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We derive the bosonization of the interacting fermionic Su-Schrieffer-Heeger (SSH) model with open bound-
aries. We use the classical Euler-Lagrange equations of motion of the bosonized theory to compute the density
profile of the zero-energy edge mode and observe excellent agreement with numerical results, notably the
localization of the mode near the boundaries. Remarkably, we find that repulsive or attractive interactions do
not systematically localize or delocalize the edge mode but their effects depend on the value of the staggering
parameter. We provide quantitative predictions of these effects on the localization length of the edge mode.
Our study shows that bosonization is able to quantitatively describe edge modes of interacting topological
one-dimensional systems and pave the way to generalization to other models.
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Topological concepts have become a central part of con-
temporary condensed matter physics [1]. The understanding
of the geometrical and topological objects underpinning band
theory [2-5] has fostered intense activities in diverse areas of
condensed matter physics such as the study of the quantum
Hall effect [6,7], spin-orbit induced topological band insula-
tors [8—10], topological quantum computing [11], and so on
and so forth.

One current limitation of topological band theory is its
restriction to noninteracting systems. Interactions will in
general spoil the band structure, rendering usual classifica-
tion schemes inoperative. There, novel phenomena may be
expected, the most famous example being the fractional quan-
tum Hall effect [12].

One of the simplest models capturing the key features of
topological insulators is the Su-Shrieffer-Heeger (SSH) model
[13]. The fermionic SSH model consists of a one-dimensional
(1D) tight-binding model with alternating bond value. De-
pending on whether the first bond is weak or strong, the model
is either in the topological or trivial phase. For open bound-
aries, one possible characterization of the topological phase is
the presence of twofold, quasidegenerate, zero-energy edge
modes that are exponentially localized at the boundaries.
Remarkably, these edge modes have been observed and char-
acterized experimentally in one-dimensional optical lattices
[14] and artificial spin chains simulated with Rydberg atoms
[15] in ultracold atoms setup.

To treat interactions in 1D systems, a powerful technique
that was developed in the previous decades is bosonization
[16,17].

One trademark ability of bosonization is to map interacting
spinless fermions in 1D to a free bosonic theory. Remarkably,
this technique has been successfully applied to study the ef-
fects of interactions on Majorana modes in superconducting
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wires [18-22]. However, to the best of our knowledge, de-
spite extensive analytical and numerical studies of the bulk
physics and phase diagram of the interacting SSH (see, e.g.,
Refs. [23-27]), it has yet to be determined whether bosoniza-
tion is able to describe quantitatively the physics of the edge
modes.

In this Letter, we fill this gap by deriving the bosonized
theory of the interacting SSH model with open boundaries.
We use the classical Euler-Lagrange (EL) equations of motion
of the bosonized theory to compute the density profile of
the zero-energy edge mode and observe excellent agreement
with numerical results, notably the localization of the mode
near the boundaries. Remarkably, we find that repulsive or
attractive interactions do not systematically localize or delo-
calize the edge mode but their effects depend on the value of
the staggering parameter. We provide quantitative predictions
of these effects on the localization length. Our results are a
proof of concept that bosonization is able to describe the edge
modes of interacting topological 1D systems and pave the way
to a generalization to other models.

We begin by discussing the bosonization procedure in
the absence of interactions. Let (c;, c;) jer1,n] be the usual
fermionic creation and annihilation operators associated to
site j. The discrete free SSH Hamiltonian on N sites in 1D
is given by

N—-1

H = [—t—8(-1)I(clcjt1 + He), (1)
j=1

i.e., we have a tight-binding chain with alternating values
for the bond. Fixing ¢ > 0, the topological phase corre-
sponds to the case where we have an even number of sites
and § > 0. A signature of the topological phase is the ex-
istence for open boundary conditions of quasidegenerate
zero-energy eigenstates [28] in which a single particle is in a
coherent superposition between the two edges of the chain—

©2023 American Physical Society
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see, e.g., Refs. [29,30] for details on the noninteracting
case.

The fermionic operator ¢; for open boundaries can be ex-
panded in Fourier modes ¢, as

N
) L. wjn
j =1 ]V—H n§=1 Cy, SIN <N+ 1)~ (2)

For § = 0, this rotation diagonalizes the problem, i.e., we have
Hs—o=)_, nC1¢, with g, = =2t cos(N+1)

The continuum limit is obtained by introducing the lattice
spacing a and defining the position x = ja and the momen-
tum k = 2[[(21’\,’11) The size of the system is taken to be L =
a(N + 1) so that k = Z*. The continuous fermionic field is

Y(x) = JLEC ;- The boundary conditions for W are obtained by

extending the discrete formula Eq. (2) to site 0 and site N + 1:
Yx=0))=0and¥(x=a(N+1)=L)=0

Following the usual bosonization procedure [17,31], we
split W into left- and right-moving fields Wy ;g by expanding
around the Fermi energy &y, :

W(x) = WR(x) + W (x), )
WR(x) = f et f —Cerie e )
Wy (x) = —Wg(—x). ®)

For convenience, we also define the “slow” fields R(x) =
Wi (x)e %% L(x) = W (x). Importantly, because of open
boundaries, the left and right movers are not independent as is
encapsulated by Eq. (2)—see, e.g., Refs. [32-34] for previous
discussions of open boundary bosonization.

In the continuum, R(x) taken alone can be thought of as a
field living on a space of size 2L with periodic boundary con-
ditions. In the bosonized language, it can then be reexpressed
as

R(x) = Fx PRt (6)
2mo
PR (x) = —NR+Z = (ane™® +aje™ F)e ()
n>0

where Fj is the Klein factor [17] associated to the right mover
with FIQ'FR = FRFRT = 1, Ny the particle number operator as-
sociated to the right movers, (a,, a;)n>0 a set of bosonic
modes indexed by n, and o a regularization parameter that
we will identify with the lattice spacing a. The expression of
the bosonic field associated to the left movers can be readily
deduced from Eq. (5). Fi. = —Fr, ¢L(x) = ¢r(—x). The con-
jugated fields ¢, 6 are customarily defined as

$(x) = —¢R(X)2+ ¢r(x)
= ——NR — zg (a, — aZ)sin (mZ—x)e_“gL",
(®)
() = Or(X) + ¢ (x)
2
= ; (an + a})cos <?)e“zz. 9)

The particle density operator p, which counts the number of
particle above the Fermi sea, is deduced from ¢(x) through
the relation

1
p(x) = ——0:p(x). (10)
b4

In the remaining, as we want to characterize the zero-energy
modes, we will work at half filling. It is important to notice
that the definition of the half filling depends on the total
number of sites. Let Np € N label the last occupied state of

the Fermi sea. For N even, we have Np = % The correspond-

TN/2 AT — s A 3 — o first

ing momentum is kp = aviD Y e T w2
order in 1/L. For N odd, the two possible deﬁmtlons of the
half-filled state are Np = ;E with corresponding Fermi mo-

menta kr = 7= — 5-(1 F 1). In the remainder of this Letter,

we will choose the convention Ny = Y=L = L for odd number of
sites. The Fermi sea state with all modes filled up to Nr and
empty above will be referred to as the vacuum state.

Equipped with these relations, we can express the lattice
fermionic operator as

F (e i9n @) _ pikrxtign(—2)) (11)

Cj=——=

Var

To derive the Hamiltonian in its bosonized form, we insert ex-
pression Eq. (11) into Eq. (1) and discard terms oc(—1)*/¢ that
are varying fast at the level of the lattice spacing. Because the
SSH Hamiltonian itself contains such a fast varying prefactor
for the staggering term, this gives contributions xRL, LTR
in addition to the usual contribution of the tight-binding term
«R'R, LL. The result is [see the Supplemental Material
(SM) [35] for details]

H = / dx—

Lsin 2%

(3:p)* : +: (3:6) 1]

. cos |:2¢(x) n (— — Dk — %) } . (12)

L

where vp := 2tasin(kpa) denotes the Fermi velocity and : e :
normal ordering of the fermionic modes with respect to the
vacuum. To get the normal-ordered expression of the cos term,

we used €69 =: o) . [% sin(%)]’§ which itself comes
from (8).

We see that the SSH in the bosonized language is almost
equivalent to a sine-Gordon Hamiltonian except that the pref-
actor in front of the sinus has spatial dependence (we mention
that the same dependence appeared already in Ref. [21], where
a more general noninteracting model is studied).

We now turn to the computation of p using the classical
Euler-Lagrange (EL) equations of motion. Let Z = tr(e )
and T the conjugated field to ¢, IT = 19,6. In the imaginary-
time formalism, we have

zZ= /D¢Dnefff5d“”‘£, (13)

with £ the Lagrangian density [ dxL = [ dxiT1d.¢ — H.
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AL _ 0 9L 4 b oL

: 9
The EL equations 36 = 3739, T 9:35.0

yield

1
—02¢ + vpo ¢
3

2™ |:2¢)(x) + (f — 2k — 5)4. (14)
== a L

L sin T

In the zero-temperature limit, all the weight of the probability
measure will be contained in the stationary solution d;¢ = 0.
Introducing the natural rescaling y = x/L, ¢(y) = ¢(yL), we
get the L-independent equation

sin(2e(y) + emy)

sin(ry) ’ (13

Rey)=—v

where we introduced v = and € =0 for an
even number of sites where kr = ;’—a — Z”—L and € = 1 for an
odd number of sites using the convention kr = 5~ — 7. The
boundary conditions for ¢ are read from Eq. (8): Aty =0
we have ¢ = 0 and at y = 1 we have ¢ = —mng with ng the
number of particles created on top of the vacuum.

To the best of our knowledge, Eq. (15) has no known
analytical solution so we resort to numerics. To assert the
validity of our approach, we compare numerical solutions of
Eq. (15) with exact diagonalization (ED) results performed
on the discrete Hamiltonian Eq. (1) in the zero-temperature
ground state. The ED results show fast oscillations on the
scale of the lattice spacing 1/kr that we do not see from the
solutions of the EL equations of motion since we precisely
discarded these terms. Coarse graining over the fast oscilla-
tions gives a smoothly varying density profile on the scale of
the total system size. We observe excellent agreement between
the ED and the EL solutions—see Fig. 1. We also checked
that the agreement holds both for § positive or negative, for an
even or an odd number of sites, and for different values of ng
(corresponding to different excited states) [35].

For the even case and ng = 0 the solution of the EL equa-
tions is simply ¢ = 0 so that p(x) = 0, which is consistent
with the particle-hole symmetry of the model. For § > O,
fixing ng = 1 amounts to populating the first mode above the
vacuum state, i.e., the zero-energy edge mode. From Eq. (10)
and Eq. (15), we can thus deduce the density profile of this
edge mode. We plot in Fig. 1 the numerical solution of (15)
and indeed see a concentration of the density at the bound-
aries. There is a nice interpretation from Eq. (12). The term
proportional to § wants to lock the field in the minima of
the cos term. For N even and § > 0, this corresponds to
¢ = —Z[r]. To match the boundary condition, the field ¢
must jump from 0 to —z /2 and then from —m /2 to —r.
These jumps translate in concentration on the edges for the
density p(x) = —% @ (x). The stiffness of the jumps of ¢
is controlled by v and determines how much the mode is
concentrated at the edges. Equation (15) is consistent with the
exponential localization of the edge mode near the boundary.
Indeed, for small y, one crude approximation of Eq. (15) at
first order in y is given by 9,(0,¢) ~ — . Using addition-

g

2 8L ~ wd(N+1)
VF t

0.025

Discrete ED
== == Coarse-grained ED
== Bosonization
0.020
‘ + Exp Ansatz
0.015
Q
0.010
0.005
0.000
0 100 200 300 400 500
J

FIG. 1. Comparison between the results of the discrete ED, the
bosonization result, and the exponential fit for v = 20, N = 500.
The uniform vacuum density p; = 1/2 has been subtracted. The
light-blue curve corresponds to exact discrete ED result which show
fast oscillations at the scale of the lattice spacing. The green dashed
curve represents the same data coarse-grained over two sites. The red
curve is the density profile obtained by solving the EL equation (15)
from the bosonized theory and using p; = % - %3x¢(x = ja) and
¢(x = ja) = ¢'(y). Lastly, the dashed blue line is obtained from
the exponential ansatz Eq. (16). Note that the latter two appear
superposed on this plot.

ally that the total particle numberis 1, i.e., % fol dydyp(y) =1,
leads to the following ansatz ¢, when v > 1:

cosh [%(Zy - 1)]
sinh (2)

v
T

Oypa(y) = —v (16)

This exponential ansatz dictates the expression for the typical
localization length of the edge mode,

L VE

b= —=—.
2v 48

arn

For the free SSH, it is known (see, e.g., Refs. [29,30]) that

{ox -4~ ~ % For ? < 1, this is consistent with our result

In 22 25"
since 'l;ps ~ 2ta at half filling. The fact that the result agrees
in the limit where £ >> a is a consequence of the bosonization
procedure, which is a long-wavelength, low-energy theory.

We now turn to interactions. We consider a nearest-

neighbor interacting term of the form

N-1

H =V Z(nj = 1/2)(nj41 — 1/2), (18)

j=1

with n; := cj.c ; the particle number operator. Note that this
term preserves time-reversal, particle-hole, and chiral sym-
metries. From now on, we will work exclusively in the
topological phase, i.e., § > 0, N even, and Np = % As usual
in bosonization, the effects of interactions are to rescale the
coefficients appearing in the free part. Introducing uK = vg

L201111-3
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FIG. 2. (a) Plots of relation (23) for the localization length in the interacting case as a function of K for different values of 5. We see that
the effect of interactions on the edge mode strongly depends on the value of §. (b) Comparison between the solution of the EL equations of
motion (20) in the interacting case with DMRG simulations. The DMRG results for attractive (repulsive) interactions have been coarse-grained
once (twice) over two sites. Only half of the solution is shown for better readability. We took N = 100, § = 0.05, V = 1.6, K = 0.7 for the
repulsive case and V = —0.77, K = 1.4 for the attractive case. In this case, attractive (repulsive) interactions delocalize (localize) the edge
mode. (c) Same as (b) with parameter values N = 26, § = 0.2, V = 1.6, K = 0.7 for the repulsive case and V = —0.77, K = 1.4 for the

attractive case. We see that, in comparison to (b), the qualitative effects of the interactions are swapped.

4Va
T

and % =vr + , we obtain [35]

= A X o K. x(f) i TUlK (0 I

2 1-K 1
+ 5<E> m 2 cos(2¢) 1 :| (19)

T

Because the free part of the Hamiltonian has been rescaled by
interactions, the normal ordering is now with respect to the
new ‘“squeezed” vacuum which we denote by ::;. The new
normal-ordering relation is obtained by rescaling the fields
accordingly to the new vacuum ¢ — K1/2¢, 6 — K129,
leading to €¢? =: /¢ :; [% sin(%)]"%_.

In principle, since we are at half filling, there should also
be an umklapp term o cos(4¢) [35]. For simplification, we
will neglect this contribution in the present work by restricting
ourselves to the case K > 1/2 for which it is irrelevant in
the renormalization group (RG) sense. The EL equations of
motion in the presence of interactions become

, (L : an K 28 _sin2p)
Ge(y) = 2(11) (2L> K t [sin(y)]X"

A comparison of numerical solutions of (20) and density-
matrix renormalization group (DMRG) simulations is shown
in Fig. 2(b) for § = 0.05,N =100 and V = 1.6, K = 1.4 for
the attractive case and V = —0.77, K = 1.4 for the repulsive
case. We see that the EL equations of motion predicts the
correct density profile. For these parameters, we see that at-
tractive interactions delocalize the edge mode into the bulk
while repulsive interactions localize it further.

For 1/2 < K < 2, we can give an estimation of the local-
ization length by expanding Eq. (20) for y <« 1. This gives

2LN\*7K 50y
2o@y) = —( = K-
e ( P > P

(20)

2

Imposing ¢(y) = 0, the solutions to this equation are of the
form

. _\/7] 26\ 7 [8\* 2K ’
Pp(x K L) = Zﬁ (;) (;) 2_K| ., (22)

where J, is the Bessel function of the first kind—see SM
[35] for the proof. The precise shape of the Bessel function
depends on « but, as one can easily verify, the position of the
first maximum of J, scales linearly with «.. Thus, we define the
localization length to be the value ¢; such that ¢(¢;) = IZTZK\
where the factor 2 has been put in order to match with the
localization length of the free case. Following this definition,

we obtain that
al t \TF
lh=—-|— .
! 2(81(2)

The localization length diverges at K = 2 if ‘ZE < }1. This gives
a rough criteria for having a localized mode in the attractive
regime K > 1. Importantly, note that ¢; is not, in general, a
monotonic function of K [see Fig. 2(a)].

One consequence of this is that attractive or repulsive inter-
actions do not systematically delocalize or localize the edge
mode, and their effect can change depending on the value
of §. This is illustrated in Fig. 2(c) where we took 6 = 0.2.
Contrary to the previous case shown in Fig. 2(b), we see that
the effects of attractive interactions are to localize the edge
mode further to the boundary and the other way around for
the repulsive ones.

Finally, note that from the standard RG argument [17], the
scaling of the gap in the vertical regime of the flow (i.e., K
constant and & small) is given by A ~ %(%TK)ﬁ. Thus, in
the region 1/2 < K < 2 the localization length Eq. (23) scales
roughly as 1/A. One interpretation is that A represents the
cost for the edge mode to “penetrate” the system and, as such,
the greater A is, the smaller is ¢;.

Conclusion. In this Letter, we derived the bosonized theory
of the interacting SSH model with open boundaries. One of
our remarkable results is that attractive (repulsive) interactions

(23)
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do not systematically delocalize or localize the edge mode,
but this behavior is strongly dependent on the value of the
staggering parameter §. Note that while we only considered
nearest-neighbor interactions, bosonization naturally allows
us to treat long-ranged interactions.

Importantly, our study offers quantitative arguments to de-
termine the effects of interactions on the edge mode and pave
the way to study other interacting topological models. Indeed,
the main ingredients allowing us to derive the edge mode
physics are a free bosonic Hamiltonian, a sine-Gordon-type
term, and the correct normal ordering of these terms by tak-
ing into account the open boundaries. All these features are
also present in other 1D topological models presenting edge

modes such as the spin-1 antiferromagnetic Heisenberg chain
[36-38], the Affleck-Kennedy-Lieb-Tasaki (AKLT) model
[39], or the Kitaev fermionic chain [21,40].

Finally, it is noteworthy that the physics of the edge modes
in these models has been recently investigated in quantum
simulation platforms [41,42].

The DMRG simulations presented in this Letter were done
using the TENPY package for tensor network calculations with
PYTHON [43]. T.J. thanks Aashish Clerk for interesting discus-
sions and comments on this work. The authors acknowledge
support from the Swiss National Science Foundation under
Division II .
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