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In the context of polytomous regression, as with any generalized linear model, robustness 
issues are well documented. Existing robust estimators are designed to protect against 
misclassification, but do not protect against outlying covariates. It is shown that this 
can have a much bigger impact on estimation and testing than misclassification alone. 
To address this problem, two new estimators are introduced: a robust generalized linear 
model-type estimator and an optimal B-robust estimator, together with the corresponding 
Wald-type and score-type tests. Asymptotic distributions and variances of these estimators 
are provided as well as the asymptotic distributions of the test statistics under the 
null hypothesis. A complete comparison of the proposed new estimators and existing 
alternatives is presented. This is performed theoretically by studying the influence 
functions of the estimators, and empirically through simulations and applications to a 
medical dataset.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Polytomous regression, or multinomial regression, is a classical tool of categorical data analysis, allowing the relationship 
between predictors and unordered categorical responses to be modeled (Agresti, 2012). It finds its applications in various 
disciplines, ranging from soil science (Kempen et al., 2009) to political studies (Mebane and Sekhon, 2004), to name a few. 
In particular, it is frequently used for inference on medical datasets where response variables can be medical procedures 
(Daniels and Gatsonis, 1997), behaviors of subjects (Blizzard and Hosmer, 2007), etc. Such datasets can contain outlying 
observations that, if not accounted for, can impact inference. Maximum likelihood estimation is not robust for the gener-
alized linear models (GLMs) (Nelder and Wedderburn, 1972), which include polytomous regression. Robustness issues are 
documented by Pregibon (1981), Copas (1988) and Feng et al. (2014), among others, for binary regression (polytomous 
regression with two categories) and by Castilla et al. (2018) for polytomous regression.

One could be tempted to address the issue of outliers by removing them manually or by using a diagnostic tool such 
as Cook’s distance or leverage measures; see Martín (2015) for the former and Lesaffre and Albert (1989) for the latter, 
both in the polytomous regression context. However, in addition to the reluctance to remove data from the analysis and 
the potential bias this could introduce, this solution could induce a masking effect where a few large outliers could mask 
others. The use of robust estimators is a better option.

Various approaches have been developed to obtain robust univariate GLM estimators. Optimal robust M-estimators are 
introduced in Stefanski et al. (1986), and Künsch et al. (1989) followed this work by restricting the optimality to the class 
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Fig. 1. Synthetic dataset, with two predictors and a response in three categories, denoted by different symbols, with four outliers. Outliers 1 and 2 have 
outlying responses (mislabelling) and outliers 2, 3 and 4 have outlying predictors.

of conditionally Fisher-consistent estimators. Cantoni and Ronchetti (2001) introduced quasi-likelihood-based estimators, 
implemented in the robustbase R package. More recently, Alqallaf and Agostinelli (2016) adapted the weighted maximum 
likelihood methodology developed by Markatou et al. (1998) to GLMs. One could also refer to Hung et al. (2018) for a 
minimum γ -divergence estimator. However, these methods apply to univariate GLMs and are not directly applicable to the 
multivariate setting of polytomous regression. Only a few adequate robust polytomous regression estimators are available: 
the robust generalized method of moments estimator by Wang (2014) and a minimum density power divergence (MDPD) 
estimator by Castilla et al. (2018). No reliable implementation of the generalized method of moments estimator of Wang 
(2014) is available and therefore it has not been assessed. On the other hand, the MDPD estimator of Castilla et al. (2018)
is fast, efficient and offers protection against mislabelling.

However, as Fig. 1 illustrates, outliers can not only be observations with outlying responses (outliers 1 and 2 of Fig. 1) 
but also observations with extreme predictor values (outliers 2, 3, and 4 of Fig. 1). Although the minimum density power 
divergence estimator is more robust than the maximum likelihood estimator by protecting against mislabelling, it can still 
be highly affected by observations with outlying predictors, as shown in Sections 2.1 and 3.

The goal here is to document robustness issues in the polytomous regression context and to introduce two new robust 
estimators with their associated test statistics. The first is a B-robust weighted GLM estimator (RGLM), obtained by extending 
the robust GLM set-up of Cantoni and Ronchetti (2001, 2006) to the multinomial distribution, and the second is the optimal 
self-standardized B-robust (OBR) estimator, derived following Künsch et al. (1989). These two estimators improve on existing 
estimators by protecting not only against deviations in the responses, but also against outlying covariate values with a 
controlled efficiency loss. In addition, if the contamination scheme is unknown to the practitioner then the B-robust RGLM 
estimator and the associated test statistics should be favored because contamination in the predictor space can have a much 
stronger influence on inference than contamination in the responses, as illustrated in Section 3.

Section 2 details the maximum likelihood and the minimum density power divergence estimators and introduces the 
new robust GLM and the optimal B-robust estimators. Robustness properties of all of the aforementioned estimators are 
formally reviewed through the study of their influence functions; the corresponding Wald-type and score-type tests are also 
derived, as well as the asymptotic properties of both estimators and test statistics. Section 3 compares all of the estimators 
and the associated tests through extensive simulations. Section 4 applies the different methods to the Vertebral column
dataset (Berthonnaud et al., 2005) and compares the estimators using cross-validation. Finally, Section 5 summarizes the 
findings and discusses extensions and further work.

2. Estimators for polytomous regression

For i = 1, . . . , n, consider an independent sample 
(
xi, yi

)
, where xi = (

1, xi1, ..., xip
)T denotes a vector of p predictors and 

an intercept, and yi ∈ {e1, ..., ek} denotes a non-ordinal categorical response, where e1, ..., ek is the canonical basis of Rk . 
Assume that 

(
xi, yi

)
are independently drawn from a random variable (X, Y ), where X follows an unspecified distribution 

F X and Y | X follows a multinomial distribution with parameter π = (π1, . . . , πk)
T , where πi is the probability given X to 

belong to category i. For a vector v , v∗ denotes this vector without its last coordinate.
The polytomous regression model is a GLM (McCullagh and Nelder, 1983) defined through a matrix of parameters � ∈

R(k−1)×(p+1) and a link function g . The probability vector π is made dependent on k − 1 linear combinations of the 
coordinates of x through this link function g , which is a function from Rk−1 to [0, 1]k such that:

P
(
Y = e j | X = x

) = π j = g−1 (�x) j , for j = 1, . . . ,k. (1)

2
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A common choice for g is the logistic function. Noting η = �x, it gives

π = g−1 (
η1, · · · , ηk−1

) = 1

1 + ∑k−1
j=1 exp

(
η j

) (
exp (η1) , ..,exp

(
ηk−1

)
,1

)T
. (2)

In what follows, πy denotes π T y = P (Y = y|X = x).

2.1. Existing estimators

The maximum likelihood estimator �̂ML is the solution of the following estimating equations (McCullagh and Nelder, 
1983, Chapter 5):

n∑
i=1

π∗′
i
T

V ∗
i
−1 (

y∗
i − π∗

i

) ⊗ xi = 0, (3)

where π∗
i
′ ∈ R(k−1)×(k−1) is the Jacobian matrix of π∗ with respect to η evaluated at ηi = �xi , V ∗

i = Var[Y ∗ | X = xi] =
diag

(
π∗

i

) − π∗
i π

∗
i

T and ⊗ denotes the Kronecker product.
In the case of the polytomous regression with a logistic link defined by (2), π∗

i
′ = V ∗

i and Equation (3) simplifies to

n∑
i=1

(y∗
i − π∗

i ) ⊗ xi = 0. (4)

Define sML (x, y;�) = (y∗ − π∗) ⊗ x, the estimating function of this estimator.
As detailed in Section 2.2, this estimator is not robust and can be highly biased by mislabelling and outlying x values. To 

overcome this issue, Castilla et al. (2018) extended the MDPD estimator from Ghosh and Basu (2016) to polytomous logistic 
regression. The resulting estimator �̂M D P D is the solution of the following estimating equations:

n∑
i=1

sM D P D
(
xi, yi;�

) = 0,

with

sM D P D (x, y;�) = wλ

(
πy

)
sML (x, y;�) − αM D P D (x;�)

where wλ

(
πy

) = (π T y)λ = πλ
y , αM D P D (x;�) = EY |X=x[wλ(πy)sML (X, Y ;�)] and λ is a non-negative tuning parameter. 

The robustness of �̂M D P D increases with λ and if λ = 0, sM D P D = sML such that �̂M D P D = �̂ML .

2.2. Review of robustness concepts and properties

For a parameter �, an M-estimator (Huber, 1964) �̂m is defined as the solution of

n∑
i=1

sm
(
xi, yi;�

) = 0, (5)

for a quite general function sm , called the estimating function of �̂m . Denote by Tm the functional associated with the 
estimator �̂m: for a distribution F X,Y of the random variable (X, Y ), Tm(F X,Y ) is the solution in � of

E(X,Y )∼F X,Y [sm(X, Y ;�)] = 0.

If F̂n denotes the empirical distribution function of the sample 
(
xi, yi

)
i=1,...,n , then �̂m = Tm( F̂n). For ε ∈ [0,1], x ∈ Rp+1, 

and y ∈ {e1, ..., ek}, define the contaminated distribution Fε = (1 − ε)F X,Y + ε�(x,y) , where �(x,y) is a Dirac distribution at 
(x, y). If � = Tm(F X,Y ), the influence function of Tm at � evaluated at (x, y) is

I Fm(x, y;�) = lim
ε→0

Tm(Fε) − �

ε
,

if this limit exists.
The influence function captures the asymptotic bias induced by a gross contamination by observations equal to (x, y), 

standardized by the mass of the contamination. High values of I Fm(x, y; �) indicate points with large influence on the 
estimation and thus weakness in the robustness of �̂m . A bounded influence function is therefore an attractive feature of 
a robust estimator, and an estimator �̂m is said to be B-robust if its influence function is bounded with respect to (x, y). 

3
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B-robustness guarantees that a small contamination can only induce a limited bias on the estimate, whereas a non-B-robust 
estimator could be driven to arbitrarily large values by a single ill-placed observation.

For an M-estimator �̂m with an estimating function sm differentiable with respect to �, and such that the matrix M(�)

defined below is non-singular, I Fm is proportional to the estimating function sm (Hampel et al., 1986, Equation (4.2.9)):

I Fm(x, y;�) = −M(�)−1sm(x, y;�), (6)

where M(�) =EX,Y [∂sm(X, Y ;�)/∂�] =EX,Y
[
sm(X, Y ;�)sT

ML(X, Y ;�)
]
.

Hence, the verification of the B-robustness of an M-estimator is reduced to the verification of the boundedness of its 
estimating function sm with respect to (x, y). Noticing that �̂ML and �̂M D P D are M-estimators, their B-robustness is easily 
assessed through their estimating functions sML and sM D P D . Section A of the Supplementary material shows that if the 
space of the covariates is unbounded, �̂ML is not B-robust, and if p ≥ 2, �̂M D P D is not B-robust either. The non-B-robustness 
of �̂ML and �̂M D P D motivated the introduction of the estimators �̂RGLM and �̂O B R proposed in Section 2.3.

B-robustness is necessary but not sufficient to guarantee stability of the estimators in practice, especially in the polyto-
mous regression context. Indeed, as y can only take k distinct values, boundedness with respect to (x, y) is equivalent to 
boundedness with respect to x. Hence, B-robustness only relates to robustness against outlying predictors (as presented by 
outliers 2, 3, and 4 in Fig. 1). However, a robust estimator should also be expected to decrease the influence of misclassified 
observations with non-outlying predictors, such as outlier 1 in Fig. 1. Robustness properties of estimators should be studied 
in more detail through the shape of their influence functions and their performance on contaminated datasets.

2.3. Robust GLM and optimal B-robust estimators

The robust GLM approach of Cantoni and Ronchetti (2001) for models with univariate responses can be extended to the 
multivariate setting of polytomous regression with a general link function.

Definition 1. The robust GLM estimator �̂RGLM is an M-estimator defined as the solution of

n∑
i=1

[
wx (xi)π

∗′
i
T

V ∗−1/2
i ψcR {V ∗

i
−1/2 (

y∗
i − π∗

i

)} ⊗ xi − αRGLM (xi;�)
]

= 0, (7)

where αRGLM (xi;�) = EY |X=xi

[
wx (xi)ψcR {V ∗

i
−1 (

Y ∗ − π∗
i

)}π∗′
i ⊗ xi

]
, wx is a weighting function of the covariates to be 

defined, and, for a positive parameter c, ψc is the multivariate Huber function defined by

ψc (z) =
{

z if ‖z‖2 ≤ c
c

‖z‖2
z if ‖z‖2 > c. (8)

The choice of the weighting function wx is discussed in Section 2.8.
Equation (7) can be interpreted as Equation (3) in which the standardized residuals V ∗

i
−1/2 (

y∗
i − π∗

i

)
have been Hu-

berized to reduce the influence of misplaced points, weighted by wx(xi), and to which the term αRGLM (xi;�) is added to 
ensure Fisher consistency. When using the logistic link function, π ∗′

i = V i and ‖V ∗−1/2
i

(
y∗

i − π∗
i

)‖2 = (
π−1

y − 1
)1/2

such 
that Equation (7) simplifies and yields the estimator �̂RGLM with estimating function:

sRGLM (x, y;�) = wx (x) wcR

(
πy

)
sML (x, y;�) − αRGLM (x;�) , (9)

where wcR

(
πy

) = min
{

1, cR
(
π−1

y − 1
)−1/2

}
(see Supplementary Section B for details on the derivation of this simplifica-

tion). The constant cR > 0 is a tuning parameter controlling robustness. Smaller values of cR give more robust �̂RGLM (i.e., 
with smaller bounds on the influence function), and setting cR to infinity makes �̂RGLM coincide with �̂ML (in this case ψcR

becomes the identity function).
Following Künsch et al. (1989), the optimal conditionally Fisher consistent B-robust estimator is defined in Definition 2.

Definition 2. The optimal conditionally Fisher-consistent B-robust estimator �̂O B R is the M-estimator defined by the esti-
mating function:

sO B R (x, y;�) = ψcO {A (�) sML (x, y;�) − αO B R (x;�)}, (10)

where A (�) ∈R(k−1)(p+1)×(k−1)(p+1) and αO B R (x;�) ∈R(k−1)(p+1) are implicitly defined by:{
EY |X=x[sO B R (x, Y ;�)] = 0
VarX,Y [sO B R (X, Y ;�)] = I (k−1)(p+1)

(11)

and ψcO is defined by Equation (8) with cO ≥ √
(k − 1) × (p + 1).

4
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The tuning parameter cO acts in the same way as cR for �̂RGLM : smaller values of cO give more robust �̂O B R and setting 
cO to infinity makes �̂O B R coincide with �̂ML . In practice, because no assumption is made on the distribution of X , the 
second equation in (11) is approximated by:

1

n

n∑
i=1

VarY |X=xi [sO B R (xi, Y ,�)] = I (k−1)(p+1). (12)

Using Equation (6), it is easy to check the B-robustness of both estimators:

Result 1. B-robustness of �̂RGLM and �̂O B R

• If wx(x) · x is bounded, the estimator �̂RGLM is B-robust.
• The estimator �̂O B R is B-robust if the matrix A is estimated from Equation (12) or is computed from the second Equation in (11)

if the distribution of X is known.

The proof of the first point follows directly from Equation (9) and the proof of the second point can be found in Künsch 
et al. (1989) under a more general setting. The estimator �̂O B R is optimal in the sense that it is admissible among the class 
of all conditionally Fisher-consistent M-estimators with a differentiable estimating function and with an influence function 
bounded by cO for the metric associated with the inverse of their asymptotic variance matrix. For more details, see (Huber, 
1981, Chapter 4.3).

2.4. Computational aspects

The R code accompanying this article provides functions to compute �̂ML , �̂RGLM and �̂O B R as well as an implementation 
of �̂M D P D , for comparison purposes in our simulation. The implementation of �̂ML and �̂M D P D uses Newton’s method, 
and is guaranteed to converge for �̂ML from any starting point because the model likelihood is concave. Even though the 
density power divergence minimized by �̂M D P D is not convex, no numerical issues were encountered and Newton’s method 
is adequate. The estimator �̂RGLM is estimated using Fisher’s scoring algorithm (Lange, 2010, Chapter 14), which is fast 
and efficient with a well-chosen starting point. However, �̂RGLM corresponds to the maximum of a non-concave quasi-
likelihood function. Thus, the choice of the starting point becomes important to avoid convergence issues, especially when 
the parameter dimension (k −1) × (p +1) is large. By default, the starting point is a modified maximum likelihood estimator 
computed only on observations with a wx (details in Section 2.7 below) above a given threshold.

Due to the implicit definition of its estimating function, �̂O B R requires the use of the more complex IF algorithm detailed 
in Hampel et al. (1986). Indeed, the definition of the matrix A (�) and the vector αO B R (�) in Equations (11) or (12) is 
implicit. Hence, each estimating function evaluation requires an iterative procedure to compute A (�) and αO B R (�), leading 
to a more costly algorithm. Figure S1 in Supplementary Section C shows computational times of the estimators. Due to its 
iterative procedure, �̂O B R can take up to 50 times longer than �̂RGLM , 75 times longer than �̂M D P D , and 130 times longer 
than �̂ML when there are 18 parameters to estimate on 125 observations, which is not an extreme case (it corresponds to 
three categories and eight covariates).

2.5. Analytical comparisons

Fig. 2 shows the influence functions of �̂ML (plot a), �̂M D P D (plot b), �̂RGLM (plot c), and �̂O B R (plot d) with p = 2
explanatory variables and k = 3 categories. More precisely, it plots ‖I Fm (x, y = e1;�)‖2 as a function of x, for m in 

{ML, MDPD, RGLM, OBR} and � =
(

0 1.5
√

3
2

0 0
√

3

)
. This choice of �, also used to generate the synthetic dataset of Fig. 1, is 

motivated by symmetry reasons: permuting the three categories corresponds to a one-third rotation of the covariate space. 
Hence, the influence functions evaluated at y = e2 or y = e3 are found by rotating the plots of Fig. 2 by 2π/3 or −2π/3
respectively. The dotted red lines delimit regions where a category has a higher probability (computed with the true pa-
rameters) than others: the first category is more likely than others in the right region, the second category in the top left 
region, and the third one in the bottom left region. An informal interpretation of these plots would be that they indicate 
the bias induced by an extra observation with a response in the first category as a function of its position in the predictor 
space.

The B-robustness property can be checked graphically on Fig. 2. All influence functions go to zero when the covariates 
go to infinity in the right region of the plane. This implies that any observation in this region with a response in the first 
category sees its influence vanish as its covariates go to infinity. Thus, a well specified outlier such as outlier 3 is not 
influential for any estimator.

The influence functions of �̂ML and �̂M D P D are unbounded, whereas the influence functions of �̂RGLM and �̂O B R are 
bounded: the first two estimators are not B-robust whereas the last two are. An observation with a response in the first 
category but lying in the left half of the plane, such as outlier 1 or 2, can have an arbitrarily large influence on the 

5
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Fig. 2. Influence functions of �̂ML (a), �̂M D P D (b), �̂RGLM (c) and �̂O B R (d) estimators. Outliers of Fig. 1 have been reported on the plots to show their 
influence on the different estimators.

maximum likelihood estimator whereas all other estimators limit its influence. Although �̂M D P D is far more robust than 
�̂ML , its weakness lies along the boundaries of the right region: if an observation with a response in first category falls in 
that region, its influence is proportional to ‖x‖2. Outlier 4 can thus have a disproportionate influence on �̂M D P D , but not 
on �̂RGLM or �̂O B R .

A key difference between �̂O B R and the other robust estimators is that the influence functions of �̂M D P D and �̂RGLM
go to zero with the norm of the predictor for grossly misclassified observations in the manner of redescending estimators, 
whereas the influence function of �̂O B R saturates: outlier 2 has a smaller influence than outlier 1 on �̂M D P D and �̂RGLM , 
whereas these two outliers have roughly the same influence on �̂O B R .

Comparison of �̂M D P D and �̂RGLM can be pushed further by noticing that, setting wx = 1 for �̂RGLM , both estimators are 
weighted maximum likelihood estimators with estimating functions of the form:

s (x, y;�) = w
(
πy

)
sML (x, y;�) − α (x;�) . (13)

Weighting functions wcR and wλ both downweight points with unlikely response under the model. However, Fig. 3 shows 
that wcR only downweights points with a probability less than (1 + c2

R )−1, whereas wλ (with λ > 0) downweights all points. 
The parameter cR has the nice interpretation of controlling the probability under which an observation is downweighted by 
�̂RGLM .

For some specific settings, �̂RGLM offers robustness properties similar to �̂M D P D . One example is the Mammography 
experience data used in Castilla et al. (2018) (see Supplementary Section D). As this dataset only contains bounded covariates, 
most of which are binary, potential outliers can only influence estimation through their response (similar to outlier 1 in 

6
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Fig. 3. Comparison of weights of �̂RGLM (a) and �̂M D P D (b) estimators as functions of the probability of an observation for different values of cR and λ
when wx = 1. For each cR value, the corresponding λ value is such that observations given a weight of 0.25 by �̂RGLM are also given a weight of 0.25 by 
�̂M D P D . Such a representation is not possible for �̂O B R because it cannot simply be written as a weighted maximum likelihood estimator.

Fig. 1). Limiting the influence of covariates in the score function to achieve B-robustness, as the RGLM estimator does, is 
unnecessary in this case and does not yield further robustness towards such outliers. This is further seen in the results of 
Setting I in the simulations of Section 3.

2.6. Asymptotic properties, Wald-type and score-type tests

2.6.1. Asymptotic distributions
Due to the regularity of the polytomous logistic regression model, as all estimators considered here are M-estimators 

with differentiable score functions, their asymptotic distributions are normal with sandwich covariance matrices (Huber, 
1981).

Result 2. Let �̂m be an estimator of �, for m in {ML, MDPD, RGLM, OBR}, and suppose that Y |X follows a polytomous logistic model 
with parameter �, then �̂m is conditionally Fisher-consistent and, if the matrix Mm defined below is non-singular,

√
n

(
γ̂ m − γ

) D−−−→
n→∞ N

(
0,�m = M−1

m Q m M−T
m

)
, (14)

where γ̂ m and γ denote the vectors of R(p+1)(k−1) obtained by stacking the lines of �̂m and �, respectively, Mm =EX,Y [∂sm(X, Y ,

�)/∂γ ], and Q m = VarX,Y [sm (X, Y ;�)].

The matrices M̂m = 1
n

∑n
i=1 EY |X=xi

[
∂sm

(
xi, Y , �̂m

)
/∂γ

]
and Q̂ m = 1

n

∑n
i=1 VarY |X=xi

[
sm

(
xi, Y , �̂m

)]
are consistent esti-

mators of Mm and Q m, respectively.

This result can be simplified in the case of �̂ML . The second Bartlett identity implies that M ML = − Q ML , such that �ML

equals the Fisher information Q −1
ML . More detailed expressions of the asymptotic variances and their estimates are given in 

the Appendix.

2.6.2. Wald-type and score-type tests
To test a null hypothesis of the form H0 : “Lγ = l”, where L is a full rank matrix with (p + 1) (k − 1) columns and 

r ≤ (p + 1) (k − 1) rows, one can use a Wald-type test, using the statistic T W = Lγ̂ m .

Result 3. Under the null hypothesis, if L�m LT is non-singular,

n
(

Lγ̂ m − l
)T

(
L�m LT

)−1 (
Lγ̂ m − l

) D−−−→
n→∞ χ2

r .
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Alternatively, a score-type test can be constructed when the null hypothesis is of the form H0 : “γ (2) = l” where γ (2)

denotes a subvector of r coordinates of γ . Such a hypothesis can be formulated as H0 : “Lγ = l”, where L is a full rank 
r × (p + 1) (k − 1) matrix of 0 and 1 whose rows sum to 1. Define Zn = n−1 ∑n

i=1 Lsm

(
xi, yi; �̂H0

m

)
, where �̂H0

m denotes 

the estimate of � by estimator m under the constraint defined by H0, and the r × r matrices �m,L = L�m LT and Mm,L =(
LM−1

m LT
)−1

. The score-type test uses the statistic Rn
2 = Z T

n

(
Mm,L�m,L M T

m,L

)−1
Zn .

Result 4. Under the null hypothesis, if Mm,L�m,L M T
m,L is non-singular

nRn
2 D−−−→

n→∞ χ2
r .

More general null hypotheses can be considered through linear transformations of the parameter γ giving more tedious 
expressions for Mm,L and �m,L . Results 3 and 4 follow directly from Proposition 2 of Heritier and Ronchetti (1994).

2.7. Choosing wx

Multiple proposals exist in the literature regarding the choice of the weighting function wx. Using a robust Mahalanobis 
distance D(x̃) = (x̃ − μ̂x)

T �̂x(x̃ − μ̂x), where x̃ is the vector x without its first coordinate, μ̂x is a robust estimator of center, 
and �̂x is a robust estimator of the covariance matrix, Croux et al. (2013) proposed to use

wx,1 (x) = df

df + D
(
x̃
) , (15)

where df is a tuning parameter. Alternatively, the implementation of the robust GLM estimator of Cantoni and Ronchetti 
(2001) in the robustbase R package offers the option

wx,2 (x) = 1/(1 + 8max
{

0, (D
(
x̃
) − p)(2p)−1/2

}
)1/2;

see also (Heritier et al., 2009, Chapter 5.3.1). D 
(
x̃
)

can be computed using the minimum covariance determinant (MCD) 
method of Rousseeuw and Van Driessen (1999). Other weights can be derived from the linear model leverages hii =
x̃T

i

(∑n
j=1 x̃ j x̃

T
j

)−1
x̃i , for example wx,3 (xi) = √

1 − hii or wx,4 (xi) = (1 − hii) /
√

hii (Welsch, 1980). Weights wx,1 and wx,2

depend on D 
(
x̃
)
, which may be undefined on discrete covariates with few distinct outcomes if it is computed using MCD. 

Weights wx,3 and wx,4, on the other hand, are affected by strong outliers because of the definition of H . For the simulations 
in Section 3, wx,1 is the most flexible option, as the parameter df can be tuned to give a desirable level of downweighting 
(see Section 2.8 for additional details on the tuning of df ).

Given a weighting function wx , one could naturally wonder about the properties of a weighted maximum likelihood 
estimator, �̂wML , defined as the M-estimator associated with the estimating function swML(x, y; �) = wx(x)sML(x, y; �). 
This estimator would indeed be B-robust (if wx(x) · x is bounded) but would offer poor protection against misclassification, 
as seen in Fig. 4, Section 3. However, this estimator can be helpful in the initial tuning of the constants used in wx

(see Section 2.8). Similarly, weighted versions of other estimators could be considered, for instance wMDPD, which is not 
considered in this work for fidelity reasons with the proposal by the authors.

2.8. Tuning constants

Apart from �̂wML , every robust estimator mentioned in this section involves a tuning constant that acts as a robustness 
lever: as λ increases, and cR and cO decrease, the corresponding estimators gain robustness, but lose efficiency. A tuning 
method must be used to find the appropriate trade-off between robustness and efficiency. The method used in Section 4
consists of tuning these constants to reach a target asymptotic efficiency, τ , when comparing with �̂ML , at the model.

The Fisher standardized efficiency, computed as the ratio of the Fisher standardized mean square error (MSE), defined by 
Definition 3 in Section 3.1, is used rather than the usual (non-standardized) efficiency. Indeed, the Fisher standardized MSE 
remains unchanged if a scaling is applied to a covariate and to the parameter � accordingly (e.g., switching from centimeters 
to inches if a covariate measures length). This is not the case for regular mean square error. However, any alternative notion 
of efficiency can be used.

If the true model parameters were known, the tuning could be carried out by searching for the robustness constant cm

such that τ equals (k − 1)(p + 1)/tr( Q ML�m), where Q ML is the Fisher information matrix, �m is the asymptotic variance 
of the estimator that depends on cm , and (k − 1)(p + 1) corresponds to the asymptotic Fisher standardized MSE of �̂ML . In 
practice, because the true parameters are unknown, a robust estimate is used as a substitute in Q ML and �m; see Section 3. 
For other tuning methods, see Castilla et al. (2018), Aeberhard et al. (2021), or Cantoni and Ronchetti (2001), among others.
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The weighting function wx used by �̂RGLM often requires the tuning of an additional constant (e.g. df if wx,1 is used). 
On option to tune this constant to reach a target efficiency τ with respect to �̂ML at the model is to perform it in two 
steps. First, choose df such that the resulting weighted maximum likelihood estimator �̂wML has an efficiency of τ δ , with 
δ ∈ [0, 1], when compared to �̂ML . Second, tune the constant cR such that �̂RGLM has an efficiency of τ 1−δ when compared 
to �̂wML . This ensures that �̂RGLM has a global efficiency of τ when compared to �̂ML . Notice that using δ = 0 yields 
wx = 1, which does not protect against outlying predictors, and δ = 1 yields cR = ∞, which does not protect against 
misclassification. In Section 3, δ = 1/2 is used to achieve the same loss of efficiency at each of the two tuning steps.

3. Simulation study

3.1. Estimation

In this section, the previously described estimators are compared through their estimates on clean and contaminated 
simulated datasets. The following setting is used to simulate the data: the response variable Y has k = 3 possible categories, 
and there are p = 2 covariates x1, x2, plus an intercept x0 = 1. The parameter � ∈R2×3 is the same as that used to generate 
Figs. 1 and 2:

� =
(

0 1.5
√

3/2
0 0

√
3

)
.

The explanatory variables x1, x2 are drawn as independent standard normal random variables and the responses y are 
simulated from a polytomous logistic regression model with parameter � according to Equations (1) and (2). This produces 
the clean datasets. The size of the datasets is set to n = 500. The clean datasets are modified with two contamination 
settings:

Setting I (contaminated responses) A percentage q of responses are replaced by categories drawn from a multinomial dis-
tribution with shuffled conditional probabilities (π3,π1,π2)

T instead of (π1,π2,π3)
T . This setting can alternatively be 

interpreted as contaminating a clean dataset by drawing q × n� of its responses from a polytomous logistic model with 

parameters 
(

0 0 −√
3

0 1.5 −√
3/2

)
instead of �.

Setting II (contaminated covariates and responses) Setting I is extended by affecting x values. For the responses changed 
according to setting I, both covariate values of the corresponding datapoints are multiplied by 5, such that the contam-

inated datapoints correspond to the polytomous logistic model with parameters 
(

0 0 −√
3

0 0.3 −√
3/2

)
with explanatory 

variables drawn from a N (μ = 0, σ = 5).

Contamination setting I only creates outlying responses and contamination setting II creates points with both outlying 
covariates and responses. For a given contamination setting s, (s = I, II, see settings above), a given a contamination level q
in {0%, 1%, · · · , 20%}, and a given estimator m in {ML, wML, MDPD, RGLM, OBR}, R = 1′000 replications are considered. The 
accuracy of the estimates 

(
�̂

s,q,r
m

)
r=1,...,R

is summarized by their empirical Fisher-standardized mean squared error.

Definition 3. The Fisher-standardized mean squared error (FMSE) of an estimator �̂ is defined by:

F M S E(�̂,�) = E
[(

γ̂ − γ
)T Q ML

(
γ̂ − γ

)]
,

where γ (resp. γ̂ ) is the vector of R(p+1)(k−1) obtained by stacking the lines of � (resp �̂) and Q ML is the Fisher informa-
tion matrix defined in Section 2.6.2.

The empirical FMSE of an estimator m through R simulations with a proportion q of observations issued from contami-
nation setting s is

eFMSE (s,q,m) = 1

R

R∑
r=1

(
γ̂ s,q,r

m − γ
)T

Q r
ML

(
γ̂ s,q,m

r − γ
)
, (16)

where γ̂ s,q,r
m (resp. γ ) is a vector of R(k−1)(p+1) obtained by stacking the lines of �̂s,q,r

m (resp. �) together and Q r
ML is the 

Fisher information matrix computed on the r-th clean dataset by 1
n

∑n
i=1 V i (xi,�)⊗ xixT

i . The empirical efficiency (eEFF) of 
the estimators is computed as

eEFF (s,q,m) = eFMSE (s,0,ML) /eFMSE (s,q,m) . (17)

9
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Fig. 4. Empirical efficiency of estimators on simulated contaminated datasets as a function of the percentage of contamination. Note that the y-axis scale is 
not the same for the two graphs.

The tuning of the robustness constants associated with MDPD, RGLM and OBR estimators is made such that these estimators 
all have a 0.95 empirical efficiency on the clean datasets, compared to �̂ML . The values of the resulting constants are given 
in the legend of Fig. 4. The weighting function wx used in �̂RGLM is defined by Equation (15), where the tuning parameter 
df is tuned such that eEFF(s, 0, wML) = √

0.95 (see Section 2.8 for more details). The estimator �̂wML was added for 
comparison purposes. The same value of the tuning parameter df of the downweighting function wx was used for �̂RGLM

and �̂wML , which explains why the efficiency of �̂wML is different at q = 0%.
Fig. 4 shows the empirical efficiencies, defined by Equation (17) of �̂ML , �̂wML , �̂M D P D , �̂RGLM and �̂O B R as a func-

tion of the percentage q of contamination for settings I and II. Note that q = 0 corresponds to the clean datasets in both 
panels. In setting I (panel a), which only includes contaminated responses, the difference between the efficiencies of any 
two estimators is less than 0.05. Under large contamination, �̂ML has the lowest empirical efficiency, and �̂M D P D has the 
highest empirical efficiency because it does not unnecessarily downweight points as �̂RGLM does to protect against outlying 
covariates. However, as a 5% efficiency loss is usually comparable to the loss of efficiency traded for robustness at the model 
(no contamination), the gain is not sufficiently significant to motivate the use of robust estimators in setting I. However, 
the advantage of robust estimation is clear in the second setting (panel b) in which both the covariates and responses are 
contaminated. The empirical efficiency of �̂ML drops from 1 with no contamination, to 0.6 with 1% contamination, and to 
below 0.2 with more than 5% contamination. The non B-robust �̂M D P D , while performing better than �̂ML , performs signif-
icantly worse than the B-robust �̂RGLM . The latter is clearly the best as its efficiency is barely affected by contamination of 
less than 5%. Note that this good performance is not only due to the protection against outlying covariates provided by the 
weighting function wx because the weighted maximum likelihood estimator �̂wML performs significantly worse. Protection 
against both outlying covariates and mislabelling is necessary.

Boxplots of estimates of �13 = √
3/2 by the five considered estimators under setting II are shown in Fig. 5 for six 

contamination levels: 0%, 2%, 5%, 10%, 15%, and 20%. This contamination setting introduces a negative bias on all estimates. 
While the maximum likelihood estimators have a median bias of almost −0.5 with as little as 2% contamination, all robust 
estimators still cover the true parameter value in their interquartile range. For higher contamination, estimators �̂wML , 
�̂M D P D , and �̂O B R are significantly more biased than �̂RGLM . Estimator �̂M D P D is slightly less biased than �̂O B R and �̂wML

at first but its variance increases with contamination up to 10%, while the variances of �̂O B R and �̂wML remain stable, 
leading all three estimators to have similar empirical efficiencies. The boxplots for the other parameters estimates under 
setting II are given in Supplementary Section E.2 and show similar behavior. Similar boxplots for all the parameter estimates 
under setting I are also given in Supplementary Section E.1.

The efficiencies of all estimators seem to be higher with 1% or 2% contamination than with no contamination in setting 
I; this is because this contamination setting tends to shrink estimates towards 0. The FMSE of an estimator, as the usual 
MSE, can be decomposed as the sum of a bias component and a variance component. The shrinkage effect induced by 
contamination usually increases the bias component faster than it decreases the variance component. However, in this 
particular setting with a low proportion of contamination, the decrease of the variance components exceeds the increase in 
bias, leading to an increase of its standardized efficiency. This effect should not be expected to happen in general.

The behavior of �̂O B R could be surprising at first, but its optimality indicates it is the estimator with the smallest 
asymptotic variance under no contamination among estimators with a same bound on their influence functions. Hence, it 

10
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Fig. 5. Boxplots of the estimates of �13 by all five estimators for six different contamination levels in setting II. Solid lines indicate the true parameter value.

is expected that �̂O B R should be the least sensitive to a very small proportion of the worst case contamination. This is 
coherent with its behavior under contamination setting II with 1% contamination, where it has a higher efficiency than 
�̂RGLM and �̂M D P D . It then performs poorly under contamination levels higher than 3%.

These simulations suggest that, by default, the B-robust estimator �̂RGLM should be favored when there is a possibility 
of outlying covariates, as it provides a significant increase of efficiency when the covariates are contaminated; when they 
are not, this estimator is only slightly less efficient than others.

3.2. Tests

In this section, the behavior of the Wald-type and score-type tests of the different estimators is examined through a 
simulation study similar to Section 3.1. An irrelevant explanatory variable, x3, with standard normal distribution, indepen-
dent from the other covariates and from the response, is added to the previous simulation setting. The significance of this 

11
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Fig. 6. Type I (first row) and type II (second row) errors of Wald-type (first column) and score-type (second column) tests under contamination setting II.

covariate is tested under different levels of contamination. Formally, there are k = 3 categories, p = 3 independent standard 
normal covariates, plus an intercept, and the model parameters matrix is

� =
(

0 1.5
√

3/2 0
0 0

√
3 0

)
.

The null hypothesis H0: “�14 = �24 = 0” is tested against the alternative hypothesis HA : “�14 = �24 = 5/
√

n = 0.224”. 
Setting II is used to contaminate the clean datasets with size n = 500. As before, R = 1′000 replications are made, for the 
following contamination levels: 0%, 1%, · · · , 5%, 7%, 10%, 15%, and 20%. The tuning of the robustness constants is the same as 
in Section 3.1.

Fig. 6 shows the proportions of type I and type II errors for the Wald-type and the score-type tests at the 5% level. As 
expected, the Wald-type and score-type tests based on the maximum likelihood estimator are not robust. Their observed 
levels exceed 10% with 1% contamination and reach 25% with 5% contamination, whereas the nominal level is 5%, making 
these tests unreliable under contamination. For all other estimators, the score-type tests seem more robust than the Wald-
type tests. The Wald-type test based on �̂M D P D is highly sensitive to contamination: although its power increases from 
40% to 60% when reaching 10% contamination, its level climbs above 10% with 2% contamination and to 25% with 5% 
contamination, making this test unreliable. Level stability is of the utmost importance because an increase from the desired 
level is likely to lead to false discoveries: a gain in power does not compensate for an increased level. The Wald-type test 
associated with �̂RGLM remains reliable for contamination levels below 5% (its type I error remains under 7%), but it is 
strongly impacted by higher contamination levels, with a type I error exceeding 10% at a contamination level of 10% and 
exceeding 40% at a contamination level of 20%. The Wald-type tests associated with �̂O B R and �̂wML are more robust. Their 
levels stay quite close to the nominal 5% level when contamination is added, while their power only drops by 15% for �̂wML
and 5% for �̂O B R . The Score-type tests of the four robust estimators are more homogeneous but panels b and d of Fig. 6
tend to show superiority of the tests associated with �̂RGLM and �̂O B R , whose type I error stay the closest to the nominal 
level, at least for contamination levels less than or equal to 15%.

The behavior of the Wald-type test associated with �̂M D P D may be surprising at first: its type I error suddenly drops 
when contamination levels exceed 10% while its type II error increases. This may be due to the influence of outliers on the 
estimation of the variance needed to compute the Wald-type test statistics: high contamination levels tend to shrink the 
variance estimate, yielding a smaller test statistic and thus lower rejection rate under both null or alternative hypotheses, 
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Fig. 7. Boxplots of 1’000 median individual likelihoods (MIL) in the Vertebral column dataset. The estimators are in descending order based on the median 
of the MIL. The tuning constants are df = 6.040, λ = 0.487, cR = 2.853, cO = 4.736.

giving lower type I error and larger type II error. The same effect is noted with the Wald-type test associated with �̂ML . It 
is worth noticing that, despite its low efficiency for estimation, �̂O B R can be used for reliable and robust tests.

Also note that the contamination setting II preserves H0: the datasets generated under H0 and contaminated by this 
setting still fulfills H0. Indeed, the responses of the contaminated observations remain independent of covariate x3. There-
fore, the large type I error rates shown in the first row of Fig. 6 are only due to non-robustness of the estimators and cannot 
be caused by deviations from H0.

4. Real data application: Vertebral column dataset

All estimators described in Section 2 are applied to the Vertebral column dataset (Berthonnaud et al., 2005), found on the 
UCI Machine Learning Repository (Dua and Graff, 2019). This dataset contains indices describing the shape and orientation of 
the different parts of the spines of 100 healthy subjects, 60 subjects suffering from disk hernia and 150 subjects suffering 
from spondylolisthesis. The resulting 310 observations contain six continuous covariates and a categorical response with 
three categories, corresponding to three diagnoses: healthy, disk hernia, and spondylolisthesis. The number of covariates has 
been reduced to three due to the high collinearity. The remaining variables are pelvic tilt, sacral slope, and pelvic radius. 
A polytomous regression model thus requires a matrix of (3 − 1) × (3 + 1) = 8 parameters. A basic data exploration reveals 
at least one observation that is clearly misclassified and multiple observations with large covariate values.

The estimators are compared through a 10-fold cross validation using a likelihood-based criterion. The method is as 
follows: removal of nout = 0.1 × n� observations, estimation of the parameters on the (n − nout) remaining observations, 
and calculation of the individual log-likelihoods on the nout removed points using the estimated parameters. The median 
of these nout likelihoods is then extracted to provide a robust goodness-of-fit measure, not influenced by a few potential 
outlying observations. This process is repeated 1000 times. The results are given in Fig. 7. All estimators are tuned to the 
same asymptotic efficiency, 90%, according to the method described in Section 2.8. The asymptotic efficiencies needed for 
the tuning are computed by plugging in the value of �̂O B R , estimated using cO = √

(k − 1) × (p + 1) = √
8, which is the 

most robust optimal B-robust estimator. Changes in the chosen estimator did not notably affect the tuning of the constants.
Fig. 7 shows a clear gain in using �̂RGLM over all other estimators. This dataset is a perfect example of a case for which 

the non-B-robust estimators �̂M D P D and �̂ML do not protect against outliers in the covariates, whereas �̂wML does not 
protect against misclassification. Similar to what was observed in Fig. 4 in Section 3, �̂O B R performs more poorly than 
�̂RGLM when outliers are present in the covariates.

5. Conclusion

Outlying covariates have been shown to have a much bigger impact on estimation and testing than misclassification 
alone. Two new estimators, the B-robust weighted GLM estimator and the optimal self-standardized B-robust estimator, 
guarantee robustness towards both misclassification and outlying covariates. Comparisons with existing alternatives on real 
and simulated datasets lead us to advocate for the use of �̂RGLM . Using this estimator preventively (e.g., on a clean dataset) 
only leads to a small loss of efficiency, whereas using it on datasets with contamination prevents serious issues (biased 
estimates or misleading test conclusions).
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An inferential point of view was adopted rather than a classification one. However, robust classification is a well-studied 
topic (see Bertsimas et al. (2019) and references therein) and polytomous regression is a popular classifier among the ma-
chine learning community. Robust polytomous regression classifiers can be found in Bootkrajang and Kabán (2012) and Yin 
et al. (2018) and two corresponding robust estimators could be derived as byproducts of these, although their statistical 
properties, such as asymptotic distribution or associated tests, have not been derived. Exploring in detail the close connec-
tions between robust estimation and robust classification with polytomous regression models would surely be enriching for 
both purposes.

An extension of the RGLM and OBR estimators to complex survey schemes would also be worth pursuing, as developed 
in Castilla et al. (2020) for the MDPD estimator. Tuning of the robustness constants would require further investigation. In 
particular, the comparison of an approach based on asymptotic variance minimization (Castilla et al., 2018), one based on a 
median downweighting criterion (Aeberhard et al., 2021), and the one used in this article, would be beneficial.

Construction of the weighting function wx would also be worth investigating. Mahalanobis distance-based options are 
irrelevant when the distribution of the covariates is far from normal, and especially with discrete variables or a mix of 
continuous and discrete variables. A starting point could be a non-parametric method (see e.g., Dang and Serfling (2010)).

Nevertheless, the main challenge of the methods considered here are the numerical aspects. The dimensions of the 
parameter of the polytomous regression model easily become large and these methods can only be applied to datasets of 
reasonable dimensions and for which responses overlap. Having a dataset where observations with different categories are 
linearly separable (or close) in the predictor space yields numerical instability. This separability issue gets more and more 
problematic when the number of covariates or the number of categories is large. Introducing an adequate penalization to 
shrink the parameters could force convergence of the methods, and allow their use on bigger datasets, even when categories 
are linearly separated in the space of covariates. In particular, extending the procedure of Kosmidis and Lunardon (2020) to 
robust polytomous regression sounds quite promising as it could guarantee convergence while reducing the bias.
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Appendix A. Asymptotic variances of estimators

We give here the expressions of Mm and Q m in Equation (14). The covariates are assumed to be random variables. 
In case of a fix design, EX [ f (X)] should be replaced by limn→∞ 1

n

∑n
i=1 f (xi) for any measurable function f . In practice, 

matrices Mm and Q m can be estimated by replacing � by �̂m and by replacing the expectation on X (EX [...]) by the 
average over all xi values ( 1

n

∑n
i=1[...]).

• ML estimator:

�ML = Q ML = −M−1
ML = EX

[
V ∗ ⊗ X X T

]−1

• MDPD estimator: �M D P D = M−1
M D P D Q M D P D M−T

M D P D with:

M M D P D = EX

[(
V ∗diag

(
π∗)λ−1 V ∗ +

(
π T ek

)λ+1
π∗π∗T

)
⊗ X X T

]
and

Q M D P D = EX

[(
V ∗diag

(
π∗)λ−1 V ∗diag

(
π∗)λ−1 V ∗ + A + B

)
⊗ X X T

]
where

A =
(
π T ek

)2λ+1
π∗π∗T −

(
π T ek

)2λ+2
π∗π∗T

and

B =
(
π T ek

)λ+1 (
π∗π∗T diag

(
π∗)λ + diag

(
π∗)λ

π∗π∗T − 2π∗π∗T diag
(
π∗)λ−1

π∗π∗T
)

These expressions are different from the ones in Castilla et al. (2018), which we found to be incorrect.
• RGLM estimator: �RGLM = M−1

RGLM Q RGLM M−T
RGLM with:

M RGLM = EX

[
wx(X)

[
V ∗W ∗ + (ζ I∗ − W ∗)π∗π∗T

]
⊗ X X T

]
Q RGLM = EX

[
w2

x(X)
[

V ∗W ∗ + (ζ2 I∗ − W ∗)π∗π∗T − C
]
⊗ X X T

]
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where

I∗ is the identity matrix of R(k−1)×(k−1),

ζ = EY |X [wc(Y T π)] = ∑k
j=1 π j wc(π j),

ζ2 = EY |X [wc(Y T π)2] = ∑k
j=1 π j wc(π j)

2,

W ∗ is a diagonal matrix of R(k−1)×(k−1) whose j-th diagonal element is wc(π j)

and

C = (ζ I∗ − W ∗)π∗π∗T
(ζ I∗ − W ∗) .

• OBR estimator: as Q O B R = I by property of the estimator, �O B R = M−1
O B R M−T

O B R with

M O B R = EX

[∑k
j=1 π jψcO

{
A(�)(e∗

j − π∗) ⊗ X − αO B R(X,�)
}

(e∗
j − π∗) ⊗ X

]
The computation of the �̂O B R estimator using the IF algorithm gives, as a byproduct, an estimate Â(�̂O B R) of the matrix 
A(�) above which can be plugged in the above formula to obtain an estimate of the asymptotic variance �O B R .

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .csda .2022 .107564.
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