
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Chapitre d'actes 1999 Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

Rapid prototyping of formally modelled distributed systems

Buchs, Didier; Buffo, Mathieu

How to cite

BUCHS, Didier, BUFFO, Mathieu. Rapid prototyping of formally modelled distributed systems. In:

Proceedings Tenth IEEE International Workshop on Rapid System Prototyping: shortening the path from

specification to prototype. Clearwater (FL, USA). [s.l.] : IEEE Comput. Soc, 1999. p. 4–9. doi:

10.1109/IWRSP.1999.779023

This publication URL: https://archive-ouverte.unige.ch/unige:121384

Publication DOI: 10.1109/IWRSP.1999.779023

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:121384
https://doi.org/10.1109/IWRSP.1999.779023

Rapid Prototyping of Formally Modelled Distributed Systems

Didier Buchs
Software Engineering Laboratory

Swiss Federal Institute of Technology
1015 Lausanne SWITZERLAND

Didier.Buchs@epfl.ch

Mathieu Buffo
Software Engineering Laboratory

Swiss Federal Institute of Technology
1015 Lausanne SWITZERLAND

Mathieu.Buffo@epfl.ch

Abstract

This paper presents various kinds of prototypes, used in
the prototyping of formally modelled distributed systems. It
presents the notions of prototyping techniques and proto-
type evolution, and shows how to relate them to the software
life-cycle. It is illustrated through the use of the formal mod-
elling language for distributed systems CO-OPN/2.

1 Introduction

Application prototyping is a technique that helps soft-
ware developers in understanding the functionalities pro-
posed by a given system, and in tuning their realizations.
Rapid prototyping (i.e. prototyping from the very first steps
of software development) of formally modelled systems is
a very useful idea when dealing with the development of
critical systems. In this case, various techniques were pro-
posed for the prototyping of formal models, such as alge-
braic data types or Petri nets. However, concrete
prototyping techniques are rarely proposed for incremental
development in which prototyping must be performed at
various level of the development life-cycle.

This paper identifies various kinds of prototypes used
during the development of formally modelled distributed
systems. These various kinds of prototypes are definitely
fruitful as they cover the whole process of software devel-
opment, from the first specification to the final implemen-
tation. The aim of this paper is exhibited through the use of
the formal modelling language CO-OPN/2, typically used
during the development of critical distributed systems [7],
as well as the use of Java as the target implementation lan-
guage.

Section 2 briefly introduces CO-OPN/2, allowing the
reader to understand the formal basis of this paper. Then,
Section 3 presents various kinds of prototypes dealing with
the formal modelling of distributed systems, while Section
4 explains how to use them in the life-cycle promoted by
CO-OPN/2. Section 5 illustrates our aim through a typical
scenario. Finally, Section 6 concludes this paper.

2 CO-OPN

CO-OPN/2 is an object-oriented modelling language,
based on (ADT) Algebraic Data Types, Petri nets, and
IWIM coordination models [4]. Hence, CO-OPN/2 concrete
specifications are collections of ADT, class and coordina-
tion modules[1] [2]. Syntactically, each module has the
same overall structure; it includes aninterface sectionde-
fining all elements accessible from the outside, and abody
sectionincluding the local aspects private to the module.
Moreover, class and context modules have convenient
graphical representations, showing their underlying Petri
net model.

Low-level mechanisms and other features dealing spe-
cifically with object-orientation, such as genericity, sub-
classing and sub-typing are out of the scope of this paper,
can be found in [1].

2.1 ADT Modules

CO-OPN/2 ADT modules define data types by means
of algebraic specifications. Each module describes one or
more sorts (i.e. names of data types), along with generators
and operations on these sorts. The exact definition of the
operations is given in the body of the module, by means of
equationnal axioms. For instance, Figure 1 describes a
(very simple) ADT defining one sort (the booleans) and
one operation on this sort (the negation).

ADT SimpleBooleans;
Interface

Sort booleans;
Generators true, false : ->boolean;
Operation not_ : boolean->boolean;

Body
Axioms

not (true) = false;
not (false) = true;

End SimpleBooleans;

Figure 1 : ADT SimpleBooleans

2.2 Class Modules

CO-OPN/2 classes are described by means of modular
algebraic Petri nets with particular, parameterised, external
transitions, themethodsof the class. The behaviour of tran-
sitions are defined by so-calledbehavioural axioms, corre-
sponding to the axioms in ADT. A method call is achieved
by synchronising external transitions, according to the
fusion of transitions technique.

Below is the code and the associated Petri net graphics
of a class modelling an unusual storage system; it stores
boolean values, but delivers the negated ones. The interface
defines two methods, for the injection and the ejection of
values. The body is actually a textual representation of the
associated Petri net. Free variables may be defined and used
in the behavioural axioms.

2.3 Coordination Modules

A third kind of modules is present in CO-OPN/2, the
contextmodules[4], which share the same overall structure
with ADT and class modules. Basically, context modules
allow the modelling of distributed systems, by means of
suitable coordination mechanisms, more complex than the
fusion of transitions seen above.

Due to lack of space and to the fact that COIL is
clearly specific to the coordination theory, context modules
are not illustrated here.

3 Prototyping of Formally Modelled Dis-
tributed Systems

The goal of this section is the identification of various
kinds of prototypes related to formally modelled distributed
systems using CO-OPN/2. The next section explains how to

use these kinds of prototypes in thesoftware life-cyclepro-
posed for CO-OPN/2.

We decompose the prototyping strategy into two orthog-
onal dimensions. The first dimension takes into account the
techniques used to prototype a system, while the second di-
mension takes into account about the ability for prototypes
to evolve along with the developer’s intentions.

3.1 Prototyping Techniques

CO-OPN specifications can be either simulated using an
apposite monitor or executed by a specific executable pro-
totype. Prototyping by simulation focuses on the validation
of the system functionality with regard to the user require-
ments. On the other hand, prototyping by execution allows
the tuning of design and implementation choices. In the
case of distributed systems, an executable prototype itself
may be distributed; this also allows the fine tuning of the
system’s configuration.

These two techniques can be easily applied on various
level of abstraction of the CO-OPN/2 formal models. In
both cases, the CO-OPN/2 code will have to be processed by
a common front-end which performs lexical, syntactical
and static semantic analysis.

Prototyping by simulation. Prototyping by simulation al-
lows the developers to validate their models, by letting them
explore and analyse the semantics of their specification.
CO-OPN/2 models can be simulated using standard rewrit-
ing techniques that are compatible with the denotational se-
mantics of ADT and with the structured operational
semantics of our algebraic Petri nets. For instance, the fol-
lowing ordered rewrite rules are used for the axioms of the
ADT modelling simple booleans we saw above:

not (true) -> false;
not (false) -> true;

Axioms of the Petri nets part are evaluated in order to
compute the possible evolution of the modelled system,
represented as a transition system. For instance, we are able
to deduce that the class modelling the strange storage sys-
tem we saw above includes the following behaviour:

{} { true } {}

The simulation performed by using a Prolog engine,
solves both the rewrite process and the symbolic manipula-
tion [8]. Due to the versatility of the Prolog interpreter that
we use (Prolog with control), it is possible to compute more
abstract or more complicated behaviours. For instance, it is
possible to perform a symbolic evaluation, such as:

{} { true } {}

This behaviour is more abstract, as it shows that the buff-
er is able to preserve any boolean value.

Class StrangeStorageSystem;
Interface

Use SimpleBooleans;
Methods put _ , get _ : boolean;

Body
Place container _ : boolean;
Axioms

put b :: -> container b;
get b :: container not(b) -> ;

Where b : boolean;
End StrangeStorageSystem;

Figure 2 : Class StrangeStorageSystem

StrangeStorageSystem

container: boolean
put(b) get(b)

b not(b)

put(true) get(false)

put(x) get(not(x))

Prototyping by execution.Executable prototypes allow
developers to tune their design and implementation choices,
by letting them freely interact and play with their proto-
types. When executable prototypes are desired, CO-OPN/2
models are translated into Java programs. In the case when
the abstract semantics of CO-OPN/2 is not executable, an
operational semantics is mapped to CO-OPN/2, and it is
used to perform the translation.

The operational semantics is in essence very close to the
original semantics; it actually defines a heuristic for solving
the non-deterministic choices found in the original seman-
tics, and it includes explicitly a definition of the negative
pre-condition (i.e. it allows the prediction ofimpossiblebe-
haviours in a given system, as well as when this behaviour
is possible).

This semantics keeps intact the properties of distribution
and configuration of systems found in CO-OPN/2. Indeed,
all implicit object synchronisations occurring during an
event is made explicit (there are strong similarities with the
semantics of distributed Prolog). Moreover, the manage-
ment of complex synchronisations, which are atomic from
the operational point of view, is based on general nested
transaction techniques. Thus distributed prototypes are like-
ly to be defined, for the tuning of the model in an actual en-
vironment, which can be a distributed platform.

3.2 Evolutive Prototyping

Another dimension of the prototyping process is the abil-
ity to produce prototypes that are able to evolve. This aspect
is interesting in the context of the more concrete kind of
prototyping method based on the distributed execution of
code. It should be noted that the notion of evolution is con-
sistent with the prototyping by simulation techniques, but it
requires very specific knowledge and is out of the scope of
this paper [5].

The idea is that a prototype should be able to evolve ac-
cording to the intentions of the developers, by replacing
parts of the distributed prototype with compatible ones. Our
approach can be characterized by contributions on two lev-
els: first, the class-based separation between the automati-
cally generated and the hand-written code, and second, the
use of prototype objects in a systematic software develop-
ment process

The evolution process starts with an executable distrib-
uted prototype in Java, resulting from the prototyping tech-
nique by execution described just above. This Java code is
actually main-stream object-oriented code, which provides
a portable and high-level starting implementation.

The generated class hierarchy is designed so that the de-
veloper may then independently derive new sub-classes in
order to make the prototype more efficient or to add new
functionalities.This process is performed incrementally in

order to safely validate the modifications against the seman-
tics of the specification. The resulting prototype can finally
be considered as the end-user implementation of the speci-
fied software system [3].

The originality of our scheme is that we exploit object-
oriented programming techniques in the implementation of
formal specifications in order to gain flexibility in the de-
velopment process. The paradigm of object-orientation per-
mits easily several implementations for a same abstraction.
In usual implementation patterns, there is one parent class
with several equally important sibling implementations. We
propose instead a hierarchy with a privileged implementa-
tion, the one generated automatically, which will serve as
reference for future hand-written class derivations.

For each CO-OPN/2 class, two Java classes are defined,
the first one modelling the algorithmic part of the original
class, the second one defining an access control policy. By
proper use of polymorphism, these classes can export all
their operations in an implementation independent manner.
The generated concrete class provides a sample internal
representation to be used by default; it does not usually re-
define any of the inherited routines. From here, both classes
are likely to be independently extended, using Java inherit-
ance, to let parts of the prototype evolve. Figure 3 illustrates
this organization with one main evolution of the access con-
trol and two main evolution branches of the algorithmic
part.

4 Prototyping and Software Life-Cycle

The life-cycle promoted by the development method as-
sociated to CO-OPN/2 includes several steps of refinement
(in the sense that a refinement details some aspects of the
specification). These refinements bring more and more con-
crete models as long as we progress in the development [6].
This situation is shown in Figure 4.

Figure 3 : Organization of Evolutive Prototypes

Control part Algorithmic part

Alg evolution 1 Alg evolution 2Ctrl evolution

more heremore heremore here

Abstract specifications can only be symbolically inter-
preted while more concrete ones can be executed using a di-
rect translation of the specification into a programming
language. In addition, we remark that the prototypes are
more and more incremental as long as we progress in the de-
velopment. Figure 5 shows this situation. First prototypes
are symbolic prototypes (prototyping by simulation) while
next ones are executable prototypes. As long as the process
goes on, the developer is able to increment more and more
its prototypes, allowing thus more and more tuning of the
resulting system.

According to both figures, we state that in the develop-
ment method associated with CO-OPN/2, the kind of proto-
type to use is strongly connected to the software life-cycle,
and more precisely:

• prototypes used during thespecification phase aresym-
bolic prototypes, with poor abilities for evolution, with
poor abilities for fine tuning, but allowing rapid valida-
tion of the system;

• executable prototypeswith poor use of prototype evolu-
tion are used during thedesign phase, as they allow the
test and the tuning of the main design choices;

• last prototypes obtained during the design phase should
be incrementally modified during theimplementation
phase for the fine tuning of the software; The lastevol-
utive prototype may be considered as theresulting pro-
gramme.

5 Typical Scenario

We present now an hypothetical software development
using the rapid prototyping facilities described above. The
aim of this section isnot to present the development of a re-
alistic case study; due to lack of space, we present hereonly
a typical scenariowhere the three kinds of prototypes are
used.

The argument of the scenario is the following: assume
we develop a model, in which a storage system is needed.
We use CO-OPN/2 to describe our model, and in particular
the storage system. We select Java as the target implemen-
tation language. As usual with CO-OPN/2, we start with a
first abstract object model, and we refine it to obtain a con-
venient concrete solution. Due to the modularity of CO-
OPN/2, we are able to focus on a particular component dur-
ing the refinement process (here the storage system), and to
derive various prototypes covering the component itself as
well as the whole system.

5.1 Prototypes during the Specification

We create an object model for the storage system, as de-
picted in Figure 6. We have a class encompassing an alge-
braic Petri net, the transitions of which are the methods of
the class. Due to the properties of Petri nets, this class shows
an abstract storage, in which the output priority is not relat-
ed to the input priority.

As soon as we get this class, we can prototype it by sim-
ulation. This first prototype may be used to insure the intrin-
sical properties of the class (in this simple example, it is
obvious that the class really acts as desired, but this is not
true in general). This prototype gives us confidence in the
soundness of the storage system.

Now, assuming that the model of the rest of the system
is available, we can prototype the whole system, by simula-
tion again. This second prototype is used to validate the
model with regards to the original (and informal) require-
ments. For instance, this prototype may be used to insure
that no queuing strategies have to be imposed by the model
to meet the requirements.

Figure 4 : Life-Cycle Promoted by CO-OPN /2

Figure 5 : Incremental Prototyping

Model 1

Model 3

.
.

Model 2

Model nconcrete

time

spec. design impl.

Proto 1

Proto 3

.
.

Proto 2

Proto nevolutibe

time

symbolic executable

ability

Figure 6 : Abstract Object Model

StorageSystem

p: elem
put(e) get(e)

e e

5.2 Prototypes during the Design

We refine now our model by making design choices. In
the framework of CO-OPN/2, this is performed by produc-
ing a new CO-OPN/2 model, closer to the envisaged solu-
tion. In our scenario, we make a design choice regarding the
queuing strategy of the storage: we decide to use a FIFO
strategy. Figure 7 depicts our refined CO-OPN/2 model.
The place contains now a unique token, structured as a
FIFO queue of elements.

We may now prototype this model, either by simulation
or by execution. A prototype by simulation may be used to
verify the correctness of the refinement, for instance, by an-
alysing the behaviours of the new model with regards to the
original one.

However, the most interesting thing to do now is to de-
rive automatically an executable prototype. We create this
prototype by extracting the appropriate information from
the CO-OPN/2 model. In our case, we derive two classes,
one for the Fifo data type, and one for the storage itself. This
situation is shown in Figure 8. This prototype can be used
to gain confidence in the choice of a Fifo, for instance. In
any cases, during this phase of software development, new
refinements require the re-generation of new executable
prototypes from the CO-OPN/2 model.

5.3 Prototypes during the implementation

We decide now that the design of our system is com-
plete, and we look for an implementation. We consider the
last executable prototype as a starting point and we use the
incremental prototyping technique to produce our software.
For instance, we can replace (incrementally, without re-
gards to the rest of the system), the ad-hoc Fifo class by a
Java Vector, as Vectors are convenient means to define un-
bounded collection of values in Java. This situation is
shown in Figure 9. Readers should note how problems deal-
ing with threads’ concurrency are handled in this class, with
regards to the previous figure; synchronisations are now at-
tached to the storage system.

At this point, we may decide that we must bound its ca-
pacity for some good reason. We transform again our pro-
totype, to reflect this choice, and we use a Java (fixed-
length) array. This prototype is shown in Figure 10.

Figure 7 : Refined Object Model

public class Fifo {
public synchronized void add

(Elem e) {
// generated by the tool

}
public synchronized Elem remove() {

// generated by the tool
}

}

public class FifoStorageSystem;
private Fifo fifo=new Fifo();
public void put(Elem e) {

fifo.add(e);
}
public Elem get() {

return(fifo.remove());
}

}

Figure 8 : Java Prototype with ad-hoc Fifo

StorageSystem

p: fifo
put(e) get(e)

e+q q+e

q q import java.util.*;

public class FSSVector
extends FifoStorageSystem;

private Vector p=new Vector();
public synchronized void put

(Elem e) {
p.addElement(e);

}
public synchronized Elem get() {

Elem e=p.firstElement();
p.removeElementAt(0);
return(e);

}
}

Figure 9 : Java Prototype with a Vector

public class FSSArray
extends FifoStorageSystem;

private Elem[] p;
private int pointer;
public StorageSystem(int bound){

p=new Elem[bound];
pointer=0;

}
public synchronized void put

(Elem e) {
p[pointer++]=e;

}
public synchronized Elem get() {

Elem e=p[0];
--pointer;
for (int i=0;i<pointer;i++)

p[i]=p[i+1];
return(e);

}
}

Figure 10 : Java Prototype with an Array

Using the evolutive prototyping technique, we will pro-
duce many other prototypes, each of them being formally a
refinement of the previous one. In this case, the last proto-
type is actually the desired implementation. For instance, in
the case of our storage system, we may derive:

• some prototypes allowing to fix the size of the array;

• then a new prototype with an exception mechanism to
prevent problems dealing with the capacity of the
buffer;

• then new prototypes with better implementations of the
cyclic buffer;

• and finally the last prototype, actually a distributed
implementation, with remote procedure calls based on
the Java RMI technique.

6 Conclusion

To summarize, in this paper, we identified various kinds
of prototypes for formally modelled distributed systems,
and we shown how these kinds of prototypes are used in the
software development process, according to the software
life-cycle promoted by the modelling language CO-OPN/2.
We shown that prototyping by simulation is useful during
the first steps of software development, to validate the mod-
el against the requirements. Moreover, we exhibited the fact
that - in the framework of CO-OPN/2 - prototyping by exe-
cution is used to test various design choices, either at the
level of component, or at the level of the global system. Fi-
nally, we used clearly evolutive prototyping for the fine tun-
ing of the proposed software.

We are working currently on a new prototyping tool
based on the prototyping by execution technique. This tool
is derived form the work we made about evolutive prototy-
ping [3]. The new tool is based on Java, and it must inte-
grate CORBAandRMI facilities, for the integration of the
generated prototypes with existing software. This integra-
tion is particularly important in our context of evolutive
prototyping.

Acknowledgements

We would like to thanks Shane Sendall for his helpful
comments on a first draft of this paper.

References
[1] Olivier Biberstein and Didier Buchs. Structured algebraic

nets with object-orientation. InProceedings of the first inter-
national workshop on “Object-Oriented Programming and
Models of Concurrency” within the 16th International Con-
ference on Application and Theory of Petri Nets, Torino, Ita-
ly, June 26-30 1995.

[2] Olivier Biberstein, Didier Buchs, and Nicolas Guelfi. Object-
oriented nets with algebraic specifications: The CO-OPN/2
formalism. In G. Agha and F. De Cindio, editors,Advances
in Petri Nets on Object-Orientation, Lecture Notes in Com-
puter Science. Springer-Verlag, 1998. To appear.

[3] Didier Buchs and Jarle Hulaas. Evolutive prototyping of het-
erogeneous distributed systems using hierarchical algebraic
Petri nets. InProceedings of the International Conference on
Systems, Man and Cybernetics, Beijing, China, October
1996. IEEE.

[4] Mathieu Buffo. Experiences in coordination programming.
In Proceedings of the workshops of DEXA’98 (International
Conference on Database and Expert Systems Applications).
IEEE Computer Society, aug 1998.

[5] Christine Choppy and Stéphane Kaplan. Mixing abstract and
concrete modules: Specification, development and prototy-
ping. In 12th International Conference on Software Engi-
neering, pages 173–184, Nice, March 1990.

[6] Giovanna Di Marzo Serugendo and Nicolas Guelfi. Formal
development of java based web parallel applications. InPro-
ceedings of the Hawai International Conference on System
Sciences, 1998.

[7] Giovanna Di Marzo Serugendo, Nicolas Guelfi, Alexander
Romanovsky, and Avelino Zorzo. Formal development and
validation of the dsgamma system based on CO-OPN/2 and
coordinated atomic actions. Technical Report to appear as
1997 - Technical Report of the Esprit Long Term Research
Project 20072 “Design For Validation”, University of New-
castle Upon Tyne, England, Department of Computing Sci-
ence, 1997.

[8] Peter Padawitz.Computing in Horn Clause Theories,
volume 16 ofEATCS Monographs on Theoretical Computer
Science. sv, Berlin, 1988.

