution 
pattern, affecting the thalamus, brain-
stem, and sometimes cerebellum, 
and are thus different from the lobar 
distribution in CAA and AD (63).

Traumatic Brain Injury

Moderate and severe traumatic brain 
injury is commonly associated with 
evident findings at CT or MR imaging, 
such as intracranial hemorrhage and 
cerebral contusions. The choice of im-
aging modality depends on local setting 

amyloid angiopathy in cortical vessels. 
A similar lobar distribution pattern is 
observed in patients with AD. Involve-
ment of leptomeningeal vessels proba-
bly underlies the occurrence of super-
ficial siderosis that can be observed 
in both CAA and AD (71) (Fig 4).  
In one study of AD, having eight or 
more CMBs at 1.5 T was related to 
more severe disease parameters, in-
cluding amyloid status and cognition 
(74), although the exact cutoff will be 
dependent on various technical factors 
as discussed previously.

An observation directly linking 
CMBs with amyloid angiopathy is the 
appearance of new CMBs during treat-
ment with amyloid-lowering therapies, 
especially those targeting amyloid re-
moval through immunization. The most 
likely explanation of these so-called 
amyloid-related imaging abnormalities 
is an altered pathway of amyloid metab-
olism involving the vessel wall, leading 
to increased fragility and occurrence 
of CMBs—as well as edema and sulcal 
effusions. Whatever the exact mecha-
nism, the development of amyloid-re-
lated imaging abnormalities experimen-
tally links CMBs to vascular amyloid 

Figure 4

Figure 4: A, B, Axial susceptibility-weighted images show superficial siderosis (subpial linear deposits of 
susceptibility) at frontal-parietal convexity and probable cerebral microbleeds (CMBs) in a 83-year-old man 
with Alzheimer dementia (AD) without history of trauma or subarachnoid hemorrhage. Superfical siderosis 
tends to occur in conjunction with CMBs but may occur in isolation in AD.



18 radiology.rsna.org n Radiology: Volume 287: Number 1—April 2018

REVIEW: Cerebral Microbleeds: Imaging and Clinical Significance Haller et al

Figure 5

Figure 5: Images in a 64-year-old woman who was diagnosed with cerebral amyloid angiopathy almost 2 years ago based on fluctuating cognitive disturbances 
and aphasia. Baseline imaging (top row) demonstrates multiple lobar cerebral microbleeds (CMBs) on susceptibility-weighted images. Although clinically stable, fol-
low-up MR imaging (bottom row) revealed new areas of hyperintensity and swelling in frontal and temporal lobes on fluid-attenuated inversion recovery images with 
an increase in number of CMBs. Previous occurrences and periods of clinical deterioration had been responsive to steroid treatment.

traumatic brain injury (21). This obser-
vation remains to be replicated in other 
domains and larger-scale studies, yet it 
indicates that MR imaging should ideally 
be performed early after mild traumatic 
brain injury, notably because the de-
tection rate of nonhemorrhagic diffuse 
axonal injury features (eg, areas of dif-
fusion restriction) is also higher in the 
immediate posttraumatic period. More-
over, intriguing recent reports indicate 
that CMBs may show dynamic changes 
after the acute injury, including growth 
(80) and temporary disappearance (81). 
These reports further support that the 
timing of imaging is important, but this 
needs confirmation in future studies.

Radiation-induced CMBs

Radiation-induced vascular injury can 
affect large vessels and, more com-
monly, small arteries and capillaries. 

Chronic radiation-induced endothelial 
damage leads to fibrinoid necrosis, 
vessel wall thickening, increased per-
meability, and thrombosis. CMBs as 
markers of radiation-induced small ves-
sel disease are commonly seen following 
radiation therapy of pediatric brain tu-
mors, but occur also in adults (Fig 7). 
A recent study including 190 patients 
(82) who had undergone radiation ther-
apy for pediatric primary brain tumors 
found CMBs and cavernomas in over 
40%. Another study of 149 survivors 
of pediatric brain tumors (83) found a 
cumulative incidence of CMB of 49%, 
with a rate that was four times higher 
after whole-brain irradiation compared 
with local therapy. CMB after radiation 
therapy correlates with worse executive 
function and temporal lobe CMB with 
a decrease in verbal memory. In adult 
patients undergoing radiation ther-
apy for glioma or metastases, CMBs 

were found in 47% after a latency pe-
riod ranging from 3 months to 9 years 
(mean, 33 months) (84). The frequency 
of CMBs was significantly associated 
with radiation dose and no CMBs were 
observed in regions that had received 
less than 25 Gy.

Serial imaging at 7.0 T in adult pa-
tients with cerebral gliomas of variable 
World Health Organization grade (85) 
showed that CMBs occurred only in 
those patients who had undergone ra-
diation treatment. Microhemorrhages 
appeared approximately 2 years after 
radiation therapy, showing a higher 
prevalence with increasing time since 
completion of radiation therapy. A re-
cent longitudinal study (86) suggested 
that patients treated with antiangio-
genic agents had overall fewer CMBs 
and showed a significant reduction 
in the rate of new CMB formation, 
possibly indicating a radioprotective 
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may be indistinguishable from CMBs at 
imaging (Fig 8) (87). Hemorrhage in cav-
ernous angiomas can be classified into 
four types: type I, extralesional gross 
hemorrhage beyond cavernous angioma; 
type II, mixture of subacute and chronic 
hemorrhage; type III, area of hemosid-
erin with small central core; and type 
IV, area of hemosiderin deposition with-
out central core (88). Thus, because of 
lack of the central core, the type IV le-
sions are only visible on SW images as 

CMBs in Other Diseases

Cavernous Angioma
Although cavernous angiomas (also called 
cavernous malformations) are generally 
well characterized at imaging because of 
their distinct appearance on T1-weighted 
(popcornlike spontaneous high signal in-
tensity) and T2-weighted (hypointense 
hemosiderin ring) images, small so-called 
type IV (micro-) cavernous angiomas 

effect of antiangiogenic drugs on the 
microvasculature.

In summary, CMBs appear to oc-
cur in at least 50% of patients who 
have undergone radiation treatment, 
in pediatric as well as in adult patients. 
The rate of CMB formation increases 
significantly 2 years after radiation 
treatment and an independent associ-
ation between radiation-induced CMB 
and cognitive performance has been 
demonstrated.

Figure 6

Figure 6: Images show collection of typical posttraumatic cerebral microbleeds (CMBs) (arrows), also referred to as hemorrhagic diffuse axonal injuries in this clin-
ical context. A–C, Images in a 19-year-old woman after horseback riding accident. Location of diffuse axonal injury in, A, corpus callosum and, B, radial orientation in 
fronto-parietal white matter following perivascular spaces are typical, and better appreciated at, C, sagittal reconstruction. D, E, Images in a 39-year-old woman after mild 
traumatic head injury with multiple hemorrhagic diffuse axonal injuries, notably in left superior frontal gyrus. Typical radial orientation of lesions is again better appreciated 
at, E, sagittal reconstruction. F, Susceptibility-weighted angiography image in a 53-year-old man with mild to moderate traumatic brain injury 7 years prior to imaging. 
Hemorrhagic diffuse axonal injuries are present in left inferior frontal gyrus, illustrating that CMBs may be visualized years after traumatic brain injury.
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that melanoma metastases were five 
times more likely to demonstrate signal 
loss on T2*-weighted images than were 
lung metastases (42% vs 8%) and that 
eight of 120 melanoma metastases were 
only depicted on T2*-weighted images.

Cerebral Autosomal Dominant 
Arteriopathy with Subcortical Infarcts and 
Leukoencephalopathy
Cerebral autosomal dominant arteri-
opathy with subcortical infarcts and 
leukoencephalopathy is an inherited 
disorder because of a mutation in the 
NOTCH3 gene on chromosome 19q12. 
Clinical presentations include pro-
gressive cognitive decline, migraine 
with aura, mood disturbances, and 
small vessel infarcts. CMBs have been 
found in 31%–69% of patients with 
this disease and are most commonly 
located in the thalamus, basal ganglia, 
and brainstem (Fig 11) (97). Other 
hallmarks of the disease are conflu-
ent white matter hyperintensities ex-
tending into the external capsules and 
temporal poles.

Fabry Disease
Fabry disease is an X-linked lysosomal 
storage disorder resulting in vascular 
glycosphingolipid accumulation and 
increased risk of stroke. MR imaging 
findings include white matter hyperin-
tensities and CMBs. The prevalence of 
microbleeds in Fabry disease ranges 
between 15% and 30% (our own co-
hort of 34 patients with a median age 
of 44 years [98,99]) and appears to 
be higher in male patients and in pa-
tients with renal involvement.

Moyamoya Disease
Moyamoya disease is an idiopathic, 
progressive, nonarterioscleotic, steno-
occlusive disease of the distal internal 
carotid arteries and their proximal 
branches, resulting in the development 
of an extensive collateral vessel network 
at the base of the brain. Approximately 
10% are related to specific gene muta-
tions. There is an increased incidence of 
microbleeds in patients with moyamoya 
disease, which appears to be higher in 
patients of Asian descent (around 30%) 
compared with Europeans affected by 

of microbleeds in endocarditis is pre-
dominantly cortical and it has been hy-
pothesized that microbleeds represent a 
marker of disease severity (91). The clin-
ical significance of microbleeds in these 
patients is currently a subject of debate. 
A prospective study of 130 patients with 
endocarditis by using MR imaging within 
7 days of admission and before any sur-
gical intervention found ischemic lesions 
in 68 patients and microhemorrhages in 
74 patients, which lead to a modification 
in diagnosis and therapeutic plan in 24 
patients (90).

Micrometastasis
Tiny metastases of primary tumors that 
tend to produce hemorrhagic brain me-
tastases, such as melanoma, choriocar-
cinoma, lung cancer, and thyroid cancer, 
may sometimes resemble microbleeds. 
Note that the influence of melanin on 
T2* relaxation is minimal and the low 
signal in melanoma metastases appears 
to be caused by the presence of iron 
(95). Some of these may only be depict-
ed on T2*-weighted or SW images and 
may not show any enhancement (Fig 10).  
A study comparing cerebral metastases 
of melanoma of lung cancer (96) found 

hypointense dots, much like CMBs, and 
have been described as a distinct imaging 
type of cavernous angiomas in patients 
with familial cerebral cavernous malfor-
mations (89). Although only histologic 
examination can separate the two en-
tities, for practical use, in patients with-
out a family history and without evidence 
of classic cavernous angiomas at imaging, 
a hypointense lesion at SW imaging will 
most likely be a CMB.

Critical Medical Conditions
A number of critical medical condi-
tions are associated with occurrence 
of CMBs and should be considered as 
causal factors when CMBs are encoun-
tered in critically ill patients without 
previous neurologic conditions (Fig 9).  
These conditions include infective endo-
carditis (90) (with microbleeds in over 
50% of patients) (91), extracorporeal 
membrane oxygenation (92), and sep-
sis (93). Although the exact mechanism 
through which microbleeds develop in 
these conditions is unknown, hypotheses 
range from pyogenic vasculitis or 
subacute microvascular inflammatory 
processes (94) to endothelial dysfunc-
tion and microemboli (93). The location 

Figure 7

Figure 7: Images in a 32-year-old woman who underwent radiation therapy for World Health Organization 
grade IV glioma 5 years ago. A, CT image for radiation therapy planning shows radiation field (57 Gy line) 
overlying left frontal and parietal lobes. B, Axial T2*-weighted image demonstrates multiple cerebral micro-
bleeds (CMBs) in left but not in right cerebral hemisphere (arrows). These CMBs lie within radiation field and 
were not present at MR imaging before radiation therapy.
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ischemic and hemorrhagic stroke. A re-
cent meta-analysis (102) of over 5000 
patients with a mean follow-up period of 
18 months demonstrated that a higher 
microbleed burden was related to an in-
creased risk of ischemic stroke and in-
tracerebral hemorrhage, with the risk of 
the latter increasing much more steeply. 
In patients with more than five micro-
bleeds, the relative risk of intracerebral 
hemorrhage was 14.1 compared with 
2.7 for ischemic stroke. For patients 
presenting initially with intracerebral 

CMBs and Stroke with Implications 
for Antithrombotic Treatment and 
Thrombolysis

CMBs are associated with an increased 
risk of both ischemic and hemorrhagic 
stroke. The population-based Rotter-
dam study (58) showed that participants 
with microbleeds in a lobar distribution 
(suggestive of CAA) had a higher risk 
of intracranial hemorrhage, whereas 
microbleeds in other locations were 
associated with increased risk of both 

this condition (13%) (100). CMBs in 
moyamoya disease are predictors of fu-
ture intracerebral hemorrhage, which 
is more frequently an initial symptom-
atic event in patients of Asian descent.

Cardiac Valve Replacement
In a prospective study in patients with 
cardiac valve surgery, 12 of 19 patients 
developed a total of 26 small postoper-
ative CMBs, indicating that the devel-
opment of CMBs might be a common 
finding in this clinical setting (101).

Figure 8

Figure 8: A, B, C, F, Axial susceptibility-weighted and, D, E, axial T1-weighted images in a 33-year-old patient with familial cavernous angiomas show microbleed-
like hypointense dots in left cerebellum and left temporal lobe (arrows), as seen in supertentorial images. Small hypointense lesions (arrows in C and F) most likely 
represent type IV cavernomas.
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13), another imaging marker for CAA 
that increases the risk of future intrace-
rebral hemorrhage (104).

This increase of intracerebral hem-
orrhage in the presence of CMBs has 
led to concerns regarding the safety 
of antithrombotic drugs in secondary 
stroke prevention, as well as thrombol-
ysis in acute stroke. The debate in this 
field is currently impeded by the lack of 
large, prospective studies of CMBs in 
stroke cohorts, but several studies are 
presently underway (Clinical Relevance 
of Microbleeds in Stroke study [CRO-
MIS-2] and Intracerebral Hemorrhage 
in Patients Taking Oral Anticoagulant 
for Atrial Fibrillation With Cerebral 
Microbleeds [IPAAC]) (105). Recent 
meta-analyses in patients with ischemic 
stroke or transient ischemic attack who 
use antiplatelet agents suggest that the 
presence of CMBs may significantly in-
crease the subsequent risk of intrace-
rebral hemorrhage (106). A systematic 
review on use of warfarin and risk of 
intracerebral hemorrhage in the pres-
ence of microbleeds suggests that mi-
crobleeds increase the risk of warfarin-
associated intracerebral hemorrhage 
(107).

From a clinical perspective, it is 
crucial to assess whether the CMB-
related risk of intracerebral hemor-
rhage, if any, outweighs the benefits 
expected from antithrombotic ther-
apy. This is a critical dilemma in pa-
tients who undergo anticoagulation 
therapy for atrial fibrillation and then 
developed intracerebral hemorrhage. 
Anticoagulants (non-vitamin K antag-
onists) or atrial appendage occlusion 
may represent an alternative treat-
ment option in these patients. Large 
studies assessing the risk-benefit ra-
tio of antithrombotic therapy are cur-
rently unavailable, but the existing ev-
idence suggests that in patients with 
many microbleeds, lobar microbleeds, 
or other imaging markers of CAA 
such as cortical superficial siderosis, 
the risks may outweigh the benefits 
(108).

Finally, a recent comprehensive 
meta-analysis shows that CMBs are 
associated with greater risk of symp-
tomatic intracerebral hemorrhage and 

role in the diagnostic work-up of intra-
cerebral hemorrhage and can help con-
firm the presence of peripheral CMBs 
suggestive of CAA as underlying cause 
(Fig 12). MR imaging can furthermore 
reveal cortical superficial siderosis (Fig 

hemorrhage, the annual risk of repeat 
hemorrhage depends on the location 
of the initial intracerebral hemorrhage. 
This risk is higher for lobar hemor-
rhages (103), more likely to be caused 
by CAA. MR imaging plays an increasing 

Figure 9

Figure 9: A, B, Images in a 16-year old boy admitted to intensive care unit with sepsis. There are wide-
spread microbleeds in the cortico-subcortical regions, as well as the corpus callosum.

Figure 10

Figure 10: Images in a 74-year-old man with cerebral metastases from small cell carcinoma of the lung. 
A, Axial contrast-enhanced T1-weighted image demonstrates several small enhancing nodules in both 
cerebral hemispheres, mostly near gray-white matter junction. B, Axial T2*-weighted image demonstrates 
that many of these lesions show susceptibility artifact. Some tiny additional lesions in right frontal lobe are 
not readily visible on contrast-enhanced images.
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higher detection rate of CMBs in vari-
ous diseases, as well as in asymptom-
atic patients. The imaging techniques 
currently used (1.5 T and 3.0 T, two-
dimensional GRE T2*-weighted imag-
ing, and SW imaging) significantly un-
derestimate the true number of CMBs, 
with an estimated number of false-
negative findings in the range of 50% 
when compared with histopathologic 
analysis as ground truth. The true-pos-
itive rate ranges from 48%–89%, and 
false-positive mimics of CMBs include 

ongoing prospective studies will be-
come available. Future recommenda-
tions may take into account not only 
the presence but also the number and 
location of CMBs.

Conclusions

CMBs have attracted growing interest 
over the last years because of increased 
availability of high-field-strength MR 
systems and the development of ded-
icated imaging sequences leading to 

poor functional outcome (34). How 
this knowledge can impact clinical 
practice remains uncertain because 
the vast majority of the stroke centers 
use CT and CT angiography for patient 
triage, particularly in the era of intra-
vascular intervention.

In summary, there are currently no 
firmly established guidelines that anti-
coagulants, antiaggregation, or throm-
bolysis should be avoided in the pres-
ence of CMBs. This is likely to change 
in the near future, because data from 

Figure 11

Figure 11: Images in a 52-year-old man with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. A–C, Axial T2*-weighted 
images show multiple cerebral microbleeds in basal ganglia, thalamus, pons, and peripherally (arrows). D–F, Axial fluid-attenuated inversion recovery images 
demonstrate widespread, confluent white matter hyperintensities with involvement of external capsules and temporal poles, which is a typical feature of this disease.
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The overlap between AD, vascular 
risk factors, and CAA might explain 
the increased prevalence of CMBs 
in these conditions, and explain the 
difficulty in disentangling the exact 
etiology of CMBs in some patients, 
despite the fact that the classic 
distribution of CMBs varies between 
these conditions.

CMBs and implies the need for further 
technical developments.

Despite this current imprecise 
imaging of CMBs, these lesions play 
an increasing role in the diagnosis 
of specific diseases such as CAA and 
cavernomatosis. Moreover, their con-
tributions as risk factors for cognitive 
decline are increasingly recognized. 

microdissections, microaneurysms, 
and microcalcifications. Phase images 
might be useful to differentiate mi-
crobleeds from calcifications. The fact 
that current clinical MR techniques 
only help to detect a part of the true 
number of CMBs might explain the 
varying and partially conflicting results 
regarding the clinical repercussions of 

Figure 12

Figure 12: Images show hemorrhagic stroke in cerebral amyloid angiopathy (CAA). A, CT in a 79-year-old woman with right occipital hemorrhage demonstrates 
acute hyperdense hematoma. B, C, Susceptibility-weighted images reveal, in addition to acute hemorrhage, numerous peripheral lobar cerebral microbleeds in a 
distribution that is typical for CAA.

Figure 13

Figure 13: Images in an 81-year-old man with left frontal hemorrhage. A, CT image shows acute left frontal hematoma. B, C, Susceptibility-weighted (SW) images 
were acquired 10 days later. C, Center of subacute hematoma appears hyperintense on magnitude images of SW imaging sequence. In addition, there is diffuse 
cortical superficial siderosis causing susceptibility artifact over superior convexity sulci, another typical feature of cerebral amyloid angiopathy.
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In mild traumatic brain injury, hem-
orrhagic diffuse axonal injury is one 
of the most sensitive and long-lasting 
imaging markers. The configuration of 
these hemorrhagic diffuse axonal in-
juries is typically more linear and in a 
radial distribution compared with the 
typical CMBs discussed previously.

Finally, presence of multiple CMBs 
might increase the risk of hemorrhage 
during anticoagulation or antiaggrega-
tion and thrombolysis, and large-scale 
studies and subsequent guidelines are 
in development.
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