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ABSTRACT

The PROSITE database consists of a large collec-
tion of biologically meaningful signatures that are
described as patterns or pro®les. Each signature is
linked to documentation that provides useful bio-
logical information on the protein family, domain or
functional site identi®ed by the signature. The
PROSITE web page has been redesigned and
several tools have been implemented to help the
user discover new conserved regions in their own
proteins and to visualize domain arrangements. We
also introduced the facility to search PDB with a
PROSITE entry or a user's pattern and visualize
matched positions on 3D structures. The latest
version of PROSITE (release 18.17 of November 30,
2003) contains 1676 entries. The database is
accessible at http://www.expasy.org/prosite/.

INTRODUCTION

A popular way to identify similarity between proteins is to
perform a pairwise alignment. When the identity is >40% this
method gives good results. However, the weakness of the
pairwise alignment is that no distinction is made between an
amino acid at a crucial position (like an active site) and an
amino acid with no critical role. A multiple sequence
alignment (MSA) gives a more general view of a conserved
region by providing a better picture of the most conserved
residues, which are usually essential for the protein function.
The various amino acids can then be weighed according
to their degree of conservation. Several databases have
developed their own methods (descriptors) based on MSA in
order to identify conserved regions. A search performed on
these databases is generally more sensitive than a pairwise
alignment and can help identify very remote similarity
(<20%).

The PROSITE database uses two kinds of descriptor to
identify conserved regions, patterns and generalized pro®les,
which each have their own strengths and weaknesses de®ning
their area of optimum application (1).

(i) A pattern or regular expression is a quantitative
descriptor: it either matches or does not. Therefore a good
pattern is usually located in a short well-conserved region.
Such regions are typically enzyme catalytic sites, prosthetic
group attachment sites (haem, pyridoxal phosphate, biotin,
etc.), metal ion binding amino acids, cysteines involved in
disul®de bonds or regions involved in binding a molecule.
Even though the scope of a regular expression is limited to
these particular biological regions, patterns are still very
popular because of their intelligibility for users.

(ii) A pro®le is a table of position-speci®c amino acid
weights and gap costs. Various methods can be used to ®ll a
pro®le table from a multiple alignment. Most frequently, a
substitution matrix is used to convert a residue frequency
distribution into weights, but alternative methods can be
applied including structure-based approaches and methods
involving hidden Markov modelling (2±4). These weights
(also referred to as scores) are used to calculate a similarity
score for any alignment between a pro®le and a sequence, or
part of a pro®le and a sequence. An alignment with a similarity
score higher than or equal to a given threshold value
constitutes a motif occurrence. This threshold is estimated
by calibrating the pro®le against a randomized protein
database. The normalization procedure used for PROSITE
pro®les makes the normalized scores independent of the
database size, allowing the comparison of scores from
different searches (5). The quantitative behaviour of a pro®le
allows the acceptance of a mismatch at a highly conserved
position if the rest of the sequence displays a suf®ciently high
level of similarity and therefore allows the detection of poorly
conserved domains such as immunoglobulin, SH2 or SH3.
Another advantage of pro®les over patterns is that they are not
con®ned to small regions with high sequence similarity.
Rather, they attempt to characterize a protein family or
domain over its entire length.

PROSITE ANNOTATION AND QUALITY CONTROL

Each PROSITE signature is linked to an annotation document
where the user can ®nd information on the protein family or
domain detected by the signature: origin of its name,
taxonomic occurrence, domain architecture, function, 3D
structure, main characteristics of the sequence and some
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references. Recently, for families or domains whose structure
is known, a direct link to a representative PDB entry is
provided in the documentation, in order to make the descrip-
tion of the 3D structure more comprehensible. All the
biological information about a protein family or domain
should also be used to evaluate the pertinence of matches with
patterns and pro®les. If the user has some information about
their sequence that is inconsistent with the description of the
motif detected, the match should be considered with caution.

The annotation document also contains direct information
about the motif descriptors: for patterns, amino acid residues
involved in the catalytic mechanism, metal ion or substrate
binding, or conserved post-translational modi®cations are
indicated. For pro®les, it is stated whether they cover the entire
domain or protein or only part of it. Finally, the sensitivity and
speci®city of the motif is also indicated, as well as an expert to
contact, if any.

Biologically meaningful information on speci®c amino
acids can also be found at the CC /SITE line in signature
entries. This quali®er is used to indicate the position of an
`interesting' site in a pattern or a pro®le. For example, if a
pattern includes an active site residue, the /SITE quali®er is
used to indicate the position of that residue in the pattern.
Binding sites and disul®de bridges are also indicated. The
ps_scan program, the reference tool to scan PROSITE (6), is
able to highlight these positions in a matched region.

A match list of Swiss-Prot entries identi®ed by the signature
is also provided. Each protein entering Swiss-Prot is checked
for the occurrence of PROSITE patterns or pro®les and a
match status is assigned (`true' or `false positive' or
`unknown'). Proteins that are known to contain the domain
but not identi®ed by the signature are also added to the list
with the status `false negative'. Because this match list has
been veri®ed manually, it can be used to evaluate the
speci®city of a given signature. This tight connection with
Swiss-Prot also bene®ts the Swiss-Prot annotation. Some
particular Swiss-Prot lines, which refer to the domain
organization in the protein, are automatically annotated with
PROSITE pro®les.

The PROSITE descriptors and documentation can also be
accessed through InterPro, which largely exploits the detailed
family annotation provided by PRINTS (7) and PROSITE.
InterPro (8) provides an integrated view of several domain
databases and offers a large choice of methods to identify
conserved regions.

IMPROVEMENT OF THE PROFILE METHOD

Repeat

Proteins can contain a single copy of a particular domain, but
in many cases two or more copies are present. The identi®c-
ation of some of these repetitive elements presents additional
dif®culties compared with the detection of autonomous
domains, because they are generally short in size and highly
divergent.

We have developed a new approach to increase the
sensitivity of PROSITE pro®les for repeats. Our method is
based on the determination of a lower acceptance threshold to
detect highly divergent repeats. The computed lower accept-
ance threshold is used to increase the sensitivity of repeat

detection within proteins as well as for the characterization of
new family members. The method applied to 12 different
families allowed the detection of more than 5000 repeat units
and 200 proteins in Swiss-Prot previously not recognized by
PROSITE.

Structural alignment

The sensitivity of a pro®le is strongly dependent on the quality
of the starting sequence alignment. Usually ClustalW (9) or
T-Coffee (10) are used to construct the MSA. But when
sequences are too divergent it can be useful to integrate
structural information in the MSA. Several of our pro®les have
been built by a mixture of classical alignment and structural
alignment with the help of T-Coffee or by pure structural
alignment provided by the DALI algorithm (11). These
methods have been used for the construction of several
pro®les, e.g. the ABC transporter, the Ig-fold and the
aminoacyl-transfer RNA synthetase class-II pro®les. We
have observed that structural information is often useful for
very divergent domains or families, but that it is of small
bene®t for strongly conserved sequences.

Pro®le construction

To ®ll in our pro®le table from a MSA we generally use a
symbol comparison table to convert a residue frequency
distribution into weights, but in some particular cases a
probabilistic model associated with a Dirichlet mixture can be
more sensitive (12). For such an approach we use the HMMER
package (13) to build the pro®le and convert it into PROSITE
format pro®le with pftools (3). About 3% of our pro®les have
been built with this method.

NEW IMPLEMENTATION ON THE WEB PAGE

Our website was redesigned to help the user identify
conserved regions in their own protein. The user can now
build their own pattern from an unaligned set of sequences
using the PRATT algorithm (14). The pattern can then be
scanned on the non-redundant database UniProt (Swiss-Prot +
TrEMBL) (15). The search space can be reduced to a speci®c
taxon. The matched sequences can be visualized as a shaded
MSA, as a taxonomic tree or as a graphical view of the domain
arrangement of the matched proteins. The user can also
retrieve the full-length sequences in FASTA or Swiss-Prot
format. The pattern can also be visualized on 3D structures if
the selected database is PDB: the region matched by the
pattern is highlighted and can thus easily be located on the
structure (see Fig. 1). As patterns do not produce scores, as do
HMMs or pro®les, it is dif®cult to evaluate the signi®cance of
a match. To circumvent this problem we allow the user to
randomize non-redundant databases. A scan against any of
these databases will give a raw estimate of the amount of
matches produced by chance. We provide two methods to
randomize databases. The ®rst method, which simply reverses
the order of sequences, is fast and ef®cient if the pattern is not
palindromic. For this type of regular expression the user must
use a shuf¯ed randomization mode where windows of 20
amino acids are shuf¯ed in the sequence (5).

The webview of the PROSITE documentation also contains
new information. When a 3D structure is described in the text,
a direct link to a 3D image of the domain is provided. The
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Swiss-Prot match list of each signature can be visualized as a
multiple alignment, or as a taxonomic distribution graph. For
PROSITE pro®les, a domain arrangement view is also
provided where active sites and disul®de bridges annotated
in Swiss-Prot entries are superimposed on PROSITE domains
(see Fig. 2).

HOW TO OBTAIN PROSITE

PROSITE is freely available to academic users. As of release
16, the documentation entries are copyright. To obtain a

licence, commercial users should contact The Swiss Institute
of Bioinformatics by email: license@isb-sib.ch or its com-
mercial representative: Geneva Bioinformatics (GeneBio) SA,
Case Postale 210, CH-1211 Geneva 12, Switzerland, phone:
+41 22 702.99.00; fax: +41 22 702.99.99; email: info@
genebio.com. Weekly updates of PROSITE are available on
our FTP server: ftp://ftp.expasy.org/databases/prosite/release_
with_updates/. PROSITE is also accessible from the Hits page
(17): http://hits.isb-sib.ch/. Frame-tolerant scans can be per-
formed at the following address (18): http://www.isrec.
isb-sib.ch/software/PFRAMESCAN_form.html.

Figure 2. Five proteins have been extracted from the domain view of the trypsin pro®le (PS50240) match list. Disul®de bridges are represented as red
inverted hooks and active sites as red diamonds. The labeling of the active site residues allows the rapid detection of domains that may have lost their
enzymatic activity. The ®fth example is the human haptoglobin, a clearly related serine protease but with no enzymatic activity.

Figure 1. A search on the PDB database with the PROSITE pattern PS00107 (directed against the ATP binding region of the kinase domain) was performed
on the ScanProsite page. The pattern identi®ed 221 matches. The 1CTP entry was selected to visualize the position of the pattern on the 3D structure. The
ATP binding region is highlighted in red. The ScanProsite page uses RasMol (16) scripts to produce images. An interactive view with the Chime program is
also provided.
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