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Faraday rotation is a fundamental property present in all nonreciprocal optical elements. In the THz range,
graphene displays strong Faraday rotation; unfortunately, it is limited to frequencies below the cyclotron resonance.
Here, we show experimentally that in specifically designed metasurfaces, magnetoplasmons can be used to
circumvent this limitation. We find excellent agreement between theory and experiment and provide physical
insights and predictions on these phenomena. Finally, we demonstrate strong tunability in these metasurfaces

using electric and magnetic field biasing.
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Graphene is considered a very promising material for nonre-
ciprocal magneto-optical applications at microwave, terahertz,
and infrared frequencies [1-18]. Two of the most common
nonreciprocal devices are isolators and circulators, and both
are realizable starting from a Faraday rotator [9,11,16,19].
On top of a strong Faraday rotation (FR), graphene offers the
possibility of tunability/modulability via a gate.

Unfortunately, Faraday rotation observed in uniform
graphene typically exhibits a maximum at low frequency
(<1 THz), and is barely present at higher frequencies, ap-
parently precluding applications above 3 THz [3,4,12]. In
nonuniform media, it was experimentally found that the
magneto-optical response in transmission is enhanced at the
plasmonic resonance frequency, in structures such as graphene
dots [8], antidots [20], and ribbons [21], but the effect of
magnetoplasmonic resonance on the FR remains experimen-
tally unexplored. It was numerically demonstrated that such
plasmonic structures should also induce a blueshifting of
the Faraday rotation maximum [13,16], but the fundamental
questions of how to preserve and manipulate FR above the
cyclotron resonance are still open.

In continuous graphene, the impedance of the continuous
monolayer is given for the two opposite circular polarizations
by [5]

Zy =o0;' =o.'[l +it(w+w)l, (1
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where w is the photon frequency, t the carriers’ scattering time,
O4e = 27| Eg|(m 727! is the low-temperature low-frequency
limit of graphene’s conductivity for no magnetic bias, and w, =
ev?B|Eg|™! is the semiclassical cyclotron frequency. In such
a system the maximum FR always appears at energies below
the cyclotron resonance. To go even further, when considering
the highly doped (and/or low magnetic field regime) where
7! is dominant over w., the Faraday rotation will peak at zero
frequency and will not extend above a cutoff frequency given
by @ = t7!, explaining the experimentally observed strong
reduction of FR above 3 THz [3,4,12].

Trying to circumvent these limitations, in this Rapid Com-
munication, we have studied both experimentally and numer-
ically the behavior of the Faraday rotation in three different
patterned structures: a periodic array of graphene square dots
(GSDs), a graphene square antidot lattice (GSA), and a hybrid
metal-graphene patterned structure (HMG). Circumventing
the limitations observed in graphene, we have confirmed for
all structures the presence of nonreciprocal magnetoplasmons
blueshifting the Faraday rotation far above the cyclotron
resonance. We went further by showing that each metasurface
allows specific control over the frequency and broadening of
the nonreciprocal optical responce of graphene.

All the samples measured in this Rapid Communication
are made from chemical vapor deposited (CVD) graphene,
transferred on oxidized high-resistivity silicon wafers (oxide
thickness #,x = 280 nm). The different patterns studied here
were made using a combination of e-beam lithography, oxygen
plasma etching, and gold deposition. Infrared spectra were
measured through a 3-mm-diam hole fully covered by the

©2018 American Physical Society
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samples (5 x 5 mm?), at room temperature (7 = 280 K), in a
split-coil superconducting magnet attached to a Fourier-
transform infrared (FTIR) spectrometer. The resolution
(4 cm™!) was selected to remove the effect of the multiple
reflection in the chip, equivalent to suppressing the phase co-
herence between multiple reflections. Following the procedure
described in Ref. [22], for each magnetic field B, the Faraday
angle Op(w) was measured using a two-polarizer configuration
with a fixed polarizer and a mobile analyzer.

A scanning electron microscopy (SEM) image of the typical
GSD is shown in Fig. 1(a). The pattern consists of periodic
squares with a periodicity P = 1 um and a distance between
the dots d = 150 nm [5].
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FIG. 1. (a) SEM pictures of the nanopatterned graphene square
dot GSD lattice sample studied in this work. P = 1 um, d = 150 nm.
(b) Measured Faraday rotation on the GSD sample at several magnetic
fields up to 7 T. (c) Comparison between experimental data and the
analytically predicted FR for B = 7 T; expected broadening (central
frequency) appears as a dotted (continuous) gray line. Expected w, in
this system at B = 7 T is shown as a gray dashed line. (d) Full-wave
simulations for various periods and fill ratios.

The FR measured in GSD is shown in Fig. 1(b) for several
magnetic fields up to 7 T. One can see that Op(w) in this structure
displays a very different behavior from the monotonous FR
observed in continuous graphene and described above. For all
nonzero magnetic fields Or(w) exhibits a bell-shaped curve,
centered around 6 THz. The amplitude of the FR increases
with the magnetic field B, but neither the broadening nor the
position of this maximum are affected by the variation of B.

To understand this behavior we can generalize Eq. (1) for
the patterned case. The biperiodic patterns of etched gaps have
the function of interrupting the path of surface currents on
graphene by adding a series capacitive term Cg, originating
from the displacement currents. The impedance of the obtained
graphene metasurface is then [23]

h? 2| Eg|
V4 =— |¢7! +ilotw.——————— )|, 2
M e2|EF|p[ ( ¢ wpnhzcg)} @

where p = %(1 — %)2 < 1 is the pattern filling factor, reduc-
ing the overall conductivity tensor [5]. p includes a current
pattern factor ¢; = 8/7w? which models the approximately
sinusoidal current density profile on the patch, which gradually
tends to zero at the edges [24]. In analogy with continuous
graphene, a good estimation for the frequency of maximum
Faraday rotation in the low mobility regime is then found from
the condition Im(Zy+) + Im(Zy—) = 0, where Zy4 and Zy—
have the same modulus but the phase difference is maximized,

e EF
= - |—, 3
“F T w\ 7C, )

providing a nonzero resonance value depending on the Fermi
level and the chosen pattern but not on the magnetic field,
as observed experimentally. wr can be understood as a plas-
monic resonance arising between the kinetic inductance L; =
e?|Eg|(wh?)~! of graphene and the pattern-induced capaci-
tance C,. From the found impedance of patterned graphene,
Faraday rotation is trivially found by analytically solving the
boundary conditions at the interface.

Figure 1(c) compares the experimental data measured at
B =7 T with the calculated FR using an approximated
analytical formula for Cy of the considered pattern given in
Ref. [23]. A very good agreement is reached for the whole
frequency range using Er = 0.43 eV and 7 = 44 fs, thus
capturing the magnetic-field-independent resonance frequency
wp and bandwidth [from wg — 27)7' to wg + 27)7']. To
illustrate the shift of the FR above the cyclotron resonance,
the black curve in Fig. 1(c) is the calculated FR for continuous
graphene using Eq. (1) and the extracted Fermi energy and
scattering time. This allows us to see that the model also
captures the amplitude of the FR and shows that, apart from
the correction factor pgsp *20.6 which decreases the total
Faraday rotation, patterned graphene retrieves the optimal
Faraday rotation condition at the resonance frequency (found
in uniform graphene for @ = 0), namely,

Zvs(w = wp) = p~' Zi(0 = 0). 4

Importantly, as shown in Fig. 1(d), this tells us that, as long as
the factor ratio p is conserved, the amplitude of the Faraday
rotation will be unchanged by a variation of the period P.
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Because Cy is proportional to P [23], the resonance frequency
wr can be easily tuned over a large portion of the THz range
without any loss of FR, and this is independently of the
cyclotron resonance energy.

The main drawback of the GSD structures is that once
fabricated, no in situ tuning of the FR is possible: first, because
the resonance frequency is magnetic field independent, and
second, because as a noncontinuous graphene structure the
Fermi level cannot be changed using a back gate. To overcome
these limitations, in the following we will focus on structures
allowing more flexibility.

Figure 2(a) is a SEM image of a typical GSA sample, with
an antidot diameter D = 4 pum and a periodicity P = 6 um.
The apparent electrical continuity of this sample allows us to
apply a gate voltage.

Figure 2(b) shows the Faraday rotation measured on GSA
sample at gate voltage of Vs = 136 V (with respect to the
charge neutrality point), corresponding to Er = 0.356 eV. As
the magnetic field increases, 6r(w) displays a very different
behavior from the one observed above, with two main features:
a monotonic increase of the FR towards dc frequency and a
local maximum of the FR centered around 3 THz (see red
arrow). This behavior can be understood by considering a
superposition of the two behaviors described in the first part
of this Rapid Communication: (i) The GSA is an electrically
continuous structure and as such Dirac carriers are free to
move, thus the FR presents a maximum at zero energy (similar
to the one observed in continuous graphene); (ii) plasmonic
resonances take place in this structure due to Bragg scattering
on the periodic structure [20], and when it becomes coupled
with the cyclotron resonance, an enhancement of the FR is to
be expected (and it is observed in the GSD structures). As B
increases, both maxima increase in amplitude, reaching 2° for
peak A and nearly 3° for peak B at B = 7 T. It is interesting to
note that with similar filling factors (pgsa = 0.65) both GSA
and GSD present similar performances.

For a further understanding of this system, we performed
finite-element electromagnetic simulations. The resulting nu-
merical curves are shown in Fig. 2(c), demonstrating very good
agreement with the experimental data. The shape, amplitude,
and frequency of the resonance are all well reflected by the
simulation, for all magnetic fields. From this fit we can extract
an average scattering time of t = 80 fs, making the comparison
with the previous structure even more relevant.

Let us now consider the in situ tuning capabilities of this
structure. Figure 2(d) shows the FR measured at 7 T for
four different values of the Fermi level. As the Fermi level
moves closer to the Dirac point, the FR starts to decrease.
Or(w) peaks at 2° for Er = 0.25 eV and reaches a value
close to zero for the whole experimental frequency range at
Er = 0.07 eV. Two phenomena take place simultaneously as
Er decreases: (i) The density of the carrier decreases, and
the interaction between light and graphene becomes weaker,
causing a smaller amplitude of the Faraday rotation, and (ii)
the cyclotron resonance moves to a higher energy, raising as
well the magnetoplasmon resonance. Figure 2(e) shows the
simulated 6g(w) for all the measured Fermi levels at a constant
scattering time T = 80 fs. The simulations clearly show that
the value of the maximum FR shifts from 4 up to 15 THz as the
Fermi level is decreased. It can be seen that the experimental
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FIG. 2. (a) SEM pictures of the nanopatterned graphene square
antidot lattice (GSA) sample studied in this work. P = 6 um, D =
4 pm. (b) Measured Faraday rotation on the GSA sample at several
magnetic fields up to 7 T. Expected w, in this system at B =7 T is
shown as a gray dashed line. (c) Simulated Faraday rotation for GSA
with 7 = 80 ps and Er = 0.356 eV. (d) Solid lines: Faraday rotation
measured at B = 7 T for different values of the Er. Dashed line: Full-
wave simulations for the FR for fixed mobility 1 = 2500 cm?/(V s)
calculated for the corresponding value of Er. (e) Simulated Faraday
rotation measured at B = 7 T for fixed T = 80 fs.
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FIG. 3. (a) SEM pictures of the hybrid metal-graphene sample
(HMG) sample R =4 pum, e =1 um, P = 13 um. (b) Measured
Faraday rotation at various fields, up to 7 T, for a fixed back gate
voltage Vi = 50 V. Expected w, in this system at B = 7 T is shown
as a gray dashed line. (c) Fit of the measurements with numerical
full-wave simulations, for Er = 0.47 eV and t = 45 fs. (d) Faraday
rotation measured at B = 7 T for different values of V.

data do not show the same behavior, with no evidence of
FR resonance for Ep = 0.07 eV. Trying to reproduce the
experimental data, we realized that the scattering time is not a
good fitting parameter, because as the Fermi energy decreases,
the effective mass of the graphene carriers changes, m =
Eg/ v%. The dashed lines in Fig. 2(d) show the simulated FR
for all measured Fermi energies, taking into account a constant
mobility © = t/m = 2500 cm?/(V's) instead of a constant
scattering time. One can see that this fitting procedure allows
a very good agreement with the experimental data and gives a
gate efficiency for this system C = 6.9 x 10'2 cm~2/V.
Finally, the last structure studied in this Rapid Communi-
cation is a periodic square lattice of gold rings covered by
uniform monolayer graphene, as shown in Fig. 3(a). The gold
layer of 100 nm is evaporated directly on the silicon oxide and

the graphene layer is transferred on it afterwards. The radius of
theringis R = 4 pum, thering widthe = 1 um, and the pattern
has a periodicity P = 13 um. Anobvious advantage of such an
HMG patterned structure is that no part of the surface graphene
is removed. Consequently, the Fermi level can be tuned via the
gate voltage.

Figure 3(b) shows the results of the FR measurement for the
HMBG at a fixed back gate voltage V5 = —40 V for magnetic
fields up to 7 T. Similarly to the previous system, two clear
features appear in Og(w): The dc resonance is due to the free
carriers and the magnetoplasmonic resonance in this case lies
at 6.3 THz. The value of the maximum Faraday rotation for
peak B increases with increasing magnetic field and reaches
almost 1°at B =7 T.

Results of the full-wave simulations are shown in Fig. 3(c).
To simplify the calculations, Maxwell’s equations were not
solved inside the gold, which was approximated as a thin-film
impedance. The presence of the gold rings in the vicinity
of graphene affects the local electric field increasing it at
the center of the ring. Graphene interacts with the enhanced
field, and the equivalent conductivity of graphene at this
frequency becomes different for the left- and right-handed
circular polarizations, causing Faraday rotation to appear.

It can be seen that the model accounts well for the amplitude
and frequency of both the experimentally observed modes.
Interestingly, to reach such an agreement with the experimental
data, the conductivity of the gold rings has to be decreased
with respect to the nominal value. This is probably due to
either discontinuities in the gold rings because of imperfect
fabrication or to strong skin depth effects in metal at these
frequencies. This may explain why, among the studied struc-
tures, the HGM structure presents the smallest enhancement
of Faraday rotation of the studied structures. We believe
that an improved fabrication process could result in better
performances and would enable the structure to reach values
of Faraday rotation similar to the two previous metastructures.
One can also see that the simulation predicts the presence of
a third peak above 7 THz that appears clearly above 3 T, a
resonance that appears in the experimental data as a shoulder
above the second resonance.

Figure 3(d) shows the FR measurement at constant magnetic
field and for several gate voltages. Contrary to what has been
observed in GSA, where the resonance frequency is tuned by
the carrier density, the resonance frequency is fixed in the
HGM structures. The numerical model shows that the metallic
pattern sets its own resonance frequency and dominates the
response of the system. Hence, the resonance frequency does
not appreciably depend on the charge carrier density in the
graphene layer. Instead, the amplitude of the rotation is strongly
affected by the carrier density, hence decoupling these two
degrees of freedom.

In conclusion, we have demonstrated that, by using three
different types of metasurfaces, the Faraday rotation in
graphene can be extended to the high terahertz band and
potentially to the mid-IR, independently of the cyclotron
resonance energy, thus paving the way for different nonre-
ciprocal devices based on graphene. The GSD array presents
a resonant behavior acting in a specific frequency band. The
frequency is adjustable over a large range of THz frequencies,
in principle, without any losses in the Faraday rotation. The
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GSA array shows similar performances reaching 3° of Faraday
rotation, but on a broader frequency range due to multiple
resonance frequencies. The amplitude and frequency of these
resonances can be tuned using the gate voltage. Finally, the
HMG metasurface allows us to decouple the frequency from
the amplitude tuning.
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