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~~~~~~~~~~~~~!!!"!"!!!!"!"!!"""" Communicated by Geoffrey Goodhill 

Possible Roles of Spontaneous Waves and Dendritic Growth 
for Retinal Receptive Field Development 

Pierre-Yves Burgi 
Norberto M. Grzywacz 
Smith-Kettlewell Eye Research Institute, 
San Francisco, CA 94115 USA 

Several models of cortical development postulate that a Hebbian process 
fed by spontaneous activity amplifies orientation biases occurring ran­
domly in early wiring, to form orientation selectivity. These models are 
not applicable to the development of retinal orientation selectivity, since 
they neglect the polarization of the retina's poorly branched early den­
dritic trees and the wavelike organization of the retina's early noise. There 
is now evidence that dendritic polarization and spontaneous waves are 
key in the development of retinal receptive fields. When models of cortical 
development are modified to take these factors into account, one obtains 
a mod.el of retinal development in which early dendritic polarization is 
the seed of orientation selectivity, while the spatial extent of spontaneous 
waves controls the spatial profile of receptive fields and their tendency to 
be isotropic. 

1 Introduction ______________________ _ 

Retinal cells display some functionally mature receptive fields as soon as 
light responses can be recorded, even prior to birth or eye opening (Masland, 
1977; Rusoff & Dubin, 1977; Dacheux & Miller, 1981a, 1981b; Tootle, 1993; 
Semagor & Grzywacz, 1995a). In some species, early ganglion cells are even 
selective to the orientation of image features and the direction of their motion 
(Masland, 1977; Semagor & Grzywacz, 1995a). These selectivities may in 
some sense be genetically specified. However, as it was well expressed by 
Jacobson (1991), "How essentially the same gene products form a brain 
[structure] at one position and a spinal cord [another structure] at another 
place is not given directly by the genome, but eventuates from a network of 
regulatory epigenetic processes." When applied to the retina, this reasoning 
leads to an interest in epigenetic processes that contribute to the retina's 
receptive field self-organization. 

Three observations may be key to the understanding of the development 
of retinal orientation selectivity. First, in the retina, complex receptive field 
properties such as orientation selectivity seem to depend on a single synaptic 
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layer (the inner plexiform layer, IPL) (Dowling, 1987). Second, developing 
retinas are characterized by early polarization of dendritic trees (Maslim, 
Webster, & Stone, 1986; Ramoa, Campbell, & Shatz, 1988; Dunlop, 1990; 
Vanselow, Dutting, & Thanos, 1990), which seems to impart anisotropies 
to immature receptive fields (Semagor & Grzywacz, 1995a). Third, multi­
electrode and optical recording studies in developing retinas of cats and 
ferrets have revealed that waves of neural activity propagate in random 
directions across the ganglion cell surface and the IPL (Meister, Wong, Bay­
lor, & Shatz, 1991; Wong, Meister, & Shatz, 1993), correlating the activity of 
neighbor amacrine and ganglion cells (Wong, Chemjavsky, Smith, & Shatz, 
1995). Such a correlation in retinal neighbor cells has also been observed 
in other species (in rat, Maffei and Galli-Resta, 1990; in turtle, Semagor & 
Grzywacz, 1993). 

It has been shown that self-organizing multilayer networks with random 
uncorrelated noise in the first layer, retinotopic connections (with random 
errors) from layer to layer, and Hebb-like rules for synaptic maturation can 
lead to the emergence of orientationally selective cells with similar prop­
erties to those in the cortex (von der Malsburg, 1973; Linsker, 1986; Yuille, 
Kammen, & Cohen, 1989; Miller, 1994). 

We now report the results of substituting retinal-like connections and 
noise for those used to simulate cortical development. We demonstrate that 
when Linsker's (1986) model of self-organization of receptive fields is mod­
ified to incorporate spontaneous waves (see Fig. lA) and early dendritic 
polarization (see Fig. IB), the spatial extent of the former controls the spa­
tial profile of receptive fields and their tendency to be isotropic and the latter 
introduces a bias that helps the development of orientation selectivity. (The 
material described in this article has appeared in abstract form as Burgi & 
Grzywacz, 1994a.) 

2 Modification of Linsker's Model to Include Waves and Polarized 
Dendrites _____________________ _ 

Linsker's model (1986) consists of a multilayer network with feedforward 
connections. Following MacKay and Miller's analysis of Linsker's model 
(1990), we consider two layers (besides, possibly, an input layer). The density 
of synapses from cells in layer A (for amacrine, in our later discussion) to a 
given cell in the next ascending layer G (for ganglion) assumes a gaussian 
distribution as function of the position of the cells in layer A. Variations in 
synaptic strength during development are described by a quadratic Hebb­
type rule. For a given set of activities in layer A, such as determined by 
spontaneous uncorrelated noise or waves, this rule expresses the variations 
in synaptic weight Wi of synapse i as a function of its activity Ff and the 
overall activity FG of the postsynaptic cell. Synaptic maturation is described 
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A 

B 

Figure 1: Two models of the developing inner plexiform layer (IPL). The gan­
glion cell dendritic tree, represented as a hatched circle, receives Vir con-
nections from (A) "dendritic-less" amacrine cells (small circles) or ( acrine 
dendrites (straight lines ending on black squares, which represent apses). 
The position of the synapses is random and follows a gaussian dis ution con-
centric with the ganglion cell's dendritic tree. The dendrodendritic amacrine 
processes are assumed to originate at the amacrine cell's soma and point toward 
the ganglion cell's soma. Waves of activity, one of which is shown propagating 
from top left to bottom right, are modeled by an infinitely extended straight wave 
front with a gaussian profile of depolarization perpendicular to the direction of 
propagation. The waves propagate through the IPL and correlate the activity of 
neighbor cells. This correlation depends on the distance separating two cells, the 
waves' direction of propagation, and the orientation of the dendritic processes. 
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by the following dynamical equation (Linsker, 1986), 

d L A -d wi = C1 + (Q .. + C2) DjWj, t . -IJ 
J 

(2.1) 

where Qc' = (Ff - FA)(F
J
A - FA) is the covariance matrix (the overbars de-

-'J 

note average and FA = Ff = Ftl, Dj is synaptic density, C1 = k- Fg (FA - F~), 

and Cz = FA(FA - F~), with Fg, F~, and k being constants of the Hebbian 
rule. In this and next sections, we consider the case Cl = C2 = 0 to compare 
the outcomes of equation 2.1 for different covariance matrices. In section 4 
we analyze the behavior of the system in the C1 - C2 plane. 

For the original Linsker model, the noise in the layer preceding layer A 
is uncorrelated and random, and the arbor of connections between these 
layers is gaussian. Therefore, the covariance function Qu in layer A has a 
gaussian form (Linsker, 1986). We define au to denote its spatial standard 
deviation. 

For comparison with the Linsker model, we calculated what the covari­
ance function would be if the noise assumed the form of spontaneous waves 
in layer A instead of uncorrelated noise (see the appendix for details). We re­
cently proposed a biophysical model for the generation and propagation of 
spontaneous waves of activity in the developing retina (Burgi & Grzywacz, 
1994b, 1994c), based on pharmacological results (Sernagor & Grzywacz, 
1993). As an approximation to the waves in the model, they were modeled 
here by an infinitely extended straight wave front with a gaussian profile of 
depolarization along. the direction of propagation. In this case, by assuming 
the synaptic response at each instant to be proportional to the wave-induced 
depolarization on the amacrine cell, one obtains in the continuum limit (for 
details, see the appendix), 

(2.2) 

where; and,. are two vectors originating at the target cell in layer G (for us, 
a ganglion cell) and ending at two cells in layer A (for us, amacrine cells), 
;:.,. = I; - "1, aw denotes the spatial standard deviation of the wav~' and 
[o(x) is the zero-order Bessel function of an imaginary argument. . 

Finally, we obtained the covariance function for the case of waves excit­
ing the ganglion cell via polarized amacrine dendrites. The dendrite was 
modeled as a straight process, with a synapse at one ending of this process 
contacting the ganglion cell in a random position in this cell's dendritic 
tree (see Fig;. 1B). For simplicity, an arrow beginning at the middle of the 
amacrine dendrite and ending at its synapse always pointed toward the 
center of the ganglion cell's tree. The synaptic response at each instant was 
taken to be proportional to the integral of the wave-induced depolarization 
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along the length of the dendrite. The covariance function was computed as 
the mean covariance due to waves moving in all possible directions. This 
function is (see the appendix for details), 

Q (~ ~') ~ -~ I ~ d'd II 1
1;I+L llrl+L (D,.2) (A2 ) 

d r, r - exp 8 2 0 2 X x, 
1;1 1;'1 aw 8aw 

(2.3) 

where~and " are vectors originating at the ganglion cell soma and ending 
at amacrine synapses, D,.x'x" = Ix'ur -x"u~I, with ur and u~ being unit vectors 
in the direction of' and ,', respectively, and L is the length of the amacrine 
dendrite. 

For the three covariance functions, we assumed the synaptic density func­
tion to the ganglion cell to be a gaussian distribution of standard deviation 
as, that is, 

-, 2 2 2 
0(,') = e- Ir I / as . (2.4) 

This distribution reflects the dendritic arbor of the ganglion cell. 

3 Eigenvector Analysis __________________ _ 

To determine what kinds of receptive field emerge from these models, one 
must solve equation 2.1. For this purpose, the covariance functions were 
first discretized on square lattices (size 17 x 17). Next, to obtain all possible 
outcomes of equation 2.1, we calculated the eigenvalues and eigenvectors 
of matrix (Q~ +C2)Oj (the general solution is a linear combination of the fun-

-IJ 
damental solution set {eAJlul. eA21u2, .. " eAn1un }, where Ai is the eigenvalue 
corresponding to the eigenvector Ui and the coefficients of the linear combi­
nation are determined by the initial conditions, plus a term corresponding 
to a particular solution of the nonhomogeneous equation). Inspection of 
equations 2.2-2.4, as well as Linsker's covariance function, reveals that the 
parameter space involves only the spatial spread of the arbor to tlW amacrine 
layer in Linsker's model (au), the 1-Vave's width (aw ), the deni-titic length 
(L), and the synaptic density spread (as). Because these parameters have 
the dimensions of space, it is possible to study the general behavior of the 
solutions of these equations with only three dimensionless parameters, by 
scaling au, aw, and L by as, the constant in the three models. To allow a 
direct comparison between Linsker's model and our two-layer models, we 
assumed au = aw = a. Hence, the only free parameters left to explore were 
a las and Lias. 

To determine the eigenvalues and eigenvectors that solve equation 2.1, 
w,e applied the transformation tj = 0]/2 Wj, which symmetrizes the ma-
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trix g;;Dj (MacKay & Miller, 1990). The symmetrized matrix was then 

transformed into a tridiagonal matrix using Householder reduction, and 
the eigenvalues and eigenvectors were obtained using the QL algorithm 
(Wilkinson & Reinsh, 1971). 

If one assumes (see also MacKay & Miller, 1990) that the synaptic weights 
must stop growing at some point, then the final receptive fields will tend 
to be dominated by the eigenvectors with the highest eigenvalues. This 
domination would not be absolute; variations among cells will occur be­
cause of initial random variations in wiring. Initial wiring and termination 
of development are complex processes, which may depend, for example, on 
transient gene expression of particular proteins or immature morphologies 
of dendritic trees. Consequently, to prevent obscuring the main points of the 
article, we decided to omit the detailed mathematical and computational 
analyses of the outcome given various initial conditions and termination 
rules. Accordingly, our results, expressed in terms of eigenvalues and eigen­
vectors, should be interpreted only as tendencies for synunetry breaking of 
the different covariance functions, and not as final incidences of various 
cell-types. 

The principal eigenfunctions in all three models (for C1 = C2 = O) were 
found to be Circularly symmetrical, and symmetry breaking could occur 
only if the next eigenfunction in line dominated by random chance (see 
Fig. 2). To measure the affinity of the network for symmetry breaking, we 
considered the ratio between the largest and second-largest eigenvalues. 
This ratio was high for Qw (in comparison to Linsker's original model; see 
Fig. 2A). The ratio became even higher as we widened the waves. The phys­
ical reason for this tendency is that wide waves tend to correlate the activity 
of many amacrine cells, thus averaging out local statistical orientational 
biases that might exist by chance in the retinal wiring. 

The ratio between the two largest eigenvalues was smaller when den­
drites were present than when they were not. Moreover, the symmetrical 
center-surround eigenvector that was in the second position for Qu and Qw 
was relegated to the fourth position for Qd, behind two anisotropic eigen­
functions (see Fig. 2C). Taken together, these two changes indicate that den­
dritic polarization biases the system toward symmetry breaking, facilitating 
the formation of orientationally selective cells. ~, 

Although the three sets of eigenfunctions corresponding to Q" fJt: and 
Qd resemble each other visually (see Fig. 2), they are not identical. For 
Linsker's case, the eigenfunctions of Q, have been derived analytically by 
MacKay and Miller (1990). Although we could not do so for Qw and Qd 
due to the Bessel function, we could verify that the analytic expressions of 
their eigenfunctions differ from those of Q,. It is possible to see these differ­
ences reflected in the eigenfunctions. For instance, the main eigenfunctions 
are flatter for waves (the larger central white area) than for uncorrelated 
noise. Similarly, changes between positive and negative regions of the other 
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Figure 3: Effects of parameter variations on symmetry breaking': (A) The ten­
dency for isotropy expressed as A1/A2 is plotted against the spatial spread (u,) 
of the arbor at the input to the amacrine cells (for the original Linsker model) or 
the spatial spread (u.) of the waves along the direction of their propagation (for 
the models substituting waves for uncorrelated noise). These plots are either in 
the presence or absence of polarized dendritic inputs (LI u, = 1.2) to the gan­
glion cell. (8) The ratio At/A2 is plotted against dendritic length for uwlu, = 0.4. 
The results show that symmetry breaking becomes more likely as the size of 
the amacrine dendrites grows and as the spreads of the waves and arbor at the 
mput to the amacrine c"ells diminish. . 
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Finally, how variations in the waves' width and amacrine dendritic length 
affect the shape of the eigenfunctions is illustrated in Figure 4. For waves 
of spatial spread four times wider than those used in Figure 2B, we found 
the same set of eigenfunctions, but more spatially extended (roughly 2.5 
times more extended; see Fig. 4A). Consequently, the spatial extent of the 
waves may be important not only for controlling the tendency of formation 
of concentric receptive fields, but also may contribute to their spatial extent. 
(In support, there is now evidence that spontaneous waves are key to the 
determination of receptive field size during retinal development; Semagor 
& Grzywacz, 1994, 1995a, 1995b, 1996.) In tum, although increases in recep­
tive field size were small when dendritic length was doubled (see Fig. 4B), 
the order of importance of the eigenfunctions changed. The center-surround 
eigenfunction was removed from the set of the first six eigenfunctions (see 
Fig. 2C), being replaced by three-angular-nodes anisotropic eigenfunctions 
reminiscent of immature receptive fields with multi-axes anisotropy as ob­
served in embryonic turtle retina (Semagor & Grzywacz, 1995a). 

4 Analysis of Behavior in the CI - C2 Plane __________ _ 

The parameters CI and C2 depend on the choice of the Hebbian thresholds (Fg 

and F~) and the average activity in layer A (FA). (In our models, this average 
activity is fixed by the waves' properties, that is, their spatial extent, speed, 
and frequency of occurrence.) While parameter C2 affects the eigenvalues of 
the matrix (Q; + C2)0,·, parameter CI moves the fixed point of the dynamics =, 
with respect to the origin. Because Q; = (Ft - FA)(F,A - FA), the entries of 

-'I 
this matrix depend on both its spatial properties (determined by i - J) and 
the overall level of activity (determined by FA). But although the effects of 
the spatial properties of ~ are the central theme of this article, the square of 

=i 
the overall level of activity, which is proportional to the entries of g;;, has the 

same dimensions as C2. Therefore, itis possible to study the general behavior 
of the eigenvalues of (g;; + C2)0; with a single dimensionless parameter by 

scaling C2 by the maximum of g;;. Because this scaling is equivalent to 

normalizing the maximum of Q; (Q;) to 1, in effect, we will be cono . .dob· ring '=",.=.tl ", .~ 
the correlation matrices instead of the covariance ones. > 

Theparameterel does not affect the eigenvalues of (Q;+C2)Oj' Rather, it 
-'I 

affects the coefficients ofthe linear combination of (eA,1 ih, eA,1 U2, ... , eA"1 Un) 
in the solution of equation 2.1. The effect on these coefficients is such that 
if the magnitude of CI is large, then it gives a significant head start to the 
all-excitatory (all-inhibitory) profiles. Feng, Pan, and Roychowdhury (1995) 
analyzed how this head start would affect the outcome of the evolution of 
equation 2.1 if the synaptic weights were constrained to lie between fixed 
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minimum and maximum values. These authors reached the conclusion that 
the stable fixed-point solutions to the equation would lie in four domains 
where receptive-field profiles are (1) all excitatory, (2) all inhibitory, (3) all 
excitatory or all inhibitory, or (4) of various shapes, including anisotropic 
ones. The first two domains occur when C1 is large and the latter two when 
it is close to zero. It is possible that large C1 are relevant for retinas that have 
a majority of concentric ganglion cells like the primate and cat retinas. (In 
section 5, we will address how surround inhibition may be added to all­
excitatory profiles.) However, if C1 is large, there is nothing more to discuss; 
receptive fields will be isotropic. Consequently, in the rest of this section, 
we will focus on the cases C2 > 0 and C2 < 0 for C1 = O. 

The Case C2 > O. As stated by MacKay and Miller (1990), the eigenvec­
tors affected by C2 are those with nonzero DC components, that is, the all­
excitatory (all-inhibitory), and the center-surround connection patterns (the 
strongest and weakest profiles in Fig. 2C, respectively). For c2large and pos­
itive, MacKay and Miller (1990) have obserVEd that QA +C2 can be treated as 

-'I 
a first-order perturbation to the matrix C2J, where J is the matrix J.. = 1. This 

- - -IJ 
matrix has only one nonzero OC eigenvector with positive eigenvalue: the 
vector ii, ni = 1, which is symmetric. Consequently, the expectation is that 
as C2 increases, so does the tendency to develop symmetric receptive fields. 
A mathematical proof (MacKay & Miller, 1990) and computer simulations 
(see Fig. 5) confirm this expectation for the three cases we are considering. 
When C2 increases from zero to a large and positive value, we find that the 
eigenvalues (tendency) of both nonzero-DC, symmetrical profiles rise in 
comparison to those of the non-DC, orientationally selective. In addition, 
the simulations show that the tendency is for symmetrical profiles to rise 
faster for the uncorrelated-noise case than for the spontaneous-waves cases. 
Mathematically, this result follows from the Bessel function in equations 2.2 
and 2.3, being a slow decreasing function and thus perturbating more C2J 
than a pure gaussian function. Physically, this result is probably a cons';:: 
quence of the anisotropic shape of the waves imparting more orientation 
selectivity onto the cells. We make this conjecture because as one widens 
the waves-and makes them more isotropic, the receptive fields themselves , 
become more isotropic (see Figs. 3A and 4A). ,ot 

. "t. 

The Case C2 < O. For C2 large and negative, when one performs the 
perturbation analysis, one finds that C2J has anisotropic eigenvectors with 
eigenvalues equal to zero and that its only nonzero-DC, symmetric eigen­
vector, ii, has a negative eigenvalue, which is proportional to C2. As a result, 
the eigenvalue of the all-excitatory (all-inhibitory) eigenvector becomes neg­
ative, making this receptive field essentially irrelevant (MacKay & Miller, 
1990). Computer simulations also reveal that the eigenvalue of the center­
surroun? eigenvector increases (and that of all other eigenvectors with 
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nonzero-DC components) as C2 decreases from zero to a large and nega­
tive value. This result was first observed by MacKay and Miller (1990), who 
pointed out in their Theorem 2 that as C2 varies, the eigenvalues of the 
nonzero-DC eigenvectors "increase continuously and monotonically with 
(C2) between asymptotic limits such that the upper limit of one eigenvalue is 
the lower limit of the eigenvalue above." Thus, as C2 --+ -00, the eigenvalue 
of the all-excitatory (all-inhibitory) profile falls toward the upper limit of 
the center-surround profile; similarly, the eigenvalue of the center-surround 
profile also falls. However, as the original all-excitatory (all-inhibitory) pro­
file falls, it is transformed continuously into a center-surround profile, mak­
ing it appear like the eigenvalue of the center-surround eigenvector in­
creases (MacKay and Miller 1990). Qualitatively the fall of the all-excitatory 
(all-inhibitory) profile and apparent rise of the center-surround profile as C2 

becomes negative occur for all three covariance matrices (see Fig. 5). But for 
Qw and Qd, the rise of the center-surround eigenvector is slower than for Qu. 
As before, the mathematical explanation for this difference stems from the 
wider spatial extent of Qw and Qd resulting from their Bessel-function com­
ponent. Again, physically, Qw and Q/s preference for anisotropic profiles 
may be due to the anisotropic shape of the waves. 

5 Discussion ____________________________________________ __ 

5.1 Possible Roles for Spontaneous Waves of Activity. Previous mod­
els for self-organization of orientation selectivity in cortex assumed uncor­
related random noise on the first layer of the network (von der Malsburg, 
1973; Linsker, 1986; Yuille et ai., 1989; Stetter, Lang, & Milller, 1993). This 
assumption is not applicable to the developing retina because there is evi­
dence for waves of spontaneous diSCharges propagating across the retinal 
surface and, in the process, correlating the activity of neighboring cells (in 
cat and ferret: Meister et ai., 1991; Wong et ai., 1993, 1995; in rat: Maffei & 
Galli-Resta, 1990; in turtle, Semagor & Grzywacz, 1993, 1995a). This corre­
lation is observed during the period of retinal synaptogenesis (Maslim & 
Stone, 1986; Horsburgh & Sefton, 1987; De Juan, Grzywacz, Guardiola, & 
Sernagor, 1996), and dendritic growth and remodeling (Wong, Hermann, 
& Shatz, -1991; De Juan, Grzywacz, Guardiola, & Semagor, 1995). Conse­
quently, one must ponder on the role that these spontaneous corI'\ll1lting 
waves of activity may have in the formation of retinal receptive fieills. 

We modified one of the cortical models (Linsker's) to include waves and 
compared the tendencies for formation of particular types of receptive fields 
in the new and old models through an analysis of their covariance matrices. 
In this analysiS, the likely types of receptive fields were described by these 
matrices' eigenvectors with highest eigenvalues, and the tendency of each 
type of receptive field to develop was estimated by the eigenvalues. The 
main eigenfunctions of the Linsker and wave-modified covariance matri­
ces were found to have similar profiles. These profiles were purely excita-
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tory concentric, orientationally selective, and eXcitatory-center-inhibitory­
surround concentric. Wide waves tend to favor concentric receptive fields 
more than narrow waves (see Fig. 3A). The physical reason for the isotropy 
tendency of wide waves in the model is that their wide extent tends to cor­
relate the activity of many amacrine cells, thus averaging out local statistical 
orientational biases that might exist by chance in the retinal wiring. Whether 
this averaging really favors isotropy may be debatable, since averaging also 
weakens the tendency for the center-surround profile (see Fig. 4A). In Fig­
ure 3, we used the all-excitatory profile to quantify isotropy, because in the 
retina, surround inhibition appears early in development, even before ma­
ture concentric or orientationally selective receptive fields emerge (Semagor 
& Grzywacz, 1995a). This suggests that perhaps the inhibitory surround of 
center-surround profiles might be determined genetically, independent of 
spontaneous activity. If this suggestion is incorrect and the emergence of 
surround depends on spontaneous activity, then C2 must be negative to 
eliminate the all-excitatory profile (see Fig. 5). In this case, that the early 
retinal noise comes in the form of w{lves would favor the formation of ori­
entation selectivity. As discussed in section 4, this bias toward anisotropic 
profiles may be due to the anisotropic shape of the waves. 

Another possible role for waves is contributing to the size of receptive 
fields. Waves tend to yield wider receptive fields than uncorrelated noise 
because of the large lateral extent of the wave fronts. In addition, wider 
waves tend to give rise to wider receptive fields (see Fig. 4A). This cou­
pling between wave width and receptive field size could have implications 
for explaining receptive field size differences across species. Recent data are 
strongly supportive of the role of waves for both the formation of concentric 
receptive fields and control of their size. Normally, in turtle, the wavelike 
activity lasts until about postnatal day 21 (P21) and then disappears (Ser­
nagor & Grzywacz, 1995a). Coincidentally with the disappearance of waves, 
the receptive field sizes mature (Semagor & Grzywacz, 1995a). However, 
if one dark-rears the turtles, the wavelike activity is stronger and longer 
lasting (>P40), and the receptive fields become larger and more concentric 
(Semagor & Grzywacz, 1994). Furthermore, the density of growth cones 
(and thus of dendritic growth) increases under dark rearing (De Juan et 
ai.;.J995). In turn, if one blocks the waves chronically by i~lanting in 
the retina curare-soaked Elvax (Elvax is an ethylene vinyl-a~te copoly­
mer) (Semagor & Grzywacz, 1995b; 1996), the receptive fields stop growing 
and become less concentric. Although there are other explanations for the 
changes in receptive field size and concentricity with dark rearing and cu­
rare implantation, these changes are generally consistent with our model. 

5.2 Possible Roles for Early Dendritic Polarization. To mimic the po­
larization of poorly branched dendritic trees of immature cells (Maslim et 
ai., 1986; Ramoa et ai., 1988; Dunlop, 1990; Vanselow et ai., 1990), we modi­
fied the original Linsker model to include (waves and) amacrine dendritic 
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processes pointing toward the ganglion cell's soma and making contact 
with its dendritic tree. We then applied the covariance-matrix analysis to 
this case. The ratio between the two largest eigenvalues of the resulting 
covariance matrix was found to be smaller than for the model with only 
waves (see Fig. 3A), and this effect was more pronounced for longer den­
drites (see Fig. 3B). Moreover, for long dendrites, the eigenfunction order 
changed as the center-surround concentric eigenfunctions were relegated to 
a less dominant position than anisotropic ones (see Figs. 2C and 4B). These 
results indicate that dendritic polarization biases the system toward orien­
tation selectivity. Such a bias was also suggested by Sernagor and Grzywacz 
(1995b), who found physiological correlates of the dendritic polarization in 
immature retinas. 

Appendix ____________________________________________ __ 

This appendix shows the main steps for the derivation of equations 2.2 
and 2.3. We want to determine how the activity of two amacrine cells is corre­
lated by spontaneous waves propagating through the amacrine layer. Waves 
were modeled by an infinitely extended straight wave front and a gaussian 
profile (of standard deviation O"w) along the direction of propagation. The 
synaptic response at each instant was taken to be proportional to the value 
of the wave on the amacrine cell, that is, FA(;) - exp (-(;. Uw + x)2/20";), 
where r is the vector originating at the ganglion cell soma and ending at 
the amacrine cell, uw is the unit vector in the direction of the wave's prop­
agation, and x is the shortest distance between the ganglion cell soma and 
the wave's crest (see Fig. 6). The correlation between two amacrine cells can 
thus be expressed as Q(r, r') = FA(i')FA(;,), where the overbar denotes aver­
age over a large number of waves and the prime refers to another amacrine 
cell. The correlation was computed as the mean correlation due to waves 
moving in all possible directions and spatial locations, 

(A.I) 

where we are omitting the normalization factor and other constants from 
the analysis as they only scale the eigenvectors. Developing equationA.I, 
and taking into account the waves' symn:tetry, we get .~'" 

Q - "" 100 1" (1;1 costa - 0) + X)2) (r,T)= exp 22 
-00 -1f (fro 

( 
(I;' I costa' - 0) + X)2) d dO 

xexp 22 xu, 
o"w 

(A.2) 

where a and a' are the vector orientations of rand -;", respectively, and () 
is the wave's direction of propagation. After arranging the integrand as an 
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Figure 6: Schematic representation of the variables used to determine the wave's 
covariance functions. Two vectors rand r' (dashed arrows) originate at the gan­
glion cell soma (shown at the origin) and end at two amacrine synapses (rep­
resented by filled circles). The orientations of these vectors are represented by 
the unit vectors U, and ur" A wave propagates with a direction represented by 
the unit vector Uw and has its peak amplitude (represented by a bold, straight 
line) at a distance x from the ganglion cell. The amacrine dendrites are shown 
as solid lines of length L. 

exponential of a perfect square, the integral in x is straightforward and gives 
(1wv'i'/2. As constants are omitted from the analysis, equation A.2 becomes 

__ , 1" ((ii'I cos (a - 0) - 1"1 cos(a' - 0) )2) 
Q(r,r)- exp - 4

2 
dO. 

-rr Uw 
(A.3) 

Using trigonometric manipulations, it can be shown that 

(Ii'I cos(a - 0) -1"1 cos(a' - 0»)2 = Ii' - i"12 cos2(0 - V), (A.4) 

where y = tg-1 (1i'1 sina - 11"1 sina"j/(lrl cos a -11"1 cosa'). us4 this defi­
nition and the new variable </> = 0 - y (the integral limits does not change 
as y is an arbitrary angle), equation A.3 can be integrated with respect to </> 

(Gradshteyn & Ryzhik, 1980) to yield 

__ , ( 1i'-i"12) (1i'-r'12) 
Q(r, r ) - exp - 8(1~ 10 8(1~ , (A.S) 

w,here 10 (x) is the zero-order Bessel function of an imaginary argument. 
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For the calculation of the covariance function for waves hitting polarized 
dendrites, the dendrite was modeled as a straight process with a dendro­
dendritic synapse contacting the ganglion cell in a random position in this 
cell's gaussian dendritic tree. An arrow beginning at the middle of the den­
drite and ending at the synapse always pointed toward the middle of the 
ganglion cell tree. The synaptic response at each instant was taken to be 
proportional to the integral of the values of the wave along the length of the 
dendrite, that is, 

• • _J 2) (u, . Uw A + x) dx 
2 2 ' "w 

(A6) 

where ii, is a unit vector in the direction of rand L is dendritic length 
(see Fig. 6). As before, the correlation between the activity of two amacrine 
cells, FA (i') and FA (I"), was computed as the mean correlation due to waves 
moving in all possible directions: 

100 I" 1
111

+
L 

( Q(r, r) = dx dO _ exp 
-00 -If Irl 

(cos (a -O)x' +X)2) d ' 
2 2 X 
"w 

11i'1+L (cos(a' - 0) x" + X)2) " 
x e~ 2 b. 

Irl 20'w 
(A7) 

Integrating with respect to x and using the same trigonometric manipula­
tions as before, we get 

Q(r, Y) - _ _ exp - x;' 10 o~X dx'dx" 
1

111+L 11i'1+L (/).2) (/).2 ) 
Irl 1f'1 8aw OUw 

(A8) 

where 

.. 1" 
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