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OPEN

ORIGINAL ARTICLE

Chromosomal contacts connect loci associated with autism,
BMI and head circumference phenotypes
MN Loviglio1,24, M Leleu2,3,24, K Männik1,4, M Passeggeri5, G Giannuzzi1, I van der Werf1, SM Waszak2,3,6, M Zazhytska1,
I Roberts-Caldeira5, N Gheldof1, E Migliavacca1,2, AA Alfaiz1,2, L Hippolyte5, AM Maillard5, 2p15 Consortium25, 16p11.2 Consortium26,
A Van Dijck7, RF Kooy7, D Sanlaville8, JA Rosenfeld9,10, LG Shaffer11, J Andrieux12, C Marshall13, SW Scherer14,15, Y Shen16,17,18,
JF Gusella19,20, U Thorsteinsdottir21, G Thorleifsson21, ET Dermitzakis2,22, B Deplancke2,3, JS Beckmann2,5,23, J Rougemont2,3,
S Jacquemont5,27,28 and A Reymond1,28

Copy number variants (CNVs) are major contributors to genomic imbalance disorders. Phenotyping of 137 unrelated deletion and
reciprocal duplication carriers of the distal 16p11.2 220 kb BP2-BP3 interval showed that these rearrangements are associated with
autism spectrum disorders and mirror phenotypes of obesity/underweight and macrocephaly/microcephaly. Such phenotypes
were previously associated with rearrangements of the non-overlapping proximal 16p11.2 600 kb BP4-BP5 interval. These two CNV-
prone regions at 16p11.2 are reciprocally engaged in complex chromatin looping, as successfully confirmed by 4C-seq, fluorescence
in situ hybridization and Hi-C, as well as coordinated expression and regulation of encompassed genes. We observed that genes
differentially expressed in 16p11.2 BP4-BP5 CNV carriers are concomitantly modified in their chromatin interactions, suggesting that
disruption of chromatin interplays could participate in the observed phenotypes. We also identified cis- and trans-acting chromatin
contacts to other genomic regions previously associated with analogous phenotypes. For example, we uncovered that individuals
with reciprocal rearrangements of the trans-contacted 2p15 locus similarly display mirror phenotypes on head circumference and
weight. Our results indicate that chromosomal contacts’ maps could uncover functionally and clinically related genes.

Molecular Psychiatry (2017) 22, 836–849; doi:10.1038/mp.2016.84; published online 31 May 2016

INTRODUCTION
Long-range chromatin contacts that bring genes and regulatory
sequences in close proximity are necessary for co-transcription of
biologically related and developmentally co-regulated genes.1,2

Correspondingly, genomic structural changes were associated
with disruption of the organization of chromatin compartments by
shifting regulatory elements between domains and/or modifying
domain boundaries, which resulted in ectopic interactions, gene
misexpression and disease.3,4 In the last 15 million years the
16p11.2–12.2 region rapidly integrated segmental duplications
contributing to profound modifications of these chromosomal
bands in hominoids.5,6 It allowed the emergence of new
transcripts7 and placed the whole region at risk for various

recurrent rearrangements8–10 through non-allelic homologous
recombination11 (Figure 1). These rearrangements include a
recurrent interstitial deletion of ~ 600 kb defined by 16p11.2
breakpoints 4–5 (BP4-BP5; OMIM#611913), which encompasses
28 ‘unique’ genes and four genes with multiple copies12 (Figure 1).
With a population prevalence of ~ 0.05% this variant is one of the
most frequent known etiologies of autism spectrum disorder
(ASD).9,13–15 It impacts adaptive behavior and language skills and
predisposes to a highly penetrant form of obesity and
macrocephaly.15–19 A mirror phenotype is observed in carriers of
the reciprocal duplication (OMIM#614671), who present a high risk
of schizophrenia (SCZ), Rolandic epilepsy, being underweight and
microcephalic.18–22 Case series have reported variable expressivity;
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systematic phenotyping showed that deletion and duplication
lead to an average IQ decrease of 26 and 16 points in proband
compared with non-carrier family members.15,23 Correspondingly,
the phenotypes of carriers identified in unselected populations are
reminiscent of those described for carriers of 16p11.2 rearrange-
ments ascertained in clinical cohorts.24 Deletions and duplications
show a mirroring impact on brain volume and specific cortico-
striatal structures implicated in reward, language and social
cognition.25 Changes in copy numbers of this interval are
associated with significant modifications of the mRNA levels of
ciliopathy and ASD-associated genes in humans and mice.12,26

Correspondingly, mouse models engineered to have three copies
of the 7qF3 orthologous region showed reduced cilia length in the
CA1 hippocampal region, whereas modulation of the expression
of ciliopathy-associated genes rescued phenotypes induced by
KCTD13 (MIM#608947) under- and overexpression,12 one of the
key drivers of the 16p11.2 600 kb BP4-BP5 CNV genomic-interval
associated traits.27 Distal to BP4-BP5, the deletion of 16p11.2
220 kb BP2-BP3 interval was similarly associated with obesity,
developmental delay, intellectual disability and SCZ.16,28–35 How-
ever, detailed data about the phenotypes associated with the
reciprocal duplication are still lacking.
We hypothesized that copy number modification of the 16p11.2

600 kb BP4-BP5 interval alters the three-dimensional positioning
of these genes resulting in expression alterations of pathways
involved in its phenotypic manifestation. We used chromatin
conformation capture to explore the chromosome-wide effects
of the 16p11.2 600 kb BP4-BP5 structural rearrangements on
chromatin structure and assessed how these underlay the
associated phenotypes. This region engages in multi-gene

complex structures that are disrupted when its copy number
changes. The implicated genes are known to be linked to 16p11.2-
associated phenotypes, such as primary cilium alteration, energy
imbalance, head circumference (HC) and ASD. We also demon-
strate that our approach could be used to identify additional loci,
whose copy number changes are associated with strikingly similar
phenotypic manifestations.

MATERIALS AND METHODS
Recruitment and phenotyping of patients
The institutional review board of the University of Lausanne, Switzerland
approved this study. Participants were enrolled in the study after signing
an informed consent form and being clinically assessed by their respective
physicians. For the data collected through questionnaires, information was
gathered retrospectively and anonymously by physicians who had ordered
chromosomal microarray analyses performed for clinical purposes only.
Consequently, research-based informed consent was not required by the
institutional review board of the University of Lausanne, which granted an
exemption for this part of the data collection. Overall cognitive functioning
was assessed as published.15

To better assess the phenotypic features associated with the 16p11.2
220 kb BP2-BP3 rearrangements, we recruited and phenotyped 110 and 57
carriers of the 220 kb BP2-BP3 deletion (OMIM#613444) and duplication
from 88 and 49 families, respectively (Supplementary Table S1). Whereas
these structural variants were previously reported to be among the CNVs
most frequently harboring a possibly deleterious second genetic lesion (29
and 13% of the time, respectively),32 we do not confirm such propensity.
Indeed, second-site structural variants were identified in ‘only’ 7% (6/88)
and 4% (2/49) of the enrolled BP2-BP3 deletion and duplication carrier
probands, respectively. Deleterious CNVs were defined as: (i) known

Figure 1. The 16p11.2 region and its 4C interactions profile (panels from top to bottom). Transcripts: The transcripts mapping within the
human chromosome 16 GRCh37/hg19 27–31 Mb region are indicated. The 4C-targeted SH2B1, LAT, MVP, KCTD13, ALDOA, TBX6 and MAPK3
genes are highlighted in red. Segmental duplications/viewpoints: The duplicated regions containing the low-copy repeats (LCR) that flank these
rearrangements telomerically and centromerically are shown, whereas the position of the restrictions fragments used as viewpoints are
marked with red ticks. CNVs: The position of the 600 kb BP4-BP5 (orange) and 220 kb BP2-BP3 intervals (blue) are depicted. Brain/LCLs: The
mean z-score for transcript expression per group (Brain or LCLs) from GTEx is displayed. The corresponding RNA-seq heatmap color legend is
showed at the bottom left corner. PC/BRICKs: Smoothed and profile-corrected 4C signal (upper part of each panel) and BRICKs (lower part)
identified for each of the seven 4C viewpoints within the 16p11.2 cytoband, that is, from top to bottom SH2B1, LAT, MVP, KCTD13, ALDOA, TBX6
and MAPK3. The corresponding BRICKs significance heatmap color legend is showed at the bottom right corner.
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recurrent genomic disorder, (ii) CNV encompassing published critical
genomic region or disrupting a gene that is a known etiology of
neurodevelopmental disorders or (iii) 4500 kb CNV with AFo0.001. We
compared available data on weight, height, body mass index (BMI) and HC
for 77 and 39 unrelated deletion and duplication carriers, respectively
(including published cases). The mean age of this group of patients was
16 years (range 0.42–78 years, with 34 cases older than 18 years). The
prevalence of the 16p11.2 deletion and duplication were inferred from six
European population-based genome-wide association studies cohorts, sets
of chromosomal microarray-genotyped control individuals and clinical
cohorts.9,30,33,35–39 CNV analyses were carried out as described in
Jacquemont et al.18

We similarly enrolled 26 and 9 unrelated carriers of 2p15 deletions and
duplications, including 12 deletion cases from the literature.40–49 The
Signature Genomics cases were recently described in Jorgez et al.50 Patients
were identified through routine etiological work-ups of patients ascertained
for developmental delay/intellectual disability in cytogenetic centers. The
coordinates of the rearrangements’ breakpoints (Supplementary Table S2)
were recognized by different chromosomal microarray platforms.

Lymphoblastoid cell lines and transcriptome profiling
We had previously established by Epstein-Barr virus transformation
lymphoblastoid cell lines (LCLs) from 16p11.2 BP4-BP5 patients, as well as
controls. The LCL transcriptome of 50 deletion and 31 duplication carriers, as
well as 17 control individuals was previously profiled with Affymetrix
GeneChips Human Genome U133+ PM 24 array plates (Affymetrix, Santa
Clara, CA, USA). The results are deposited in the NCBI Gene Expression
Omnibus under accession number GSE57802. The Robust Multi-array
Average approach was used for the creation and normalization of the
summarized probe set signals. We applied a nonspecific filter to discard
probe sets with low variability and low signal, that is, detectable expression
levels. Specifically, probe sets with both (i) signal SD4median of signal SD of
all probe sets and (ii) larger signal4median of larger signal of all probe sets
were retained as described in Migliavacca et al.12 This selection yielded a
total of 23,602 probe sets. To reduce a potential bias toward genes with
multiple probe sets, for the modular analysis, only one probe set with the
highest variance per gene was kept, for a total of 15,112 probe sets. Using a
dosage effect model and moderated t-statistics, we identified 1188 and
2209 significantly differentially expressed genes (false discovery rate
(FDR)⩽ 1 and 5%, respectively; uniquely mapping probes).12 We used
Geneprof to access data pertaining to gene expression and co-regulation.
We are well aware of the limitations of the study of LCLs, for instance for

genes whose expression specificity resides in other cell lineages. These
experiments are nevertheless worth pursuing simply because (i) the
primary human target tissues remain often beyond reach; (ii) we cannot
exclude a broad to ubiquitous expression pattern and chromatin contacts
for the genes involved in these disease processes; and (iii) the pattern of
expressions in peripheral tissue may be used as a biomarker in
translational project. Similar limitations apply to the use of embryonic
stem cells-derived material, while animal tissues have a different set of
shortcomings.

Quantitative reverse transcriptase-PCR
For qPCR, 100 ng of high-quality total RNA was converted to cDNA using
Superscript VILO (Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s protocol. Primers were designed using PrimerExpress 2.0
software (Applied Biosystems, Foster City, CA, USA), with default
parameters except for the primer- and minimal amplicon lengths, which
were set at 17–26 and 60 bp respectively. The amplification factor of each
primer pair was tested using a cDNA dilution series and only assays with
amplification factors between 1.75 and 2.00 were retained. A representa-
tive set of samples was tested for genomic contamination. qPCR
experiments were performed in triplicate using SYBR-Green (Roche, Basel,
Switzerland) as reporter. The reaction mixtures were prepared in 384-well
plates using a Freedom Evo robot (Tecan, Männedorf, Switzerland) and run
in an ABI 7900HT sequence detection system (Applied Biosystems) using
the following conditions: 50°C for 2 min, 95°C for 10 min, followed by 45
cycles of 95°C for 15 s and then 60°C for 1 min, after which dissociation
curves were established. Applicable normalization genes were included in
each experiment to enable compensation for fluctuations in expression
levels between experiments. Using SDS v2.4 software (Applied Biosystems)
the threshold and baseline values were adjusted when necessary to obtain
raw cycle threshold (Ct) values. The Ct values were further analysed using

qBase plus software (Biogazelle, Zwijnaarde, Belgium), which calculates
relative expression values per sample per tested gene upon designation of
the normalization genes and corrects for the amplification efficiency of
the performed assay. We assessed by qPCR the RNA levels of seven DE
genes belonging to the ciliopathy or PTEN pathway (BBS4 (MIM#600374),
BBS7 (MIM#607590), BBS10 (MIM#610148), XPOT (MIM#603180), NUP58
(MIM#607615), PTPN11 (MIM#176876) and SMAD2 (MIM#601366)), and five
others that map either to the BP4-BP5 (ALDOA (MIM#103850), KCTD13,
MAPK3 (MIM#601795) and MVP (MIM#605088)) or the BP2-BP3 interval
(SH2B1 (MIM#608937)) in LCLs from eight carriers of the 220 kb BP2-BP3
deletion, eight carriers of the 600 kb BP4-BP5 deletion and 10 control
individuals. In particular, we identified a significant diminution of the
hemizygote gene SH2B1 but not of the neighboring normal-copy KCTD13,
MVP and MAPK3 in BP2-BP3 deletion carriers.

Viewpoint selection
We used an adaptation of the 4C method,51–53 the high-resolution
Chromosome Conformation Capture Sequencing technology (4C-seq),54 to
identify chromosomal regions that physically associate with the promoters
of MVP, KCTD13, ALDOA, TBX6 (MIM#602427) and MAPK3, five of the
28 ‘unique’ genes of the BP4-BP5 interval selected according to their
potential role in the described phenotype. Reduction by ∼ 50% of the RNA
levels of the ortholog of ALDOA (Aldolase A) was associated with a change
in brain morphology in zebrafish, suggesting that this gene is dosage
sensitive.55 In humans, recessive ALDOA deficiency is associated with
glycogen storage disease XII (OMIM#611881).56 Morpholino-driven reduc-
tion of the expression level of the KCTD13 (Potassium Channel
Tetramerization Domain containing protein 13) ortholog resulted in
macrocephaly in zebrafish, while its depletion in the brain of mouse
embryos resulted in an increase of proliferating cells. The mirroring
microcephaly was seen upon overexpression of human KCTD13 cDNA in
zebrafish embryos’ heads, a phenotype further amplified upon concomi-
tant overexpression of either MAPK3 (mitogen-activated protein kinase 3)
or MVP (Major Vault Protein).27 TBX6 (T-Box Transcription Factor 6) is a
candidate gene for the vertebral malformations observed in some deletion
carriers since (i) mice homozygous for a Tbx6 mutation showed rib and
vertebral body anomalies;57 (ii) TBX6 polymorphisms were associated with
congenital scoliosis in the Han population;58 (iii) a stoploss variant in TBX6
segregates with congenital spinal defects in a three-generation family59

(OMIM#122600); and (iv) carriers of 16p11.2 600 kb BP4-BP5 deletions and
a common hypomorphic TBX6 allele suggest a compound inheritance in
congenital scoliosis.60 TBX6 was selected as a viewpoint even though this
gene is not expressed in LCLs (or only at extremely low level), as studies
have shown that the contacted domains are stable across cell lines and
tissues regardless of expression status.3 Within the group of genes
chromatin-contacted by the above viewpoints we selected two more
viewpoints within the 16p11.2 220 kb BP2-BP3 region (Figure 1), that is, the
promoters of SH2B1 and LAT. The SH2B1 gene was suggested to be a
crucial candidate for the obesity phenotype associated with this genomic
interval16,28 as it encodes an Src homology adaptor protein involved in
leptin and insulin signaling.61,62 Common variants in this locus were
repeatedly associated with BMI, serum leptin and body fat in genome-wide
association studies,63–66 while rare dominant mutations were reported to
cause obesity, social isolation, aggressive behavior, and speech and
language delay.67 In a recent large-scale association study, the deletion
was also significantly linked with SCZ.35 The LAT (linker for activation of
T cells) adaptor molecule participates in AKT activation and plays an
important role in the regulation of lymphocyte maturation, activation and
differentiation.68,69 Its inactivation could be circumvented by Ras/MAPK
constitutive activation.70

4C-seq
4C libraries were prepared from LCLs of two control individuals and two
carriers each of the 16p11.2 BP4-BP5 deletion and duplication, sex- and
age-matched (Supplementary Table S3). Briefly, LCLs were grown at 37°C.
5 × 107 exponentially growing cells were harvested and crosslinked with
1% formaldehyde, lysed and cut with DpnII, a 4-cutter restriction enzyme
that allows higher resolution.53 After ligation and reversal of the crosslinks,
the DNA was purified to obtain the 3C library. This 3C library was further
digested with NlaIII and circularized to obtain a 4C library. The inverse PCR
primers to amplify 4C-seq templates were designed to contain Illumina
adaptor tails, sample barcodes and viewpoint-specific sequences. View-
points were selected at the closest suitable DpnII fragment relative to the
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transcriptional start sites of the targeted genes. The sequence of the 4C-
seq primers is reported in Supplementary Table S4. For all viewpoints, we
amplified at least 1.6 μg of 4C template (using about 100 ng of 4C
template per inverse PCR reaction, for a total number of 16 PCRs). We
multiplexed the 4C-seq templates in equimolar ratios and analyzed them
on a 100-bp single-end Illumina HiSeq flow cell. The numbers of raw,
excluded, and mapped reads for each viewpoint and LCL sample are
detailed in Supplementary Table S5.

4C-seq data analysis
4C-seq data were analyzed as described in Noordermeer et al.53 and
Gheldof et al.54 through the 4C-seq pipeline available at http://htsstation.
epfl.ch/)71 and visualized with gFeatBrowser. Briefly, the multiplexed
samples were separated, undigested and self-ligated reads removed.
Remaining reads were aligned and translated to a virtual library of DpnII
fragments. Read counts were then normalized to the total number of reads
and replicates combined by averaging the resulting signal densities
(Supplementary Figure S1). The local correlation between the profiles of
the two samples per viewpoint was calculated (0.46⩽ r2⩽ 0.74 for controls,
0.29⩽ r2⩽ 0.67 for deletions and 0.22⩽ r2⩽ 0.61 for the duplications). The
combined profiles were then smoothed with a window size of 29
fragments. The region directly surrounding the viewpoint is usually highly
enriched and can show considerable experimental variation, thereby
influencing overall fragment count. To minimize these effects, the
viewpoint itself and the directly neighboring ‘undigested’ fragment were
excluded during the procedure. In addition to this filtering, we modeled
the data to apply a profile correction similar to the one described in Tolhuis
et al.72 using a fit with a slope − 1 in a log–log scale.73 Significantly
interacting regions were detected by applying a domainogram analysis as
described.74 We selected BRICKS (Blocks of Regulators In Chromosomal
Kontext) with a P-value threshold smaller than 0.01 for both ‘cis’ and ‘trans’
interactions. To determine differentially interacting regions between the
16p11.2 600 kb BP4-BP5 deletion (Del), duplication (Dup) and control (Ctrl),
we considered all non-null BRICKS found by a domainogram analysis74 in
either condition and quantified both signals in each BRICK. The resulting
table was scaled to the sample with the largest interquartile range and
the difference of signals was compared with random in order to associate
a P-value (FDR) with each BRICK. Finally, only BRICKS with a P-value o0.01
were considered.
All the viewpoints mapping on the BP4-BP5 interval, except KCTD13,

contact the 146 and 147 kb long low copy repeats that flank the 16p11
600 kb BP4-BP5 rearrangements. To unravel whether the signal was
reflecting the interaction with the centromeric, the telomeric or both low
copy repeats and given the high similarity (99.5% identity) of the two
blocks, we separately treated the reads mapping within these regions
(chr16: 29460515–29606852 and chr16: 30199854–30346868 according to
GRCh 37/hg19 assembly, February 2009) using different and more
stringent criteria, that is, no mismatch and unique site mapping. All values
were normalized to the total number of reads mapping to the two regions
(per thousands of reads). We observed a higher proportion of contacts
occurring with the centromeric segmental duplication compared with the
telomeric one for MAPK3 and TBX6, while the trend was reversed for MVP,
in agreement with their proximity to the centromeric and telomeric low
copy repeat blocks, respectively. No conclusive results were obtained for
ALDOA.

Hi-C data
Hi-C matrices from Rao et al.75 were prepared by first applying a KR
normalization to the 5 and 100 kb resolution observed matrices, and then
by dividing each normalized score by the expected one extracted from the
KR expected file (as described in section II.c of the Extended Experimental
Procedures of reference75). KR expected values less than 1 were set to 1 to
avoid long-distance interaction biases.

Enrichment analyses
Gene annotation was obtained through BioScript (http://gdv.epfl.ch/bs).
Protein interaction networks for the genes selected by BRICKS calling and
from the list of interacting regions affected by the rearrangements were
determined using STRING (Search Tool for the Retrieval of Interacting
Genes/Proteins) v9.1 (http://string-db.org/).76 We exploited Bioscript for
Gene Ontology analysis (topGO) (http://gdv.epfl.ch/bs), DAVID GO and
KEGG, OMIM Disease and KEGG coupled with Enrichr to assess if the
chromatin-contacted genes were enriched in specific pathways and genes

associated with Mendelian diseases77–80 (http://www.omim.org/down
loads). The OMIM gene-set library was obtained directly from the NCBI’s
OMIM Morbid Map.81 We exploited the SFARI Gene lists and scores (https://
sfari.org/; March 2014 release), the union of the genes cataloged in Girard
et al.82 and Xu et al.82–84 and the genome-wide association studies hits for
BMI85 to assess enrichment for ASD, SCZ and BMI genes, respectively. We
also used the de novo ‘high confidence’ ASD targets (selected with
FDRo0.1 in De Rubeis et al.86 and likely gene disrupting recurrent
mutations target genes in Iossifov et al.87) to assess enrichment of ASD-
associated genes. Ciliary genes enrichment was computed merging the
SYSCILIA gold standard (SCGS) and potential ciliary gene lists (genes with
no additional evidence for ciliary function were excluded).88 We used
Enrichr Chromosome Location tool and BRICKS count in different window
sizes (5 Mb, 1 Mb and 500 kb) to determine whether any cytogenetic band
other than 16p11.2 was enriched for BRICKS. Other than 16p11.2, we
identified enrichments at 16p12, 16p13, 16q13, 1p36, 11q13, 16q22, 7q31,
15q15 and 1q32 cytobands. As a large proportion of the 16p12.2 BRICKS
maps to segmental duplications that are highly similar to the low copy
repeats flanking the 16p11 600 kb BP4-BP5 rearrangements we conserva-
tively did not consider this region.
All seven tested viewpoints showed enrichment for contacts with loci

that encode proteins that interact together (all Po0.01). A single process,
focal adhesion assembly, was shared between the BP2-BP3 and the
BP4-BP5 groups of viewpoints (GO:0048041, P= 6.02e−03 for the BP2-BP3
group and P= 1.12e− 03 for the BP4-BP5). Focal adhesion links the internal
actin cytoskeleton to the extracellular matrix; it is used by cells to explore
their environment, and depends strongly on microtubule dynamics89 in
coordination with the primary cilium.90,91 Genes participating in focal
adhesion (GSK3B (MIM#605004); PAK7 (MIM#608038)), axon guidance
(ROBO1 (MIM#602430); EPHA6 (MIM#600066); PAK7; GSK3B) and Golgi
apparatus-related processes (SND1 (MIM#602181); FRMD5 (MIM#616309))
are among the 24 genes trans-contacted by both the BP4-BP5 and
BP2-BP3 viewpoints. The gene MPZL1 (MIM#604376), contacted by both
KCTD13 and SH2B1, is associated with SCZ.92 It is a downstream target of
PTPN11.93

Fluorescence in situ hybridization
Interphase nuclei were prepared from a LCL of a control individual.
Fluorescence in situ hybridization experiments were performed using
fosmid clones (300 ng) directly labeled by nick-translation with Cy3-dUTP
and fluorescein-dUTP as previously described94 with minor modifications.
Fosmid and BAC clones (G248P86150B3 for the ALDOA locus,
G248P800063B6 for the SH2B1 locus; G248P86115A10 for the KIAA0556
locus; RP11-301D18 for the KCTD13 and MVP loci; RP11-383D9 for PTEN
(MIM#601728); RP11-477N2 for USP34 (MIM#615295)/XPO1 (MIM#602559)
and RP11-43E18 for MARK4 (MIM#606495)) were obtained from the CHORI
BACPAC Resources Center (https://bacpac.chori.org/). We picked the
MARK4-encompassing BAC as ‘control BAC’ because it maps to a gene-
rich region on chromosome 19, a centrally-positioned chromosome within
the nucleus. Hybridization was performed at 37 °C in 2× SSC, 50%
(v/v) formamide, 10% (w/v) dextran sulfate, 3 μg C0t-1 DNA and 3 μg
sonicated salmon sperm DNA in a volume of 10 μl. Post-hybridization
washing was at 60 °C in 0.1 × SSC, three times. Nuclei were DAPI-stained
and digital images were obtained using a Zeiss Imager A1 fluorescence
microscope (Carl Zeiss, Oberkochen, Germany). We considered 50–60 cells
per experiment (i.e. at least 100 distances) and co-localization was defined
if the distance between signals was ⩽ 0.3 um. The contact between SH2B1
and ALDOA, versus the control KIAA0556, was estimated by calculating the
distance between BAC probes (median SH2B1-ALDOA and -KIAA0556
distances = 0.43 and 1.24 μm, respectively; Wilcoxon rank-sum test,
P= 1.45e− 17). The contact of MVP and KCTD13 with, respectively, PTEN
and USP34/XPO1, compared with the control MARK4, was estimated as the
percentage of co-localization (25 and 14% co-localization versus 2% with
the control locus; Fisher’s test enrichment: P=6.9e− 05 and P=0.01,
respectively; median MVP/KCTD13-USP34/XPO1 distances = 1.76, MVP/
KCTD13-PTEN = 2.61 and MVP/KCTD13-MARK4 = 4.96 μm; Wilcoxon
rank-sum test, P=5.4e− 10 and P=9.3e− 05, respectively).

ChIP-seq and RNA-seq molecular associations
Detailed experimental procedures and results are described in Waszak
et al.95 Briefly, ChIP-seq (chromatin immuno-precipitation coupled with
sequencing) and mRNA-seq data were produced from LCLs of 54
individuals of European origin from the 1000 Genomes Project.96 ChIP-
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seq with antibodies recognizing H3K4me1, H3K4me3, H3K27ac, PU.1 and
RNA Pol2 binding, as well as mRNA-seq gene expression profiling, were
carried out from a single growth of LCLs as previously described.97

Genotypes were obtained from the GEUVADIS consortium.98 To map
associations between pairs of ChIP-seq and/or RNA-seq peaks, we retained
47 individuals after data quality control and proceeded as follows for each
of the 15 possible unordered pairs of distinct molecular phenotypes (A1,
A2). First, we measured inter-individual Pearson correlation between every
possible pair of normalized quantifications at peaks (p1, p2) within the
16p11.2 interval (28.1–34.6 Mb) such that p1 and p2 belong to A1 and A2,
respectively. Note that the distances here were measured between the
respective peak centers, excepted for mRNA for which we used the
transcription start site. Then, we assessed to what extent the correlations

significantly differed from zero by calculating P-values using the R function
cor.test and corrected them for multiple-testing by using the Benjamini and
Hochberg procedure as implemented in the R function p.adjust (FDR 5
and 10%).

RESULTS
Distinct and non-overlapping loci at 16p11.2 are associated with
mirror phenotypes on BMI and HC and autism susceptibility
To comprehensively assess phenotypic features associated with
the distal 16p11.2 220 kb BP2-BP3 CNVs (Figure 1), we collected
de-identified data on 137 unrelated carriers (88 deletions and 49

Figure 2. Phenotypic characterization of carriers of 16p11.2 BP2-BP3 and 2p15 rearrangements. Distribution of Z-score values of BMI (a) and
head circumference (b) in unrelated carriers of the 16p11.2 220 kb BP2-BP3 deletion (red) and duplication (blue) taking into account the
normal effect of age and gender observed in the general population as described in Jacquemont et al.18 The general population has a mean
of zero. (c) Comparison of the genomic breakpoints of 2p15 deletions (red bars) and duplications (blue bars) in 26 and 9 unrelated carriers,
respectively. The breakpoints’ coordinates are detailed in Supplementary Table S2. The genes mapping within the interval and cytobands’
positions are shown above, while the extent of the critical region is indicated by a black bar. Distribution of Z-score values of BMI (d) and head
circumference (e) in carriers of the 2p15 deletion (red) and duplication (blue).
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duplications; Supplementary Table S1) and compared BMI and HC
with gender-, age- and geographical location-matched reference
population as described18 (Figures 2a and b). The BMI mean
Z-score of deletion carriers deviated significantly from that of
the general population (t-test, P= 3.1e− 14), replicating the
earlier described association of the deletion with obesity.16,28

We observed a trend towards increased HC in deletion carriers.

The duplication carriers showed a mirroring decrease of BMI and
HC values when compared with those of the control population
(t-test, P= 0.005 and 1.1e− 4, respectively). We also observed
an increase in ASD prevalence in both deletion (23/88; 26%)
and duplication (11/49; 22%) carriers compared with the general
population (5,338/363,749; 1.5%)99 (Fisher’s enrichment test:
OR = 23.7, P= 2.5e− 22; OR = 19.4, P= 1.2e− 10) in agreement with

Figure 3. Chromatin interactions between the 16p11.2 600 kb BP4-BP5 and 220 kb BP2-BP3 genomic intervals. (a) Circos plot representation of
the chromatin loops identified in the human chromosome 16 27.5–31.0 Mb window. The 220 kb BP2-BP3 and 600 kb BP4-BP5 intervals are
depicted by blue and orange bars on the peripheral circle, respectively. Darker sections indicated the positions of the viewpoints. Central blue
and orange lines indicate the chromatin interactions corresponding to BP2-BP3 and BP4-BP5 viewpoints, respectively. Note the quasi absence
of loops between the BP2-BP3 viewpoints (LAT and SH2B1) and the 27.5-28.4 Mb region. The mapping position of the KIAA0556 gene, used as
control locus in fluorescence in situ hybridization experiments, is indicated. (b) High-resolution Hi-C chromosome conformation capture results
obtained in reference75 with the GM12878 LCL within the chromosome 16 0–34 Mb window (left panels) and zoom in within the 28–31 Mb
region encompassing the two CNVs (5 kb resolution; right panels). The positions of the 220 kb BP2-BP3 and 600 kb BP4-BP5 intervals are
shown by blue and orange bars, respectively. Observed (top panel), observed/expected (central panel) and Pearson correlation results are
presented (bottom panel). (c) Fluorescence in situ hybridization experiments show colocalization of SH2B1 foci (green) that map to the 220 kb
BP2-BP3 interval with ALDOA foci (red) that map to the 600 kb BP4-BP5 genomic interval (left panel) but not with the equidistant KIAA0556
(red) foci (central panel). The distribution of interphase nuclei distances between the SH2B1 and ALDOA (deep pink) and SH2B1 and KIAA0556
foci (gray) are shown in the lower panel. The mapping positions of ALDOA, SH2B1 and KIAA0556 are indicated in (a).
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published results.29–35 Thus, genomic rearrangements at 600 kb
BP4-BP5 and 220 kb BP2-BP3, two loci 650 kb apart, present
similar clinical patterns: large effect sizes on BMI and HC, as well as
association with ASD.

Cis-acting chromatin loops that link the 16p11.2 BP4-BP5 and
BP2-BP3 genomic intervals are perturbed in BP4-BP5 CNV carriers
We posited that the remarkable overlap of phenotypic features
associated with the BP2-BP3 and BP4-BP5 CNVs might derive from
the rearrangement-mediated disruption of the 3D chromatin
structure within the 16p11.2 cytoband. To challenge this hypoth-
esis, we assessed the pattern of chromosomal interactions of
selected ‘viewpoints’ from both loci in two LCLs derived from
control individuals using an adapted version of the 4C method
(4C-seq: circularized chromosome conformation capture com-
bined with multiplexed high-throughput sequencing)51,52,54,100

(Materials and Methods, Supplementary Table S3). Despite the
limitations of the study of LCLs (Materials and Methods), these
experiments are worth pursuing as studies have shown that
chromatin contacts are stable across cell lines and tissues
regardless of contacted-gene expression status3 and that LCL
transcriptome profiles can be recapitulated in other tissues and
species.12 Specifically, our previous analyses of LCL transcriptomes
showed that genes whose expression correlated with the dosage
of the 16p11.2 locus are significantly enriched in genes associated
with ASD and ciliopathies both in human LCLs and mouse
cortex.12 In particular, we identified chromosomal regions that
physically associate with the promoters of MVP, KCTD13, ALDOA,
TBX6 and MAPK3, five genes mapping to the BP4-BP5 interval, and
SH2B1 and LAT, two genes mapping to the BP2-BP3 one. These
were investigated based on their potential role in the phenotype
(Supplementary Figure S2).27,55,57–59

Genome-wide we identified an average of 265 BRICKs (FDR⩽
1%), i.e., three-dimensionally interacting genomic fragments, for
the seven viewpoints (range: 168–442; Supplementary Tables
S6–S12). In particular, we observed complex chromatin looping
between genes located in the proximal BP4-BP5 and those
mapping both to the distal BP2-BP3 region and the equidistant
downstream region rich in Zn-finger genes (Figures 1 and 3a).
For instance each of the nine genes of the BP2-BP3 interval
(ATXN2L (MIM#607931), TUFM (MIM#602389), SH2B1, ATP2A1
(MIM#108730), RABEP2 (MIM#611869), CD19 (MIM#107265),
NFATC2IP (MIM#614525), SPNS1 (MIM#612583) and LAT) is
contacted by at least one of the five assessed viewpoints in the
BP4-BP5 interval (Figures 1 and 3a). We reciprocally validated
these chromatin interactions using the promoters of SH2B1 and
LAT as viewpoints (e.g. the chromatin loops of MVP, KCTD13,
ALDOA, TBX6 and MAPK3 with SH2B1 are all recapitulated using
SH2B1 as viewpoint; Figure 3a and Supplementary Tables S11 and
S12). The preferential contacted domain of the BP2-BP3 view-
points extends proximally to the BP4-BP5 and Zn-finger gene-rich
regions (Figures 3a and b and Supplementary Figure S3). Inversely,
significantly less interactions are called in the gene-rich and
equidistant distal region (t-test P= 0.011, Supplementary
Figure S3), suggesting that these interactions do not merely
reflect the spatial clustering of gene-dense regions.
We confirmed the genomic interaction between the 600 kb

BP4-BP5 and 220 kb BP2-BP3 intervals using fluorescence in situ
hybridization. This independent method showed that the BP2-
BP3-mapping SH2B1 locus was significantly closer to the BP4-BP5-
encompassed ALDOA locus than to a control region, the KIAA0556
locus, situated equidistantly on its telomeric side (median
SH2B1-ALDOA and SH2B1-KIAA0556 distances = 0.43 and 1.24 μm,
respectively; Wilcoxon rank-sum test, P = 1.45e− 17) (Figure 3c,
Supplementary Figure S4). We also examined published Hi-C
(genome-wide conformation capture) and high-resolution Hi-C
data from LCLs. Although they cannot confirm our chromatin

connections given their limited resolution, they support a pre-
ferential three-dimensional proximity of these two regions73,75

(Figure 3b). Concordant results were found in both human IMR90
fibroblasts and embryonic stem cells26,101 and mouse cortex and
embryonic stem cells, suggesting the conservation of the structure
of this topological-associated domain across species and
tissues,101 as recently shown for the topological-associated
domain spanning the WNT6/IHH/EPHA4/PAX3 (MIM#604663;
#600726; #602188; #606597) locus.3

As chromatin interactions were determined in normal diploid
context, we next assessed the effect of BP4-BP5 CNVs on these
chromatin loops. We identified genomic fragments that interact
with the same seven viewpoints in LCLs of two BP4-BP5 deletion
patients and two reciprocal duplication patients (Materials and
Methods). We observed a genome-wide decrease in the number of
BRICKS per viewpoint ranging from 27 to 84%, suggesting that both
rearrangements triggered dramatic reorganizations. Consistent
with this hypothesis, the SH2B1 viewpoint, whose copy number is
not affected by the proximal BP4-BP5 CNV, shows a 36% reduction
in the amount of interacting regions (all BRICKS listed in
Supplementary Tables S13–S26). We compared the 4C-seq results
from control individuals and the four patients and identified, across
all conditions and considering all viewpoints, 1193 genes with
significantly modified chromosomal contacts (FDRo1%; Materials
and Methods, Supplementary Table S27). These results support the
idea that large structural rearrangements perturb the 3D genomic
structure by modifying both cis and trans contacts.

Perturbations of the chromatin interactions’ landscape at 16p11.2
are associated with gene expression modification
Our results show that the gene-rich BP2-BP3 and BP4-BP5 16p11.2
intervals, whose CNVs are linked to overlapping phenotypes, are
reciprocally engaged in complex chromatin looping as deter-
mined by 4C, fluorescence in situ hybridization and Hi-C. The
recent discovery of multigene complexes where chromosomal
loops orchestrate co-transcription of interacting genes2,102 is
suggestive of functional implications for the chromosomal
contacts between the BP2-BP3 and BP4-BP5 intervals.
To assess this possibility, we first used our recent association

analyses of population-wide transcription factor DNA binding
(PU.1 and RPB2—the second largest subunit of RNA polymerase
II), histone modification enrichment patterns (H3K4me1, H3K4me3
and H3K27ac) and gene expression measured by ChIP-seq and
RNA-seq in LCLs derived from 47 European unrelated individuals
whose genomes were sequenced in the frame of the 1000
Genomes Project.95 We measured the extent of quantitative
coordination of natural inter-individual variation between pairs of
these six molecular phenotypes at putative regulatory regions
mapping within cytoband 16p11.2 and identified coordinated
behavior in terms of mapping enrichment. For example, we found
association between active regulatory regions mapping within
the BP4-BP5 interval and expression of BP2-BP3 genes
(Supplementary Figure S5),95 consistent with the notion that
some of the chromatin loops uncovered between these two
intervals might bring together regulatory elements and genes.
Secondly, we examined if genes involved in primary cilium

function and related pathways, which are modified in BP4-BP5
deletion patients’ cells,12 are also changed in BP2-BP3 deletion
carriers (Materials and Methods). We found that the ciliary genes
BBS4, BBS7, SMAD2, XPOT and NUP58 are correspondingly modified
in LCLs derived from both BP4-BP5 and BP2-BP3 deletion carriers
(Supplementary Figure S6). The interplay between the 600 kb BP4-
BP5 and the 220 kb BP2-BP3 interval is further substantiated: (i) by
published data showing perturbed expression of genes mapping
within the BP2-BP3 distal interval (i.e. LAT, SPNS1 and ATP2A1) in
cells derived from BP4-BP5 patients;26 as well as (ii) by the
observation that, within the top-10 genes correlated with SH2B1
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expression according to GeneProf (www.geneprof.org), three
(ZNF500; CDAN1 (MIM#607465); LRRC14) are contacted by
viewpoints located in the BP4-BP5 region and two (PIGO
(MIM#614730); TUBGCP6 (MIM#610053)) are differentially
expressed in BP4-BP5 CNV patients.
We then assessed whether the structural chromatin changes

identified in the 600 kb BP4-BP5 CNVs carriers (i.e. 1193 genes
with significantly modified chromosomal contacts, FDRo1%) are
paralleled by transcriptome modifications identified in Migliavacca

et al.12 (2209 significantly differentially expressed genes, FDR⩽
5%; uniquely mapping probes)). We find a significant overlap
between the two genes lists as 125 genes with modified
chromatin loops are concomitantly differentially expressed in
16p11.2 600 kb BP4-BP5 CNV carriers’ cells (125/665 4C-modified
genes with detectable expression (see Materials and Methods);
Fisher’s enrichment test: OR = 1.4, P= 0.002; Supplementary Tables
S28–S30 and Figure 4a). There is no correlation between quality of
the change in 4C contact (increased or decreased) and the sense
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Figure 4. Extensive overlap between differentially expressed genes and loci that show modified chromatin interactions. (a) Top panel:
weighted Venn diagram showing the overlap between the 2209 genes that are differentially expressed in 16p11.2 rearrangement carriers (DE,
yellow disk; FDR⩽ 5%12), the 1193 genes that show modified chromatin interactions in 16p11.2 rearrangement carriers (4C-modified, purple
disk; only 665 with detectable expression are considered for the DE enrichment; see Supplementary Table S31) and the 604 genes listed in
SFARI Gene (https://sfari.org/; 323 expressed), an annotated list of candidate genes for ASD (ASD; blue disk). The numbers of common genes
are indicated and the 12 4C-modified, DE and ASD-SFARI genes are specified on the right. Bottom panels: weighted Venn diagrams showing
the overlap between the DE genes and the LCLs-expressed ASD and 4C-modified genes (lower left and right, respectively). (b) Circos plot
representation of the modified chromatin loops identified in human chromosomes 16 and 22 (right-hand panel). The 220 kb BP2-BP3 and
600 kb BP4-BP5 intervals are depicted by blue and orange bars on the peripheral circle, respectively. Central blue and orange lines indicate the
CNVs-modified chromatin interactions corresponding to BP2-BP3 and BP4-BP5 viewpoints, respectively. Ticks on the three internal rings
indicate BRICKS with significantly modified interactions between 16p11.2 600 kb BP4-BP5 duplication and control samples (light blue ring),
between 16p11.2 600 kb BP4-BP5 deletion and control samples (dark gray), and between 16p11.2 600 kb BP4-BP5 deletion and duplication
samples (yellow). Blue and red ticks on the most external rings denote genes differentially expressed in 16p11.2 patients (DE) and SFARI-ASD-
associated genes (ASD), respectively. A zoomed-in view with examples of genes with modified chromatin interactions mapping within the
22q13 cytoband is presented in the left-hand panel. (c) The 1193 genes that show modified chromatin interaction in 16p11.2 cells with
16p11.2 600 kb BP4-BP5 rearrangements encode proteins that interact. The confidence view interaction network of the encoded proteins
corresponding to the enriched GO terms (GO:0030030 cell projection organization, GO:0042995 cell projection, GO:0030173 integral to Golgi
membrane, GO:0000138 Golgi trans cisterna, GO:0034504 protein localization to nucleus and GO:0005874 microtubule) is visualized with
STRING. Proteins belonging to cell projection (blue), microtubule (red), Golgi apparatus (green), stereocilium bundle (purple) and cilium
(yellow) process/cell components are highlighted by colored beads. Disconnected nodes are not shown. FDR, false discovery rate.
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of the perturbation in gene expression, that is, a loss of
contact does not necessarily imply a decrease in expression
and vice versa (Supplementary Figure S7 and Supplementary
Table S31).
These results show that the BP2-BP3 and BP4-BP5 loci are linked

by chromatin loops, coordinated molecular phenotypes and
co-regulation of genes.

Genomic regions contacted by 16p11.2 viewpoints are associated
with autism, BMI and HC phenotypes and enriched in ciliary genes
Consistent with the notion that chromatin contacts connect
biologically related genes, BRICKs genes are enriched for

genes that encode proteins that interact (Po0.01 for all
viewpoints; Supplementary Table S32, Materials and Methods).
Processes overrepresented within BRICKs genes are listed in
Supplementary Table S33. They are also enriched for genes listed
in SFARI Gene (https://sfari.org/), an annotated list of candidate
genes for ASD (union of the SFARI Syndromic, High Confidence
and Strong Candidate Gene categories (Categories S+1-2), 13/76,
OR= 2.9, P= 0.0014) and for ASD-associated genes identified by
whole-exome studies (8/50 of the ‘high confidence de novo’ ASD-
associated genes;86,87 OR= 2.7, P= 0.016; Supplementary Table
S34). The BP4-BP5 and BP2-BP3 viewpoints contacted genes
include GRID1 (MIM#610659) and PTEN at 10q23.2–q23.31, USP34/
XPO1 at 2p15, but also genes linked to HC phenotypes like CHD1L
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Figure 5. Examples of 16p11.2 viewpoints chromatin-contacted regions. (a) Examples of regions (BRICKS) interacting with 16p11.2 viewpoints
showing some of the contacted genes, that is, GRID1, PTEN and USP34/XPO1. Other examples (CHD1L and EP300) are shown in Supplementary
Figure S8). Fluorescence in situ hybridization experiments show colocalization of the 600 kb BP4-BP5 interval-encompassed KCTD13 (red) and
2p15-mapping XPO1 foci (green) (b) and the 600 kb BP4-BP5 interval-encompassed MVP (red) and 10q23.31-mapping PTEN foci (green) (d). The
distribution of interphase nuclei distances between KCTD13 and XPO1 (c) and between MVP and PTEN (e) foci are compared with to
those between KCTD13/MVP and MARK4 (control) foci (25 and 14% co-localization versus 2% with the control locus; Fisher’s test
enrichment: P= 6.9e− 05 and P= 0.01, respectively; median MVP/KCTD13-USP34/XPO1 distances= 1.76, MVP/KCTD13-PTEN = 2.61 and
MVP/KCTD13-MARK4= 4.96 μm; Wilcoxon rank-sum test, P= 5.4e− 10 and P= 9.3e− 05, respectively).
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(MIM#613039) at 1q21.1103–112 and EP300 (MIM#602700) at
22q13113 (Figure 5a, Supplementary Figure S8 and Supplementary
Table S35). To validate these interactions, we verified a subset by
fluorescence in situ hybridization (e.g. MVP-PTEN and KCTD13-
USP34/XPO1; Figures 5b–e and Materials and Methods). The
comparison of distributions of Hi-C scores in selected versus
non-selected BRICKS for each of our 4C viewpoints (Materials and
Methods) further demonstrates the reproducibility of the 4C results
(Supplementary Figure S9).
Reminiscent of our transcriptome findings,12 enrichment

analysis of the 1193 genes with modified chromosomal contacts
showed significant over-representation of ciliary genes88 (40/493,
OR= 1.47, P= 0.030, Supplementary Tables S29–30), OMIM terms
associated with dysfunction of ciliary structures (Supplementary
Table S28) and candidate genes for ASD (Supplementary Tables
S29–S30). We showed previously12 that differentially expressed
genes were similarly enriched for SFARI-ASD-associated genes
(91/323 with detectable expression; OR= 2.3, P= 2.43e− 10;
Figure 4a). Notably five (TCF4 (MIM#602272), EP300, ADK
(MIM#102750), TUBGCP5 (MIM#608147), VPS13B (MIM#607817))
of the 12 genes that are concurrently SFARI-ASD, differentially
expressed and modified in 4C contacts (OR = 5.01, P= 1.5e− 05)
were previously associated with head circumference
changes114–117 (Figures 4a and b and Supplementary Tables S29
and S30).

Phenotypes associated with 2p15-16.1 CNVs
Our results suggest that chromatin interactions captured by the
BP4-BP5 and BP2-BP3 viewpoints and their perturbations can be
exploited to identify additional genes/loci, which when genetically
perturbed, are associated with similar pathways, diseases and
phenotypes. We challenged this hypothesis by assessing whether
the phenotypic features of 2p15-p16.1 deletion and duplication
carriers overlap with those of carriers of the 600 kb BP4-BP5 and
220 kb BP2-BP3 rearrangements. Haploinsufficiency of the
chromatin-contacted USP34/XPO1 was suggested to be respon-
sible for the 2p15-p16.1 deletion syndrome (MIM#612513)
phenotypes that included intellectual disability, ASD, microce-
phaly, dysmorphic facial features and a variety of congenital organ
defects.111,112

We collected clinical data on 26 and 9 unrelated 2p15-p16.1
deletion and duplication carriers, respectively (Figure 2c and
Supplementary Table S2). Comparison of data on BMI and HC of
both variants pinpoints mirror phenotypes for these two traits
(Figures 2d and e). Whereas we do not formally demonstrate a
mechanistic and functional link between the 600 kb BP4-BP5 and
the 2p15 interval, it should be noted that the KCTD13–USP34/XPO1
interactions are present in controls LCLs, but neither in 16p11.2
deletion nor duplication LCLs (see below). Furthermore, five
(C2orf74, COMMD1 (MIM#607238), FAM161A (MIM#613596), PEX13
(MIM#601789), PUS10 (MIM#612787)) and 11 (AHSA2, BCL11A
(MIM#606557), PAPOLG, REL (MIM#164910), USP34, XPO1) of the 13
genes mapping within the 2p15-16.1 syndrome minimal over-
lapping interval111,112 show perturbed expression levels in 16p11.2
CNV patients with cutoffs of 5 and 15% FDR, respectively. Thus,
the cis- and trans-chromatin contacts we uncovered bridge
genomic regions, whose rearrangements are associated with
ASD and mirror phenotypes on BMI and HC.

DISCUSSION
The 16p11.2 600 kb BP4-BP5 rearrangements allow investigation
of molecular mechanisms underlying the co-morbidity triad of
neurodevelopmental disorders, energy imbalance and HC altera-
tions, all associated with changes in gene dosage. To identify
pathways that are perturbed when the dosage of this region is
modified we cataloged the chromosomal contacts of genes

mapping within this genomic interval. Using chromosome
conformation capture we uncovered a network of chromatin
loops with genes previously associated with ASD and HC
demonstrating the pertinence of this approach. We show, for
example, that the 16p11.2 phenotype drivers MVP and MAPK3
promoters have long-range chromatin interactions with PTEN and
CHD1L, respectively. The MVP protein regulates the intracellular
localization of PTEN,118 a dual-specificity phosphatase that
antagonizes PI3K/AKT and Ras/MAPK signaling pathways. Both
PTEN germline mutations in humans and targeted inactivation in
mice are associated with macrocephaly/ASD syndrome
(MIM#605309).103–106,119 Congruently, germline mutations in the
Ras/MAPK pathway cause a group of syndromes frequently
regrouped under the term RASopathies, recently shown to affect
social interactions.120,121 We corroboratingly revealed that expres-
sion of PTEN pathway members is sensitive to gene dosage at the
16p11.2 locus.12 CHD1L was suggested to be a major driver of the
phenotypes associated with 1q21.1 rearrangements
(OMIM#612474; #612475).107,108 Analogous to 16p11.2, deletions
and duplications of this interval are linked to micro- and
macrocephaly, respectively.109

These results suggest that chromatin interactions, even when
tested in peripheral tissues (such as LCLs) not considered to play a
central role in the resulting neurodevelopmental phenotype,
could reveal genes or pathways, which are co-regulated and
associated with similar phenotypes. Several studies have shown
that the contacted domains can be highly stable across species
and cell lines (even when the contacted genes are not
expressed),3,101 supporting the notion that patient-derived sam-
ples can provide direct insight into regulatory abnormalities and
that LCLs still contain valuable information for the study of the
patients phenotype.12 Consistent with this hypothesis, we
established that dosage perturbation of two chromatin-
contacted loci, the cis-contacted 16p11.2 220 kb BP2-BP3 and
the trans-interacting 2p15 intervals, are associated with mirror
phenotypes on BMI and HC. Similar regulatory cores engaged in
multiple physical interactions were recently described, for
example, the 8q24 oncogenetic locus.122

The physiological relevance of the underlying chromatin
architecture is further exemplified by the extensive overlap
between differentially expressed genes and the loci that show
modified loops upon dosage changes of the 16p11.2 600 kb
BP4-BP5 interval. Together with the observed enrichments in
various pathology-relevant gene ontology terms and pathways,
this sheds light on a possible ‘chromatin hub’ role of the 16p11.2
locus in the observed phenotypes. The 12 genes that are
concurrently SFARI-ASD, differentially expressed and modified in
4C contacts include (i) VPS13B, whose mutations cause Cohen
syndrome (OMIM#216550), an autosomal recessive disorder
characterized by intellectual disability, microcephaly, retinal
dystrophy and truncal obesity;123 (ii) TCF4, whose haploinsuffi-
ciency is associated with Pitt-Hopkins syndrome (OMIM#610954)
typified among other traits by intellectual disability, recurrent
seizures and microcephaly (Of note, the expression level of this
transcription factor of the Wnt/β-catenin signaling cascade was
shown to be altered in the cortex of mice models engineered to
carry one or three copies of the 16p11.2 orthologous region26); (iii)
the TSC2 (MIM#191092) tuberous sclerosis (OMIM#613254) gene,
which encodes an inhibitor of mTORC1 signaling that limits
cell growth and was linked to ciliary dysfunction;124 and
(iv) EP300, which is mutated in a form of Rubinstein-Taybi
syndrome 2 (OMIM#613684) associated with a more severe
microcephaly.114,125

Whereas the functions and natures of the detected contacts
remain to be elucidated, recent reports show that transcription of
co-regulated genes occurs in the context of spatial proximity,
which is lost in knockout studies.2,102 While we cannot exclude
that the observed proximal positions of genes is brought about
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by proteins that do not directly interact with any of them126 or
occur through their use of identical transcription factory for
example,127,128 we de facto witness that expression of multiple
genes of converging pathways is modified and that the
chromatin-contacted genes are encoding proteins of overlapping
interactomes (Figure 4c and Supplementary Figures S10–S11). For
example, MVP loops with genes implicated in maintenance of cell
polarity (P= 2.75e− 03) (Supplementary Table S33).
Chromatin spatial organization is conserved, to some extent

at least, through evolution.129 The distal and proximal 16p11.2
regions are physically interacting in both human and mouse
cells.73,101 This chromatin crosstalk is preserved despite modifica-
tions in the human lineage of the orientation of both the BP2-BP3
and the BP4-BP5 regions, as well as doubling of the size of the
intervening region. While we cannot rule out that similar studies
on the clinically relevant tissues might uncover additional
important partners, these studies demonstrate that maintenance
of chromatin crosstalk across tissues (from fibroblasts to cortical
neurons) and in different lineages lends credence to the use of
LCLs and animal models as proxies to study chromatin properties
of the human central nervous system, the more likely tissue
determining the phenotypes associated with 16p11.2 600 kb
BP4-BP5 and BP2-BP3 CNVs.
The identified cis- and trans-chromatin contacts bridge loci

whose rearrangements result in mirror phenotypes on BMI and
HC, as well as involve known ASD candidate genes. While
investigations of the 3D genomic structures of additional regions
are warranted, the results present here support the idea that the
elucidation of chromatin contacts can be proposed as a new and
effective tool to unravel genes participating in similar pathways or
disease mechanisms, and identify loci associated with overlapping
phenotypic manifestations. Our study also suggests that modifica-
tions of chromatin interplays play a crucial role in the observed
phenotypes.
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