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Abstract

In several recent publications, numerical integrators based on Jacobi elliptic functions are pro-

posed for solving the equations of motion of the rigid body. Although this approach yields

theoretically the exact solution, a standard implementation shows an unexpected linear propa-

gation of round-off errors. We explain how deterministic error contribution can be avoided, so

that round-off behaves like a random walk.
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1. Introduction

There exists a large choice of numerical integrators for solving the equations of motion
of the rigid body, mainly based on splitting methods (see e.g. [5, Sect. VII.5]), and recently
a high-order modification of the Discrete-Moser-Veselov algorithm [7].

In several recent publications [3,2,13,14], it is proposed to integrate the equations
of motion of the free rigid body analytically, using the Jacobi elliptic functions [10].
Although this approach yields the exact solution, a standard implementation yields an
unexpected linear propagation (accumulation) of round-off errors (see Figure 1 and [2,
Fig. 1]). The aim of this article is to analyze this propagation of rounding errors and
explain how it can be reduced, to retrieve the optimal probabilistic error growth model,
as developed in [8]. We focus on the conservation of the first integrals of the system.
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This article is organized as follows. Section 2 recalls the rigid body equations of motion.
In section 3, we study the propagation of round-off errors for a standard implementation
of the algorithm based on Jacobi elliptic functions. Then, we present an implementation of
this algorithm that allows to reduce the effect of round-off errors, both qualitatively and
quantitatively (Sect. 4). Finally (Sect. 5), we compare the results with the preprocessed
DMV algorithm [7], which has a suitable form to apply compensated summation and
reduce round-off errors, for an accurate long-term integration.

2. Equations of motion and first integrals

The motion of a rigid rigid body, relative to a fixed coordinate system, is determined
by a Hamiltonian system constrained to the Lie group SO(3) (see [5, Sect. VII.5]). In the
absence of an external potential, the Euler equations of motion of the free rigid body are

ẏ1 = (I−1
3 − I−1

2 )y2y3, ẏ2 = (I−1
1 − I−1

3 )y3y1, ẏ3 = (I−1
2 − I−1

1 )y1y2 (1)

where the vector y(t) = (y1(t), y2(t), y3(t))
T is the angular momentum, and the constants

I1, I2, I3 > 0 are the three moments of inertia. The orientation of the rigid body, relative
to a fixed coordinate system, is then represented by an orthogonal matrix Q(t) satisfying

Q̇ = Q




0 y3/I3 −y2/I2

−y3/I3 0 y1/I1

y2/I2 −y1/I1 0


 . (2)

The flow of (1)-(2) exactly conserves the energy and the angular momentum relative
to the fixed frame. This means that Qy and

C(y) =
1

2

(
y2
1 + y2

2 + y2
3

)
and H(y) =

1

2

(y2
1

I1
+

y2
2

I2
+

y2
3

I3

)

(Casimir and Hamiltonian) are first integrals of the system.
In the historical article [10], Jacobi derived the analytic solution for the motion of a

free rigid body and defined to this aim the so-called ‘Jacobi analytic functions’ as

sn(u, k) = sin(ϕ), cn(u, k) = cos(ϕ), dn(u, k) =

√
1 − k2 sin2(ϕ), (3)

where the Jacobi amplitude ϕ = am(u, k) is defined implicitly by an elliptic integral of
the first kind.

3. Standard implementation

We consider here the numerical algorithm based on Jacobi elliptic functions as proposed
in [3,2,13,14], and we focus on the numerical resolution of the Euler equations (1), see
e.g. Proposition 2.1 in [2].
Algorithm 3.1 Assume I1 ≤ I2 ≤ I3 and y(t0) is not a saddle point. Consider the
quantities

a1 =
√

2H(y)I3 − 2C(y) a3 =
√

2C(y) − 2H(y)I1,

2



which are conserved along time. To simulate the presence of an external potential, they
are recalculated before each step. For (I2 − I1)a

2
1 ≤ (I3 − I2)a

2
3, the solution of the Euler

equations at time t = t0 + h is

y1(t) = b1a1cn(u, k), y2(t) = b2a1sn(u, k), y3(t) = b3a3δdn(u, k),

where δ = sign(y3) = ±1 and

b1 =
√

I1/(I3 − I1), b2 =
√

I2/(I3 − I2), b3 =
√

I3/(I3 − I1).

Here, cn(u, k), sn(u, k) and dn(u, k) are the Jacobi elliptic functions (3) with modulus k
and parameter u,

k2 = b0a
2
1/a2

3, b0 = (I2 − I1)/(I3 − I2), u = hδ
√

(I3 − I2)/(I1I2I3)a3 + ν,

where ν is a constant of integration (see [3, Sect. 3] for details). Similar formulas hold for
(I2 − I1)a

2
1 ≥ (I3 − I2)a

2
3.

Notice that round-off errors in the computation of u and ϕ for the Jacobi elliptic
functions (3) have no influence on the preservation of first integrals, because it can be
interpreted as a time transformation.

3.1. Numerical experiments

In all numerical experiments, we consider the following initial condition with norm 1,

y1(0) = 0.5, y2(0) = 0.2, y3(0) =
√

1 − y1(0)2 − y2(0)2 (4)

and integrate on the interval of time [0, 104] with stepsize h = 0.01 (one million steps).
We consider a rigid body with moment of inertia I1 = 0.345, I2 = 0.653, I3 = 1.0, which
corresponds to the water molecule, as considered in [4]. The angular momentum y(t) is a
periodic function of time (in the absence of an external potential), and we integrate over
about 822 periods. We also tried many different initial values and moments of inertia,
and numerical results where similar to those presented in this paper.

The algorithm based on Jacobi elliptic functions is fully explicit and no iterative solu-
tion of non-linear equations is involved (excepted the code for computing Jacobi elliptic
functions). However, the standard implementation (Algorithm 3.1) shows a linear growth
of round-off errors (see left picture in Figure 1). The error for the Hamiltonian is about
1.25 × 10−17 per step, or 0.056 × eps per step, where eps = 2−52 is the machine preci-
sion. The error is a superposition of a small statistical error and a deterministic error
which grows linearly with time, due to a tiny non-zero bias in the pattern of positive and
negative rounding errors.

In [6], it is shown that for implicit Runge-Kutta methods, the use of rounded coeffi-
cients aij and bj induces a systematic error in long-time integrations. Here, the situation
is similar, because there are many constants involved: b0, b1, b2, b3, I1, I3, . . . The same
rounded coefficients are used along the numerical integration, and this induces a deter-
ministic error which propagates linearly with time.

To reduce round-off errors in the Jacobi elliptic functions based algorithm, our first idea
was to compute all above constants in quadruple-precision arithmetic, and then make
all corresponding multiplications in quadruple-precision. Alternatively, we explain in the
next section how round-off errors can be reduced using only standard double-precision
arithmetic.
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Fig. 1. Hamiltonian errors for the integrators based on Jacobi elliptic functions. One million steps with

stepsize h = 0.01. Left picture: standard implementation (Algorithm 3.1). Right picture: new implemen-
tation (Algorithm 4.1). The plots show the error as a function of time for 200 initial values (with norm
1) randomly chosen close to the one in (4). The mean as a function of time and the standard deviation
over all 1000 trajectories are included as bold curves.

3.2. Probabilistic explanation of the Error Growth.

The long-time behavior of round-off errors can be explained using probability, as de-
veloped in the classical book of Henrici [8]. It is often called Brouwer’s law [1] in celestial
mechanics, see also [5, Section VIII.5]. The error contribution over one step in the Hamil-
tonian H(y) (and similarly for the other invariants) can be interpreted as a sequence of
independent random variables

H(yn+1) − H(yn) = εn

with variance Var(εn) proportional to the square of the round-off unit eps of the com-
puter.

If the mean average of the εn’s is different from zero, due to a deterministic error
source, then the round-off errors accumulate linearly (see left picture in Figure 1).

Under the assumption that the mean of all εn is zero, then the sum for N steps of
the εn’s is a random variable with mean zero and variance proportional to N eps2. This
shows that the error errN in the Hamiltonian after N steps grows like (random walk)

Var(errN )1/2 = σ eps
√

N

for some constant σ (e.g. σ ≈ 0.11 in right picture of Figure 1).

4. Reducing round-off errors

In this section, we present a modification of Algorithm 3.1 which makes round-off
behave like a random walk (see right picture of Figure 1). The idea is to reduce the number
of constants involved, so that, in the spirit of backward error analysis, all constants can
be interpreted as exact values corresponding to modified moments of inertia. We show
that this can be achieved with Algorithm 4.1 which uses only two independent constants
c1 and λ defined below.
Algorithm 4.1 Consider the constants (we still assume I1 ≤ I2 ≤ I3),

c1 =
I1(I3 − I2)

I2(I3 − I1)
, c2 = 1 − c1, (5)
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and the quantities

d1 =
√

y2
1 + c1y2

2 , d3 =
√

c2y2
2 + y2

3 ,

(recalculated before each step). For c2d
2
1 ≤ c1d

2
3, the solution of the Euler equations at

time t = t0 + h is

y1(t) = d1cn(u, k), y2(t) = d2sn(u, k), y3(t) = δ
√

d2
3 − c2y2(t)2,

where d2 =
√

y2
1/c1 + y2

2 and d2
3 = c2y

2
2 + y2

3 . Here, cn(u, k), sn(u, k) are the Jacobi
elliptic functions (3) with

k2 = (c2d
2
1)/(c1d

2
3), u = δhλd3 + ν, λ =

√
(I3 − I2)(I3 − I1)/(I1I2I2

3 ),

δ = sign(y3) = ±1, and ν is a constant of integration. We have similar formulas for
c2d

2
1 ≥ c1d

2
3.

It is essential in (5) that the identity c1 + c2 = 1 holds exactly. This can be done as
follows:

compute c1;

c2 = 1 − c1;

c1 = 1 − c2;

It makes c1 and c2 have a floating point arithmetic representation with the same exponent.

5. Compensated summation

Unlike the algorithm based on Jacobi elliptic functions, the Preprocessed Discrete
Moser-Veselov algorithm [7] requires for solving the Euler equations (1) the computation
of a recursion of the form

yn+1 = yn + δn

where the increment δn has size O(h). It is thus possible to apply the so-called ‘compen-
sated summation’ algorithm due to [11,12] for reducing round-off errors in floating point
arithmetic. A famous analysis and presentation is given in [9] (see [5, VIII]).

Applying compensated summation allows to compute the above recursion in high-
precision and thus to reduce by a factor h the effect of round-off error, as illustrated in
bottom pictures in Figure 2. Notice that we do not lose information if we do not normalize
to 1 the quaternions qn, n = 0, 1, 2, . . . representing rotation matrices. This allows to apply
compensated summation also for the attitude Q(t) (2) of the rigid body (see bottom right
picture in Figure 2). The round-off errors in the preservation of invariants H(y), C(y)
and Qy now grow like eps h

√
N , or equivalently eps h1/2t1/2 where t = nh.

The idea of the Preprocessed DMV algorithm is to apply the standard DMV algorithm
(order 2) with modified values of moments of inertia Ĩ1, Ĩ2, Ĩ3, which depend on initial
conditions only via the conserved quantities C(y) and H(y). They are given by formal
series expansion in powers of the stepsize, and truncating theses series yields numerical
integrators of arbitrarily high-order that preserves all first integrals. In the numerical
implementation, the only constants involved are the modified moments of inertia Ĩ1, Ĩ2, Ĩ3,
and we avoid using other constants in the numerical implementation. The DMV algorithm
shows the correct behavior (see Figure 2). As recommended in [6], the fixed point iteration
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Fig. 2. Discrete Moser-Veselov algorithm of order 10. Roundoff errors in Hamiltonian and spatial momen-
tum (first component of Qy) for 200 initial values randomly chosen close to the one in (4). One million

steps with stepsize h = 0.01. Top pictures: standard implementation. Bottom pictures: compensated
summation. The average as a function of time and the standard deviation over all 1000 trajectories are
included as bold curves.

is performed until convergence: the stopping criterion is ∆(k) = 0 or ∆(k) > ∆(k−1) which
indicates that the increments ∆(k) of the iteration starts to oscillate due to round-off.
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