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Abstract
Pharmacovigilance improves patient safety by detecting and preventing adverse drug events. However, challenges exist that 
limit adverse drug event detection, resulting in many adverse drug events being underreported or inaccurately reported. One 
challenge includes having access to large data sets from various sources including electronic health records and wearable 
medical devices. Artificial intelligence, including machine learning methods, such as natural language processing and deep 
learning, can detect and extract information about adverse drug events, thus automating the pharmacovigilance process 
and improving the surveillance of known and documented adverse drug events. In addition, with the increased demand for 
telehealth services, for managing both acute and chronic diseases, artificial intelligence methods can play a role in detecting 
and preventing adverse drug events. In this review, we discuss two use cases of how artificial intelligence methods may be 
useful to improve the quality of pharmacovigilance and the role of artificial intelligence in telehealth practices.
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Key Points 

Artificial intelligence has an important role in quickly 
and effectively detecting existing and new adverse drug 
events during post-marketing surveillance, using large 
datasets.

Artificial intelligence in telehealth can be used to 
improve pharmacovigilance by utilizing various sources 
of patient information such as electronic health records, 
health information technologies, and pharmacovigilance 
database systems, to detect and prevent medication-
related problems.

Although artificial intelligence has a promising role in 
the field of pharmacovigilance and telehealth, there are 
still challenges including detecting undocumented or 
unknown adverse drug events, privacy concerns, and 
technical difficulties.

1 Introduction

Pharmacovigilance is defined by the World Health Organi-
zation as “the science and activities relating to the detec-
tion, assessment, understanding and prevention of adverse 
effects (AEs) or any other medicine/vaccine related prob-
lem” [1]. It involves the surveillance of medications and 
characteristics of patients who receive them to deter-
mine what adverse drug events (ADEs) occur, and which 
patients are at risk. Adverse drug events, defined as any 
harm due to drug therapy, are common in all healthcare 
settings and cause significant morbidity and healthcare 
costs [2–6]. Rapid identification of ADEs is important to 
minimize the extent and duration of patient harm from 
drug therapy.

Pharmacovigilance activities are essential to improve 
patient safety, both to detect new AEs when drugs are 

used in large and diverse populations of patients that were 
not identified in premarketing clinical trials and to detect 
known AEs occurring in patients receiving care [7, 8]. 
Current systems used for pharmacovigilance are limited in 
their ability to efficiently identify ADEs. Many ADEs are 
unreported to spontaneous reporting systems such as the 
US Food and Drug Administration Adverse Event Report-
ing System, patient safety organizations, or health systems’ 
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internal incident reporting systems; one systematic review 
showed that 94% of ADEs were underreported [9]. Meth-
ods to identify ADEs, through chart reviews, interviewing 
patients, or using rule-based trigger tools, are time con-
suming for individuals conducting interviews, reviewing 
charts, or addressing alerts. Signals for ADEs identified 
from spontaneous reporting systems have been combined 
with the use of population-based electronic health record 
(EHR) data to better identify potential new ADEs [10–12]. 
International Classification of Diseases, Ninth Revision 
and International Classification of Diseases, Tenth Revi-
sion billing codes from claims data have been used to 
identify ADEs in patient populations, but the methods are 
inconsistent, may lack sensitivity in identifying ADEs, and 
may not be used prospectively for patient care [13–16].

Implementation of artificial intelligence (AI) to identify 
and predict ADEs can greatly improve current methods 
of detection. Several of these types of automated models 
are currently being studied, including utilizing systems to 
detect outliers and triggers that could indicate potential 
ADEs [17]. Extensive research is also underway using AI, 
including machine learning (ML) methods (natural lan-
guage processing [NLP] and deep learning with neural net-
works), to predict and identify ADEs with several potential 
benefits that have been proposed [18, 19]. Remote methods 
of patient care, such as telehealth visits and digital moni-
toring, offer an ideal opportunity to improve the detection 
of ADEs in patients during the long intervals that they are 
not being seen at a healthcare facility [20–22]. This paper 
reviews the existing use of AI for pharmacovigilance, and 
explores potential new applications for AI for pharma-
covigilance in telehealth settings.

2  Role of Artificial Intelligence in Healthcare 
and Pharmacovigilance

Artificial intelligence is useful for processing vast quanti-
ties of data and assessing relationships [23]. Currently, 
many of the most successful AI applications in healthcare 
have focused on image interpretation to detect specific 
concerns, such as worrisome lesions in mammograms 
[24]. These algorithms can achieve levels of performance 
that equal or surpass that of expert humans for specific use 
cases. Digital pathology is another promising area that can 
apply ML [25].

Detection of AEs of drugs has parallels with radiology 
and pathology [26]. Although ADE information is not gener-
ally captured in images, it is buried in text and among other 
data such as laboratory results. Plain text searching has been 
demonstrated to be an effective approach for finding ADEs 
[27]. Techniques such as AI can be used to sift through very 
large quantities of EHR data to rapidly identify confluences 

of data that indicate events [28, 29]. We suggest two major 
ways in which AI and ML can improve understanding, 
assessment, and detection in the field of pharmacovigilance: 
first, processing existing data to develop more accurate esti-
mates of currently documented ADEs and second, generat-
ing new data to measure actual rates of ADEs. The first use 
case leverages AI techniques, such as ML, to process the vast 
amount of unstructured text from various data sources such 
as case reports, EHRs including patient portals, registries, 
medical literature, insurance claims, internet searches, calls 
to poison control centers, and social media, to extract and 
interpret drug safety information [30]. These types of solu-
tions could provide more timely and accurate surveillance 
of known ADEs and signal detection of previously unknown 
ADEs. Most of the AI and pharmacovigilance literature 
focuses on processing of AE case reports and signal detec-
tion to extract and evaluate the validity of potential ADEs. 
For example, previously unknown, and likely rare ADEs that 
may not have been detected in clinical trials, can be discov-
ered using AI to mine scientific databases and patient-gener-
ated content (e.g., social media) for potential links between 
AEs and medication use to inform surveillance [31]. These 
new data sets can provide additional information outside 
of industry-reported pharmacovigilance. For example, the 
European Union’s Innovative Medicines Initiative WEB-
RADR project, for example, demonstrates how social media 
can be used in pharmacovigilance for reporting, detecting 
signals, and evaluating signals [32, 33]. Social media can 
contribute to pharmacovigilance, but it will be difficult to 
implement multipurpose systems that will automatically 
detect ADEs, and with AI, predict ADEs.

In addition, EHR data can be used to support surveil-
lance. This includes the relatively straightforward task 
of extracting ADEs reported by healthcare providers or 
patients using unstructured text in clinical notes or patient 
correspondence to allow for more comprehensive and 
timely estimates of documented ADEs [34]. However, 
most ADEs are not documented in the outpatient record 
[35]. Missed ADEs can potentially be detected based on 
reported symptoms, laboratory results, electrocardio-
grams, or imaging abnormalities documented in the EHR 
that may have been caused by medication use. In these 
cases, AI methods can be used to estimate the likelihood 
that the events are, in fact, ADEs rather than conditions or 
comorbidities unrelated to medication use.

The second use case leverages AI to facilitate the col-
lection of new or additional information to support more 
comprehensive ADE assessment. In one study, eight times 
more ADEs were identified when patients were asked about 
them, compared with record review alone in the outpatient 
setting [36]. Artificial intelligence could be leveraged to 
define patient-level clinical phenotypes that are associ-
ated with specific ADEs and automate targeted follow-up 
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with these patients regarding the occurrence of the ADEs 
of interest. In addition, any potential hidden patterns and 
missing patients who were not identified with current clini-
cal definitions could be captured. Artificial intelligence can 
also identify the optimal times and frequencies to screen 
patients for specific ADEs to obtain more complete informa-
tion [37]. Although collection and processing of additional 
data may introduce bias, if the same ADE is documented 
across multiple data sources or over time, AI techniques can 
be applied to minimize double counting to provide more 
accurate estimates.

The overarching goal of pharmacovigilance is prevention 
of AEs caused by medication use [7]. The knowledge gener-
ated through the understanding, assessment, and detection 
of ADEs can help inform population-level (e.g., guidelines) 
or patient-level (i.e., personalized) strategies to reduce the 
frequency and consequences of ADEs. Prevention lies at the 
heart of precision medicine, sometimes known as “person-
alized medicine,” which aims to tailor disease prevention 
and management by developing models that consider fac-
tors, such as patients’ genetic predispositions, environments, 
lifestyles, and health histories, to identify risk profiles and 
optimal therapies [38]. More accurate detection of ADEs in 
existing data sources, using AI coupled with patient-level 
risk factors, can lead to the creation and curation of large 
comprehensive datasets for the development of clinical deci-
sion support tools.

Machine learning methods have shown robust perfor-
mance for disease risk predictions by learning from patients’ 
history (variables) and identifying hidden patterns among 
large study cohorts [39]. In most cases, supervised learn-
ing algorithms were implemented rather than unsupervised 
methods, in which the models were developed with known 
labels [40]. Similarly, tools can be developed and imple-
mented at the point of care that leverage patient-specific 
information documented in the EHR for the prevention 
and early detection of ADEs. In this context, several ADEs 
have been associated with specific genetic mutations that 
can affect both pharmacodynamics and pharmacokinetics 
and predispose towards ADEs [41]. Artificial intelligence 
solutions may also provide insights for selecting alternative 
medications, optimizing dosage, or implementing strategies 
to manage anticipated AEs, and deep learning can play a 
significant role (Fig. 1) [42–50].

3  ‘Intelligent’ Information and Telehealth

Telehealth, often used interchangeably with telemedicine, 
is defined as the use of medical information exchanged 
between sites though electronic communication to improve 
health [51]. Telehealth is an umbrella term that includes ser-
vices such as telepharmacy and telemonitoring. Telehealth 

has been around since the 1990s, but in recent years, there 
has been a growing demand for telemedicine. The COVID-
19 pandemic was a huge inflection point in the adoption of 
telemedicine, especially as it required social distancing. In 
the USA, the number of patients who participated in tel-
ehealth visits increased by 57% within the first few months 
of the pandemic, and for patients with chronic diseases this 
figure was 77% [52]. With the increased development of 
home health settings, using health information technology, 
a large amount of data is transferred between hospitals and 
patient homes [53]. As a result, clinical assessment and eval-
uation can be made easier using telemonitoring and AI [54]. 
For example, chatbots can make history taking quicker and 
easier by using NLP to provide prompts and questions based 
on patient answers, such as self-reporting symptoms, and 
can provide possible diagnoses, including ADE detection, 
which can be coded and be applied to future patient visits 
[55]. Orbita, a Health Insurance Portability and Account-
ability Act-compliant conversational AI platform, has devel-
oped an AE detection module that uses deep learning and 
NLP, via a virtual assistant, to recognize and differentiate 
between different AEs based on the questions and phrases 
presented [56]. Once the AE is identified, the module will 
automatically transcribe and export the information to the 
pharmaceutical company and assist with US Food and Drug 
Administration (FDA) reporting.

Although many examples documenting AI applications 
in telehealth have been published, few have focused spe-
cifically on pharmacovigilance in telehealth. Some ongo-
ing research studies are collecting data that could use AI 
to learn insights about pharmacovigilance using telehealth. 
For example, the All of Us Research Program, sponsored 
by the National Institutes of Health, is a large observational 
study recruiting at least 1 million patients from across the 
USA who are diverse in demographics and health status. 
This study is using various sources, including biosamples, 
EHR data, and mobile health device data, to build a diverse 
health database that is available to researchers [57]. Arti-
ficial intelligence can automate the process of identify-
ing ADEs, using algorithms, in large pharmacovigilance 
database systems, such as VigiBase and EudraVigilance, a 
pharmacovigilance database to collect and analyze ADEs in 
Europe [58, 59]. Artificial intelligence could also potentially 
be used to improve existing pharmacovigilance efforts in tel-
ehealth settings that are using technology to detect ADEs in 
outpatients. One study showed success in identifying ADEs 
by utilizing automated phone calls to contact patients newly 
starting medications. After the automated screening, those 
whose responses to questions about symptoms could indi-
cate ADEs were transferred to a pharmacist for triage. Use 
of AI to predict which patients to contact for this type of 
screening and the best time to contact them, coupled with 
additional technologies, such as EHR patient portals and 
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texting to contact patients, could potentially increase the 
success and efficiency of this type of pharmacovigilance 
[60]. Artificial intelligence could also be used to improve 
results for programs that have incorporated telemedicine vis-
its into comprehensive medication regimen reviews for long-
term care patients that were found to prevent ADEs [61].

Health information technologies are also used for telem-
onitoring, mobile health applications, and wireless monitor-
ing devices, which can have useful features including the 
collection of patient monitoring data, disease information, 
symptom diaries, medication logs and reminders, nutri-
tion diaries, and communications among others. Wearable 
devices and mobile health applications measure personal 
analytics, physical status, and physiological parameters, and 
can help with medication scheduling. Some of the networked 
medical devices patients use include consumer products for 
health monitoring (e.g., Fitbit and Apple Watch), wearable 

external medical devices (e.g., portable insulin pumps), and 
internally embedded medical devices (e.g., pacemakers). 
Wearable devices can generate real-time dynamic data that 
providers can assess using software applications on com-
puters, tablets, or smartphones [62]. The results are quickly 
available and allow providers to make appropriate adjust-
ments more efficiently, rather than waiting for laboratory 
results. Research using the web and smartphone-based elec-
tronic health tools for medication monitoring has focused 
more on medication adherence and chronic disease moni-
toring and management, with fewer examples using these 
tools for the detection or prevention of ADEs [63]. How-
ever, the large amounts of data that are being collected by 
monitoring devices (such as glucose levels and blood pres-
sure) could be used with AI to identify, predict, and prevent 
ADEs. Information collected from smartphone-based sur-
veys and texts, such as the US Centers for Disease Control 

Fig. 1  Advantages of deep learning for pharmacovigilance. The out-
come of the model can be the high-risk patient population for future 
adverse drug events (ADEs) or specific types of ADEs, or patients’ 
responses to treatment. The data sources, both clinical and genetic 
variables, were shown to be able to contribute to the prediction per-
formance, suggesting the advantages of integrating different types 
of input data for model development. Among different model types, 
the traditional regression model, given its better interpretability 
compared with more complicated machine learning approaches, can 
be limited by the number of input features. Different model types 
based on machine learning, including support vector machine and 
tree-based models, however, showed better predictive power in some 
recent studies [42, 43]. Deep learning, a subset of machine learning 
that refers to algorithms using complex neural networks with many 
hidden layers, was also applied for ADE prediction. In recent studies, 
deep learning-based algorithms showed superiority over other meth-
ods [44]. This is due to increasingly available large datasets and the 
ability to identify complex non-linear patterns using deep learning 

models. However, because of their complexity, the algorithms may be 
non-interpretable to the human brain and are considered black boxes 
[45, 46]. Factors other than genetic predispositions, such as age, poly-
pharmacy, or environmental factors, can contribute to ADEs [47, 48]. 
Collecting a large amount of data from many sources may be ben-
eficial for prevention, as it could fully exploit differences in charac-
teristics between patients. However, not all machine learning meth-
ods are appropriate for processing potentially high-dimensional (e.g., 
genomic and phenotypic data, chemical information of drugs, clinical 
notes, environmental data) and heterogeneous datasets. Deep learn-
ing can transform the basic (raw input) representations of a patient at 
a higher level and can perform automatic feature extraction from big 
data containing incomplete and noisy information. Even though the 
lack of interpretability is still a major issue, deep learning can also 
be used to discover intricate patterns in large data sets [49, 50]. With 
these advantages, deep learning could help overcome some of the 
barriers responsible for underreporting in pharmacovigilance. EHRs 
electronic health records



453Intelligent Telehealth in Pharmacovigilance

and Prevention’s “V-safe After Vaccination Health Checker” 
used for COVID-19 vaccinations could also benefit from AI 
to analyze AE information sent from millions of patients 
[64].

Machine learning can be very useful for data integration, 
processing and analyzing large data sets, and developing 
real-time models. This allows enhanced decision making 
by providing better information to clinicians at the point of 
care and minimizing the time it takes them to understand 
patient problems. For example, diagnosing heart failure 
involves analyzing the patient’s history, conducting a physi-
cal examination, and interpreting imaging and laboratory 
data. Artificial intelligence can leverage the data found in 
these resources. For example, one study showed the home 
use of smartphone-enabled technology to monitor the neo-
natal and infant cardiac heart rate, which was able to identify 
asymptomatic arrhythmias [65].

Patient status, including care quality, safety, and drug 
responses, can all be captured in the digital health format. 
Artificial intelligence methods can be used to identify 
missing information, compile follow-up questions, and log 
responses and attempts. For example, it has been proposed 
that using a random forest algorithm could potentially pre-
dict and detect ADEs during patient visits to the emergency 
room. The algorithm could identify older adults at a higher 
risk of ADEs by integrating validated decision criteria, such 
as the Beers Criteria and the Screening Tool of Older Per-
sons’ potentially inappropriate Prescriptions (STOPP), and 
identifying patients with polypharmacy [66]. It is impor-
tant to note that these algorithms are proposed only and 
application may be difficult because of black-box outputs 
[67]. Another study applied deep learning to EHR data to 
predict which individuals are at higher risk of developing 
drug-induced QT prolongation [68]. Similar models can 
be applied within physician order entry systems to prevent 
drug-induced QT prolongation.

Pharmacovigilance is important during the drug develop-
ment process, but is especially crucial during post-marketing 
surveillance, after the drug is approved and is being used by 
the public, when it can be done using “real-world evidence”. 
The World Health Organization notes that good pharma-
covigilance identifies risks and risk factors in the shortest 
time possible to avoid or minimize harm [69]. Telemonitor-
ing and video consults are useful for medication therapy 
management and chronic disease management, compared 
to only follow-up interventions via the phone. One review 
found that patients with chronic diseases who were man-
aged through video conferencing compared to in-person 
visits or telephone visits had similar health outcomes [70]. 
Other studies have shown that telemedicine is beneficial for 
patients with chronic diseases such as hypertension, heart 
failure, diabetes mellitus, or chronic obstructive pulmonary 
disease [71–74]. Therefore, adherence to chronic disease 

management, which includes medication management, is 
essential to improve health outcomes and quality of life 
[75]. For example, a study by McFarland and colleagues 
included 103 veterans with uncontrolled type 2 diabetes at 
four primary care clinics. In this study, 36 patients worked 
with pharmacists who utilized Care Coordination Home Tel-
ehealth (CCHT) and 67 patients worked with pharmacists 
who did not utilize CCHT. Of the CCHT group, 69% met 
their hemoglobin A1c goal, with an average hemoglobin A1c 
of 6.9%. In the non-CCHT group, only 36% of the patients 
met their hemoglobin A1c goal, with an average hemoglobin 
A1c of 7.5%. This may have been because of more frequent 
contact with the pharmacist and more adjustments to their 
antihyperglycemic drugs [76].

Telepharmacy is an area of telehealth that can expand 
pharmacists’ and other providers’ interventions by pre-
venting medication errors, minimizing prescribing errors, 
updating medication lists, monitoring drug therapy, assess-
ing potential and/or active ADEs, and counseling patients 
[77]. Telepharmacy is important because about 74% of 
physician visits involve drug therapy [78]. Telepharmacy 
services allow easier access to pharmaceutical services and 
can reduce the number of potential ADEs, but the evidence 
is variable that it can accomplish this. One study found 
that pharmacists who used telemedicine services in three 
community hospitals reduced high-risk medication admin-
istration errors by 35% [22]. Another concluded that telep-
harmacy was as effective as in-person medication reviews 
to identify medication-related problems for patients in the 
inpatient setting [79]. Providers can educate patients about 
ADE-related symptoms to prevent ADEs or detect ADEs 
earlier.

In addition, pharmacoepidemiology databases are useful 
for detecting new ADEs and have years of clinical infor-
mation from a large patient cohort. Spontaneous reporting 
systems, such as the US Food and Drug Administration 
Adverse Event Reporting System, can be useful because they 
allow rapid detection of potential ADEs and early detection 
of new ADEs. However, spontaneous reporting may not be 
the most effective method of detecting ADEs because of a 
lack of quality data and underreporting of ADEs. In addi-
tion to underreporting, there are existing pharmacovigilance 
data sources that are underutilized, such as poison control 
centers. In the USA, more than 200,000 medication errors 
are reported to poison control centers [80]. Artificial intel-
ligence can extract ADE information from these calls and 
add it to databases. There are several organizations launch-
ing projects and systems to effectively collect and manage 
pharmacovigilance data. For example, VigiBase is a global 
pharmacovigilance database that, as of January 2022, has 
over 30 million ADE reports from about 130 countries [81].

Artificial intelligence can also reduce manual data entry 
and enable prioritization of cases in large datasets, including 
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assessment of type or severity of ADE; ML can also be used 
in this setting to detect previously unrecognized patterns. 
Electronic health records represent an increasingly critical 
data source because they enable real-time surveillance with 
fewer errors compared with reporting systems. Electronic 
health records contain information about patient problem 
lists, admission notes, outpatient office visits, clinical his-
tory, symptoms, medications, laboratory results, and dis-
charge summaries. Utilizing AI and telemedicine allows a 
thorough assessment of potential and active ADEs. Yang 
and colleagues utilized an NLP system (MADEx) to detect 
medications, ADEs, and their relationships from clinical 
notes [82]. Natural language processing systems can extract 
comprehensive clinical information and structured medica-
tion information that can allow for a more thorough assess-
ment of potential ADEs [83, 84]. One study automatically 
detected adverse drug reactions (ADRs) in patient reports 
using unstructured data, from a knowledge database, to 
structure free text data and a ML model to learn ADR cod-
ing. Of the 1061 ADRs, their system correctly detected 703 
ADRs and incorrectly detected 190 ADRs [85]. Combining 
EHR data with spontaneous reports has shown to improve 
ADE detection [86]. Social media, including social networks 
and health forums, have also become resources for early 
detection of ADEs [87, 88].

4  Discussion

Drug safety remains a major concern in both the pre-mar-
keting and post-marketing settings. Current pharmacovigi-
lance methods in the post-marketing setting rely heavily on 
spontaneous reporting for detecting and analyzing ADEs, 
which can introduce biases. Artificial intelligence meth-
ods have great potential to make pharmacovigilance more 
efficient and effective. This can be demonstrated in the two 
use cases in AI that were discussed in this paper. The first 
use case utilizes AI techniques, including NLP and deep 
learning, to process documented ADEs, from various data 
sources, especially EHRs. Thus, it is important for indi-
viduals participating in the pharmacovigilance process to 
have more access to these tools and data. The second use 
case utilizes AI to collect new or additional information to 
measure actual rates of ADEs. Specifically, AI tools can 
be developed for automated targeted follow-up of patients 
at higher risk of ADEs at optimal times and frequencies to 
obtain more comprehensive pharmacovigilance data. Such 
datasets, with more accurate and complete documentation of 
ADEs, can be leveraged to develop clinical decision support 
tools to prevent or mitigate the AEs caused by medications 
and optimize treatment outcomes.

These efforts will be guided by support and actionable 
changes from the FDA. The FDA has developed an action 

plan for an AI-based software for medical devices [89]. It is 
important for the FDA to incorporate these efforts in phar-
macovigilance and ADE detection and prevention, especially 
during telehealth visits. In addition, the use of AI and wear-
able technologies in telemedicine have played a big role in 
pharmacovigilance. Artificial intelligence and remote moni-
toring of patients, using real-time data, can minimize patient 
harm and improve patient outcomes.

5  Limitations

Although the use of AI in pharmacovigilance and telemedi-
cine can be useful, it also raises ethical, security, regulatory, 
and privacy concerns. Clearly, an overriding concern is pro-
tecting patient data and personal information [90]. Security 
threats can compromise confidentiality, integrity, and avail-
ability of data [91]. A remaining concern is who will be 
allowed to access and make decisions about the data. Tele-
medicine services will usually require wireless network con-
nections that collect and transmit information from patients 
to telemedicine systems, allowing providers to access that 
data. To transmit and store data, users rely on a wireless 
connection that can face multiple system attacks. The data 
are transmitted to third parties using a wireless connection, 
which creates privacy issues in the communication process. 
The telemedicine service system can be exposed to security 
threats and man-in-the-middle attacks [92].

Scope of practice and reimbursements are other concerns 
regarding providing expanded telehealth services in the 
USA. Telehealth may be for applicable for certain diseases 
such as mental health issues. Telehealth visits may not be 
reimbursed adequately by health insurers, and state regula-
tions may not allow providers to conduct telehealth visits for 
patients who live in a state in which they are not licensed 
to practice. In addition, there are data available about cost 
savings regarding ADEs [93]. Artificial intelligence has 
the potential to reduce costs by automating the manual and 
repetitive tasks of processing ADE cases, thus allowing 
more time and resources to be allocated for other tasks.

Wearable technology can predict events before they 
occur, using sensors to collect data and generating personal 
metrics. The metrics generated can be sent to companies for 
analysis but do raise concerns regarding user privacy. There 
are several regulatory authorities, such as the FDA, and pri-
vacy policies in place to assist developers in creating legally 
compliant health applications that follow high standards to 
protect the user [94]. Institutions should focus on minimiz-
ing threats and vulnerable areas that can be attacked. Health 
Insurance Portability and Accountability Act-compliant sys-
tems that have standards for securing protected health infor-
mation should be implemented. Patient information should 
be protected using authentication and data encryption [95]. 
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It is important to use secure logins that use multi-factor 
authentication and security questions, for both patient iden-
tification and provider identification. In addition, periodic 
security assessments should be completed to prevent acci-
dental disclosure of health data and fraud. Employee and 
end-user training should occur to recognize these threats as 
well. In addition to privacy concerns, another limitation to 
consider is patient access to internet services, smartphones, 
or monitoring devices. Some individuals may not have 
access to these technologies or devices, which could lead to 
inequities in treatment and outcomes [96].

Although these technologies may be useful, there may be 
system errors that occur. For example, NLP tools may omit 
or miss drug-ADE relationships because of inaccurate word 
choice, incorrect inference, or reasoning [97]. There are also 
difficulties surrounding the detection of undocumented and 
unknown ADEs, including rare events, and the potential bur-
den of false-positive ADE alerts [98]. In addition, ML mod-
els can generate black-box algorithms that are difficult to 
understand and explain predictions at the human level [99]. 
Other considerations include maintaining data integrity, by 
minimizing the use of biased datasets and optimizing EHR 
data [100]. Inaccurate predictions may occur because of gaps 
in the information or clinical data manipulation. The datasets 
used to train algorithms may reinforce existing biases, may 
lack data from underrepresented populations, or may not 
ensure algorithm fairness [101]. Technical difficulties may 
also occur. For example, failures in telecommunication links 
may occur. It is important to have an existing IT department, 
but also a support specialist on the telemedicine team. It will 
be essential to ensure that these models are optimized before 
they are integrated into routine patient care. Last, AI and 
telemedicine can impact patient-provider relationships and 
limit the ability to perform comprehensive medical exami-
nations [102].

6  Conclusions

As the volume and complexity of clinical data continue to 
grow, it is critical to understand how AI can be integrated 
into clinical practice, whether in person or virtually. This 
will help clinicians enhance the clinical decision-making 
process and provide personalized patient care. Artificial 
intelligence and telemedicine are useful technology-driven 
approaches that have the potential to reduce emergency 
department visits and hospitalizations, improve health out-
comes, and increase healthcare quality. As the evidence for 
the use of AI for pharmacovigilance, in general and particu-
larly telehealth, is limited, more evaluations are required to 
understand how it can be beneficial, and to identify the best 
directions for expanded implementation.
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