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Abstract 

Learning biases in Pavlovian aversive conditioning have been found in response to specific 

categories of threat-relevant stimuli, such as snakes or angry faces. This has been suggested 

to reflect a selective predisposition to preferentially learn to associate stimuli that provided 

threats to survival across evolution with aversive outcomes. Here, we contrast with this 

perspective by highlighting that both threatening (angry faces) and rewarding (happy faces) 

social stimuli can produce learning biases during Pavlovian aversive conditioning. Using a 

differential aversive conditioning paradigm, the present study (N = 107) showed that the 

conditioned response to angry and happy faces was more readily acquired and more resistant 

to extinction than the conditioned response to neutral faces. Strikingly, whereas the effects 

for angry faces were of moderate size, the conditioned response persistence to happy faces 

was of relatively small size and influenced by inter-individual differences in their affective 

evaluation, as indexed by a Go/No-Go Association Task. Computational reinforcement 

learning analyses further suggested that angry faces were associated with a lower inhibitory 

learning rate than happy faces, thereby inducing a greater decrease in the impact of negative 

prediction error signals that contributed to weakening extinction learning. Altogether, these 

findings provide further evidence that the occurrence of learning biases in Pavlovian aversive 

conditioning is not specific to threat-related stimuli and depends on the stimulus’ affective 

relevance to the organism. 

 

Keywords: Pavlovian conditioning; Learning; Emotion; Happy faces; Angry faces 
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Introduction 

Learning to predict and anticipate impending threats in the environment holds a critical 

survival value to organisms (e.g., LeDoux & Daw, 2018). A basic form of learning whereby 

this skill is achieved is Pavlovian aversive conditioning (e.g., Delgado, Olsson, & Phelps, 

2006; LaBar, Gatenby, Gore, LeDoux, & Phelps, 1998; Phelps & LeDoux, 2005). In this 

procedure, organisms learn to associate a stimulus from the environment (the conditioned 

stimulus) with a biologically aversive outcome (the unconditioned stimulus) through single or 

repeated contingent pairing (Pavlov, 1927; Rescorla, 1988), thereby endowing the 

conditioned stimulus with a predictive and emotional value eliciting an anticipatory response 

(the conditioned response). Research on Pavlovian conditioning has generally focused on 

identifying principles that apply across different types of stimuli irrespective of their nature 

(Pavlov, 1927; Pearce & Hall, 1980; Rescorla & Wagner, 1972). Certain associations have, 

however, been revealed to be more easily formed and maintained than others (Garcia & 

Koelling, 1966; Öhman & Mineka, 2001; Seligman, 1970, 1971). Surprisingly, mechanisms 

underlying such learning biases remain yet not well elucidated. 

Major theoretical models put forward, such as the preparedness (Seligman, 1970, 

1971) and fear module (Öhman & Mineka, 2001) theories, adopt an evolutionary perspective 

according to which organisms are biologically predisposed by evolution to preferentially 

associate stimuli that provided threats to the species’ survival with aversive events. In 

agreement with this view, learning biases have been found in response to stimuli from 

specific animal and social threat-relevant categories, such as snakes, angry faces, or outgroup 

faces, in that these stimuli are more readily and persistently associated with an aversive 

outcome than nonthreatening stimuli, such as birds, happy faces, or ingroup faces (e.g., Ho & 

Lipp, 2014; Öhman & Dimberg, 1978; Öhman, Eriksson, & Olofsson, 1975; Öhman, 
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Fredrikson, Hugdahl, & Rimmö, 1976; Öhman & Mineka, 2001; Olsson, Ebert, Banaji, & 

Phelps, 2005; but see Åhs et al., 2018; Davey, 1995; Mallan, Lipp, & Cochrane, 2013).  

An alternative framework to these accounts derives from appraisal theories of emotion 

(e.g., Sander, Grafman, & Zalla, 2003; Sander, Grandjean, & Scherer, 2005, 2018), and 

proposes that the occurrence of learning biases in Pavlovian aversive learning is driven by a 

mechanism of relevance detection that is not selective to threat (Stussi, Brosch, & Sander, 

2015; Stussi, Pourtois, & Sander, 2018; Stussi, Ferrero, Pourtois, & Sander, 2019). This 

model holds that stimuli detected as relevant to the individual’s concerns–such as their goals, 

needs, or values (Frijda, 1986; Pool, Brosch, Delplanque, & Sander, 2016)–benefit from 

enhanced Pavlovian conditioning beyond stimulus valence and evolutionary status per se, and 

that such preferential learning is critically dependent on individual differences in stimulus 

affective evaluation. Congruent with this hypothesis, initial evidence (Stussi et al., 2018) has 

shown that, similar to threat-relevant stimuli (angry faces or snakes), positive stimuli with 

high biological relevance to the organism (baby faces or erotic stimuli) can likewise induce 

learning biases during Pavlovian aversive conditioning. 

Here, we sought to gain further insights into the mechanisms that modulate emotional 

learning in humans by comparing these two competing models through the investigation of 

Pavlovian aversive conditioning to threatening (angry faces), rewarding (happy faces), and 

neutral (neutral faces) social stimuli. On the one hand, extant evidence has documented the 

existence of learning biases to angry but not to happy faces in Pavlovian aversive 

conditioning (see, e.g., Bramwell, Mallan, & Lipp, 2014; Dimberg & Öhman, 1996; Esteves, 

Parra, Dimberg, & Öhman, 1994; Mazurski, Bond, Siddle, & Lovibond, 1996; Öhman & 

Dimberg, 1978; Öhman & Mineka, 2001; Rowles, Mallan, & Lipp, 2012), thereby mostly 

supporting the predictions of the preparedness and fear module theories1. On the other hand, 

                                                
1 Of note, Bramwell et al. (2014) reported resistance to extinction to outgroup race happy faces, thereby indicating that 
happy faces may lead to preferential aversive learning under certain circumstances. This effect was not due to negative 
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the relevance detection model predicts that both angry and happy faces should be 

preferentially learned during Pavlovian conditioning relative to neutral faces because of their 

higher affective relevance, but that learning biases to happy faces should be smaller than to 

angry faces and more sensitive to inter-individual differences in their affective evaluation. 

Indeed, happy faces have been suggested to generally have a lower level of relevance to the 

organism than stimuli with heightened biological relevance, such as angry or baby faces 

(Brosch, Pourtois, & Sander, 2010; Brosch, Sander, Pourtois, & Scherer, 2008; Pool et al., 

2016). Whereas the latter stimuli are likely to be consistently detected as highly relevant 

across individuals due to their importance for the organism and species’ survival, happy faces 

can carry several meanings (Ambadar, Cohn, & Reed, 2009; Martin, Rychlowska, Wood, & 

Niedenthal, 2017) and their processing may vary as a function of the situation and individual 

differences, such as extraversion for instance (Canli, Sivers, Whitfield, Gotlib, & Gabrieli, 

2002). Nonetheless, prior research has mainly used small sample sizes (typical n by group 

ranged between 15 and 25), hence undermining the possibility to detect potentially small 

learning biases and explore whether learning biases to happy faces can be mapped onto inter-

individual differences. 

In the present study, we therefore implemented a differential Pavlovian aversive 

conditioning paradigm in a relatively large sample size (N = 107) to test the predictions of the 

relevance detection model. Two angry, happy, and neutral faces were used as conditioned 

stimuli (CSs). One stimulus (CS+) from each CS category was systematically associated with 

a mild electric stimulation, whereas the other stimulus (CS-) was never paired with the 

stimulation. We operationalized the conditioned response (CR) as the differential skin 

conductance response (SCR) to the CS+ minus CS- from the same CS category, which served 

                                                
evaluation of outgroup happy faces, which were evaluated as more pleasant than ingroup happy faces at the explicit level, 
whereas no difference in positive or negative evaluation was found between them at the implicit level. Nevertheless, no 
resistance to extinction was observed to ingroup happy faces, which suggests that the enhanced persistence of threat 
conditioned to outgroup happy faces was likely driven by the faces’ race category. 
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as an index of learning (e.g., Olsson et al., 2005; Stussi et al., 2015, 2018, 2019). We also 

used computational modeling (Li, Schiller, Schoenbaum, Phelps, & Daw, 2011; Lindström, 

Golkar, & Olsson, 2015; Rescorla & Wagner, 1972; Stussi et al., 2018) to characterize the 

learning biases associated with angry and happy faces as opposed to neutral faces by 

extracting and comparing learning parameters for these CS categories. Additionally, we 

examined inter-individual differences in affective evaluation of happy faces in two ways. 

First, we considered participants’ extraversion (see Canli et al., 2002) based on the rationale 

that individuals high in extraversion should tend to appraise happy faces as more relevant to 

their concerns than individuals lower in this trait (Sander et al., 2003, 2005). Second, we 

assessed implicit associations between the face categories and importance (e.g., Critcher & 

Ferguson, 2016) through a Go/No-go Association Task (GNAT; Nosek & Banaji, 2001). This 

task aimed at measuring the strength with which participants associated the face categories 

with the attribute of importance, thereby serving as a proxy of individuals’ affective 

relevance evaluation of the faces. Specifically, we reasoned that the more individuals 

appraised the faces as affectively relevant, the more easily and rapidly they should associate 

these faces with importance (vs. unimportance). 

As learning biases are generally reflected by a faster acquisition of a CR and/or an 

enhanced resistance to extinction of that CR (e.g., Öhman & Mineka, 2001), we predicted 

that (a) the CR to angry faces would be more readily acquired and more resistant to 

extinction than the CR to both happy faces and neutral faces across participants, whereas (b) 

the CR to happy faces would be acquired more readily and more resistant to extinction than 

the CR to neutral faces. Moreover, we hypothesized that (c) participants’ extraversion level, 

as well as the sensitivity and rapidity with which they associated happy faces with the 

attribute of importance versus unimportance, would predict the CR acquisition readiness and 

persistence to happy faces. 
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Method 

Participants 

One hundred and seventeen students from the University of Geneva participated in the 

experiment, which was approved by the Faculty of Psychology and Educational Sciences 

ethics committee at the University of Geneva. They provided informed consent and received 

partial course credit for their participation. Ten participants were excluded from the analyses 

because of technical problems (n = 2), for displaying virtually no SCR (n = 2), for failing to 

acquire a CR to at least one of the CSs+ (n = 5), or for withdrawing from the study early (n = 

1). These exclusion criteria were determined prior to data collection (see Olsson et al., 2005; 

Olsson & Phelps, 2004; Stussi et al., 2015, 2018, 2019). The final sample size consisted of 

107 participants (85 women, 22 men), aged between 19 and 34 years old (mean age = 21.85 ± 

2.57 years). Two participants were further excluded from the computational modeling 

analyses because their individual parameters could not be estimated due to a lack of SCR to 

all the angry face CSs during the experiment (see supplemental materials). The sample size 

was established before data collection on the basis of the current heuristic suggesting a 

sample of at least 100 participants for studies considering inter-individual differences (see, 

e.g., Dubois & Adolphs, 2016). For counterbalancing purposes, we aimed to recruit a 

minimum sample size of 104 participants exhibiting differential conditioning to at least one 

of three CS categories. We stopped collecting data at the end of the academic year and 

ascertained that the established sample size had been reached. A sensitivity power analysis 

performed with G*Power 3 (Faul, Erdfelder, Lang, & Buchner, 2007) indicated that this 

sample size allowed for detecting a smallest population effect size of dz = 0.242 with a power 

of 80% using a one-tailed paired-sample t test. 

Apparatus and stimuli 
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The experiment took place in a sound-attenuated experimental chamber. The stimuli were 

presented using MATLAB (The MathWorks Inc., Natick, MA) with the Psychophysics 

Toolbox extensions (Brainard, 1997; Pelli, 1997) and displayed on a 23-inch LED monitor. 

Eight angry, eight happy, and eight neutral male face stimuli from the Karolinska Directed 

Emotional Faces (KDEF; Lundqvist, Flykt, & Öhman, 1998) were used either as targets or as 

distractors in the GNAT (see supplemental materials). Four word stimuli related to the 

attribute of importance (i.e., important words; “important”, “relevant”, “significant”, 

“impactful”) and four word stimuli related to the attribute of unimportance (i.e., unimportant 

words; “unimportant”, “irrelevant”, “insignificant”, “secondary”) were also used both as 

targets and distractors. 

In the differential Pavlovian aversive conditioning procedure, the CSs consisted of 

two male angry (model numbers AM10ANS, AM29ANS), two male happy (AM07HAS, 

AM22HAS), and two male neutral (AM11NES, AM31NES) faces taken from the KDEF 

(Lundqvist et al., 1998). These faces were selected based on the correct identification (hit rate 

range: 89.06%-100%) and intensity ratings (mean intensity range: 5.73-7.63) of their 

respective emotional expression (Goeleven, De Raedt, Leyman, & Verschuere, 2008). Each 

face served both as a CS+ and as a CS-, counterbalanced across participants. Subjective 

ratings performed before the conditioning procedure (see supplemental materials) on a visual 

analog scale from 0 (very unpleasant) to 100 (very pleasant) indicated that the angry faces 

were evaluated as unpleasant (M = 15.29, SD = 15.76), the happy faces as pleasant (M = 

68.28, SD = 20.39), and the neutral faces as relatively neutral (M = 43.47, SD = 13.07). The 

unconditioned stimulus (US) was a mild electric stimulation (200-ms duration) delivered to 

the participants’ right wrist through a unipolar pulse electric stimulator (STM200; BIOPAC 

Systems Inc., Goleta, CA). The CR was assessed through SCR measured with two Ag-AgCl 

electrodes (6-mm contact diameter) filled with 0.5% NaCl electrolyte gel. The electrodes 
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were attached to the distal phalanges of the second and third digits of the participants’ left 

hand. SCR was continuously recorded during the conditioning procedure with a sampling rate 

of 1000 Hz by means of a BIOPAC MP150 system (Santa Barbara, CA). The SCR data were 

analyzed offline with AcqKnowledge software (version 4.4; BIOPAC Sytems Inc., Goleta, 

CA). 

Procedure 

Between two to eight months prior to their participation in the study, participants completed 

the French version of the NEO Five-Factor Inventory (NEO-FFI; Costa & McCrae, 1992; 

Rolland, Parker, & Strumpf, 1998). Upon arrival at the laboratory, they were informed about 

the general layout of the experiment, provided written informed consent, and performed the 

GNAT. Participants were next asked to evaluate the to-be-CSs according to various 

dimensions (see supplemental materials) before undergoing the differential Pavlovian 

aversive conditioning procedure. Finally, they were asked again to provide subjective ratings 

of the CSs after conditioning (see supplemental materials) and were debriefed. 

Differential Pavlovian aversive conditioning. Prior to conditioning, the electrodes 

for measuring SCR and delivering the electric stimulation were attached to participants. A 

work-up procedure was then performed to individually calibrate the electric stimulation 

intensity (M = 34.55 V, SD = 7.57, range = 20-50 V) to a level reported as “uncomfortable, 

but not painful”. The differential Pavlovian aversive conditioning procedure (see Figure 1a,b) 

comprised three contiguous phases. In the initial habituation phase, the six CSs were each 

presented twice without being reinforced. During the subsequent acquisition phase, each CS 

was presented seven times. This phase always started with a reinforced CS+ trial. Each CS+ 

was paired with the US with a partial reinforcement schedule, five of the seven CS+ 

presentations co-terminating with the US delivery, whereas the CS- from each CS category 

was never associated with the US. The use of a partial reinforcement schedule aimed to 
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potentiate the CR resistance to extinction, hence optimizing the examination of differences 

between the three CS categories used. The final extinction phase consisted of six 

a

CS+ 
or 

CS- Inter-trial interval

6 s 12-15 s

71%  
CS+

during  
acquisition

b

…

…

CS+

CS-

CS+

CS-

CS-

CS+

CS-

CS+

CS+

CS-

CS-
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ACQUISITION

EXTINCTION

Time

Time

Time

c

Figure 1. Schematic representation of the experimental procedures. (a) Within-trial structure during the 

differential Pavlovian aversive conditioning procedure: two angry, happy, and neutral faces were presented as 

conditioned stimuli (CSs) in a pseudorandom order for 6 s during three contiguous phases (habituation, 

acquisition, extinction). Five of the seven CS+ trials (71%) for each face category co-terminated with an electric 

stimulation during acquisition. Trials were separated by an inter-trial interval ranging from 12 to 15 s. (b) 

Illustration of the overall differential Pavlovian aversive conditioning structure during acquisition and extinction. 

Acquisition consisted of presentations of the six CSs on a partial reinforcement schedule, whereas extinction 

consisted of presentations of the same CSs while the electric stimulation was no longer delivered. (c) Illustration 

of the Go/No-go Association Task: examples of five trials in which participants had to detect whether the faces 

and the words belonged to the target categories “Happy faces” or “Important words” (upper panel), or to the target 

categories “Happy faces” or “Unimportant words” (lower panel). If the face or word belonged to one of the two 

target categories, the correct response was to press ‘A’ on the keyboard, but to withdraw from responding 

otherwise. After each response, participants received feedback consisting of either a green check or a red cross 

for correct and incorrect responses, respectively. The different faces shown (AM02NES, AM07HAS, AM10ANS, 

AM11NES, AM22HAS, AM23HAS, AM24ANS, AM29ANS, AM31NES) were taken with permission from the 

Karolinska Directed Emotional Faces database (Lundqvist et al., 1998), which allows their free use for scientific 

publication (see kdef.se). 
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unreinforced presentations of each CS. During all the conditioning phases, the CSs were 

presented for 6 s with an inter-trial interval varying from 12 to 15 s. The CSs’ presentation 

order was pseudorandomized into eight different orders to counterbalance the associations 

between the face stimuli and CS type (CS+ vs. CS-) across the three CS categories (angry vs. 

happy vs. neutral). 

NEO Five-Factor Inventory (NEO-FFI). The NEO-FFI is a standard personality 

inventory measuring the Big Five personality traits consisting of neuroticism, extraversion, 

openness to experience, agreeableness, and conscientiousness (Costa & McCrae, 1992). It 

comprises 60 items (12 per trait), each of which is measured on a 5-point Likert scale ranging 

from 0 (strongly disagree) to 4 (strongly agree). Given our a priori hypotheses, we focused 

here on extraversion (M = 28.23, SD = 5.69, range = 10-40, Cronbach’s α = .76; see Figure 

S1 in the supplemental materials). Exploratory analyses including the other personality traits 

are reported in the supplemental materials. 

Go/No-go Association Task. In the GNAT, participants were presented with faces 

from three emotional categories (angry vs. happy vs. neutral) and words from two categories 

(important vs. unimportant). In each trial, a face or a word was displayed at the center of the 

screen. Participants were instructed to press as quickly and accurately as possible on the “A” 

key if the stimulus was a member of a target category (go trials), but to withdraw from 

responding otherwise (no-go trials). Throughout the task, the labels of the target categories 

were continuously displayed at the top of the screen as a reminder. After each trial, feedback 

about participants’ response was displayed at the bottom of the screen (i.e., a green check for 

correct or a red cross for incorrect) during a 150-ms inter-trial interval (see Figure 1c). 

The GNAT began with a practice session of five blocks in which there was only a 

single target category (see supplemental materials). The experimental session ensued and was 

composed of three parts, each divided into two blocks. Within each part, a specific face 
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category was one of the two target categories with “important” words being the other target 

category in block 1, and “unimportant” words the other target category in block 2. The order 

of the three parts as a function of the face categories was counterbalanced between 

participants. Each block consisted of 96 trials: 16 training trials and 80 critical trials. Four 

faces from the target face category and two faces from each distractor face category were 

presented intermixed with the four “important” and the four “unimportant” words in a 

pseudorandom order. The response deadline was idiosyncratically adapted to the participants’ 

reaction times and response accuracy (see, e.g., Coppin et al., 2016; Nosek & Banaji, 2001): 

When response was correct (for both go and no-go trials) and reaction time faster than the 

arbitrary response deadline (for go trials), the response deadline for the next trial was set as 

500 ms or as 666 ms if reaction time was slower than 500 ms but faster than 666 ms (for go 

trials); otherwise, it was set as 800 ms. 

Participants’ reaction times and response accuracy were recorded for each trial. All 

trials with reaction times faster than 100 ms were excluded from analysis. Data for all errors 

and distracter items were removed from the reaction times analysis. According to signal 

detection theory, we calculated a d’ score for each block within each part of the GNAT 

experimental session, considering only critical trials (Nosek & Banaji, 2001). We converted 

the proportions of hits (correct go-responses to targets) and false alarms (incorrect go-

responses to distractors) to z scores before computing the difference between them, thereby 

obtaining d’. Hit and false-alarm rates equal to 0 or 1 were replaced with 1/(2N) and 1 – 

1/(2N), respectively, where N is the number of trials (Macmillan & Creelman, 2005). A 

differential d’ index was then calculated by subtracting the d’ scores of the second block 

(target face category + unimportant words) from those of the first block (target face category 

+ important words; see, e.g., Coppin et al., 2016). Higher values on this index indicated 

higher accuracy when faces from the target face category and “important” words were targets 
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in comparison with when faces from the target face category and “unimportant” words were 

targets. Additionally, we computed a differential index for reaction times by subtracting the 

mean reaction times of the first block to those of the second block, higher values thus 

reflecting faster responses when faces from the target face category and “important” words 

were targets relative to when faces from the target face category and “unimportant” words 

were targets. The differential d’ and reaction times indices served as indicators of the strength 

of association between the faces categories and the attribute of importance versus that of 

unimportance (Nosek & Banaji, 2001). Although d’ scores are usually used as the main 

dependent variable in the GNAT, we measured both indicators because reaction times have 

been suggested to be more reliable than d’ scores due to their measurement on a continuous 

(vs. dichotomic) scale at the trial level (Nosek & Banaji, 2001). 

Response definition 

SCR was scored for each trial as the peak-to-peak amplitude difference in skin conductance 

of the largest response starting in the 0.5-4.5 s temporal window following CS onset. The 

minimal response criterion was 0.02 µS, and responses below this criterion were scored as 

zero and remained in the analysis. A low-pass filter (Blackman -92 dB, 1 Hz) was applied on 

the SCR data before analysis. SCRs were detected automatically with AcqKnowledge 

software and manually checked for artifacts and response detection. Trials containing 

artifacts affecting the scoring of event-related SCRs (0.17%) were removed from the 

subsequent analyses. The raw SCRs were scaled according to each participant’s mean 

unconditioned response (UR), and square-root-transformed to normalize the distributions. 

The UR was scored as the peak-to-peak amplitude difference in skin conductance of the 

largest response starting in the 0.5-4.5 s temporal window after the US delivery, and the 

mean UR was calculated across all USs for each participant. The habituation means 

comprised the first two presentations of each CS (i.e., Trials 1 and 2). In order to tease apart 
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effects of faster conditioning from those of larger conditioning, the acquisition means were 

split into an early (i.e., the first three presentations of each CS following the first pairing 

between the CS+ of a given CS category and the US; Trials 4 to 6) and a late (i.e., the 

following three presentations of each CS; Trials 7 to 9) phase (see, e.g., Lonsdorf et al., 2017; 

Olsson, Carmona, Downey, Bolger, & Ochsner, 2013; Stussi et al., 2015, 2018, 2019). This 

allowed us to specifically examine the CR acquisition readiness during early acquisition. The 

first acquisition trial for each CS was removed from the CR analysis because the CSs+ 

became predictive of the US only after their first association therewith. The extinction means 

encompassed the last six presentations of each CS (i.e., Trials 10 to 15). The conditioning 

data analyses were performed on the CR, which was calculated as the SCR to the CS+ minus 

the SCR to the CS- from the same CS category (e.g., Olsson et al., 2005; Stussi et al., 2015, 

2018, 2019). This procedure allows for reducing preexisting differences in emotional salience 

between the different CS categories (Olsson et al., 2005). 

Computational modeling 

Based on previous research (Stussi et al., 2018), we constructed a simple reinforcement 

learning model to characterize Pavlovian aversive conditioning to angry, happy, and neutral 

faces (for further details, see supplemental materials). We adapted the standard version of the 

Rescorla-Wagner model (Rescorla & Wagner, 1972) by implementing distinct learning rates 

for positive (i.e., when the outcome is not predicted or more than expected; excitatory 

learning) and negative (i.e., when the outcome is omitted or less than expected; inhibitory 

learning) prediction errors instead of a single learning rate (see Niv, Edlund, Dayan, & 

O’Doherty, 2012; Stussi et al., 2018). Excitatory and inhibitory learning rates exert an 

influence on associative learning by altering the impact of positive and negative prediction 

error signals, respectively, on the CS predictive value (see Niv & Schoenbaum, 2008). In the 

dual-learning-rate Rescorla-Wagner model, the predictive value (or associative strength) V of 
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a given CS j is updated based on the sum of the current predictive value Vj at trial t, and the 

prediction error between the predictive value Vj and the outcome R at trial t, weighted by 

different learning rates for positive and negative prediction errors as follows: 

 

where the learning rate for positive prediction errors α+ and the learning rate for negative 

prediction errors α- are free parameters within the range [0, 1]. If the US was delivered on the 

current trial t, R(t) = 1, else R(t) = 0. This model allows for parsimoniously accounting for 

how specific stimulus categories can accelerate acquisition (through the excitatory learning 

rate) and enhance resistance to extinction (through the inhibitory learning rate) of the CR. 

The learning-rate parameters were estimated, and the trial-by-trial CS values 

calculated, by fitting the model to the individual normalized (i.e., scaled and square-root-

transformed) SCR data separately for each CS category. Model comparison indicated that the 

dual-learning-rate Rescorla-Wagner model provided the best fit to the SCR data relative to 

alternative models (see supplemental materials). Accordingly, we compared the estimated 

excitatory and inhibitory learning-rate parameters across the three different CS categories 

used (angry vs. happy vs. neutral). 

Statistical analyses 

The differential d’ and the differential reaction time indices derived from the GNAT were 

each analyzed with a one-way repeated-measures analysis of variance (ANOVA) with face 

category (angry vs. happy vs. neutral) as a within-participant factor. Statistically significant 

main effects were followed up with a multiple comparison procedure using Tukey’s HSD 

tests when applicable. 

Following standard practice in the human conditioning literature (e.g., Lonsdorf et al., 

2017; Olsson et al., 2005; Stussi et al., 2015, 2018, 2019), the SCR data was analyzed 
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separately for each conditioning phase. The habituation and extinction phases and the 

estimated learning rates were each analyzed with a one-way repeated-measures ANOVA with 

CS category (angry vs. happy vs. neutral) as a within-participant factor. The acquisition 

phase was analyzed with a two-way repeated-measures ANOVA with CS category (angry vs. 

happy vs. neutral) and time (early vs. late) as within-participant factors. One-sample t tests 

were additionally performed to test whether differential conditioning occurred for the CS 

categories across the entire acquisition phase. To specifically test our a priori hypotheses, we 

conducted planned contrast analyses comparing the CR during early acquisition and during 

extinction, as well as the estimated learning rates, to (a) angry versus neutral faces, (b) happy 

versus neutral faces, and (c) angry versus happy faces. As these contrasts were 

nonorthogonal, we applied a Holm-Bonferroni sequential procedure (Holm, 1979) to correct 

for multiple comparisons. The alpha level of the contrast with the lowest p value was set as α 

= .05/3 = .0167, the alpha level with the second lowest p value as α = .05/2 = .025, and the 

alpha level with the highest p value as α = .05. For each planned contrast, we also calculated 

the Bayes factor (BF10) quantifying the likelihood of the data under the alternative hypothesis 

compared with the likelihood of the data under the null hypothesis (e.g., Dienes, 2011; 

Rouder, Speckman, Sun, Morey, & Iverson, 2009). Because we expected moderate effects for 

angry faces and relatively small effects for happy faces, we used a noninformative Cauchy 

prior distribution with a width of 0.5 for the comparisons between angry and happy faces and 

between angry and neutral faces (see Stussi et al., 2018), and of 0.25 for the comparison 

between happy and neutral faces. When our theory-driven hypotheses clearly predicted the 

direction of the expected effects, we performed one-sided testing to test them (one-sample t 

tests, contrasts a, b, and c). 

To assess our a priori hypotheses that extraversion, as well as the sensitivity and the 

rapidity with which happy faces were associated with the attribute of importance predicted 
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the CR acquisition readiness and persistence to these faces, we conducted multiple linear 

regression analyses. These analyses tested whether the CR acquisition readiness (i.e., during 

early acquisition) and persistence (i.e., during extinction), along with the excitatory and 

inhibitory learning-rate estimates, to happy faces were predicted by participants’ (a) 

extraversion level, (b) differential d’ index for happy faces, and (c) differential reaction time 

index for happy faces. Further exploratory multiple linear regression analyses carried out on 

the CR and the learning rates to angry and neutral faces to investigate the specificity of these 

predictive effects are reported in the supplemental materials.  

All statistical analyses were performed with RStudio (RStudio Team, 2016). Huynh-

Feldt adjustments of degrees of freedom were applied for repeated-measures ANOVAs when 

appropriate. Partial eta squared (η2) or Hedges’ gav (or gz) and their 90% or 95% confidence 

interval (CI) were used as estimates of effect sizes (see Lakens, 2013) for the repeated-

measures ANOVAs and the planned contrasts analyses (or one-sample t tests), respectively, 

whereas the coefficient of determination R2 along with its 90% CI was used for multiple 

linear regressions. 

Results 

Pavlovian aversive conditioning 

Figure 2 depicts the mean SCR to angry, happy, and neutral faces across the habituation, 

acquisition, and extinction phases of the differential Pavlovian aversive conditioning 

separately for the CS+ and the CS-. In the habituation phase, no preexisting difference in 

differential SCR across the CS categories (angry vs. happy vs. neutral) was found, F(2, 212) 

= 0.003, p = .997, partial η2 = .00003, 90% CI [.000, .0006]. 

Analysis of the acquisition phase revealed successful differential conditioning to all 

three CS categories, as reflected by larger SCRs to the CS+ than to the CS- for angry, t(106) 

= 7.44, p < .001 (one-tailed), gz = 0.714, 95% CI [0.505, 0.931], happy, t(106) = 8.10, p < 
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.001 (one-tailed), gz = 0.777, 95% CI [0.564, 0.998], and neutral faces, t(106) = 5.97, p < .001 

(one-tailed), gz = 0.573, 95% CI [0.372, 0.781]. The CS categories however differentially 

a

b

c

Figure 2. Mean scaled skin conductance response (SCR) to the conditioned stimuli as a function of the conditioned 

stimulus type (CS+ vs. CS-) across trials. Mean scaled SCR to (a) angry faces, (b) happy faces, and (c) neutral 

faces. Error bars indicate ± 1 SEM adjusted for within-participant designs (Morey, 2008). 
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influenced the CR acquisition as indicated by a main effect of CS category, F(2, 212) = 3.27, 

p = .040, partial η2 = .030, 90% CI [.001, .071]. The interaction effect between CS category 

and time did not yield statistical significance, F(2, 212) = 2.60, p = .076, partial η2 = .024, 

90% CI [.000, .062]. Congruent with our a priori hypothesis, a planned contrast analysis 

showed that the CR to angry faces was more readily acquired than the CR to neutral faces 

during early acquisition, t(106) = 2.60, p = .005 (one-tailed), gav = 0.358, 95% CI [0.084, 

0.636], BF10 = 6.642 (see Figure 3). Importantly, the CR to happy faces was likewise more 

readily acquired than to neutral faces, t(106) = 3.25, p < .001 (one-tailed), gav = 0.442, 95% 

CI [0.169, 0.720], BF10 = 41.237, whereas there was no statistical difference in CR 

acquisition readiness to angry faces compared with happy faces, t(106) = -0.58, p = .717 

(one-tailed), gav = -0.073, 95% CI [-0.324, 0.177], BF10 = 0.101 (see Figure 3). No statistical 

differences emerged between the three CS categories during late acquisition (all ps > .92, 

0.02 < gavs < 0.05, all BFs10 < 0.32). 

Critically, the CR persistence was also modulated by the CS categories during 

extinction, F(2, 212) = 5.97, p = .003, partial η2 = .053, 90% CI [.011, .104]. As predicted, 

the CR to angry faces was more resistant to extinction than the CR to neutral faces, t(106) = 

3.69, p < .001 (one-tailed), gav = 0.432, 95% CI [0.196, 0.672], BF10 = 133.200. Similarly, the 

CR to happy faces was more persistent than to neutral faces, t(106) = 2.01, p = .024 (one-

tailed), gav = 0.247, 95% CI [0.003, 0.493], BF10 = 2.777 (see Figure 3). By comparison, we 

did not observe an enhanced CR persistence to angry faces relative to happy faces, t(106) = 

1.28, p = .102 (one-tailed), gav = 0.133, 95% CI [-0.072, 0.339], BF10 = 0.573. 

Estimated learning rates 

Analysis of the excitatory learning-rate estimates revealed no statistically significant main 

effect of CS category, F(2, 208) = 2.50, p = .085, partial η2 = .023, 90% CI [.000, .061]. A 

more focused planned contrast analysis indicated that happy faces were associated with a 
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higher excitatory learning rate than neutral faces, t(104) = 2.05, p = .022 (one-tailed), gav = 

0.232, 95% CI [0.007, 0.460], BF10 = 2.986 (see Figure 4a), but this difference was not 

statistically significant when correcting the alpha level for this contrast (α = .0167). No 

statistical difference in excitatory learning rate was observed between angry and happy faces, 

t(104) = -1.76, p = .959 (one-tailed), gav = -0.205, 95% CI [-0.438, 0.026], BF10 = 0.058, or 

between angry and neutral faces, t(104) = 0.23, p = .410 (one-tailed), gav = 0.027, 95% CI [-

0.203, 0.257], BF10 = 0.181. By contrast, the CS categories differentially affected the 

estimated inhibitory learning rates, F(2, 208) = 5.95, p = .003, partial η2 = .054, 90% CI 

[.011, .106]. These estimates were lower for angry faces than for neutral faces, t(104) = -3.52, 

p < .001 (one-tailed), gav = -0.434, 95% CI [-0.686, -0.186], BF10 = 78.801, and happy faces, 

t(104) = -2.14, p = .017 (one-tailed), gav = -0.242, 95% CI [-0.468, -0.018], BF10 = 2.477, 

***
** ***

*

Figure 3. Mean conditioned response (scaled differential skin conductance response [SCR]) as a function of the 

conditioned stimulus category (angry vs. happy vs. neutral) during (early and late) acquisition and extinction. The 

dots indicated data for individual participants. Error bars indicated ± 1 SEM adjusted for within-participant designs 

(Morey, 2008). Asterisks indicate statistically significant differences between conditions (***p < .001, **p < .01, 

*p < .05, one-tailed, Holm-Bonferroni corrected). 
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whereas they were marginally lower for happy faces compared with neutral faces, t(104) = -

1.33, p = .093 (one-tailed), gav = -0.164, 95% CI [-0.409, 0.079], BF10 = 1.015 (see Figure 

4b), although the latter difference did not yield statistical significance and the evidence for it 

remained inconclusive. 

Go/No-go Association Task 

The analysis of the differential d’ index showed a statistically significant main effect of face 

category (angry vs. happy vs. neutral), F(2, 212) = 15.46, p < .001, partial η2 = .127, 90% CI 

[.061, .193]. The differential d’ index was higher for happy faces (M = 0.15, SD = 0.55) than 

for angry (M = -0.20, SD = 0.46; p < .001, gav = 0.683, 95% CI [0.407, 0.965]) and neutral 

faces (M = -0.10, SD = 0.44; p < .001, gav = 0.493, 95% CI [0.222, 0.769]), whereas there 

***
* °

ba

°

Figure 4. Learning-rate parameter estimates of the Rescorla-Wagner model implementing dual learning rates 

using the best-fitting parameters for positive predictions errors (excitatory learning) and negative prediction errors 

(inhibitory learning) as a function of the conditioned stimulus category (angry vs. happy vs. neutral). The dots 

indicate data for individual participants. Error bars indicate ± 1 SEM adjusted for within-participant designs 

(Morey, 2008). Asterisks indicate statistically significant differences between conditions (***p < .001, *p < .05, 

°p < .10, one-tailed, Holm-Bonferroni corrected). 
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was no statistical difference between angry and neutral faces (p = .273, gav = 0.219, 95% CI 

[-0.030, 0.469]). These results suggest that participants exhibited a greater sensitivity to the 

association between the attribute of importance versus unimportance with happy faces than 

either angry or neutral faces. Conversely, the differential reaction time index did not differ 

statistically across the face categories, F(2, 212) = 2.45, p = .089, partial η2 = .023, 90% CI 

[.000, .059]. 

Regression analyses 

The multiple linear regression analyses on the CR to happy faces (see Table 1) showed that 

participants’ extraversion level, differential d’ index for happy faces, and differential reaction 

time index for happy faces did not predict the CR to happy faces during early acquisition (all 

ps > .34) where they only explained 1.51% of its variance (R2 = .015, 90% CI [.000, .048], 

adjusted R2 = -.014, F(3, 103) = 0.53, p = .664). However, these three predictors explained 

13.06% of the variance of the CR to happy faces during extinction (R2 = .131, 90% CI [.031, 

.224], adjusted R2 = .105, F(3, 103) = 5.16, p = .002). Whereas extraversion and the 

differential d’ index for happy faces did not predict the CR to happy faces (both ps > .38), the 

CR to happy faces was predicted by the differential reaction time index for these faces, b = 

0.002, 95% CI [0.001, 0.003], β = .360, t(103) = 3.83, p < .001, reflecting that participants 

who were faster to associate happy faces with the attribute of importance than that of 

unimportance exhibited a larger CR to happy faces during extinction (see Figure 5). 

Regarding the excitatory and inhibitory learning rates (see Table 1), participants’ 

extraversion level, differential d’ index for happy faces, and differential reaction time index 

for happy faces explained 4.09% (R2 = .041, 90% CI [.000, .100], adjusted R2 = .012, F(3, 

101) = 1.44, p = .236) and 4.71% (R2 = .047, 90% CI [.000, .110], adjusted R2 = .019, F(3, 

101) = 1.66, p = .180) of their variance, respectively. No significant relationship emerged 

between the predictors and the excitatory and inhibitory learning-rate estimates (all ps > .05).
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Table 1 

Results for the multiple linear regression analyses 

 Conditioned response to happy faces during 
early acquisition (N = 107) 

 
Conditioned response to happy faces during 

extinction (N = 107) 

 Estimated excitatory learning rate  
to happy faces  

(N = 105) 

 Estimated inhibitory learning rate  
to happy faces  

(N = 105) 

 b SE β t 
(103) p 

 
b SE β t 

(103) p 
 

b SE β t 
(101) p 

 
b SE β t 

(101) p 

Intercept 0.073 0.106  0.69 .494 
 

0.027 0.087  0.31 .759 
 

0.069 0.169  0.41 .685 
 

0.446 0.150  2.97 . 004 
** 

Extraversion 0.003 0.004 .085 0.87 .388 
 

0.002 0.003 .046 0.50 .621 
 

0.009 0.006 .146 1.49 .140 
 

-0.002 0.005 -.031 -0.32 .750 

Differential  
d’ index -0.005 0.039 -.013 -0.13 .896 

 
-0.028 0.032 -.082 -0.87 .386 

 
0.083 0.062 .133 1.33 .187 

 
0.076 0.055 .137 1.37 .173 

Differential  
reaction time 
index 

-0.001 0.001 -.096 -0.96 .341 
 

0.002 0.0005 .360*** 3.83 < .001 
 

-0.000 0.001 -.019 -0.19 .852 
 

-0.002 0.001 -.195 -1.95 .054 

R2 .015 
 

.131 
 

.041 
 

.047 

Note. ***p < .001, **p < .01. 
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For angry and neutral faces, no statistically significant relationship was observed between 

participants’ extraversion level, differential d’ index, and differential reaction time index, and 

the CR during early acquisition and extinction as well as the learning-rate estimates (all ps > 

.08; see supplemental materials). 

 

 

Discussion 

In this study, we aimed to test the predictions of two competing theoretical approaches of 

emotional learning. More particularly, we tested the hypothesis deriving from appraisal 

R2 = .122

Figure 5. Relationship between the differential reaction time index for happy faces in the Go/No-go Association 

Task (mean reaction times in the block where happy faces and the attribute of importance were target categories 

minus mean reaction times in the block where happy faces and the attribute of unimportance were target 

categories) and the conditioned response to happy faces during extinction. The line represents the fitted regression 

line using least squares estimation and 95% confidence interval. 
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theories that enhanced emotional learning is driven by a relevance detection mechanism that 

is not specific to threat, and depends on individual differences in affective relevance 

appraisal. This hypothesis departs from the preparedness and fear module theories, according 

to which enhanced emotional learning is selective to threat. To that end, we compared 

Pavlovian aversive conditioning to threat-related (angry faces), positive (happy faces), and 

neutral (neutral faces) social stimuli and investigated the influence of inter-individual 

differences in affective evaluation on this process. Altogether, our results showed that both 

angry and happy faces were preferentially associated with an aversive outcome during 

Pavlovian conditioning relative to neutral faces, and that the persistence of this association 

for happy faces was related to inter-individual differences in their affective evaluation.  

The conditioned response to angry and happy faces was more readily acquired and 

more persistent than the conditioned response to neutral faces, thus reflecting learning biases 

associated with these stimuli. Moreover, the conditioned response to happy faces during 

extinction was greater in participants who were faster to associate them with the attribute of 

importance (vs. unimportance) in the Go/No-go Association Task. In comparison, no such 

relationship was found for angry and neutral faces (see supplemental materials). Whereas the 

results obtained for angry faces align with well-established findings in the human 

conditioning literature (e.g., Öhman & Dimberg, 1978; Rowles et al., 2012; see also Dimberg 

& Öhman, 1996; Mallan et al., 2013; Öhman & Mineka, 2001), the occurrence of learning 

biases to happy faces challenges the view that enhanced Pavlovian aversive conditioning is 

selective to threat-relevant stimuli (Öhman & Mineka, 2001; Seligman, 1971). Conversely, 

our results indicate that positive stimuli with moderate affective relevance can also be rapidly 

and persistently associated with an aversive event, with these effects being moderate to small. 

They further show that individual differences in affective evaluation may affect the 

emergence of learning biases. In this respect, our findings replicate and expand recent 
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evidence supporting the appraisal-based predictions according to which preferential 

Pavlovian aversive learning is driven by affective relevance without being bound to a specific 

valence or inherent threat value, and can be modulated by individual differences in the way 

the stimulus is appraised in relation to the individual’s concerns (Stussi et al., 2018, 2019). 

At the computational level, the effects of greater persistence of the conditioned 

response to angry faces was characterized by a lower inhibitory learning rate. More 

specifically, the learning rate for negative prediction errors was lower to angry faces than to 

happy and neutral faces. This lower inhibitory learning altered the impact of negative 

prediction error signals, which likely contributed to weakening inhibitory learning underlying 

extinction (Dunsmoor, Niv, Daw, & Phelps, 2015). The observation that angry faces were 

associated with a lower inhibitory learning rate than happy faces additionally suggests that 

angry faces led to more persistent Pavlovian aversive conditioning, even though this 

difference was not visible when using conventional summary statistics on the conditioned 

response during extinction. This finding dovetails with the notion that happy faces hold a 

generally lower level of relevance to the organism than angry faces (Brosch et al., 2008, 

2010; Pool et al., 2016), hence entailing smaller learning biases than angry faces. Happy 

faces were associated with a marginally lower inhibitory learning rate relative to neutral 

faces, but only inconclusive evidence was observed for this difference. Further evidence is 

thus required to determine whether the heightened conditioned response persistence to happy 

compared with neutral faces could be underlain by a lower inhibitory learning rate. In 

comparison, we did not find strong evidence that faster acquisition of the conditioned 

response to angry and happy faces than to neutral faces was driven by a higher excitatory 

learning rate. These results are partially inconsistent with previous studies using reward 

learning paradigms (Watanabe & Haruno, 2015; Watanabe, Sakagami, & Haruno, 2013), 

which reported that threat-related (i.e., fearful) faces not only accelerated learning in 
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comparison to neutral faces, but also increased the associated excitatory learning rate. 

Tentatively, this discrepancy may be due to habituation effects in the skin conductance 

response in the present case, which could have biased the estimation of the excitatory 

learning rates and mitigated the emergence of robust differences between the face categories. 

The fact that happy faces led to a relatively small learning bias during extinction 

could potentially account for failures to report a resistance-to-extinction effect for this 

specific emotional category in prior research (see, e.g., Bramwell et al., 2014; Esteves et al., 

1994; Mazurski et al., 1996; Öhman & Dimberg, 1978; Rowles et al., 2012; see also Dimberg 

& Öhman, 1996; Öhman & Mineka, 2001). Indeed, past studies have generally used between-

participant designs (but see Bramwell et al., 2014) that are less sensitive than within-

participant designs (see, e.g., Ho & Lipp, 2014), and importantly, often with modest sample 

sizes, typically varying from 15 to 25 participants by group. These two methodological 

factors likely contributed to hindering the possibility to reveal the existence of learning biases 

to happy faces given that, as our results suggest here with the use of a larger sample and 

stringent within-participant design, this bias has a small effect size2. It is therefore highly 

desirable in future research to set up adequately-powered experiments when the goal is to 

explore differences in Pavlovian aversive learning to happy compared with neutral or angry 

faces. 

Although our study shows that inter-individual differences in stimulus affective 

evaluation can exert an effect on learning biases in Pavlovian conditioning, we only found a 

clear relationship between the conditioned response to happy faces during extinction and the 

differential reaction time index, but not with the differential d’ index–this dissociation likely 

stemming from the putative lower reliability of this latter index (Nosek & Banaji, 2001)–or 

                                                
2 Additional post-hoc power analyses corroborated this assumption in indicating that achieved power to detect a small effect 
as reported in the present study (gav = 0.247) using a one-tailed t test and an alpha level of .05 with a sample size ranging 
from 15 to 25 participants per group would vary between 23.14% and 32.83% for a within-participant design, and between 
16.24% and 21.66% for a between-participant design. 
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during early acquisition. In addition, we found no evidence that inter-individual differences 

in extraversion affected the conditioned response to happy faces during either early 

acquisition or extinction, which is at odds with our predictions. Speculatively, this null result 

might arise from a relative lack of heterogeneity in the current sample’s extraversion scores 

(see Figure S1; see Rolland et al., 1998, for a comparison with normative data from a similar 

student population). For these reasons, caution is warranted in the interpretation of the 

specific dimensions that underlain the impact of individual differences in affective evaluation 

on the conditioned response to happy faces during extinction, and these findings await 

replication in future studies before stronger conclusions might be drawn. 

Another caveat pertains to the Go/No-go Association Task that we used in the sense 

that it probably did not provide a direct and pure measure of the affective relevance or 

importance value of the face categories. Results of this task showed that participants more 

easily associated happy faces with importance (vs. unimportance) than they did for angry and 

neutral faces. This suggests that the Go/No-go Association task rather captured the stimuli’s 

valence and may have reflected participants’ preferences or liking toward the face categories 

(Nosek & Banaji, 2001). Accordingly, it is possible that differential preferences toward 

happy faces actually drove the conditioned response persistence to these faces in the present 

study. 

As angry and happy faces are usually considered as more arousing than neutral faces, 

it could be argued that these faces induced enhanced Pavlovian aversive conditioning because 

of their higher arousal value rather than, or in addition to, their affective relevance. Appraisal 

theories (e.g., Sander et al., 2003, 2005, 2018) suggest that stimuli appraised as relevant to 

the organism’s concerns often trigger a physiological state of arousal that can be felt 

consciously as a consequence of the elicitation of a motivational state (see Montagrin & 

Sander, 2016; Pool et al., 2016), hence rendering it difficult to disentangle the specific 
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contributions of affective relevance and arousal from one another. Although we cannot rule 

out that arousal contributed to our findings, it seems unlikely that they were solely 

determined by felt and/or physiological arousal (see Stussi et al., 2018, for a related 

discussion). In fact, previous studies (Hamm, Greenwald, Bradley, & Lang, 1993; Hamm & 

Stark, 1993; Hamm & Vaitl, 1996) have reported that highly arousing negative and positive 

stimuli, without taking into account their affective relevance to the organism, did not produce 

preferential Pavlovian aversive conditioning relative to less arousing stimuli. Moreover, 

supplementary analysis of the habituation phase3 revealed that (a) angry faces elicited larger 

skin conductance responses than happy faces before conditioning, whereas no difference 

emerged between angry and neutral faces, and between happy and neutral faces, and (b) the 

skin conductance responses to the various face categories during habituation did not correlate 

with the conditioned response to these stimuli during early acquisition and extinction. These 

considerations suggest that an explanation in terms of arousal alone does not satisfactorily 

account for the occurrence of differential learning biases to both angry and happy faces. 

Alternatively, our results could also be interpreted as reflecting the involvement of 

two different mechanisms instead of a single relevance detection mechanism: a specialized 

mechanism selectively acting on threat-related stimuli that is consistently engaged across 

individuals, and a more general one acting on affectively relevant stimuli that is more 

sensitive to individual differences. Future research is needed to disentangle these two 

competing explanations, for instance by investigating at the neurobiological level whether 

                                                
3 A repeated-measures ANOVA with CS type (CS+ vs. CS-) and CS category (angry vs. happy vs. neutral) as within-
participant factors performed on the skin conductance response data during habituation revealed a main effect of CS 
category, F(2, 212) = 4.20, p = .016, partial η2 = .038, 90% CI [.004, .083]. Further post-hoc comparisons using Tukey’s 
HSD tests indicated that angry faces elicited larger skin conductance responses than happy faces (p = .012, gav = 0.215, 95% 
CI [0.064, 0.369]), whereas no statistically significant difference was found between angry and neutral faces (p = .190, gav = 
0.129, 95% CI [-0.019, 0.279]) or between happy and neutral faces (p = .497, gav = -0.088, 95% CI [-0.239, 0.062]). 
Pearson’s correlation analyses moreover showed no statistically significant relationship between the skin conductance 
responses to the different faces during habituation and the conditioned response to these faces during the early acquisition 
phase (-.129 < all rs(105) < .100, all ps > .18) or during the extinction phase (.001 < all rs(105) < .129, all ps > .18). Of note, 
computational learning models incorporating a Pavlovian bias to account for possible differences in inherent responding to 
the various CS categories did not provide a better fit to the normalized SCR data than the modified Rescorla-Wagner model 
implementing dual learning rates (see supplemental materials). 
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learning biases in Pavlovian aversive conditioning occurring in response to threat-relevant 

stimuli are underpinned by a threat-specific mechanism that is functionally distinct from a 

mechanism of relevance detection. 

In conclusion, the present study highlights that positive stimuli with a relatively 

moderate level of relevance can be readily and persistently associated with an aversive 

outcome as is the case for threat-relevant stimuli, thus replicating and extending recent work 

showing that learning biases in Pavlovian aversive conditioning are not specific to threat-

related stimuli, but can likewise occur for positive emotional stimuli (Stussi et al., 2018). Our 

results furthermore suggest that inter-individual differences may play a key role in the 

development of these learning biases (Stussi et al., 2019; see also Lonsdorf & Merz, 2017). In 

this context, our study suggests that the determinants of Pavlovian aversive conditioning are 

more flexible than previously thought and may adaptively rely on the interaction between the 

stimulus at play and the individuals’ current concerns. These findings thereby contribute to 

further advancing and refining our understanding of the basic mechanisms underlying 

emotional learning in humans, and could ultimately provide insights into impairments in this 

process that are typically associated with specific emotional disorders, including anxiety, 

phobia, or addictions.  
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Supplemental Method and Results 

 

 

Figure S1. Distribution of extraversion scores as measured with the NEO-FFI (Costa & 

McCrae, 1992; Rolland, Parker, & Strumpf, 1998). The dots indicate data for individual 

participants. The solid line indicates the mean extraversion score and the dashed line the 

median extraversion score. 
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Go/No-go Association Task 

Face stimuli from the Karolinska Directed Emotional Faces (KDEF; Lundqvist, Flykt, & 

Öhman, 1998) were used either as targets or as distractors in the Go/No-go Association Task 

(GNAT; Nosek & Banaji, 2001). They consisted of eight angry faces (model numbers for 

targets: AM05ANS, AM09ANS, AM17ANS, AM30ANS; model numbers for distractors: 

AM14ANS, AM19ANS, AM21ANS, AM24ANS), eight happy faces (model numbers for 

targets: AM20HAS, AM23HAS, AM25HAS, AM26HAS; model number for distractors: 

AM04HAS, AM12HAS, AM16HAS, AM32HAS), and eight neutral faces (models numbers 

for targets: AM01NES, AM06NES, AM08NES, AM13NES; model numbers for distractors: 

AM02NES, AM18NES, AM28NES, AM35NES).  

The practice session of the GNAT included five blocks in which there was only a 

single target category. In the first three blocks, participants learned to discriminate between 

the different face categories, each of them being the target category in one of the blocks 

whereas the two other categories were distractors; the order being counterbalanced across 

participants. In these blocks, four faces from the target face category and two faces from each 

distractor face category were each presented twice in a pseudorandom order. In the last two 

practice blocks, participants were presented with the four “important” and the four 

“unimportant” words, which were each presented twice in a pseudorandom order. The 

“important” words were targets and the “unimportant” words distractors in the fourth block, 

which was reversed in the last block. Each practice block consisted of 16 trials and used a 

666-ms response deadline. 

To assess whether a trade-off relationship occurred between reaction times (RTs) and 

accuracy in the GNAT, we conducted point-biserial correlations between individual 

participants’ trial-by-trial RTs and accuracy (0 [incorrect] vs. 1 [correct]) for each face 

category. To do so, we calculated a correlation coefficient for each participant separately 
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before averaging these coefficients. These analyses showed a weak positive relationship 

between participants’ RTs and accuracy for angry (mean r = .197, SD = 0.12, range = -.201–

.486), happy (mean r = .203, SD = 0.13, range = -.184–.477]), and neutral faces (mean r = 

.256, SD = 0.11, range = -.155–.517). In addition, we tested whether participants were overall 

slower for correct trials relative to incorrect trials across the three face categories by means of 

a two-way repeated-measures ANOVA on the mean RT data. We observed significant main 

effects of face category, F(2, 212) = 16.29, p < .001, partial η2 = .133, 90% CI [.066, .200], 

and of accuracy, F(1, 106) = 696.48, p < .001, partial η2 = .868, 90% CI [.830, .891]. These 

main effects were qualified by their interaction, F(2, 212) = 6.77, p = .001, partial η2 = .060, 

90% CI [.015, .113]. Follow-up comparisons using Tukey’s HSD confirmed that the RTs in 

correct trials were slower than in incorrect trials for angry (p < .001, gav = 1.569, 95% CI 

[1.291, 1.867]), happy (p < .001, gav = 1.520, 95% CI [1.243, 1.814]), and neutral faces (p < 

.001, gav = 1.859, 95% CI [1.565, 2.176]). Additional post-hoc comparisons further revealed 

faster RTs in correct trials for angry (p < .001, gav = 0.432, 95% CI [0.249, 0.619]) and happy 

(p < .001, gav = 0.620, 95% CI [0.437, 0.809]) faces compared with neutral faces, whereas 

there was no statistical difference in RTs in correct trials between happy and angry faces (p = 

.085, gav = 0.207, 95% CI [0.016, 0.401]), or across the face categories in incorrect trials (all 

ps > .06, 0.02 < gavs < 0.27). 

Subjective ratings 

Subsequent to the GNAT but before the differential Pavlovian aversive conditioning 

procedure, participants provided subjective ratings of the two angry face conditioned stimuli 

(CSs), the two happy face CSs, and the two neutral face CSs as a function of their 

pleasantness, subjective arousal, and subjective relevance. In this procedure, the faces were 

presented to participants along with a visual analog scale (VAS). For the pleasantness ratings, 

participants were asked to rate the degree to which the face was unpleasant or pleasant from 0 
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(very unpleasant) to 100 (very pleasant). For the arousal ratings, they were asked to rate the 

degree to which the face was arousing from 0 (not at all arousing) to 100 (very arousing). 

For the relevance ratings, participants were asked to rate the degree to which the face was 

important to them from 0 (not at all important) to 100 (very important). After the end of the 

conditioning procedure, participants completed again pleasantness, arousal, and relevance 

ratings of the CSs using the same procedure as for the preconditioning ratings. In addition, 

they were asked to rate how many electric stimulations they received in response to each CS 

on a Likert scale from 0 to 9 to assess their explicit awareness of the CS-US contingencies. 

The order of the CS presentations and the questions was randomized between participants for 

both the preconditioning and postconditioning ratings. 

The pleasantness, arousal, and relevance ratings were analyzed with separate three-

way repeated-measures analyses of variance (ANOVAs) with time (pre vs. post), CS 

category (angry vs. happy vs. neutral), and CS type (CS+ vs. CS-) as within-participant 

factors, whereas the CS-US contingency ratings were analyzed with a two-way repeated-

measures ANOVA with CS category (anger vs. happy vs. neutral) and CS type (CS+ vs. CS-) 

as within-participant factors. Statistically significant effects were followed up with more 

focused repeated-measures ANOVAs and/or a multiple comparison procedure using Tukey’s 

HSD tests when applicable. 

Analysis of the pleasantness ratings (see Figure S2a) showed a three-way interaction 

between time, CS category, and CS type, F(2, 212) = 5.29, p = .006, partial η2 = .048, 90% CI 

[.008, .096]. A follow-up 3 (CS category: angry vs. happy vs. neutral) × 2 (CS type: CS+ vs. 

CS-) repeated-measures ANOVA for the preconditioning ratings indicated that the CS 

categories modulated the CSs’ rated pleasantness before conditioning, F(1.73, 183.12) = 

323.15, p < .001, partial η2 = .753, 90% CI [.707, .785]. As expected, happy faces were 

deemed more pleasant than angry faces (p < .001, gav = 2.887, 95% CI [2.432, 3.378]) and 
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neutral faces (p < .001, gav = 1.438, 95% CI [1.149, 1.743]), whereas neutral faces were 

evaluated as more pleasant than angry faces (p < .001, gav = 1.933, 95% CI [1.590, 2.298]). 

The follow-up repeated-measures ANOVA for the postconditioning ratings revealed an 

interaction effect between CS category and CS type, F(2, 212) = 6.40, p = .002, partial η2 = 

.057, 90% CI [.013, .109], reflecting that the difference in rated pleasantness between the 

CS+ and the CS- was higher for happy faces than angry and neutral faces. The CS+ was 

evaluated as less pleasant than the CS- for angry faces (p = .015, gav = 0.404, 95% CI [0.160, 

0.652]), happy faces (p < .001, gav = 0.811, 95% CI [0.546, 1.085]), and neutral faces (p < 

.001, gav = 0.662, 95% CI [0.401, 0.929]). Furthermore, happy faces were rated as more 

pleasant than angry faces (all ps < .001, 0.80 < gavs < 2.26), and neutral faces were deemed 

more pleasant than angry faces (all ps < .04, 0.39 < gavs < 1.59). The happy face CS- was 

likewise evaluated as more pleasant than the neutral face CS+ and CS- (p < .001, gav = 1.462, 

95% CI [1.133, 1.808], and p < .001, gav = 0.950, 95% CI [0.669, 1.241], respectively), and 

the happy face CS+ as more pleasant than the neutral face CS+ (p < .001, gav = 0.479, 95% 

CI [0.253, 0.710]), whereas there was no statistical difference in rated pleasantness between 

the happy face CS+ and the neutral face CS- (p = .999, gav = -0.044, 95% CI [-0.326, 0.238]). 

The arousal ratings analysis (see Figure S2b) revealed an interaction between time 

and CS type, F(1, 106) = 87.23, p < .001, partial η2 = .451, 90% CI [.335, .541]. Before 

conditioning, the CSs+ and the CSs- did not statistically differ in felt arousal (p > .99, gav = 

0.004, 95% CI [-0.155, 0.163]); by contrast, the CSs+ were rated as more arousing than the 

CSs- after conditioning (p < .001, gav = 1.149, 95% CI [0.874, 1.436]). The CSs+ were also 

deemed more arousing after conditioning than before it (p < .001, gav = 0.872, 95% CI [0.645, 

1.108]), whereas the CSs- were deemed less arousing after than before conditioning (p < 

.001, gav = 0.382, 95% CI [0.188, 0.581]). Moreover, the interaction between time and CS 

category yielded statistical significance, F(2, 212) = 22.81, p < .001, partial η2 = .177, 90% 
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CI [.101, .248]. Angry and happy faces were evaluated as more arousing than neutral faces 

both in the preconditioning and postconditioning ratings (all ps < .001, 0.86 < gavs < 1.86), 

but did not differ statistically between each other (all ps > .55, 0.03 < gavs < 0.18). In 

addition, neutral faces were evaluated as more arousing after than before conditioning (p < 

.001, gav = 0.837, 95% CI [0.559, 1.123]), which was not the case for angry faces (p = .949, 

gav = 0.070, 95% CI [-0.086, 0.226]) and happy faces (p = .953, gav = -0.077, 95% CI [-0.253, 

0.098]). 

For the relevance ratings (see Figure S2c), the analysis showed an interaction effect of 

time and CS type, F(1, 106) = 38.56, p < .001, partial η2 = .267, 90% CI [.153, .371]. 

Whereas there was no statistical difference in relevance ratings between the CSs+ and the 

CSs- prior to conditioning (p = .843, gav = 0.050, 95% CI [-0.070, 0.171]), the CSs+ were 

deemed more relevant than the CSs- after conditioning (p < .001, gav = 0.786, 95% CI [0.539, 

1.042]). Furthermore, the CSs+ were rated as more relevant after than before conditioning (p 

< .001, gav = 0.627, 95% CI [0.421, 0.840]), which was not the case for the CSs- (p = .489, 

gav = -0.133, 95% CI [-0.319, 0.052]). We also observed an interaction between time and CS 

category, F(2, 212) = 28.41, p < .001, partial η2 = .211, 90% CI [.131, .283]. Happy faces 

were evaluated as more relevant than angry and neutral faces both before and after 

conditioning (all ps < .001, 0.57 < gavs < 1.82), and angry faces as more relevant than neutral 

faces (all ps < .003, 0.39 < gavs < 0.98). Neutral faces were additionally rated as higher in 

relevance after conditioning relative to before conditioning (p < .001, gav = 0.897, 95% CI 

[0.633, 1.171]), whereas there was no statistical difference in preconditioning and 

postconditioning relevance ratings for angry faces (p = .876, gav = 0.086, 95% CI [-0.067, 

0.240]) and happy faces (p = .786, gav = -0.110, 95% CI [-0.278, 0.057]). 
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The postconditioning ratings of CS-US contingency (see Figure S2d) revealed an 

interaction between the CS categories and the CS types, F(2, 212) = 3.35, p = .037, partial η2 

= .031, 90% CI [.001, .072]. Follow-up analyses indicated that the CS+ was rated to be 

associated with the delivery of more electric stimulations than the CS- for angry (p < .001, gav 

= 1.876, 95% CI [1.495, 2.278]), happy (p < .001, gav = 2.345, 95% CI [1.933, 2.784]), and 

neutral (p < .001, gav = 1.817, 95% CI [1.468, 2.188]) faces. Additionally, participants 

evaluated the happy face CS+ as paired with more electric stimulations than the neutral face 

CS+ (p = .010, gav = 0.369, 95% CI [0.155, 0.587]), whereas the difference between the 

angry face CS+ and the neutral face CS+ did not yield statistical significance (p = .087, gav = 

0.312, 95% CI [0.080, 0.547]). No difference was found between the angry and the happy 

face CSs+ (p = .985, gav = 0.071, 95% CI [-0.136, 0.278]) or between the CSs- among the 

three CS categories (all ps > .16, 0.03 < gavs < 0.25). 

a b

c d
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Figure S2. Subjective ratings before (pre) and after (post) the conditioning procedure as a 

function of conditioned stimulus type (CS+ vs. CS-) and stimulus category (angry vs. happy 

vs. neutral). Mean (a) pleasantness ratings, (b) arousal ratings, (c) relevance ratings, and (d) 

CS-US contingency ratings. The dots indicate data for individual participants. Error bars 

indicate ± 1 SEM adjusted for within-participant designs (Morey, 2008). 

 

Computational modeling 

To characterize and provide insights into the computations underlying the influence of angry 

and happy faces, as opposed to neutral faces, on Pavlovian aversive conditioning, we 

constructed simple reinforcement learning models (Li, Schiller, Schoenbaum, Phelps, & 

Daw, 2011; Pearce & Hall, 1980; Rescorla & Wagner, 1972; see also Stussi, Pourtois, & 

Sander, 2018) and fitted them to the trial-by-trial normalized (i.e., scaled and squared-root-

transformed) skin conductance response (SCR) data for each CS category separately in order 

to estimate the models’ free parameters and to identify the best-fitting model. After selection 

of the best-fitting model, its parameter estimates were subsequently compared across angry, 

happy, and neutral face CSs. In addition to the modified Rescorla-Wagner model 

implementing dual learning rates reported in the main text, we considered the following 

alternative models. 

Rescorla-Wagner model. According to the Rescorla-Wagner model (Rescorla & 

Wagner, 1972), learning occurs when events deviate from expectations and correspondingly 

serves to update future expectations (Niv & Schoenbaum, 2008). It formalizes the notion of 

prediction error by stating that associative learning is directly driven by the discrepancy 

between the actual and the expected outcome. In this model, the predictive value (or 

associative strength) V at trial t + 1 of a given CS j is updated on the basis of the sum of the 
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current predictive value Vj at trial t and the prediction error between the predictive value Vj 

and the outcome R at trial t, weighted by a constant learning rate α: 

 

where the learning rate α is a free parameter within the range [0, 1]. If the unconditioned 

stimulus (US) was delivered on the current trial t, R(t) = 1, else R(t) = 0. 

Rescorla-Wagner model with a Pavlovian bias. Because we used CSs having a 

preexisting emotional value prior to conditioning, we tested a modified version of the 

Rescorla-Wagner model including a Pavlovian bias (see, e.g., de Berker et al., 2016; Guitart-

Masip et al., 2012), which considered the influence of the CS categories’ inherent features on 

learning (i.e., through the update of the CS predictive values indexed by the normalized SCR) 

beyond the CS-US contingency. In this model, the Pavlovian bias aims to capture inherent 

responding to the various CS categories by (a) affecting the impact of the CS current value on 

the computation of the updated CS value, with stimuli associated with a higher Pavlovian 

bias assigning a greater weight to the CS current value, and (b) setting the CS initial value V0 

at the estimated value of the Pavlovian bias for each CS category separately, thereby 

modeling initial responding to the CSs before conditioning. In accordance, the Rescorla-

Wagner model with a Pavlovian bias updates the predictive value V of a given CS j as 

follows: 

 

where the learning rate α and the Pavlovian bias b are free parameters within the range [0, 1]. 

As for the standard Rescorla-Wagner model, if the US was delivered on the current trial t, 

R(t) = 1, else R(t) = 0. According to this model, a higher Pavlovian bias leads to greater 

responding before conditioning (i.e., during habituation) as well as during acquisition and 

extinction relative to a lower Pavlovian bias. This adapted version of the Rescorla-Wagner 

model thus allows for accommodating how certain stimulus categories can be associated with 

( 1) ( ) ( ( ) ( ))j j jV t V t R t V ta+ = + × -

( 1) ( ) ( ( ) ( ))j j jV t b V t R t V ta+ = × + × -
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enhanced initial responding during habituation, along with a heightened CR during 

acquisition and extinction. 

Rescorla-Wagner with dual learning rates and a Pavlovian bias. To determine 

whether the CS categories could differentially influence excitatory and inhibitory learning 

processes independently of, or in combination with, their inherent responding, we adapted the 

Rescorla-Wagner model by incorporating both dual learning rates and a Pavlovian bias. In 

this model, the predictive value V of a given CS j is updated as indicated below: 

 

where the learning rate for positive prediction errors α+, the learning rate for negative 

prediction errors α-, and the Pavlovian bias b are free parameters within the range [0, 1]. If the 

US was delivered on the current trial t, R(t) = 1, else R(t) = 0. As for the previous model, the 

initial CS values V0 were set at the value of the estimated Pavlovian bias for each CS 

category. 

Hybrid model. In addition to maintaining the basic assumption that learning is 

directly driven by prediction errors as stated in the Rescorla-Wagner model, the hybrid model 

proposed by Li et al. (2011) incorporates the Pearce-Hall associability mechanism (Pearce & 

Hall, 1980). The Pearce-Hall model specifically asserts that the CS associability determines 

the learning rate and is dynamically modulated on each trial as a function of unsigned past 

prediction errors. According to the Pearce-Hall algorithm, the CS associability decreases 

when the CS accurately and reliably predicts the actual outcome, whereas it increases when 

the CS is an unreliable predictor of the actual outcome. In the hybrid model, the predictive 

value V and the associability α of a given CS j are updated as follows: 

  

  

( ) ( ( ) ( )) ( ) ( ) 0
( 1)

( ) ( ( ) ( )) ( ) ( ) 0
j j j

j
j j j

b V t R t V t if R t V t
V t

b V t R t V t if R t V t
a
a

+

-

ì × + × - - >ï+ = í × + × - - <ïî

( 1) ( ) ( ) ( ( ) ( ))j j j jV t V t t R t V tk a+ = + × × -

( 1) ( ) ( ) (1 ) ( )j j jt R t V t ta h h a+ = × - + - ×
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where the initial associability α0, the learning rate κ, and the weighting factor η are free 

parameters within the range [0, 1]. If the US was delivered on the current trial t, R(t) = 1, else 

R(t) = 0. 

Hybrid model with dual learning rates. Similar to the modified Rescorla-Wagner 

model implementing different learning rates for positive and negative prediction errors, we 

also constructed a modified hybrid model with dual learning rates. In this modified version of 

the hybrid model, the predictive value V and the associability α of a given CS j are updated as 

follows: 

 

 

where the initial associability α0, the learning rate for positive prediction errors κ+, the 

learning rate for negative prediction errors κ–, and the weighting factor η are free parameters 

within the range [0, 1]. If the US was delivered on the current trial t, R(t) = 1, else R(t) = 0. 

Hybrid model with a Pavlovian bias. We additionally considered a hybrid model 

including a Pavlovian bias modulating the CS current value. According to this model, the 

predictive value V and the associability α of a given CS j are updated as shown below: 

 

 

where the initial associability α0, the learning rate κ, the Pavlovian bias b, and the weighting 

factor η are free parameters within the range [0, 1]. If the US was delivered on the current 

trial t, R(t) = 1, else R(t) = 0. Similarly to the versions of the Rescorla-Wagner model 

implementing a Pavlovian bias, the Pavlovian bias values likewise determined the initial CS 

values V0. 

( ) ( ) ( ( ) ( )) ( ) ( ) 0
( 1)

( ) ( ) ( ( ) ( )) ( ) ( ) 0
j j j j

j
j j j j

V t t R t V t if R t V t
V t

V t t R t V t if R t V t
k a
k a

+

-

ì + × × - - >ï+ = í + × × - - <ïî

( 1) ( ) ( ) (1 ) ( )j j jt R t V t ta h h a+ = × - + - ×

( 1) ( ) ( ) ( ( ) ( ))j j j jV t b V t t R t V tk a+ = × + × × -

( 1) ( ) ( ) (1 ) ( )j j jt R t V t ta h h a+ = × - + - ×
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Hybrid model with dual learning rates and a Pavlovian bias. The last model that 

we considered consisted of an adapted version of the hybrid model implementing both dual 

learning rates and a Pavlovian bias. In this model, the predictive value V and the associability 

α of a given CS j are updated as follows: 

 

 

where the initial associability α0, the learning rate for positive prediction errors κ+, the 

learning rate for negative prediction errors κ–, the Pavlovian bias b, and the weighting factor 

η are free parameters within the range [0, 1]. If the US was delivered on the current trial t, 

R(t) = 1, else R(t) = 0. The initial CS values V0 were also set at the estimated Pavlovian bias 

values to account for possible differences in initial responding to the various CS categories 

prior to conditioning. 

Model and parameter fitting. We fitted and optimized the models’ free parameters 

using maximum a posteriori estimation, which consisted in finding the set of parameters 

maximizing the likelihood of each participant’s trial-by-trial normalized SCRs to the CS 

given the model, constrained by a regularizing prior (Gershman, 2016; Niv et al., 2012). The 

free parameters were constrained with a Beta (1.2, 1.2) prior distribution that favors a normal 

distribution of the estimated parameters. Fifty random initializations were performed to 

obtain maximum likelihood estimates for each parameter in order to avoid local optima. We 

used the trial-by-trial timeseries of CS predictive values V(t) to optimize the free parameters 

for the Rescorla-Wagner model (RW[V]), the modified Rescorla-Wagner model with dual 

learning rates (dual RW[V]), and their version implementing a Pavlovian bias (RW b[V] and 

dual RW b[V], respectively). For the hybrid model, the hybrid model with dual learning rates, 

and the hybrid models incorporating a Pavlovian bias, we optimized the free parameters 

( ) ( ) ( ( ) ( )) ( ) ( ) 0
( 1)

( ) ( ) ( ( ) ( )) ( ) ( ) 0
j j j j

j
j j j j

b V t t R t V t if R t V t
V t
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+

-
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separately for each possible combination based on the trial-by-trial timeseries of CS values 

V(t) (Hybrid[V], dual Hybrid[V], Hybrid b[V], and dual Hybrid b[V]), the trial-by-trial 

timeseries of CS associabilities α(t) (Hybrid[α], dual Hybrid[α], Hybrid b[α], and dual Hybrid 

b[α]), or the combination of both (Hybrid[V+α], dual Hybrid[V+α], Hybrid b[V+α], and dual 

Hybrid b[V+α]; see Li et al., 2011; Zhang, Mano, Ganesh, Robbins, & Seymour, 2016). 

Given that participants were expecting to receive electric stimulations at the outset of the 

Pavlovian aversive conditioning procedure because of the work-up procedure and the 

instructions, we set each CS initial predictive value V0 to 0.5 for the models that did not 

incorporate a Pavlovian bias. We also conducted further analyses that modeled the initial 

values as free parameters to capture potential differential responding to the CSs prior to 

conditioning, but these analyses did not provide a better fit to the data. We fitted the various 

models using a separate set of free parameters for each participant (a) across all trials, and (b) 

separately for each CS category (Boll, Gamer, Gluth, Finsterbusch, & Büchel, 2013). This 

allowed for comparing the parameter estimates that best fitted to the normalized SCR data 

between the three different CS categories. Two participants were excluded from the 

computational analyses because their individual parameters could not be estimated due to a 

lack of SCR to all the angry face CSs during the experiment. The final sample size for the 

computational analyses included 105 participants (83 women, 22 men; mean age = 21.79 ± 

2.46 years). 

Model comparison. We performed model comparison with the Bayesian information 

criterion (BIC; Schwarz, 1978; see also Stussi et al., 2018; Zhang et al., 2016). In addition to 

providing a quantitative measure of the models’ goodness of fit, the BIC considers and 

penalizes for the number of free parameters that the model includes. For each model, the 

mean BIC value was computed using the average of individual participant’s estimated 

parameters. The models were additionally compared against a random model, in which the 



Running head: PALVOVIAN AVERSIVE LEARNING TO HAPPY FACES 

 

55 

predictive value Vj(t) and the prediction errors were updated at each trial by adding random 

noise from a uniform random distribution within the range [-0.1, 0.1] (Prévost, McNamee, 

Jessup, Bossaerts, & O’Doherty, 2013). This allowed us to confirm that the reinforcement 

learning models that we used outperformed a model implementing random predictions. The 

mean BIC values for each model are reported in Table S1. 

Relationship between modeled learning signals and participants’ normalized 

skin conductance responses. We further assessed whether, and the extent to which, modeled 

predictive value and prediction error signals from the best-fitting model (i.e., the dual-

learning-rate Rescorla-Wagner model; see Table S1) were predictive of the participants’ trial-

by-trial normalized SCRs (see Li et al., 2011; Pauli et al., 2015). To do so, we performed a 

multiple linear regression in which we regressed predictive value and prediction error 

timeseries generated with the individual parameter estimates from the dual-learning-rate 

Rescorla-Wagner model and averaged across participants against the averaged trial-by-trial 

normalized SCRs. This analysis revealed that predictive value and prediction error signals 

explained a statistically significant portion of variance of trial-by-trial normalized SCRs (R2 = 

.638, 90% CI [.518, .725], adjusted R2 = .630, F(2, 87) = 76.84, p < .001). Predictive value 

signals predicted trial-by-trial normalized SCRs, b = 0.442, 95% CI [0.371, 0.513], β = .799, 

t(87) = 12.39, p < .001 (see Figure S3), which was not the case for prediction error signals, b 

= 0.014, 95% CI [-0.024, 0.053], β = .048, t(87) = 0.74, p = .462. 
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Table S1 

Goodness of fit to normalized skin conductance responses for individual models using the mean Bayesian information criterion (N = 105) 

  Model 

CS 
category 

 

RW(V) 
Dual  

RW(V) 
RW 
b(V) 

Dual 
RW 
b(V) 

Hybrid  
(V) 

Hybrid  
(α) 

Hybrid  
(V+α) 

Dual 
Hybrid  

(V) 

Dual 
Hybrid  

(α) 

Dual 
Hybrid  
(V+α) 

Hybrid 
b(V) 

Hybrid  
b(α) 

Hybrid 
b(V+α) 

Dual 
Hybrid 

b(V) 

Dual 
Hybrid 

b(α) 

Dual 
Hybrid 
b(V+α) 

Random 

All  -0.59 -4.86 -3.57 -0.15 6.38 -1.17 -1.64 2.15 1.78 1.37 3.80 0.97 1.47 7.35 5.04 5.57 13.17 

Angry  -0.32 -1.26 -0.24 2.22 5.46 1.07 0.93 4.36 3.07 3.36 5.41 2.07 3.08 7.89 5.74 6.33 7.31 

Happy  -1.52 -2.96 -1.71 0.90 4.37 0.05 -0.26 2.83 1.92 1.93 3.85 1.81 2.05 6.39 4.81 4.52 5.17 

Neutral  -3.83 -5.03 -5.05 -2.23 2.25 -2.09 -2.23 0.93 0.08 0.17 0.83 0.11 -0.43 3.65 3.24 2.76 2.09 

                   Note. RW = Rescorla-Wagner model, V = predictive values, α = associabilities, Dual = dual-learning-rate, b = Pavlovian bias.
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Figure S3. Relationship between modeled predictive values (V) and trial-by-trial normalized 

skin conductance responses (SCRs) averaged across participants using the individual best-

fitting parameters for the Rescorla-Wagner model implementing dual learning rates. 

Triangles represent reinforced conditioned stimuli (CSs+) and circles represent unreinforced 

conditioned stimuli (CSs-). The line represents the fitted regression line using least squares 

estimation and 95% confidence interval. 

 

Exploratory analyses 

We carried out exploratory analyses to investigate whether the conditioned response to happy 

faces during early acquisition and extinction, as well as the estimated learning rates for 

positive and negative prediction errors to happy faces, were predicted by personality traits 

besides extraversion. To do so, we performed hierarchical multiple linear regressions to 

examine whether the addition of neuroticism (M = 24.07, SD = 9.10, range = 3-46, 

R2 = .636
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Cronbach’s α = .89), openness (M = 29.71, SD = 6.08, range = 16-42, Cronbach’s α = .70), 

agreeableness (M = 33.33, SD = 6.57, range = 13-46, Cronbach’s α = .78), and 

conscientiousness (M = 31.59, SD = 7.64, range = 0-46, Cronbach’s α = .83) scores improved 

prediction of the various dependent variables relative to a model including only extraversion, 

differential d’ index for happy faces, and differential reaction time index for happy faces as 

predictors. We adjusted the alpha level of significance !	to correct for multiple testing using 

false discovery rate (FDR) with the following formula (Benjamini & Hochberg, 1995): 

! = $
% ∙ ' 

where $ corresponds to the individual p value’s rank (in an ascending order), % is the total 

number of tests (i.e., the sum of the number of predictors in each model multiplied by the 

number of dependent variables), and ' is the false discovery rate (here ' = .05). Results of 

these analyses are displayed in Table S2. Altogether, the inclusion of participants’ 

neuroticism, openness, agreeableness, and conscientiousness scores did not statistically 

significantly improve prediction of the conditioned response, as well as the estimated 

learning rates for negative prediction errors, to happy faces (all Fs < 2.24, all ps > .07). 

Neuroticism was negatively associated with the conditioned response to happy faces during 

early acquisition, b = -0.005, 95% CI [-0.010, -0.0004], β = -.224, t(99) = -2.15, p = .034; 

however, this association did not survive correction of the significance level for multiple 

comparisons using FDR (α = 4/40 ∙ .05 = .005). By contrast, the inclusion of these predictors 

improved prediction of the estimated learning rates for positive prediction errors, F(4, 97) = 

2.52, p = .046, and explained an additional 9.03% of the variation thereof. Neuroticism 

negatively predicted the estimated learning rates for positive prediction errors to happy faces 

(see Figure S4), b = -0.011, 95% CI [-0.019, -0.004], β = -.307, t(97) = -2.98, p = .0037; this 

association remaining statistically significant after correcting for multiple testing with FDR 

(α = 3/40 ∙ .05 = . 0038). This exploratory result suggests that happy faces were associated 
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with lower excitatory learning rates in participants high in neuroticism than in those lower in 

this trait. None of the other personality traits were found to be statistically significant 

predictors of the conditioned response to happy faces during early acquisition or extinction 

and of the learning rates for positive and negative prediction errors to happy faces, even 

without correcting for multiple comparisons (all ps > .05). 

Figure S4. Relationship between neuroticism and the learning rates for positive prediction 

errors (excitatory learning) for happy faces. The line represents the fitted regression line 

using least squares estimation and 95% confidence interval. 

 

We conducted additional exploratory analyses to investigate whether personality traits 

and differential d’ and reaction time indices derived from the GNAT were related to the 

conditioned response and the learning rates to angry and neutral faces. We ran multiple linear 

regressions with extraversion, neuroticism, openness, agreeableness, conscientiousness, 

R2 =  
.109
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differential d’ index, and differential reaction time index as predictors of the conditioned 

response during (a) early acquisition and (b) extinction, and of the learning-rate estimates for 

(c) positive and (d) negative prediction errors to both angry and neutral faces. Results of the 

analyses for angry faces and neutral faces are shown in Table S3 and Table S4, respectively. 

Conscientiousness was positively associated with the conditioned response to neutral faces 

during extinction, b = 0.003, 95% CI [0.00005, 0.006], β = .196, t(99) = 2.02, p = .047, and 

with the inhibitory learning rate to neutral faces, b = 0.007, 95% CI [0.00008, 0.015], β = 

.198, t(97) = 2.01, p = .048; however, these relationships were no longer statistically 

significant after adjusting the significance level for multiple comparisons using FDR (α = 

1/28 ∙ .05 = .0018 and α = 2/28 ∙ .05 = .0036, respectively). No other statistically significant 

relationship was observed between the various predictors and the dependent variables, even 

without correcting for multiple testing (all ps > .06). 
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Table S2 

Results for the exploratory hierarchical multiple linear regression analyses for happy faces 

 Conditioned response to happy faces during 
early acquisition (N = 107) 

 
Conditioned response to happy faces during 

extinction (N = 107) 

 Estimated excitatory learning rate  
to happy faces  

(N = 105) 

 Estimated inhibitory learning rate  
to happy faces  

(N = 105) 

 b SE β t p 
 

b SE β t p 
 

b SE β t p 
 

b SE β t p 

Model 1 R2 = .015 
 

R2 = .131 
 

R2 = .041 
 

R2 = .047 

Intercept 0.073 0.106  0.69 .494 
 

0.027 0.087  0.31 .759 
 

0.069 0.169  0.41 .685 
 

0.446 0.150  2.97 .004 

Extraversion 0.003 0.004 .085 0.87 .388 
 

0.002 0.003 .046 0.50 .621 
 

0.009 0.006 .146 1.49 .140 
 

-0.002 0.005 -.031 -0.32 .750 

Differential  
d’ index -0.005 0.039 -.013 -0.13 .896 

 
-0.028 0.032 -.082 -0.87 .386 

 
0.083 0.062 .133 1.33 .187 

 
0.076 0.055 .137 1.37 .173 

Differential  
reaction time 
index 

-0.001 0.001 -.096 -0.96 .341 
 

0.002 0.0005 .360*** 3.83 < .001 
 

-0.000 0.001 -.019 -0.19 .852 
 

-0.002 0.001 -.195 -1.95 .054 

Model 2 R2 = .097, DR2 = .082,  
F(4, 99) = 2.24, p = .070  

 
R2 = .149, DR2 = .019,  

F(4, 99) = 0.55, p = .699 

 
R2 = .131, DR2 = .090,  

F(4, 97) = 2.52, p = .046 

 
R2 = .058, DR2 = .011,  

F(4, 97) = 0.28, p = .890 

Intercept 0.080 0.222  0.36 .720 
 

0.031 0.188  0.17 .868 
 

0.270 0.350  0.77 .443 
 

0.302 0.324  0.93 .355 

Extraversion 0.002 0.004 .055 0.51 .612 
 

-0.000 0.003 -.008 -0.08 .936 
 

0.002 0.006 .040 0.37 .710 
 

-0.003 0.006 -.049 -0.44 .695 

Differential  
d’ index -0.023 0.039 -.059 -0.59 .558 

 
-0.033 0.033 -.097 -1.01 .317 

 
0.059 0.062 .095 0.95 .343 

 
0.070 0.058 .125 1.21 .230 
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Differential 
reaction time 
index 

-0.000 0.001 -.082 -0.83 .409 
 

0.002 0.0005 .359** 3.74 < .001 
 

-0.000 0.001 -.009 -0.09 .927 
 

-0.002 0.001 -.202 -1.98 .051 

Neuroticism -0.005 0.002 -.224 -2.15 .034 
 

-0.003 0.002 -.127 -1.26 .211 
 

-0.011 0.004 -.307* -2.98 .004 
 

0.001 0.004 .038 0.35 .728 

Openness 0.006 0.003 .165 1.70 .093 
 

0.002 0.003 .055 0.59 .559 
 

0.006 0.005 .100 1.03 .303 
 

-0.002 0.005 -.039 -0.39 .699 

Agreeableness -0.003 0.003 -.106 -1.02 .312 
 

0.001 0.003 .042 0.41 .681 
 

0.002 0.005 .031 0.30 .767 
 

0.003 0.005 .060 0.56 .580 

Conscien-
tiousness 0.003 0.003 .110 1.10 .273 

 
0.001 0.002 .025 0.26 .797 

 
0.001 0.004 .028 0.29 .775 

 
0.003 0.004 .086 0.83 .407 

Note. ***p < .001, **p < .01, *p < .05 (FDR-corrected).
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Table S3 

Results for the exploratory multiple linear regression analyses for angry faces 

 Conditioned response to angry faces during 
early acquisition (N = 107) 

 
Conditioned response to angry faces during 

extinction (N = 107) 

 Estimated excitatory learning rate  
to angry faces  

(N = 105) 

 Estimated inhibitory learning rate  
to angry faces  

(N = 105) 

 b SE β t 
(99) p 

 
b SE β t 

(99) p 
 

b SE β t 
(97) p 

 
b SE β t 

(97) p 

Intercept -0.170 0.245  -0.69 .490 
 

0.118 0.181  0.65 .518 
 

-0.171 0.341  -0.50 .617 
 

0.533 0.273  1.95 .054 

Extraversion -0.000 0.004 -.008 -0.07 .943 
 

-0.004 0.003 -.134 -1.22 .225 
 

0.010 0.006 .192 1.77 .080 
 

-0.005 0.005 -.113 -1.00 .320 

Differential  
d’ index -0.017 0.051 -.036 -0.34 .733 

 
0.000 0.037 .000 0.00 .999 

 
-0.018 0.070 -.026 -0.25 .802 

 
-0.012 0.056 -.023 -0.22 .829 

Differential  
reaction time 
index 

0.000 0.001 .002 0.02 .983 
 

-0.001 0.001 -.132 -1.24 .219 
 

-0.000 0.001 -.022 -0.21 .835 
 

-0.000 0.001 -.055 -0.50 .618 

Neuroticism -0.003 0.003 -.109 -1.01 .317 
 

-0.001 0.002 -.081 -0.75 .454 
 

-0.003 0.004 -.098 -0.92 .361 
 

-0.002 0.003 -.066 -0.60 .551 

Openness 0.003 0.004 .081 0.80 .426 
 

-0.002 0.003 -.081 -0.79 .430 
 

-0.001 0.005 -.026 -0.26 .798 
 

0.001 0.004 .023 0.21 .830 

Agreeableness 0.005 0.004 .150 1.40 .166 
 

0.002 0.003 .093 0.87 .389 
 

0.003 0.005 .065 0.61 .542 
 

-0.002 0.004 -.062 -0.57 .572 

Conscien-
tiousness 0.004 0.003 .142 1.36 .178 

 
0.003 0.002 .146 1.40 .164 

 
0.005 0.004 .117 1.12 .266 

 
0.001 0.003 .030 0.28 .780 

R2 .061 
 

.066 
 

.098 
 

.027 
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Table S4 

Results for the exploratory multiple linear regression analyses for neutral faces 

 Conditioned response to neutral faces during 
early acquisition (N = 107) 

 
Conditioned response to neutral faces during 

extinction (N = 107) 

 Estimated excitatory learning rate  
to neutral faces  

(N = 105) 

 Estimated inhibitory learning rate  
to neutral faces  

(N = 105) 

 b SE β t 
(99) p 

 
b SE β t 

(99) p 
 

b SE β t 
(97) p 

 
b SE β t 

(97) p 

Intercept -0.258 0.203  -1.27 .206 
 

-0.089 0.123  -0.72 .471 
 

-0.104 0.319  -0.33 .745 
 

0.357 0.296  1.21 .231 

Extraversion 0.005 0.004 .144 1.31 .193 
 

0.000 0.002 .001 0.01 .993 
 

0.003 0.006 .053 0.47 .640 
 

-0.005 0.005 -.108 -0.99 .325 

Differential  
d’ index -0.025 0.044 -.057 -0.58 .565 

 
0.025 0.026 .093 0.96 .342 

 
0.017 0.069 .025 0.24 .807 

 
0.028 0.064 .044 0.45 .656 

Differential  
reaction time 
index 

0.000 0.001 .010 0.10 .924 
 

0.000 0.0003 .027 0.27 .788 
 

0.000 0.001 .054 0.53 .598 
 

-0.000 0.001 -.038 -0.38 .703 

Neuroticism 0.000 0.002 .008 0.07 .942 
 

-0.001 0.001 -.040 -0.39 .699 
 

0.000 0.004 .011 0.11 .916 
 

-0.002 0.003 -.055 -0.52 .603 

Openness 0.000 0.003 .007 0.07 .944 
 

-0.003 0.002 -.134 -1.38 .171 
 

-0.001 0.005 -.018 -0.17 .862 
 

0.008 0.005 .169 1.71 .090 

Agreeableness 0.005 0.003 .181 1.72 .089 
 

0.003 0.002 .184 1.78 .078 
 

0.009 0.005 .200 1.85 .067 
 

-0.005 0.005 -.119 -1.13 .259 

Conscien-
tiousness -0.000 0.003 -.003 -0.03 .978 

 
0.003 0.002 .196 2.02 .047 

 
-0.000 0.004 -.003 -0.03 .976 

 
0.007 0.004 .198 2.01 .048 

R2 .075 
 

.106 
 

.051 
 

.099 
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