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Despite enormous theoretical and experimental progress in quantum cryptography, the security 
of most current implementations of quantum key distribution is still not rigorously established. 
one significant problem is that the security of the final key strongly depends on the number, 
M, of signals exchanged between the legitimate parties. Yet, existing security proofs are often 
only valid asymptotically, for unrealistically large values of M. Another challenge is that most 
security proofs are very sensitive to small differences between the physical devices used by 
the protocol and the theoretical model used to describe them. Here we show that these gaps 
between theory and experiment can be simultaneously overcome by using a recently developed 
proof technique based on the uncertainty relation for smooth entropies. 
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Quantum Key Distribution (QKD), invented by Bennett and 
Brassard1 and by Ekert2, can be considered the first appli-
cation of quantum information science, and commercial 

products have already become available. Accordingly, QKD has 
been an object of intensive study over the past few years. On the the-
ory side, the security of several variants of QKD protocols against 
general attacks has been proved3–8. At the same time, experimen-
tal techniques have reached a state of development that enables key  
distribution at MHz rates over distances of 100 km (refs 9–11).

Despite these developments, there is still a large gap between 
theory and practice, in the sense that the security claims are based 
on assumptions that are not (or cannot be) met by experimental 
implementations. For example, the proofs often rely on theoretical 
models of the devices (such as photon sources and detectors) that 
do not take into account experimentally unavoidable imperfections  
(ref. 12 for a discussion). In this work, we consider ‘prepare-and-
measure’ quantum key distribution protocols, like the original 
Bennett–Brassard 1984 (BB84) protocol1. Here one party prepares 
quantum systems (for example, the polarization degrees of freedom 
of photons) and sends them through an insecure quantum chan-
nel to another party who then measures the systems. To analyse the 
security of such protocols, the physical devices used by both parties 
to prepare and measure quantum systems are replaced by theoretical 
device models. The goal, from a theory perspective, is to make these 
theoretical models as general as possible so that they can accom-
modate imperfect physical devices independently of their actual 
implementation. (This approach, in the context of ‘entanglement-
based’ protocols, also led to the development of device-independent 
quantum cryptography; refs 13, 14 for recent results.)

Another weakness of many security proofs is the asymptotic 
resource assumption, that is, the assumption that an arbitrarily large 
number M of signals can be exchanged between the legitimate par-
ties and used for the computation of the final key. This assumption is 
quite common in the literature, and security proofs are usually only 
valid asymptotically as M tends to infinity. However, the asymptotic 
resource assumption cannot be met by practical realizations; in fact, 
the key is often computed from a relatively small number of signals 
(M << 106). This problem has recently received increased attention 
and explicit bounds on the number of signals required to guarantee 
security have been derived15–21.

In this work, we apply a novel proof technique22 that allows us 
to overcome the above difficulties. In particular, we derive almost 
tight bounds on the minimum value M required to achieve a given 
level of security. The technique is based on an entropic formulation 
of the uncertainty relation23 or, more precisely, its generalization to 
smooth entropies22. Compared with preexisting methods, our tech-
nique is rather direct. It therefore avoids various estimates, includ-
ing the de Finetti theorem24 and the Post-selection technique25, that 
have previously led to too pessimistic bounds. Roughly speaking, 
our result is a lower bound on the achievable key rate which devi-
ates from the asymptotic result (where M is infinitely large) only by 
terms that are caused by, probably unavoidable, statistical fluctua-
tions in the parameter estimation step. Moreover, we believe that the 
theoretical device model used for our security analysis is as general 
as possible for protocols of the prepare-and-measure type.

Results
Security definitions. We follow the discussion of composable 
security in ref. 26 and first take an abstract view on QKD protocols. 
A QKD protocol describes the interaction between two players, 
Alice and Bob. Both players can generate fresh randomness and have 
access to an insecure quantum channel as well as an authenticated 
(but otherwise insecure) classical channel. (Using an authentication 
protocol, any insecure channel can be turned into an authentic 
channel. The authentication protocol will, however, use some key 
material, as discussed in ref. 27.)

The QKD protocol outputs a key, S, on Alice’s side and an esti-
mate of that key, S̆ , on Bob’s side. This key is usually an -bit string, 
where  depends on the noise level of the channel, as well as the 
security and correctness requirements on the protocol. The protocol 
may also abort, in which case we set S S= =⊥˘ .

In the following, we define what it means for a QKD protocol 
to be ‘secure’. Roughly speaking, the protocol has to, approximately, 
satisfy two criteria called ‘correctness’ and ‘secrecy’. These criteria 
are conditions on the probability distribution of the protocol out-
put S and S̆ , as well as the information leaked to an adversary E in 
general. These depend on the attack strategy of the adversary, who is 
assumed to have full control over the quantum channel connecting 
Alice and Bob, and has access to all messages sent over the authen-
ticated classical channel.

A QKD protocol is called ‘correct’, if, for any strategy of the 
adversary, S̆ S= . It is called cor-correct, if it is cor-indistinguish-
able from a correct protocol. In particular, a protocol is cor-correct, 
if Pr[˘ ]S S≠ ≤ ecor .

To define the secrecy of a key, we consider the quantum state 
ρSE that describes the correlation between Alice’s classical key S and 
the eavesdropper, E (for any given attack strategy). A key is called 
∆-secret from E if it is ∆-close to a uniformly distributed key that is 
uncorrelated with the eavesdropper, that is, if 

min || ||
s

r w s
E

SE S E
1
2

,
1

− ⊗ ≤ ∆

where ωS denotes the fully mixed state on S. For a motivation and 
discussion of this particular secrecy criterion (in particular the 
choice of the norm) we refer to ref. 28.

A QKD protocol is called secret, if, for any attack strategy, ∆ = 0 
whenever the protocol outputs a key. It is called sec-secret, if it is 
sec-indistinguishable from a secret protocol. In particular, a proto-
col is sec-secret, if it outputs ∆-secure keys with (1 − pabort)∆≤sec, 
where pabort is the probability that the protocol aborts. (To see that 
this suffices to ensure sec-indistinguishability, note that the secrecy 
condition is trivially fulfilled if the protocol aborts.)

In some applications, it is reasonable to consider correctness 
and secrecy of protocols separately, because there may be different 
requirements on the correctness of the key (that is, that Bob’s key 
agrees with Alice’s, implying that messages encrypted by Alice are 
correctly decrypted by Bob) and secrecy. In fact, in many realistic 
applications, an incorrect decoding of the transmitted data would 
be detected so that the data can be resent. For such applications, cor 
may be chosen larger than sec.

However, secrecy of the protocol alone as defined above does not 
ensure that Bob’s key is secret from the eavesdropper as well. One 
is thus often only interested in the overall security of the protocol 
(which automatically implies secrecy of Bob’s key).

A QKD protocol is called secure if it is correct and secret. It is 
called -secure if it is -indistinguishable from a secure protocol. In 
particular, a protocol is -secure, if it is cor-correct and sec-secret 
with cor + sec≤.

Finally, the robustness, rob, is the probability that the protocol 
aborts even though the eavesdropper is inactive. (More precisely, 
one assumes a certain channel model that corresponds to the char-
acteristics of the channel in the absence of an adversary. For pro-
tocols based on qubits, the standard channel model used in the 
literature is the depolarizing channel. We also chose this channel 
model for our analysis in the Discussion section, thus enabling a 
comparison to the existing results.) A trivial protocol that always 
aborts is secure according to the above definitions, and a robust-
ness requirement is therefore necessary. In this work, we include 
the robustness rob in our estimate for the expected key rate (when 
the eavesdropper is inactive) and then optimize over the protocol 
parameters to maximize this rate.

(1)(1)

ˆ
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estimation.) The assumption is already satisfied, if the measurement 
statistics are unaffected when the memory of the actual device is 
reset after each measurement. It is an open question whether this 
assumption can be further relaxed.

Protocol definition. We now define a family of protocols, Φ[n, k,,  
Qtol, cor, leakEC], which is parametrized by the block size, n, the 
number of bits used for parameter estimation, k, the secret key 
length, , the channel error tolerance, Qtol, the required correctness, 
cor, and the error correction leakage, leakEC. The protocol is asym-
metric, so that the number of bits measured in the two bases (n bits 
in the  basis and k bits in the  basis) are not necessarily equal41.

These protocols are described in Box 1.

Security analysis. The following two statements constitute the main 
technical result of our paper, stating that the protocols described 
above are both cor-correct and sec-secure, if the secret key length is 
chosen appropriately. Correctness is guaranteed by the error-correc-
tion step of the protocol, where a hash of Alice’s raw key is compared 
with the hash of its estimate on Bob’s side. The following holds:  

The protocol leak is correcttol cor EC corΦ n k Q, , , , , e e  − .

The protocols are sec-secure if the length of the extracted secret 
key does not exceed a certain length. Asymptotically for large block 
sizes n, the reductions of the key length due to finite statistics and 
security parameters can be neglected, and a secret key of length  

Device model. Recall that Alice and Bob are connected by an inse-
cure quantum channel. On one side of this channel, Alice controls a 
device allowing her to prepare quantum states in two bases,  and 
. In an optimal scenario, the prepared states are qubits and the two 
bases are diagonal, for example,  = {|0〉,|1〉} and  = {| + 〉,| − 〉} with 
| := (| 0 |1 )/ 2±〉 〉± 〉 . More generally, we characterize the quality of a 
source by its ‘preparation quality’, q. The preparation quality, as we 
will see in the following,is the only device parameter relevant for 
our security analysis. It achieves its maximum of q = 1, if the pre-
pared states are qubits and the bases are diagonal, as in the example 
above. In the following, we discuss two possible deviations from a 
perfect source and how they can be characterized in terms of q.

First, if the prepared states are guaranteed to be qubits, we char-
acterize the quality of Alice’s device by the maximum fidelity it 
allows between states prepared in the  basis and states prepared 
in the  basis. Namely, we have q =  − log max|〈ψx|ψz〉|2, where the 
maximization is over all states ψx and ψz prepared in the  and  
basis, respectively. (In this work, log denotes the binary logarithm.) 
The maximum q = 1 is achieved, if the basis states are prepared in 
diagonal bases, as is the case in the BB84 protocol.

In typical optical schemes, qubits are realized by polarization 
states of single photons. An ideal implementation therefore requires 
a single-photon source in Alice’s laboratory. To take into account 
the sources that emit weak coherent light pulses instead, the analy-
sis presented in this paper can be extended using photon tagging29 
and decoy states30. This approach, although beyond the scope of  
the present article, can be incorporated into our finite-key analysis.  
(See also refs 31–33 for recent results on the finite-key analysis  
of such protocols.)

Second, consider a source that prepares states in the following 
way: the source produces two entangled particles and then sends 
out one of them while the other is measured in one of two bases. 
The choice of basis for the measurement decides whether the 
states are prepared in the  or  basis. Together with the meas-
urement outcome, which is required to be uniformly random for 
use in our protocol, this determines which of the four states is 
prepared. For such a source, the preparation quality is given by 
q M Nx z=

2
−

∞
log max , where {Mx} and {Nz} are the elements 

of the positive operator-valued measurements that are used to pre-
pare the state in the  and the  basis, respectively. If the produced 
state is that of two fully entangled qubits and the measurements are 
projective measurements in diagonal bases, we recover BB84 and 
q = 1 (ref. 34). Sources of this type have recently received increased 
attention as they can be used as heralded single photon sources35,36 
and have applications in (device-independent) quantum cryptog-
raphy37–39.

On the other side of the channel, Bob controls a device allowing 
him to measure quantum systems in two bases corresponding to 
 and . We will derive security bounds that are valid independ-
ently of the actual implementation of this device as long as the fol-
lowing condition is satisfied: we require that the probability that a 
signal is detected in Bob’s device is independent of the basis choices 
( or ) by Alice and Bob. This assumption is necessary. In fact, if 
it is not satisfied (which is the case for some implementations), a 
loophole arises that can be used to eavesdrop on the key without 
being detected40. (Remarkably, this assumption can be enforced 
device-independently: Bob simply substitutes a random bit when-
ever his device fails to detect Alice’s signal. If this is done, however, 
the expected error rate may increase significantly.)

Finally, we assume that it is theoretically possible to devise an 
apparatus for Bob which delays all the measurements in the -basis 
until after parameter estimation, but produces the exact same meas-
urement statistics as the actual device he uses. This assumption is 
satisfied if Bob’s actual measurement device is memoryless. (To see 
this, we could (in theory) equip such a device with perfect quan-
tum memory that stores the received state until after the parameter 

Box 1 | Protocol definition.

State Preparation: The first four steps of the protocol are repeated for 
i=1, 2, …, M until the condition in the sifting step is met.  
Alice chooses a basis ai∈{, }, where  is chosen with probability 
p k nx =(1 / ) 1+ −  and  with probability pz=1 − px. (These probabilities 
are chosen to minimize the number M of exchanged particles before 
Alice and Bob agree on the basis  for n particles and on the basis  for 
k particles.) next, Alice chooses a uniformly random bit yi∈{0, 1} and 
prepares the qubit in a state of basis ai, given by yi. Alternatively, if the 
source is entanglement-based, Alice will ask it to prepare a state in the 
basis ai and record the output in yi.
Distribution: Alice sends the qubit over the quantum channel to Bob. 
(Recall that Eve is allowed to arbitrarily interact with the system, and we 
do not make any assumptions about what Bob receives.)
Measurement: Bob also chooses a basis, bi∈{, }, with probabilities 
px and pz, respectively. He measures the system received from Alice in 
the chosen basis and stores the outcome in y′i{0, 1, ø}, where ‘ø‘ is the 
symbol produced when no signal is detected.
Sifting: Alice and Bob broadcast their basis choices over the  
classical channel. We define the sets X:={i: ai=bi=y′i≠ø} and  
Z: {i: ai=bi=y′i≠ø}. The protocol repeats the first steps as long as 
either |X| < n or |Z| < k.
Parameter estimation: Alice and Bob choose a random subset of size 
n of X and store the respective bits, yi and y′i, into raw key strings X and 
X′, respectively. next, they compute the average error l := 1

| |Z Σy yi i⊕ ′ , 
where the sum is over all i∈Z. The protocol aborts if λ > Qtol.
Error correction: An information reconciliation scheme that broadcasts 
at most leakEC bits of classical error correction data is applied. This 
allows Bob to compute an estimate, X̂, of X.  
Then, Alice computes a bit string (a hash) of length log(1/εcor) by 
applying a random universal2 hash function46 to X. she sends the choice 
of function and the hash to Bob. If the hash of X̂ disagrees with the hash 
of X, the protocol aborts.
Privacy amplification: Alice extracts  bits of secret key S from X using 
a random universal2 hash function53,54. (Instead of choosing a universal2 
hash function, which requires at least n bits of random seed, one could 
instead employ almost two-universal2 hash functions52 or constructions 
based on Trevisan’s extractor55. These techniques allow for a reduction 
in the random seed length whereas the security claims remain almost 
unchanged.) The choice of function is communicated to Bob, who uses  
it to calculate Ŝ.
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max = n(q − h(Qtol)) − leakEC can be extracted securely. Here h 
denotes the binary entropy function. Because our statistical sam-
ple is finite, we have to add to the tolerated channel noise a term 
m e≈ ⋅1/ (1/ )k ln sec  that accounts for statistical fluctuations. Fur-
thermore, the security parameters lead to a small reduction of the 
key rate logarithmic in cor and sec. The following holds:

The protocol Φ[n, k, , Qtol, cor, leakEC] using a source with  
preparation quality q is sec-secret if the secret key length  satisfies  

 ≤ − + − −

+ +

n q h Q

n k
nk

k
k

( ( )) 2

:= 1 2

2tol EC
sec cor

leak

where

m
e e

m
e

log

ln
ssec

.

A sketch of the proof of these two statements follows in the 
methods section and a rigorous proof of slightly more general  
versions of the theorems presented above can be found in  
Supplementary Material 1.

Discussion
In this section, we discuss the asymptotic behaviour of our  
security bounds and compare numerical bounds on the key rate for 
a finite number of exchanged signals with previous results. For this 
purpose, we assume that the quantum channel, in the absence of 
an eavesdropper, can be described as a depolarizing channel with 
quantum bit error rate Q. (This assumption is not needed for the 
security analysis of the previous section.) The numerical results are 
computed for a perfect single-photon source, that is, q = 1. Further-
more, finite detection efficiencies and channel losses are not factored 
into the key rates, that is, the expected secret key rate calculated here 
can be understood as the expected key length per detected signal.

The efficiency of a protocol Φ is characterized in terms of its 
expected secret key rate, 

r Q
M n k

( , ) := (1 )
( , )

Φ − erob
 ,

where M(n, k) is the expected number of qubits that need to be 
exchanged until n raw key bits and k bits for parameter estimation 
are gathered (see protocol description).

Before presenting numerical results for the optimal expected key 
rates for finite n, let us quickly discuss its asymptotic behaviour for 
arbitrarily large n. It is easy to verify that the key rate asymptoti-
cally reaches rmax(Q) = 1 − 2h(Q) for arbitrary security bounds  > 0. 
To see this, error correction can be achieved with a leakage rate 
of h(Q) (for example, see ref. 42). Furthermore, if we choose, for 
instance, k proportional to n , the statistical deviation in equation 
(2), µ, vanishes and the ratio between the raw key length, n, and 
the expected number of exchanged qubits, M(n, k), approaches one 
as n tends to infinity, that is, n/M(n, k)→1. This asymptotic rate is 
optimal43. Finally, the deviations of the key length in equation (2) 
from its asymptotic limit can be explained as fluctuations that are 
due to the finiteness of the statistical samples we consider and the 
error bounds we chose. These terms are necessary for any finite-
key analysis. In particular, one expects a statistical deviation µ that 
scales with the inverse of the square root of the sample size k as in 
equation (2) from any statistical estimation of the error rate. In this 
sense, our result is tight.

To obtain our results for finite block sizes n, we fix a security 
bound  and define an optimized -secure protocol, Φ*[n, ], that 
results from a maximization of the expected secret key rate over all 
-secure protocols with block size n. For the purpose of this optimi-
zation, we assume an error correction leakage of leakEC = ξnh(Qtol) 
with ξ = 1.1. Moreover, we bound the robustness rob by the prob-
ability that the measured security parameter exceeds Qtol, which 
(for depolarizing channels) decays exponentially in Qtol − Q. (For 
general quantum channels, the error rate in the  and  bases may 

(2)(2)

(3)(3)

be different. Hence, the error correction leakage is, in general, not a 
function of Qtol but of the expected error rate in the  basis. Similarly, 
rob generally is the sum of the robustness of parameter estimation 
as above and the robustness of the error correction scheme. In this  
discussion, the analysis is simplified as we consider a depolarizing 
channel, and, thus, the expected error rate is the same in both bases.)

In Fig. 1, we present the expected key rates r = r(Φ, Q) of the opti-
mal protocols Φ*[n, ] as a function of the block size n. These rates 
are given for a fixed value of the security rate /, that is, the amount 
by which the security bound  increases per generated key bit. (In 
other words, / can be seen as the probability of key leakage per 
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Figure 1 | Expected key rate as function of the block size. Plot of expected 
key rate r as a function of the block size n for channel bit error rates  
Q∈{1%, 2.5%, 5%} (from left to right). The security rate is fixed  
to ε/ = 10 − 14.
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Figure 2 | Comparison of key rate with earlier results. The plots show  
the rate /N as a function of the sifted key length N = n + k for various 
channel bit error rates Q (as in Fig. 1) and a security bound of ε = 10 − 10.  
The (curved) dashed lines show the rates that can be proven secure  
using ref. 18. The horizontal dashed lines indicate the asymptotic rates  
for Q∈{1%, 2.5%, 5%} (from top to bottom).

Table 1 | Optimized parameters for security rate /=10 − 14.

N Q (%) r (%) rrel (%) pz (%) Qtol (%) rob (%)

104 1.0 11.7 14.0 38.2 2.48 2.3
2.5 6.8 10.4 43.0 3.78 3.0

105 1.0 30.4 36.4 22.0 2.14 0.8
2.5 21.5 32.6 23.3 3.58 1.0

106 1.0 47.8 57.1 12.5 1.73 0.6
2.5 35.7 53.9 13.7 3.21 0.7

The column labelled rrel shows the deviation of the expected secret key rate from the correspond-
ing asymptotic value, that is, rrel:=r/(1 − 2h(Q)).
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key bit.) The plot shows that significant key rates can be obtained 
already for n = 104.

In Table 1, we provide selected numerical results for the optimal 
protocol parameters that correspond to block sizes n = {104, 105, 106} 
and quantum bit error rates Q∈{1%, 2.5%}. These block sizes exem-
plify current hardware limitations in practical QKD systems.

In Fig. 2, we compare our optimal key rates with the maximal 
key rates that can be shown secure, using the finite key analysis of 
Scarani and Renner18. For comparison with previous work, we plot 
the rate /n, that is, the ratio between key length and block size, 
instead of the expected secret key rate as defined by equation (3). We 
show a major improvement in the minimum block size required to 
produce a provably secret key. The improvements are mainly due to 
a more direct evaluation of the smooth min-entropy via the entropic 
uncertainty relation and the use of statistics optimized specifically 
to the problem at hand (Supplementary Note 2).

In conclusion, this article gives tight finite-key bounds for secure 
quantum key distribution with an asymmetric BB84 protocol. Our 
novel proof technique, based on the uncertainty principle, offers a 
conceptual improvement over earlier proofs that relied on a tom-
ography of the state shared between Alice and Bob. Most previous 
security proofs against general adversaries7,18,21,20, are arranged in 
two steps: An analysis of the security against adversaries restricted 
to collective attacks and a lifting of this argument to general attacks. 
The lifting is often possible without a significant loss in key rate 
using modern techniques24,25; hence, the main difference lies in the 
first part. In security proofs against collective attacks, Alice and Bob 
usually do tomography on their shared state, that is, they charac-
terize the density matrix of their shared state. As the eavesdropper 
can be assumed to hold a purification of this state, it is then pos-
sible to bound the von Neumann entropy of the eavesdropper on 
Alice’s measurement result. The min-entropy of the eavesdropper 
(which characterizes the probability of the eavesdropper guessing 
the secret key) is, in turn, bounded using the quantum asymptotic 
equipartition property7,44, introducing a penalty scaling with 1/ n  
on the key rate. (A notable exception is20 where the min-entropy is 
bounded directly from the results of tomography.)

In contrast, our approach bounds the min-entropy directly and 
does not require us to do tomography on the state shared between 
Alice and Bob. In fact, we are only interested in one correlation 
(between Z and Z′) and, thus, our statistics can be produced more 
efficiently. (However, that this is also the reason why our approach 
does not reach the asymptotic key rate for the six-state protocol45. 
There, full tomography puts limits on Eve’s information that go 
beyond the uncertainty relation in ref. 22.) Finally, as our consid-
erations are rather general, we believe that they can be extended to 
other QKD protocols.

Methods
Correctness. The required correctness is ensured in the error-correction step of 
the protocol, when Alice and Bob compute a random hash function of their keys. 
If these hash values disagree, the protocol aborts and both players output empty 
keys (These keys are trivially correct.). Because arbitrary errors in the key will be 
detected with high probability when the hash values are compared46, we can guar-
antee that Alice’s and Bob’s secret keys are also the same with high probability.

Secrecy. To establish the secrecy of the protocols, we consider a gedankenexperi-
ment in which Alice and Bob, after choosing a basis according to probabilities px 
and pz as usual, prepare and measure everything in the  basis. We denote the bit 
strings of length n that replace the raw keys X and X′ in this hypothetical protocol 
as Z and Z′, respectively. The secrecy then follows from the fact that, if Alice has 
a choice of encoding a string of n uniform bits in either the  or  basis, the fol-
lowing holds: the better Bob is able to estimate Alice’s string if she prepared in the 
Z basis, the worse Eve is able to guess Alice’s string, if she prepared in the  basis. 
This can be formally expressed in terms of an uncertainty relation for smooth 
entropies22, 

H E H nqmin max( | ) ( | ) ,X Z Z+ ′ ≥ε ε (4)(4)

where ε≥0 is called a smoothing parameter and q, as seen below, is the preparation 
quality defined previously. The smooth min-entropy, Hmax

ε (X|E), introduced in 
ref. 7, characterizes the average probability that Eve guesses X correctly using her 
optimal strategy with access to the correlations stored in her quantum memory47. 
The smooth max-entropy, Hmax

ε (Z|Z′), corresponds to the number of extra bits 
that are needed to reconstruct the value of Z using Z′ up to a failure probability48. 
For precise mathematical definitions of the smooth min- and max-entropy, we 
refer to ref. 49.

The sources we consider in this article are either (a) qubit sources or (b) sources 
that create BB84 states by measuring part of an entangled state. In case b), a com-
parison with ref. 22 reveals that the bound on the uncertainty is given by  − log c, 
where c is the overlap of the two measurement employed in the source. For general 
positive operator-valued measurements, {Mx} for preparing in the  basis and {Nz} 
for preparing in the  basis, this overlap is given by c M Nx z= || ||2max ∞. This jus-
tifies the definition of the preparation quality q =  − log c for such sources. In case a), 
the preparation process can be purified into an entanglement-based one of the type 
above. To see this, simply consider a singlet state between two qubits and projective 
measurements on the first qubit. It is easy to verify that the overlap of the prepared 
states in the two bases is equal to the overlap of the two projective measurements 
used to prepare them. Hence, the preparation quality of this source is given by 
q =  − log c, where c is the maximum overlap of the prepared states.

In the gedankenexperiment picture, the observed average error, λ, is calculated 
from k measurements sampled at random from n + k measurements in the  basis. 
Hence, if λ is small, we deduce that, with high probability, Z and Z′ are highly cor-
related and, thus, Hmax

є (Z|Z′) is small. In fact, as the protocol aborts if λ exceeds 
Qtol, the following bound on the smooth max-entropy (conditioned on the 
correlation test passing) holds: 

H nh Qmax tol( | ) ( ),Z Z′ ≤ + mε

where µ takes into account statistical fluctuations and depends on the security 
parameter via Equation (5) is shown in Supplementary Note 2, using an upper 
bound by Serfling50 on the probability that the average error on the sample, λ, 
deviates by more than µ from the average error on the total string51.

In addition to the uncertainty relation, our analysis employs the Quantum 
Leftover Hash Lemma7,52, which gives a direct operational meaning to the smooth 
min-entropy. It asserts that, using a random universal2 hash function, it is possible 
to extract a ∆-secret key of length  from X, where 

∆ = 1
2

2 .( | )+ − ′ H Emin
 X

ε
ε

 Here E′ summarizes all information Eve learned about X during the  
protocol, including the classical communication sent by Alice and Bob over 
the authenticated channel. For the protocol discussed here, a maximum of 
leakEC + log(1/εcor) bits of information about X are revealed to the eavesdropper 
during the protocol. Hence, using a chain rule for smooth min-entropies, we can 
relate the smooth min-entropy before the classical post-processing, Hmax

ε (X|E), 
with the min-entropy before privacy amplification, Hmax

ε (X|E′) as follows. 

H E H Emin
 

min
 

EC
cor

leak( | ) ( | ) 2 .X X′ ≥ − − logε ε
ε

Collecting the bounds on the smooth entropies we got from the uncertainty 
relation, (4), and the parameter estimation, (5), we further find that   

 
 H E n q h Qmin tol EC

cor
leak( | ) ( ( )) 2 .X ′ ≥ − + − −m logε

ε
 

Combining this with the Quantum Leftover Hashing Lemma (6) and using the 
bound on the key length given in equation (2), we get 

∆ ≤ + ≤ +− ′1
2

2
2

( | ) H Emin secX .ε ε
ε

 Finally, the protocol is εsec-secret, if we choose ε proportional to εsec and  
sufficiently small. 
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