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Abstract—Neuroimaging data collection is very costly, and acquisition
is commonly distributed across multiple sites. However, factors such as
different noise characteristics or inhomogeneities make it difficult to
successfully combine multi-site functional imaging data. Here, we show
that the distribution of signal quality measures across scanners can be
significantly different, and that this will have an impact on correlation
estimators necessary for computing functional connectivity graphs as
well as topological features extracted from the graphs. We propose to
find a stable subspace by using a discriminative projection that does
not only minimise site differences, but also preserves discriminative class
information. We compare our method with the “regressing-out” approach
in a cross-validation setting and show that regressing out can yield very
poor results.

Keywords—Brain graphs, multi-centric studies, brain connectivity,
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I. INTRODUCTION

Brain graphs [1], representing interactions between different parts

of the brain based on neuroimaging data, are a useful representation

of resting-state functional MRI (rs-fMRI) data. They can be used

to compare groups of subjects or for prognosis in clinical applica-

tions [2], or to perform inference about complex brain states [3].

Since data acquisition with human subjects is costly in time,

there is an increased tendency to share data and distribute dataset

collections across multiple sites, with the promise of improved

statistical power. Indeed, most large-scale fMRI datasets (including

ADHD-200, ABIDE, ADNI GO, and fBIRN) are multisite, ranging

from 7 to 50 sites.

However, MR physics is such that even two scanners of the same

brand or model, using the same operating system and acquisition

sequence will yield different images. Signal fluctuations, spiking

patterns, and uneven sensitivity profiles will contribute to significantly

altering signal dynamics and large-scale spatio-temporal covariance.

The computation of brain graph rests on several steps, including

spatial and temporal data preprocessing and edge weight estimation,

all of which can be affected by the quality of MR acquisition.

While good cross-site reproducibility has been reported for struc-

tural imaging classification [4], evidence supporting the applicability

of predictive modeling methods to multisite connectivity datasets

is non-existent, although connectivity estimates themselves may be

resilient [5].

In the present work, we wanted to verify if site differences could

indeed cause significant shifts in signal quality measures likely to

affect brain graphs, what the effect of site differences is on graph

representations and cross-site classification performance, and propose

a projection method to diminish site effects.

II. IMAGING DATA AND PROCESSING

A. Datasets

In this paper we will present results on two open multi-site

datasets: fBIRN and ABIDE.

The fBIRN Phase I Traveling Subjects dataset [6] includes five

healthy males (mean age: 25.2, range = 20.2 to 29). All subjects

traveled to 9 sites (10 scanners), where they were scanned twice over

a period of 2 days for a total of 20 scans per participant. However, all

the datasets without a T1 acquisition were excluded from the analysis,

and our results arebased on 4 scanners and 4 subjects, shown in

table I. Two rs-fMRI acquisitions (TR/TE = 3 s/30 - 40ms, FOV =

22 cm, thickness = 5 mm, number of volumes = 85, slice order =

interleaved) and one anatomical T1 scan (TR/TE = 9.8 ms/min, FOV

= 22 cm, thickness = 4 mm) were acquired in most of the sites.

Site (ID code) Field strength Brand TR/TE (ms) Volumes

Duke/UNC (3.15) 1.5 GE 3000/30-40 85
Duke/UNC (3.4) 4.0 GE 3000/30-40 85

UCIR (9.15) 1.5 Philips 3000/30-40 85
Stanford (11.3) 3.0 GE 3000/30-40 85

KKI 3 Philips 2500/30 156
Leuven 3 Philips 1600/33 250
Trinity 3 Philips 2000/28 150
UCLA 3 Siemens 3000/28 120
USM 3 Siemens 2000/28 240

TABLE I. SELECTED FBIRN (TOP) AND ABIDE (BOTTOM) SITES

CHARACTERISTICS

The Autism Brain Imaging Data Exchange (ABIDE) provides

rs-fMRI datasets from 539 individuals with autism spectrum disorder

(ASD) and 573 typical development (TD) subjects acquired in 16

sites, publicly available for the scientific community. Based on the

ABIDE image quality check reported by Abraham [7], 5 of 16 sites

were selected, consisting of 20 subjects per site (10 ASD and 10 TD

paired by age).

All ABIDE sites had their own rs-fMRI protocol, therefore

acquisition parameters were different across sites. Principal site



characteristics are listed in table I. KKI, UCLA, and USM had

eyes-opened acquisition, while Leuven and Trinity had eyes-closed

acquisition.

B. Data processing and graph computation

Standard SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) fMRI prepro-

cessing (slice timing correction, realignment, coregistration, normal-

isation) was performed on the data using all default settings of SPM

8. For the extraction of resting state functional connectivity matrix,

we followed an atlas-based pipeline [8].

For spatial processing, the structural image was coregistered to

the mean image of the functional data. Then, an individual brain atlas

containing 116 cortical and sub-cortical regions of interest (ROIs) was

then computed with a modified version of the IBASPM toolbox [9]

and the AAL atlas [10]. Finally, the spatially-averaged time courses

were calculated from the voxels corresponding to these regions in the

functional space. we restricted the analysis to the 90 non-cerebellum

regions, and further excluded the bilateral globus pallidus due to

signal dropout, resulting in 88 regions per brain, each associated with

a regional time course.

For temporal processing, the 6 realignment parameters were

regressed out of each regional time courses. The regional time courses

were then filtered into four orthogonal frequency subbands using a

wavelet transform (if the TR was the same across sites), or bandpass-

filtered between 0.01 and 0.1Hz (if the TR was different across sites).

Then, the pairwise Pearson correlation coefficients between all pairs

of filtered regional time courses were computed to obtain the edge

weights of the edges linking each of the 88 regions represented by a

graph vertex, leading to an 88 x 88 adjacency matrix.

III. FUNCTIONAL CONNECTIVITY-RELATED SIGNAL QUALITY

MEASURES ACROSS SITES

If image quality differs between sites, brain graphs can be

impacted. Here we focus on only two measures of fMRI signal quality.

A. Structural quality measure

The number of voxels per atlas region M (in native space)

depends largely on the segmentation step in preprocessing, because

it is computed from the intersection of a gray matter mask (itself

obtained from a thresholded tissue probability map) and an atlas

mask. The segmentation, in turn, depends on several image factors,

in particular local inhomogeneities and how bias field correction is

performed. Thus, M can be expected to vary across sites.

In turn, we have shown previously [11] that the number of

voxels in two regions will bias the inter-regional correlation esti-

mator depending on the correlation within each of the two regions.

Assuming a true correlation value corX,Y between all voxels of

regions X and Y , then the estimator of the correlation between

the regions’ average time courses X̄ and Ȳ , ĉorX̄,Ȳ , will behave

as ĉorX̄,Ȳ →corX,Y if the within-region correlation between voxels

is 1, and as ĉorX̄,Ȳ →√
PMcorX,Y if the within-region correlation

between voxels is low (inhomogeneous region).

Therefore, large regions will tend to have higher correlation to

the rest of the brain, as illustrated in Fig. 1.
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Fig. 1. Number of voxels in a region underlying a graph vertex versus that
vertex’s strength (sum of edge weights), computed on one random control of
the ABIDE dataset.

B. Functional quality measure

Functional connectivity estimates will also be impacted by site-

specific temporal noise. Here, we use Signal to Fluctuation Noise

Ratio (SFNR) [12] a measure useful to account for brain-wide BOLD

signal activation differences in multi-site studies [13].

Here, we defined a spatially localised version: for each atlas

region, we computed an SFNR value by dividing signal image

(average of the time series) by the temporal fluctuation noise image

(standard deviation of the time series detrending with a second-order

polynomial).

C. Empirical results

For fBIRN and ABIDE we wrote a mixed-effect model qmi 1+
scannerID+(1|subjectID), where qmi is a quality measure (either

number of voxels or SFNR) for region i, with subjectID as random

effect to account for the correlation of regional measures within each

subject. We then tested the main effect of scannerID using a mixed-

effects ANOVA.

The total number of voxels for the whole brain did not differ

significantly between sites for the fBIRN dataset (p = 0.56), but

did for the ABIDE dataset (p < 10−4). Testing regionwise showed

that 30/88 regions differed significantly in their number of voxels

in fBIRN (pFDR < 0.01, Fig. 2a), and all regions had significantly

different number of voxels in ABIDE (pFDR < 10−4, Fig. 2b).

Whole-brain SFNR was significantly different between sites for

the fBIRN dataset (p = 0.01) (consistent with previous results on this

dataset [13]) and the ABIDE dataset (p < 10−4). Regionwise, 85/88

regions differed significantly in fBIRN (pFDR < 0.03, Fig. 2c), and

all regions had significant differences in ABIDE (pFDR < 10−4,

Fig. 2d).

IV. GRAPH REPRESENTATIONS ACROSS SITES

Graphs can be represented as vectors in different ways in order to

use statistical learning methods operating in vector spaces [1]. Here

we focus on two techniques: direct embedding, where edge weights

are taken as features directly [14], and topological features embed-

ding [15]. Both representations rely on estimates of edge weights

(or absence/presence of edges), which is likely to be influenced by

properties of the acquisition site.
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Fig. 2. Site-specific violin plots of the number of voxels per region (two left panels) and regional signal-to-fluctuation noise ratio (two right panels) in the
fBIRN and ABIDE datasets. Each dot is the value for one region in one subject. fBIRN data is color-coded by subject (4 subjects shown here), and ABIDE
data is colored by diagnosis class, where blue is typically developing (TD) and red is autism spectrum disorder (ASD)

A. Edge weight distributions

Given our results on signal quality measures, we can expect the

distribution of edge weights (obtained by Pearson linear correlation

coefficient) to shift significantly depending on the acquisition site.

Indeed, Fig. 3 shows that this is the case, even when the acquisition

protocol and field strenghts are the same (as in the case of fBIRN).

More worryingly, in the case of clinical applications (ABIDE dataset),

the patients and control distributions can shift and overlap to the point

where researchers at different sites can reach opposing conclusions:

patients can be thought to be under-connected for a UCLA researcher,

while they could be described as over-connected for a Trinity re-

searcher.

(a) fBIRN (b) ABIDE

Fig. 3. Site-specific violin plots of the distribution of edge weights in the
fBIRN and ABIDE datasets. Color code as in figure 2

B. Topological graph features

Both weighted and unweighted topological graph features rely

on edge strength estimation. Unweighted features are computed on

a thresholded and binarised version of the graph, meaning that the

value of the numerical threshold can have a large influence on the

resulting feature.

Here, we first used a fixed edge density threshold for all subjets,

keeping 90% of the edges with the largest weight. We then computed

six vertex topological features: degree, clustering coefficient[16],

unweighted local efficiency [17], unweighted betweenness central-

ity [18], closeness centrality[19], and pageRank [20].

We then defined a mixed-effect model vpi ∼ 1+ scannerID+
(1|subjectID), where vpi is a vertex property for vertex i, and

subjectID is a random effect to account for the correlation of

regional vertex properties within each subject. We then tested the

main effect of scannerID using a mixed-effects ANOVA.

Robustness was consistent for the ABIDE and fBIRN datasets:

degree, path length, betweenness centrality and pageRank showed no

site effect.

Local efficiency, closeness centrality, and clustering coefficient

showed significant effect of site on ABIDE (all at p < 10−4), and an

insignificant effect on fBIRN.

Our results show that robustness to site differences varies between

topological features, and that a consistent acquisition protocol can

help reduce the effect of site differences on topological features.

V. MINIMISING SITE INFLUENCE

Given a multi-site dataset, how can we mitigate the confounding

effect of having different sites? The dominant approach is to regress

out the site identity, and to perform the rest of the modeling using

prediction residuals. We evaluate how this approach performs in a

cross-validation setting, and propose a projection-based approach that

attempts to preserve class discrimination while reducing site effects.

Our graph representation is either a direct embedding (leading

to 2828-dimensional feature vectors), or a concatenation of the six

topological features mentioned above (leading to a 528-dimensional

vectors (88 regions × 6 properties)).

A. Cross-validation setup

For the ABIDE dataset, we look at an imaging marker scenario,

where data from multiple sites is available to train an imaging marker,

but we cannot see all subjects ahead of time. We want to evaluate

how well the imaging marker is likely to perform on unseen subjects,

so we estimate the generalisation ability by leaving a few subjects

out for each site. The training data contains a total of Ntr subjects

coming from a number of sites.

B. Regression approach

The regressing-out approach assumes a linear shift effect of the

site, and mean-centers the features using site-specific means. However

this is typically performed outside of a cross-validation loop, thereby

benefitting from a peek at some testing data.

Here, we learn the parameters of the regression (beta coefficients)

strictly on training data, before applying the prediction to both training

and testing data. In addition, our approach to regression also includes

regional quality measures SFNR and number of voxels, as well as a

random effect for subject: we write our model vpi ∼ 1+SFNRi +
Mi + scannerID + (1|subjectID).



C. Projection approach

For the projection approach, we modified the Nuisance Attribute

Projection (NAP) technique [21], originally developed for channel

compensation in speaker verification problems.

We start by defining two binary constraint matrices over the

Ntr training feature vectors. First, a site constraint matrix Ws ∈
{0, 1}Ntr×Ntr , where Wsij is 0 if feature vectors i and j are

from the same site, and 1 if they are from different sites. Second,

a class constraint matrix Wc ∈ {0, 1}Ntr×Ntr , where Wcij is 1 if

feature vectors i and j are from the same class, and 0 if they are

from different classes. We obtained a linear combination of the two

constraint matrices W = Ws + λWc.

We then defined an optimisation problem to find the optimal

projection matrix P̂ such that

P̂ = argmin
P

∑
i �=j

Wij ‖P(xi − xj)‖2 , (1)

where x· are feature vectors. The optimal projection matrix will

push feature vectors together if they are from different sites, and pull

them apart if they are from different classes.

By writing P = I − V1:kV
T
1:k, where V is a matrix with

orthonormal columns and VTV = I, we can solve the optimisation

problem as a generalised eigenvalue problem:

X(diag(W1)−W)XTV = VΛ, (2)

where the columns of V contains the eigenvectors sorted by

decreasing eigenvalue. Thus, to train this method two two free

parameters must be tuned: λ ∈ R
+, which selects the trade-off

between reducing site differences (low λ) and maximising class

differences (high λ), and k ∈ N
+, which selects the number of

leading eigenvectors retained. After training, the projection matrix

was applied both to the training data and the testing data.

D. Statistical analysis of multi-site topological feature distributions

We focused the analysis on local efficiency, closeness centrality,

and clustering coefficient, which we have shown to be site-dependent.

Here, the goal of the regression and projection procedures was

to minimise the effect of site. For both fBIRN and ABIDE, the

regressing-out procedure succeeds in cancelling the site effect as

measured by the mixed-model ANOVA. However the distributions

are still mismatched. For fBIRN, the projection procedure succeeds in

making the main effect of site insignificant (p = 0.94, 0.95 and 0.66
for local efficiency, closeness centrality, and clustering coefficient

respectively). For ABIDE, the projection procedure fails to make the

site effect insignificant.

E. Prediction accuracy in multi-site data

Using the ABIDE dataset (fBIRN has no class information), we

first ran a leave-one-subject-per-group-out cross-validation on single

sites (Fig 4). The classifier used was a random forest with 501 trees.

Depending on sites and graph representations, accuracies ranged from

0.33 (below chance) to 0.75. While using 10 subjects per class per

site yields wide confidence intervals, accuracy appears strongly linked

to site.

Then, we ran multisite tests with the original data, regression-

corrected data and projection-corrected data in a cross-validated

fashion (leaving one control and one patient out for each site). We

used a nested-cross validation optimising for accuracy to set the λ and

k parameters of the projection. In all three cases (original, regression,

projection) we used both direct embedding and topological feature

embedding. The results are shown in Fig. 4. The accuracy of the two

embedding does not differ significantly, and is significantly above

chance. 60% accuracy is consistent with the literature [22], but below

the state of the art at 67% [23], although comparison is difficult

due to the different subsets of subjects. Regression makes prediction

random for both embeddings. Projection on topological features also

makes prediction random, but a small (non-significant) improvement

is obtained on direct embedding.
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Fig. 4. Prediction accuracy for typically developing versus autism spectrum
disorder subjects. The dot shows the point estimate for accuracy, the bars show
the 95% binomial confidence interval. The right side of the plot show results
for individual sites on the original data, while the left part shows results on
all sites combined, for the original, regression, and projection approaches.

VI. CONCLUSIONS

Acquisition sites have significant and large effects on basic image

properties. As shown using structural and functional quality measures,

these effects can impact functional connectivity, and furthermore

impact graph representations. This effect is both global and localised

in space, since not all regions are affected equally by site effects.

Different topological features have various degrees of robustness.

It is possible that unweighted properties, assorted with an edge-

density thresholding procedure, are less susceptible to site effects,

but this robustness can come at the expense of discrimative power.

Regressing-out the site identity may harm classification perfor-

mance when performed in a cross-validated setting. This may be due

to mean-alignment that does not rescale the distribution.

Discriminative projection approaches may be better suited to the

task, although the current version of our proposed approach is does

not perform particularly well. This is probably due to the difficulty

of tuning the parameters of the projection within a nested cross-

validation loop, where the data is high dimensional.

Meta-analysis techniques, which we have not explored here, may

offer a good way forward by abstracting away signal differences and

focusing on effect sizes directly.
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