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The face simplex method in the cutting plane framework

C�esar Beltran �

April ��� ����

Abstract

In order to maximize a piecewise a�ne concave function one can

basically use the simplex method or an interior point method� As

an alternative� we propose the face simplex method� The vertex to

vertex scheme of the simplex method is replaced by a more general

face to face scheme in the face simplex method� To improve the current

iterate� in the face simplex method� one computes the steepest ascent

on the current face of the objective function graph and then an exact

linesearch determines next iterate� This new procedure can be used

in the cutting plane framework as a substitute of the simplex method�

As a preliminary numerical test� this new version of the cutting plane

method is compared with three other methods� subgradient� Kelley

cutting plane and ACCPM�

Key words� Nonsmooth optimization� cutting plane methods�

Lagrangian relaxation� subgradient method� steepest ascent method�

� Introduction

In smooth unconstrained optimization the gradient method and the Newton method
represent the two basic optimization philosophies� If we wish to maximize the smooth
function fs� as is well know� in the gradient method one chooses the steepest direction
and picks up the best point within this direction� At each iteration the gradient method
uses only a slice of the graph of fs� as the information source to compute the step
length� On the other hand� the Newton method� �rst� constructs gs� which is a second
order model of fs based at the current iterate and then moves to the maximizer of gs�
Therefore� the di�erence between the two methods is based on the level of information
about fs used at each iteration� As expected� low level of information methods such
as the gradient method produce optimization algorithms with low computation burden
but may su�er from slow convergence� With the high level of information methods� such
as the Newton method� the situation is symmetrical� high rate of convergence but with
a high computational burden� The choice among a low or a high level of information
method is problem dependent�
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In nonsmooth unconstrained optimization we can also distinguish between low and high
level of information methods� In the low level of information family we �nd the subgra�
dient method and the steepest ascent method� the nonsmooth version of the gradient
method� In the high level of information family� we �nd the cutting plane method� If we
wish to maximize the nonsmooth function fns� the cutting plane method constructs and
updates at each iteration gns� a model of fns based on �rst order information �cutting
planes	� Di�erent types of cutting plane methods arise depending on how the method de�
termines the next iterate based on gns� In Kelley
s cutting plane method �Kel�
� WG���
the next iterate is taken as the maximizer of gns� Somehow� we could say that Kelley
s
cutting plane method is the nonsmooth version of the Newton method�

A more sophisticated and e�ective version of the cutting plane method is the proximal
bundle method �HUL��� Kiw��� Fra
��� in which a quadratic penalty term is appended
to the linear objective of the cutting plane method in order to stabilize its performance�
The other improved version of the cutting plane method is the analytic center cutting
plane method �ACCPM	 �GV��a� GV��c� GV��b�� in which the analytic center of the
localization set �the hypograph of gns plus an hyperplane to bound the hypograph	 gives
the next iterate� In practice� cutting plane methods have a good convergence behavior�
with the exception of Kelley
s version� However� for large scale problems they may be
computationally demanding due to the high amount of information managed at each
iteration�

When applied to the maximization of the function fns� the subgradient method �Sho���
Pol��� Sho���� at each iteration� tries to improve the current iterate �in terms of the dis�
tance to the optimal set	� by following the direction given by a subgradient of fns� If in
theory� the subgradient method has a guaranteed convergence to the optimum� in prac�
tice it has no clear stopping criterion which ensures optimality� The other drawback of
the subgradient method is that the subgradient direction may not be an ascending direc�
tion� The steepest ascent method �HUL��� overcomes this handicap of the subgradient
method by computing the minimum norm subgradient� which indeed� is an ascending
direction� Computing the minimum norm subgradient may not be easy �it depends
on the knowledge of �fns	� so the steepest ascent method has so far not been a very
successful method� Nevertheless� some successful direction following heuristic methods
�Erl��� BH
�� or problem depending ascent methods �CC�
� have been proposed�

The aim of this paper is to introduce the face simplex method and to use it in the
cutting plane framework� The objective of the face simplex method is to maximize a
�concave	 piecewise a�ne function� Therefore� a direct use of the face simplex method
is to maximize the piecewise a�ne function gns which arises in the cutting plane frame�
work� The philosophy of the face simplex method is to keep as much as possible the
computational lightness of the direction following methods while using the �rst order
information utilized by the cutting plane methods� Employed as a direction following
method� the face simplex method �rst computes the steepest ascent on the current face

of the graph of gns �a concave piecewise a�ne function	 and second� the next iterate is
computed by an exact linesearch� Employed in the cutting plane framework� the face
simplex method replaces the simplex method as the tool to maximize gns� However�
at each iteration of the cutting plane method� the face simplex method is truncated
before reaching a Kelley
s point �a point which maximizes gns	� Apparently the points
generated in this truncated way remain in a region centered around the optimal set as
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Figure �� The pyramid function graph�

it happens with the bundle method and with ACCPM�

In the following example we introduce the face simplex method from an intuitive point of
view� The algebra of the face simplex method is developed in section �� together with its
stopping criteria� In section �� the face simplex method is proposed as a substitute of the
simplex method within the cutting plane framework� Finally� section � presents the �rst
computational experiences with the face simplex method in the cutting plane framework
and its performance when compared to the subgradient method� Kelley cutting plane
method and ACCPM�

Given x � Rn and z � R� to lighten notation we will write �x� z	 instead of
�
x
z

�
� Rn���

� Example

To introduce the face simplex method we use q�x	� a pyramid shaped function� Let us
de�ne the following vectors� v� � ������	�� v� � �����	�� v� � ��� �	�� v� � ���� �	��
the a�ne functions q��x	 � v��x � �x� � x�� q��x	 � v��x � x� � x�� q��x	 � v��x �
x� � x�� q��x	 � v��x � �x� � x� and the index set I � f�� �� �� �g� The pyramid
function is de�ned as q�x	 � R�� Rwith q�x	 � mini�Ifqi�x	g� whose graph is depicted
in Figure �� The pyramid problem is then�

max
x�R�

q�x	� ��	

Di�erent versions of the subgradient method �xk�� � xk ��ksk�kskk with sk � �q�xk		
arise depending on the chosen step length� Thus the basic subgradient method takes
�k � c��a� bk	 �Sho��� Sho���� One way to improve the very slow convergence of the
basic subgradient method is to use the Polyak subgradient method �Pol��� Ber��� which
takes �k � �k��qk � q�xk		�kskk� where �qk is an estimate of the optimum of q�x	 and
�k ��
� ��� In the pyramid problem� by taking �k � ��k� �qk de�ned as in section ��� and
with �
 iterations� we obtain a suboptimal solution� q�� � ���� � �
�� �it is not di�cult
to see that the optimum is q� � 
	� The path that follow the Polyak subgradient
iterates is depicted in Figure �� Note that the Polyak subgradient method improves
the basic subgradient method by incorporating dual information ��qk � q�xk		�kskk	 to
compute more accurate step lengths� However� the Polyak subgradient method requires
an estimate of the optimum to compute �qk� which in general may not be easy to tune�
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Figure �� The Polyak subgradient path for the pyramid problem
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Figure �� The face simplex method improves the subgradient method�

To end this example� we solve the pyramid problem by the face simplex method� The
subgradient method works in the x�space �R� for the pyramid problem	� whereas the face
simplex method works in the �x� z	�space �R� for the pyramid problem	� where z � q�x	�
Let us consider G the graph of q�x	 whose shape is a pyramid and let p� � �x�� z�	 � G
�see Figure �	� From p�� by following the steepest ascent on the current face of G we
obtain p�� the best point of G in this direction� Now the face associated to p� is an edge�
therefore the steepest ascent on the current face follows this edge� Finally� the best point
in the current ascent direction is p�� the best point of the pyramid� If p� � �x�� z�	 then
x� maximizes q�x	 and the optimum is z� � q�x�	�

For the pyramid problem� we reach the optimum by using only two iterations of the
face simplex method� The di�erence with the Polyak subgradient method is that we
do not use estimated information about q�x	� but have an exact knowledge of it� The
di�erence with the cutting plane method� is that now� at each iteration� we do not use
all the available information about q�x	� we only use restricted information �an exact
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linesearch	�

� The face simplex method

The aim of the face simplex method is to maximize a concave piecewise a�ne function
de�ned by a �nite family of known a�ne functions� To be more precise� �rst we de�ne the
index set I � f�� � � � � mg� the family of a�ne functions qi � R

n � Rwith qi�x	 � s�ix�bi
for all i � I and the piecewise a�ne function q�x	 � mini�Ifqi�x	g� Then the problem
to be solved is

max
x�Rn

q�x	 ��	

whose optimum is assumed �nite�

A general method to solve this problem is the steepest ascent method ��HUL���� Vol�
�� Chapter VIII	� Given that a subgradient at a nonoptimal point xk may not be an
ascent� the steepest ascent ensures an ascending direction by taking the steepest ascent
dk� which can be computed as

dk � argminf
�

�
ksk� � s � �q�xk	g� ��	

Then an exact linesearch along dk gives the step length�k � which de�nes the next point
as xk�� � xk � �kdk� Unfortunately the steepest ascent method with exact linesearch
may fail to converge ��HUL���� Vol� �� VIII����	� To ensure convergence of the steepest
ascent method� in the case of a piecewise a�ne function� one can use the 
step�to�
nearest�edge
 linesearch ��HUL���� Vol� �� Theorem VIII������	� A second handicap
of the steepest ascent method is its numerical instability� which may produce a large
number of very small steps� In �NBR

� these di�culties are overcome by considering
an outer approximation to the di�erential �q�xk	�

As an alternative to the steepest ascent method� we propose the face simplex method�
To give a �rst sketch of this method� we consider the graph of q�x	� G � f�x� z	 � x �
R
n� z � q�x	g � Rn��� a piecewise a�ne graph formed by the faces Fi� �i � �� � � � � nF 	

which may range from dimension 
 �vertices	� dimension � �edges	� up to dimension
n � � �facets	� i�e� G �

SnF
i�� Fi� We also de�ne F k as the face of minimal dimension

that contains pk � �xk� zk	� Ak as the smallest a�ne space containing F k and V k as the
vector space parallel to Ak � pk is said to be an optimal point of G� if and only if� xk is
an optimizer of q�x	�

The face simplex method ensures an ascending direction at pk by taking the face steepest
ascent� that is� the steepest ascent on F k � or equivalently� the direction in V k with the
steepest slope� It is not di�cult to see that the face steepest ascent and the steepest
ascent are di�erent concepts� To see that� one can imagine that the current iterate pk is
on an edge of G� i�e� the dimension of F k is one� In such a case� we have only one choice
for the face steepest ascent� it must be parallel to the one dimensional vector space V k�
On the other hand� the steepest ascent may be a di�erent direction from the direction
given by V k� as can be seen in the example given in �HUL���� Vol� �� VIII�����

Furthermore� in the steepest ascent method one have to solve problem ��	� which
amounts to solving a quadratic programming problem if �q�xk	 is polyhedral� as is
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the case for a piecewise a�ne function� In contrast� with the face simplex method one
can develop an explicit and easy to compute formula to solve the associated quadratic
programming problem �see section ���	� This can be done by computing the search
direction on the graph of the objective function�

Note that if the current point pk is a nonoptimal vertex of G� then F k has dimension
zero and it makes no sense to compute the face steepest ascent on it� In this case� the
steepest adjacent edge to pk will de�ne the search direction for the face simplex method
�vertex steepest ascent 	�

Face simplex algorithm �sketch�

Step � �Initialization�� Set k � � and initialize p� � �x�� z�	 � G�

Step � �Stopping criteria�� If pk ful�lls any of the stopping criteria� stop�

Step � �Direction� case ��� If dim�V k	 � 
 then compute dk as the steepest direction
within V k �

Step � �Direction� case ��� If dim�V k	 � 
 then compute dk as the parallel direction
to the steepest adjacent edge to pk �

Step � �Step length�� Compute �k by exact linesearch along dk�

Step � �Updating�� Compute next iterate pk�� � �xk��� zk��	� where xk�� � xk �
�kdk� zk�� � q�xk��	� Set k � k � � and go back to step ��

In the following sections we develop the algebra associated to the above face simplex
method� We distinguish two cases�

��� First case� search direction on a face of positive dimension

In this section we wish to compute the face steepest ascent at a point of G which
is neither an optimal point nor a vertex� As usual� if q�x	 � mini�Ifqi�x	g� then the
hyperplane associated to the function qi�x	 � s�ix�bi is said to be active at pk � �xk� zk	
if qi�x

k	 � q�xk	� In this case� �q�xk	 � si is said to be active at xk� The face F k

associated to pk is de�ned by the intersection of all the active hyperplanes at pk� If
Ik is the index�set of active hyperplanes at pk � i�e� Ik � fi � qi�x

k	 � q�xk	g� then the
smallest a�ne subspace that contains F k is Ak � fp � �x� z	 � Rn�� � z � qi�x	� i � Ikg�
Since

z � qi�x	� z � s�ix� bi � bi � �s�i���	 �
�x
z

�
� bi � �s�i���	 � p�

the associated vector space parallel to Ak is V k � fv � Rn�� � �s�i���	 � v � 
� i �
Ikg� Computing the face steepest ascent on F k is equivalent to computing the steepest
direction within V k� For any v� � �v��� � � � � v

�

n��	 de�ning the steepest direction in
V k� the nonoptimality of pk ensures that v�n�� 	� 
� Consequently� we can use w� �
���v�n��	v

� �� �w��� � � � � w
�

n� �	 to de�ne the steepest direction in V k� That is� in order to
�nd the steepest direction within V k � we can �x vn�� � � and restrict our search within
the a�ne subspace W k � fw � �w� �	 � V kg � fw � Rn � s�iw � �� i � Ikg�

�



The slope of �w� �	 � V k is ��kwk� Thus looking for the vector of maximum slope in V k

�the steepest ascent	 is equivalent to looking for w � W k of minimum norm� Therefore�
the problem of �nding the face steepest ascent dk on F k turns out to be equivalent to
the problem

wk � argminf
�

�
kwk� � w � W kg � argminf

�

�
kwk� � s�iw � �� i � Ikg� ��	

If we de�ne matrix S � �s�� � � � � sm	 where m � jIkj �without loss of generality we can
assume that the active hyperplanes correspond to the �rst m hyperplanes	 and vector
e� � ��� � � � � �	 � Rm� problem ��	 can be recast as wk � argminf��kwk

� � S�w � eg�
whose �rst order optimality conditions are given by the linear system on �w� �	�

w � S� � 
�
S�w � e � 
�

��	

From the �rst equation in ��	 w � �S�� which substituted in the second equation gives
�k � ��S�S	��e� We can write wk � S�S�S	��e�

So far we have assumed that S�S has complete rank and therefore �S�S	�� exists� Sup�
pose now that S �S has incomplete rank� If W k 	� 
� problem ��	 is well�posed and
the optimality conditions ��	 must have a solution independently of the rank of S�S�
A solution of ��	 can be computed as �k � ��S�S	�e� wk � S�S�S	�e� where �S�S	�

denotes the pseudo�inverse matrix of S�S� �The pseudo�inverse of the m� n matrix A�
denoted by A�� is the unique n�m matrix such that x � A�b is the vector of minimum
Euclidean length that minimizes kb � Axk�� see �GMW���� Sec� �������	� The above
discussion is summarized in the following proposition�

Proposition ��� Let pk be a non optimal point of G� F k its associated face� S �
�s�� � � � � sm	 the matrix of active subgradients at pk and e� � ��� � � � � �	� If F k is not
a vertex of G� then the face steepest ascent on F k is given by �wk� �	� where wk �
S�S�S	��e if S�S has full rank and by wk � S�S�S	�e otherwise�

��� Second case� search direction at a non optimal vertex

In the second case we compute the vertex steepest ascent at a non optimal vertex pk� To
do this� we adapt the algebra of the simplex method to our case� Any point �x� z	 � G
satis�es

z � q��x	�
z � q��x	�
� � � � � � � � � � � � �
z � qm�x	�

��	

Furthermore� considering that qi�x	 � s�ix� bi� there must exist a vector of slacks y 
 

such that

b� � s��x� z � y��
b� � s��x� z � y��

� � � � � � � � � � � � � � � � � � � � � �
bm � s�mx� z � ym�

��	

�



Equivalently �
BBB�

s�� �� ��
s�� �� ��
���

���
� � �

s�m �� ��

�
CCCA
�
� x

z
y

�
A �

�
BBB�

b�
b�
���
bm

�
CCCA � ��	

For convenience we express the matrix of the above linear system as

A �

�
V �In��
W �Il

	
� ��	

where

V �

�
B�

s�� ��
���

���
s�n�� ��

�
CA � W �

�
B�

s�n�� ��
���

���
s�m ��

�
CA � ��
	

In is the n� n identity matrix and l � m� �n� �	�

As in the simplex method� we partition matrix A into B and N � i�e� A � �B N	 with

B �

�
V 

W �Il

	
and N �

�
�In��




	
� ���	

Next we present a simple result to be used later�

Lemma ��� If V has full rank n � � then�

a� B also has full rank m�

b�

B�� �

�
V �� 

WV �� �Il

	
� ���	

c�

B��N � �

�
V ��

WV ��

	
� ���	

Proof� a	 Given the triangular block structure of B we have that

j det�B	 j � j det�V 	 j � j det��Il	 j � j det�V 	 j �

b	 and c	 have a direct proof� �

If the current point �x� z	 is a vertex of G then the number of active hyperplanes �yi�
	
is at least n��� We take n�� of them� say the �rst n��� to construct V and the other
l hyperplanes to construct W � Even if some of the hyperplanes in W are active� from
now on we will use the term active only for hyperplanes in V and the term non active
for hyperplanes in W � In what follows we use the notation v�i	 to denote component i
of vector v�

�



To continue our analysis we express the linear system ��	 as

�B N	

�
BB�

x

z
y
B

y
N

�
CCA � b� ���	

where y
B

 
 are the slacks corresponding to the non active hyperplanes at the cur�

rent point �non active slacks	 and y
N

� 
 are the slacks corresponding to the active
hyperplanes �active slacks	� From ���	

B

�
� x

z
y
B

�
A�Ny

N
� b� �

�
� x

z
y
B

�
A � B��b�B��Ny

N
� ���	

Now we de�ne c
B
as the n� � canonical vector of Rm� i�e� c

B
�i	 � 
 for i 	� n � � and

c
B
�n� �	 � �� We also de�ne c

N
as 
n� the zero vector of Rn and �nally� we de�ne the

cost vector c� � �c�
B
� c�
N
	� With this cost vector z can be expressed as�

z � c�

�
BB�

x

z
y
B

y
N

�
CCA � c�

B

�
� x

z
y
B

�
A � ���	

since c
N
� 
n���

From ���	 and ���	� we obtain z as a function of y
N
�

z�y
N
	 � c�

B
B��b� c�

B
B��Ny

N
���	

When moving from the current point pk � �xk� zk	 �a vertex	 to pk�� � �xk��� zk��	 at
least one active hyperplane associated to qi��x	 will become non active� i�e� y

N
�i�	 will

increase from 
 to a strictly positive value� The variation of z caused by this variation
of y

N
is studied in the following proposition�

Proposition ��� Let pk � �xk� zk	 be a vertex of G the graph of q�x	� V as in ���� and
y
N

the active slacks at pk� Then

z�y
N
	 � zk �

n��X
j��

V ��
n���j yN �j	� ���	

Proof� From ���	
z�y

N
	 � c�

B
B��b� c�

B
B��Ny

N

Now� considering that zk � z�
	 � c�
B
B��b and lemma ��� c	� we can write

z�y
N
	 � zk � c

B
B��Ny

N

� zk � �
�n� �� 

�

l	

�
V ��

WV ��

	
y
N

� zk � V ��
n���� � yN � zk �

Pn��
j�� V

��
n���j yN �j	�

�



�

Next� with the elements of this section� we derive the search direction designed to im�

prove the current point �vertex	� To do so� let us de�ne dzj as
�z	y

N



�y
N
	j
�
	� which is the

partial derivative of z�y
N
	 respect to y

N
�j	�
	 at y

N
�j	 � 
 �j � �� � � � � n � �	� From

proposition ��� we have that dzj � V ��
n���j � �j � �� � � � � n � �	 and considering that

y
N

 
� it is clear that if dz � 
 we cannot improve the current value of zk and therefore

the current point pk �a vertex	 is optimal� Otherwise� there must exist dzj � 
� De�ning
J� � fj � dzj � 
g 	� 
� we can improve zk by increasing any y

N
�j�	� j� � J�� When�

for a particular j� � J�� yN �j�	 is increased from 
 to a strictly positive value� y
B
must

remain nonnegative� y
B
has two components� y

B�
� 
 and y

B�
� 
� When leaving the

current point we must ensure that y
B�

remains positive� From ���	

y
B�
�y
N
	 � B��

B�
b� �B��N	

B�
y
N

where notation B��
B�

denotes the rows of B�� corresponding to y
B�
� Given that y

B�
�
	 �

B��
B�
b and by hypothesis y

B�
�
	 � 
� it turns out that B��

B�
b � 
 and then

y
B�
�y
N
	 � 
� �B��N	

B�
y
N

Finally� by applying lemma ��� c	 we obtain�

y
B�
�y
N
	 � �WV ��	

B�
y
N
�

Let Dy
B�

� �WV ��	
B�
� formed by the column vectors Dy

B�
�j	� j � �� � � � � n��� Given

that y
N
�j�	 
 
� to ensure y

B�

 
 we can only use positive columns of Dy

B�
� The

index�set of such columns is J� � fj � Dy
B�
�j	 
 
g�

The idea to derive the search direction is to increase only the active slack y
N
�j�	� which

improves the most function z�y
N
	 but restraining our choice of j� among the positive

columns of Dy
B�
� that is� j� must be in J� � J�� To be more precise� let

dzj� � arg max
j�J��J�

fdzjg

and rewrite ���	 as�
� x�y

N
	

z�y
N
	

y
B
�y
N
	

�
A � B��b�B��Ny

N
�

�
� xk

zk

yk

�
A�

�
V ��

WV ��

	
y
N
�

Taking into account that the new vector y�
N

is equal to �
� � � � � y
N
�j�	� � � � � 
	 it follows

that �
x�y

N
	

z�y
N
	

	
�

�
xk

zk

	
� V ��

�j�
� y

N
�j�	�

from where

x�y
N
	 � xk � y

N
�j�	 �

�
B�

V ��
�j�
���

V ��
nj�

�
CA � xk � �kdk�

Note that so far we have only computed the search direction

�dk	� � �V ��
�j�

� � � � � V ��
nj�

	�

�




The step length �k � y
N
�j�	 will be calculated by exact line search along dk� We

summarize the above discussion in next proposition�

Proposition ��� Let pk � �xk� zk	 be a non optimal vertex of G the graph of q�x	�
Then dk� the vertex steepest ascent from pk� can be computed as

dk �

�
B�

V ��
�j�
���

V ��
nj�

�
CA � where V �

�
B�

s�� ��
���

���
s�n�� ��

�
CA �

j� is such that dzj� � argmaxj�J��J�fdzjg� dzj � V ��
n���j� J� � fj � dzj � 
g� J� � fj �

Dy
B�
�j	 
 
g� Dy

B�
� �WV ��	

B�
and y

B�
are the null non active slacks�

Proof� At vertex pk we have n � � active hyperplanes with the associated null slacks
y
N

� 
� Above� in the current section� we have seen that we leave pk by increasing
y
N
�j�	 while the other n active hyperplanes remain active� that is� following dk we move

along the edge of G associated to y
N
�j�	� We have also seen that we choose j� such that

dzj� � arg max
j�J��J�

fdzjg

where dzj � �z�
	��y
N
�j	� i�e� we choose the edge with the steepest slope �

In this section we have seen how the computation of the vertex steepest ascent has
been inspired by the algebra of the simplex method� However� an important di�erence
with the simplex method must be pointed out� In the simplex method iterates move
from vertex to vertex of graph G� In the face simplex method iterates move from a
face to another face of graph G� since once the search direction has been computed�
next iterate is computed by exact line search� For example� assuming that the simplex
and the steepest ascent methods are in the same vertex� and also assuming that the
two methods compute the same improving direction �the vertex steepest ascent	� the
simplex method stops at the next vertex� whereas the steepest ascent method stops at
the best encountered point on G by following the improving direction�

��� Stopping criteria

The face simplex method uses three di�erent criteria that guarantee optimality of the
current point pk � �xk� zk	�

Null subgradient stopping criterion� A null subgradient ensures optimality� that
is� if �q�xk	 � sk � 
 then xk is optimal ��HUL

� Theorem D������	�

Vertex stopping criterion� The following stopping criterion is tested whenever the
current point pk is a vertex�

Proposition ��� Let pk � �xk� zk	 be a vertex of G� V as in ����� If V ��
n���j � 
� j �

�� � � � � n� �� then x is an optimal point of q�x	�

��



Proof� This result is clear from Proposition ���� where we saw that

z�y
N
	 � zk �

n��X
j��

V ��
n���j yN �j	�

that is� z�y
N
	 � zk for all y

N

 
 considering that by hypothesis V ��

n���j � 
� j �
�� � � � � n� �� �

De�cient Rank stopping criterion� The following stopping criterion is applied to
any point pk � �xk� zk	 of G�

Proposition ��	 Let fs�� � � � � smg be the set of active subgradients� which de�ne the
active hyperplanes at the current point pk�

S �
�
s� � � � sm

�
� eS �

�
s� � � � sm
�� � � � ��

	
�

and V k � fv � Rn�� � �s�i���	 � v � 
� i � �� � � � � mg � fv � Rn�� � eS�v � 
g the vector

space associated to xk� If rank�S	 	 rank�eS	� then xk maximizes q�x	�

Proof� Let us suppose that rank�eS	 � m� First let us see that ez�V k where e�z � �
�n� �	�
By hypothesis rank�S	 	 m � ��v 	� 
 � S�v � 


�

�
s� � � � sm
�� � � � ��

	
�v �

�



�
Pn��

i�� �vi

	

� eS�v � Kez � where K � �
Pn��

i�� �vi

� eSv � ez where v � �v�K�

Note that K cannot be 
� otherwise eS�v � 
 with �v 	� 
 which contradicts the fact thateS has full rank�

If w � V k � by de�nition of V k we have eS�w � 
� Then e�zw � v� eS�w � v�
 � 
 with
v 	� 
 � ez�V

k �

Considering that problem ��	 is equivalent to the linear programming problem that
maximizes z � q�x	 on the graph of q�x	� ez�V k implies that pk is optimal�

If rank�eS	 � p 	 m we can repeat the proof by de�ning S and eS from p linearly
independent columns of eS� �

��� The face simplex algorithm

Section � can be summarized in the following algorithm�

Face simplex algorithm

Step � �Initialization�� Set k � � and initialize p� � G�

��



Step � �Null subgradient stopping criterion�� If pk ful�lls the null subgradient stop�
ping criterion� pk is optimal� Stop�

Step � �De�cient rank stopping criterion�� Form the matrix of active subgradients
at pk� S � �s�� � � � � sm	 and eS�

eS �

�
s� � � � sm
�� � � � ��

	
�

If If rank�S	 	 rank�eS	� pk is optimal� Stop�

Step � �Direction� case ��� If rank�eS	 	 n � � then compute the search direction
dk � S�S�S	��e if S has full rank and by dk � S�S�S	�e otherwise� Go to
step ��

Step � �Vertex stopping criterion�� If rank�eS	 
 n� � de�ne V as in ��
	� compute
dzj � V ��

n���j � j � �� � � � � n� � and de�ne J� � fj � dzj � 
g� If J� is empty�

then pk is optimal� Stop�

Step � �Direction� case ��� Compute the search direction dk� De�ne W as in ��
	
and as in section ���� let Dy

B�
� �WV ��	

B�
be the rows ofWV �� associated

to the null non active slacks �y
B�

� 
	� Dy
B�

is formed by the column vectors
Dy

B�
�j	� j � �� � � � � n� �� De�ne J� � fj � Dy

B�
�j	 
 
g and compute

dzj� � arg max
j�J��J�

fdzjg�

Then

dk �

�
B�

V ��
�j�
���

V ��
nj�

�
CA �

Step � �Step length�� Compute �k by exact linesearch along dk�

Step � �Updating�� Compute next iterate pk�� � �xk��� zk��	� where xk�� � xk �
�kdk� zk�� � q�xk��	� Set k � k � � and go back to step ��

Note that in step �� by using next lemma we can check rank�S	 to know whether �S�S	��

exists�

Lemma ��� Let S a n�m matrix� S has full rank� if and only if� S�S has full rank�

Proof� First� let us see that if S has full rank� then S�S also has full rank� Let us
consider v 	� 
� Then� since S has full rank� Sv 	� 
� On the other hand� if S�Sv � 

and de�ning w � Sv� we would have S�w � 
 with w 	� 
� which contradicts the fact
that S� has full rank �rank�S	 � rank�S�		�

Second� let us see that if S�S has full rank� then S also has full rank� Sv � 
 implies
S�Sv � 
� Considering that S�S has full rank� then v must be equal to 
� which proves
that S also has full rank �

��



� The face simplex cutting plane method

The Kelley cutting plane method is intended to maximize a concave function q�x	 by
maximizing successive piecewise a�ne outer approximations qk�x	 � mini�������kfqi�x	g
of q�x	� where each qi�x	 �i � �� � � � � k	� is a supporting hyperplane of q�x	�

Kelley cutting plane algorithm

Step � �Initialization�� Initialize k � �� q��x	� 
 � 
 and the compact domain D�

Step � �Best point computing�� Compute xk � argmaxx�D qk�x	�

Step � �Stopping criterion�� If jq�xk	� qk�xk	j�jq�xk	j 	 
� then xk is an 
�optimal
point� Stop�

Step � �Outer approximation updating�� Compute sk � �q�xk	 and q�xk	� De�
�ne qk���x	 by appending the hyperplane z � q�xk	 � �sk	��x � xk	 to the
de�nition of qk�x	�

Step � �Counter updating�� k � k � � and go back to step ��

The poor performance of the Kelley
s algorithm may be due to the fact that at step �
it searches for a global maximum of qk�x	 though qk�x	 may be a good approximation
of q�x	 locally� Therefore� even though the simplex method is very e�ective to compute
such a global optimum� it may be advantageous a method that in a few iterations sub�
stantially improves our current value of q�xk	 within a relatively small region around
xk � Somehow� we �nd this approach in the bundle method and in ACCPM� By truncat�
ing the face simplex method we pursue the same efect� xk�� not too far from xk with
qk�xk��	 � qk�xk	� Therefore only a few iterations of the face simplex method �inner
iterations	 will be allowed at each cutting plane iteration �outer iteration	� The number
of face simplex iterations is limited by a constant Ninner� In what follows� we call the
previous approach the face simplex cutting plane �FSCP	 method�

Furthermore� in the FSCP method� the face simplex optimization process is also trun�
cated whenever an improving point �x is found at an inner iteration� To be more precise�
let �qk � maxfq�xi	 � i � �� � � � � kg be the best objective computed so far� �q ���� �� and
LBk � �q � �qk� Then if qk��x	 � LBk � the face simplex method stops at �x� sets xk�� � �x�
and a new outer iteration of the cutting plane method is performed� All in all� at each
iteration of the cutting plane method we do not compute an optimal point of the outer
approximation to q�x	 �Kelley point	� only an improving point�

� Numerical example

��� The generalized binary knapsack problem

In this section we show the performance of the face simplex cutting plane �FSCP	method
by solving the dual problem associated to the Lagrangian decomposition �GK��� of the

��



generalized binary knapsack problem ��AMO���� pag� ���	� In the generalized binary
knapsack problem we must choose among n objects� Object i has utility ui� weight wi

and volume vi� The objective is to maximize the total utility subject to weight and
volume limitations� that is� we can carry no more than weight W and volume V �

The generalized binary knapsack problem can be formulated �minimization version	 as
follows�

min �u�x ���a	

s�t� w�x � W� ���b	

v�x � V� ���c	

x � f
� �gn� ���d	

To obtain our generalized binary knapsack �Lagrangian decomposition	 dual problem�
we �rst duplicate vector x into y and obtain the equivalent problem�

min �u�x ��
a	

s�t� w�x � W� ��
b	

v�y � V� ��
c	

x � y� ��
d	

x � f
� �gn� y � f
� �gn� ��
e	

Second� we relax the identity constraint ��
d	�

max
� � Rn


���
��


min ��u� � ��	x� ��y

s�t� w�x � W�
v�y � V�

x � f
� �gn� y � f
� �gn

����
��� � ���	

The minimization problem in ���	 de�nes the so called dual function q��	� Then� prob�
lem ���	 can be rewritten as max��Rn q��	� Note that the minimization problem in ���	
decomposes into two knapsack problems�

��� Computational test

In this test we solve ten random instances of problem ���	� Vectors u� v and w are
randomly generated� ui � b�n�ui c � �� vi � b�n�vi c � � and wi � b�n�wi c � �� where
�ui � �

v
i and �wi are random variables uniformly distributed in the interval �
� ��� The

maximum volume and weight are de�ned as V � b���n	
P

i�������n vic � maxi�������nfvig
and W � b���n	

P
i�������n wic � maxi�������nfwig� Obviously� with this de�nition of V

and W any object can be used since vi � V and wi � W for all i� In the following
tables� label �
�
 stands for a generalized binary knapsack instance with �
 objects�
case 
� That is we label the instances by �Number of objects�case�� Recall that n� the
problem dimension� equals the number of objects�

Programs have been written in Matlab ��� �HJ

� and run in a PC �Pentium�IV Xeon
PC� ��� GHz� with � Gb of RAM memory	 under Linux operating system�

��



	���� Description of the face simplex cutting plane iterations�

First� we give a thorough description of the face simplex cutting plane �FSCP	 itera�
tions� The tuning parameters for the FSCP method are �see section � for its de�nition	�
Ninner � �
 and �q � ��

�� We set the starting point as �� � 
 � Rn and the 
 used
to stop the cutting plane algorithm is �
���

The optimization statistics for the FSCP method can be found in Table �� For example
in problem �
��� the FSCP method needs �� outer �cutting plane	 iterations and �� inner
�face simplex	 iterations� The �nal number of di�erent hyperplanes used to approximate
the dual function is ��� At each outer iteration k the cutting plane method generates
a hyperplane� If this new hyperplane already exists in the set of hyperplanes that
generates qk��	� the approximation to q��	� then it is rejected and therefore qk����	
and qk��	 are the same function� In problem �
��� �� hyperplanes have been generated
but� among them� only �� di�erent ones have been stored �� repeated hyperplanes have
been rejected	� By direction type we mean the number of hyperplanes used by the
face simplex method to compute the search direction� For problem �
��� the average
direction type has been ��� and the maximum direction type has been ��� The method
has stopped after detecting an active set of subgradients with de�cient rank �de�cient
rank stopping criterion	� In problem �
�
 the method stops at a point with an associated
null subgradient �null subgradient stopping criterion	�

In Table �� column �Direction type � Average
� we observe that ���� the average number
of hyperplanes used to compute the face steepest ascent� is very low compared to ����
�� � ��� ��� �
�	�� � ��� the average working space dimension� Therefore� not many
vertices have been visited� since to visit a vertex requires a number of hyperplanes at
least equal to the working space dimension� This can also be seen in column �Direction
type � Maximum
� where only in instance �
�� the FSCP method visits a vertex �at
some iteration we use �� hyperplanes� which de�ne a vertex in the working space� that
has dimension ��	� For the other instances the maximum direction type is always lower
than the working space dimension� we visit faces which are not vertices� In all these
instances� the level of information used by the FSCP method to compute the direction
search is low�

Also it is worth pointing out that in no case has the vertex stopping criterion been
active �see �Stopping cause
 in Table �	� Then� to get more insight in this matter� we
have solved the pyramid problem introduced in section � for various dimensions �we do
not report results for this test	� We have observed that even if all the instances have a
unique optimizer that corresponds to the vertex of the pyramid� the optimum has been
detected by the de�cient rank stopping criterion and not by the vertex stopping criterion�
Here we �nd another di�erence with the simplex method� we do not necessarily need a
number of hyperplanes equal to the working space dimension to declare the optimality
of a vertex�

	���� Performance of the face simplex cutting plane method�

Second� we compare the face simplex cutting plane method with other three meth�
ods� the subgradient method� the Kelley cutting plane method and ACCPM� We are
interested in the quality of the solution found �Table �	 and the performance of the
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Table �� The face simplex cutting plane method� description of the iterations

Problem Iterations Hyperplanes Direction type Stopping cause

Outer Inner Average Maximum

�
�
 �� �
 �� ��
 � Null subgradient
�
�� �� �� �� ��� �� De�cient rank
���
 �� �
 �� ��� � De�cient rank
���� �� ��� �� ��� �
 De�cient rank
�
�
 �� �� �� ��� �
 Null subgradient
�
�� �
 �� �� ��� � Null subgradient
���
 �� ��� �� ��� �� Null subgradient
���� �� ��� �� ��� �� Null subgradient
�

�
 �� ��� �� ��� �� De�cient rank
�

�� �� �� �� ��
 � Null subgradient

Average �� ��� �� ��� ��

face simplex cutting plane method relative to the other methods �Tables � and �	� In
these Tables� FSCP stands for face simplex cutting plane method� SG for subgradient
method� KCP for Kelley cutting plane method and ACCPM for analitic center cutting
plane method� The number of iterations ratio and the CPU time ratio are computed
relative to the FSCP method� For example� in Table �� instance �
�
� the number of
iterations ratio for the subgradient method is ����� � �����

In all the tested methods� we set �� � 
 � Rn as the starting point� the number of
iterations is limited by �

 and the stopping criteriterion tolerance 
 is set equal to
�
���

Within the subgradient method we use the Polyak step length de�ned by �k � �k��qk �
qk	�kskk�� where �k � ���k �k � 
	� qk � q��k	 and sk � �q��k	� Based on �Ber����
�qk � an approximation to the optimum q�� is chosen as

�qk � �� � 
k	 � max
i�������k

fqig�

where 
k is updated at each iteration as


k�� �


�



minfmaxf
� 
k � �
g� 
g if qk � qk���

minfmaxf
� 
k��
g� 
g if qk � qk���

���	

which ensures 
k�� � �
� 
� for all k� 
 and 
 are� respectively� a lower and upper bound
to 
k and �
 is a constant factor� The best tuning we have found is� �� displayed in
Table �� �
 � ���� 
� � 
��
� 
 � 
�
� and 
 � 
��
�

Regarding the stopping criterion� the subgradient method is stopped whenever the av�
erage variation of �k for the last � iterations is small enough� i�e� wheneverP�

i�� k�
k�i � �k�i��k�

�
	 �
��� ���	

��



Table �� �� for the subgradient method

Problem �
�
 �
�� ���
 ���� �
�
 �
�� ���
 ���� �

�
 �

��

�� � �
 � �
 � �
 �
 �
 �
 �

Table �� Best dual objective �suboptimal values are in bold type	

Problem FSCP SG KCP ACCPM

�
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 ����


 ����


 ����


 ����



�
�� ����


 
	����� ����


 ����



���
 �����
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���� �����


 �����



���� �������� 
�����
� �������� ��������
�
�
 �����


 �����


 
������� �����
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 �����


 
������� �����



���
 ��
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 ��

��


 
���	���
 ��

��



���� �����


 �����


 
��	����� �����



�

�
 ��
����

 
������
� 
�������� ��
����


�

�� �����


 �����


 
�������� �����




Average �������� �������� �������� ��������

An important di�erence between the subgradient method and the cutting plane meth�
ods is the tuning process� The subgradient method with Polyak step� as we have imple�
mented it� depends on parameters ��� 
�� �
� 
 and 
� which may need a demanding
tuning as happened in this test� On the contrary� the cutting plane methods are based
on an increasingly accurate knowledge of the optimized function� which allows these
methods to autoadapt to each problem� That is� in the subgradient method� the tuning
parameters are much more problem dependent than in the cutting plane methods�

Regarding the quality of the solution found �Table �	� the subgradient method either
converges to the optimum �instances �
�
� �
�
� �
��� ���
� ���� and �

��	 or �nds a
suboptimal solution �instances �
��� ���
� ���� and �

�
	� In the �rst situation� the
subgradient method stops after encountering a null subgradient� Intuitively� we can
imagine the graph of the corresponding dual function as a truncated pyramid� In the
second situation� no null subgradient is encountered and� intuitivelly we can imagine the
graph of the corresponding dual function as a pyramid or as a tent�

Regarding the number of iterations and the CPU time �Tables � and �	� we �nd the same
situations� for the truncated pyramid shape the subgradient method needs about one
hundred or less iterations to converge� whereas for the pyramid shape the subgradient
method is not able to compute the optimum with �

 iterations� The FSCP method
computes the optimum for the two pyramid shapes� but it can be appreciated that more
iterations are needed for the truncated pyramid shape�

In this test� the subgradient method needs an average of ���� times the number of FSCP
iterations to obtain solutions of worse quality� Also on average� the FSCP method
performs ���� times faster than the subgradient method�
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Table �� Number of iterations

Problem Iterations Ratio vs� FSCP

FSCP SG KCP ACCPM SG KCP ACCPM

�
�
 �� �� �� �� ���� ���� ����
�
�� �� 	�� �
 �� ����� ���� 
���
���
 �� 	�� ��� �� ����� ���� ����
���� �� 	�� ��� �� ���� ���� 
���
�
�
 �� �
� 	�� �� ���� ����� ����
�
�� �
 �
� 	�� �� ���� ���

 ���

���
 �� �
� 	�� �
� ���� ��
� ����
���� �� �� 	�� �
� 
��� ���� ����
�

�
 �� 	�� 	�� ��� ���� ���� ����
�

�� �� �� 	�� �� ���� ����� ����

Average �� ��� ��� �� ���� �
��� ����

Table �� CPU time is seconds

Problem CPU time Ratio vs� FSCP

FSCP SG KCP ACCPM SG KCP ACCPM

�
�
 
�� 
�� ��� 
�� ��

 ���

 ��


�
�� 
�� ��� ��
 
�� ����� ���
 ����
���
 ��� ���� ���� ��� ���
 ����� ����
���� ��� ���� ���� ��� ���� �
��� 
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As usual� in the Kelley cutting plane method we adopt the warm start technique� i�e� at
each iteration the simplex method is initialized by using the optimal basis from the previ�
ous iteration� We use MOSEK �Version ���������RC	� WWW� http���www�mosek�com	
as linear programming solver�

Results with the Kelley cutting plane method where very poor� If we limit the number
of iterations by �

� only the �rst four problems are solved up to optimality �Table �	�
Thus� for example� in problem �
�
� if we wish to attain optimality we would need �
�

iterations� In this test the Kelley cutting plane number of iterations averages onver ten
times the FSCP number of iterations� The much better performance of the new method
is even more clear considering the CPU time ratio ������	�

One way to improve the Kelley cuting plane method is to use the analytic center cut�
ting plane method �ACCPM	� It is clear in this test that� given the polyhedrom that
approximates the dual function� it may be far better to compute a centered point of
the polyhedrom �the analytic center in the ACCPM case	 than the Kelley point of the
polyhedrom� Suprisingly enough� in this problem the FSCP method �a low level of in�
formation method	 on average needs less than half the number of ACCPM iterations
to converge �ACCPM being a high level of information method	� As a hypothesis� the
reason for that could be the good quality of the FSCP search direction in this problem�
in the sense that at any point of the cutting plane polyhedrom the face simplex direction
points towards or near to the optimal face �as the Newton direction does for a quadatic
function	� Nevertheless� more research is still needed on this subject� Regarding the
CPU time� the FSCP methods performs an average of ���� times faster than ACCPM
in this test�

� Conclusions and extensions

From a theoretical point of view� we have developed a new method to maximize a
piecewise a�ne concave function� the face simplex method�The vertex to vertex scheme
of the simplex method is replaced by a face to face scheme where any point on the
graph of the objective function can be an iterate� To improve the current iterate� the
face simplex method performs a linesearch so that we can use large steps in contrast
with the constrained �vertex to vertex
 simplex steps� Also� by using the de�cient rank
stopping criterion� we do not necessarily need a number of hyperplanes equal to the
working space dimension to declare the optimality of a vertex�

The face simplex method �ts well in the cutting plane framework as an alternative to
the simplex method� We call it the face simplex cutting plane �FSCP	 method� The
poor performance of the Kelley
s cutting plane method may be due to the fact that it
searches for a global maximum of qk� the outer approximation to the maximized func�
tion q� However� considering that qk may only be a good approximation to q locally�
we have found advantageous to improve the current value of qk�xk	 in a neighborhood
of xk � To attain this approach� we have limited the number of face simplex iterations
at each cutting plane iteration� The optimal point computed at each iteration by the
simplex method is replaced by a suboptimal point given by the �truncated	 face sim�
plex method� Apparently� these suboptimal points are better positioned to collect the
relevant hyperplanes necessary to describe q around the optimal face�

�




From a practical point of view� we have compared the FSCP method to three well known
methods� The �rst of them has been the subgradient method� In the FSCP method� the
problem depending tuning of the subgradient method is avoided by an exact linesearch
which uses the cutting plane information� In the numerical test carried out� the FSCP
on average has performed ���� times faster than the subgradient method� The second
compared method has been the Kelley cutting plane method� By computing suboptimal
solutions not too far from the current point the FSCP method has dramatically improved
the Kelley cutting plane method� In the numerical test carried out� the FSCP on average
has performed ����� times faster than the Kelley cutting plane method� The third
compared method has been ACCPM� In this test� the FSCP method has shown to be
over two times faster than ACCPM �iterations and CPU time	�

Among the possible extensions of this work� it remains �rst to study the convergence of
the face simplex method and second� to perform large�scale intensive tests to establish
its e�ectiveness�

Acknowledgments� We would like to thank the technical support from Logilab �HEC�
University of Geneva	� and specially the valuable remarks and suggestions of professors
Jean�Philippe Vial and Claude Tadonki�

References

�AMO��� R� K� Ahuja� T� L� Magnati� and J� B� Orlin� Network 	ows� Prentice Hall�
Inc� �����

�Ber��� Dimitri� P� Bertsekas� Nonlinear Programming� Ed� Athena Scienti�c� Bel�
mont� Massachusetts� �USA	� �n edition� �����

�BH
�� C� Beltran and F� J� Heredia� An e�ective line search for the subgradient
method� Technical Report DR �

����� Departament d
estad��stica i investi�
gaci�o operativa� Universitat Polit�ecnica de Catalunya� Barcelona� �

��

�CC�
� A� R� Conn and G� Cornu�ejols� A projection method for the uncapacitated
facility location problem� Mathematical programming� ���	���� ���� ���
�

�Erl��� D� Erlenkotter� A dual�based procedure for uncapacitated facility location�
Operations Research� ������ �

�� �����

�Fra
�� A� Frangioni� Generalized bundle methods� SIAM journal on optimization�
����	���� ���� �

��

�GK��� M� Guignard and S� Kim� Lagrangean decomposition� a model yielding
stronger Lagrangean bounds� Mathematical Programming� ���	���� ����
�����

�GMW��� P� E� Gill� W� Murray� and M� H� Wright� Practical optimization� Academic
Press Limited� London� �
th edition� �����

�GV��a� J��L� Go�n and J�Ph� Vial� Convex nondi�erentiable optimization� a survey
focussed on the analytic center cutting plane method� Technical Report ���
��
Geneva University � HEC � Logilab� February �����

��



�GV��b� J��L� Go�n and J�Ph� Vial� Shallow� deep and very deep cuts in the analytic
center cutting plane method� Mathematical programming� ���	��� �
�� �����

�GV��c� J��L� Go�n and J�Ph� Vial� A two�cut approach in the analytic center cutting
plane method� Mathematical methods of operations research� ���	���� ����
�����

�HJ

� D� J� Higham and Higham N� J� Matlab guide� Siam� �


�

�HUL��� J� B� Hiriart�Urruty and C� Lemar�echal� Convex Analysis and Minimization
Algorithms� volume I and II� Springer�Verlag� Berlin� �����

�HUL

� J��B� Hiriart�Urruty and C� Lemar�echal� Fundamentals of convex analysis�
Springer� �


�

�Kel�
� J� E� Kelley� The cutting�plane method for solving convex programs� Journal
of the SIAM� ���
� ���� ���
�

�Kiw��� K� C� Kiwiel� A survey of bundle methods for nondi
erentiable optimization�
In� Proceedings� XIII� International Symposium on mathematical program�
ming� Tokyo� �����

�NBR

� P� Neame� N� Boland� and D� Ralph� An outer approximate subdi�erential
method for piecewise a�ne optimization� Mathematical programming� �Ser�
A ��	��� ��� �


�

�Pol��� B� T� Poljak� Minimization of unsmooth functionals� CMMP� ���	��� ���
�����

�Sho��� N� Z� Shor� The generalized gradient descent� In� Trudy � Zimnei Skoly po
Mat� Programmirovaniyu� ���
������ �����

�Sho��� N� Z� Shor� Nondi
erentiable optimization and polynomial problems� Non�
convex optimization and its applications� Kluwer academic publishers� �����

�WG��� Cheney W� and A� A� Goldstein� Newton
s method for convex programming
and chebyshev approximation� Numerische Mathematik� ���	���� ���� �����

��


